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Convergent expansions are derived for three types of orthogonal polynomials:
Charlier, Laguerre and Jacobi. The expansions have asymptotic properties for large
values of the degree. The expansions are given in terms of functions that are special
cases of the given polynomials. The method is based on expanding integrals in one or
two points of the complex plane, these points being saddle points of the phase
functions of the integrands.

1. Introduction

In a previous paper [9], we have studied the expansion of an analytic function at
two finite points in the complex plane. The domain of convergence is a Cassini
oval around the two points. The main motivation for that paper was to obtain the
coefficients of asymptotic expansions of certain integrals. In the present paper we
give a few examples in which the expansion of an integral at two saddle points
yields a convergent expansion that has an asymptotic property for large values of
a parameter.

In the well-known methods for deriving asymptotic expansions of integrals, a
basic step is transforming the integral into a standard form, and the transforma-
tion usually gives a new integral in which the integrand contains implicitly defined
functions that are difficult to handle. In the method of this paper, we avoid a
transformation and, in addition, we derive convergent expansions.

We start with a simple example in which only one saddle point occurs, and in
which a function is expanded at that saddle point. This gives an expansion for the
Charlier polynomials.

In two other examples (Laguerre and Jacobi polynomials) we take into account
two saddle points, and again two convergent expansions can be constructed with the
desired property. The approximants belong to the same class of polynomials as the
original ones, but they are of a simpler type (Hermite and Chebyshev, respectively).
The asymptotic property follows from recursion relations for functions appearing
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in the expansions. The convergence follows from the fact that an integral along a
finite contour is expanded inside a domain of uniform convergence.

In the examples given in this paper, the contour integrals are based on Cauchy-
type integrals obtained from generating functions. When the contour is finite, a
proof of the convergence is usually rather easy. For more general finite contours
and more general integrals we expect that the method can be applied as well. For
example, we can apply the method to the Gauss hypergeometric function and the
incomplete gamma function, with different integral representations.

Also, the methods of this paper can be generalized by considering Taylor expan-
sions at more than two points. In [10], we give details on the theory of multi-point
Taylor expansions, and in a future paper we will give details on applications to
integrals with, for example, three saddle points.

We show a few graphs that indicate the nature of the approximations, and in a
final section we mention a few examples in which other functions are considered.

2. A simplified version of the saddle-point method

Throughout this paper we are concerned with finding asymptotic expansions of

integrals of the form

F(n) = /F F(w)ens@ w‘ﬁl, (2.1)

where f(w) and g(w) are analytic in a domain {2 of the complex plane that contains
the origin, I' is a circle with centre at the origin and contained in {2 and n is a
large positive integer. We assume, as it usually happens to be the case, that the
asymptotic behaviour of the integral F'(n) for large n is determined by contributions
from the saddle points of p(w) = g(w) — Inw (see [15, ch. 2, §4]).

The standard saddle-point method consists of

(i) deforming the contour of integration I" into a new path that crosses one or
some of the saddle points of p(w);

(ii) a suitable change of the variable of integration;
(iii) application of Watson’s lemma or Laplace’s method.

Instead of applying the standard saddle-point method, we will proceed in a sim-
pler way: just substitute a power-series expansion at one or more saddle points of
the function f(w) in (2.1). If there is just one saddle point wy, then that power
series is its Taylor expansion at wy,

0 £(k) (4
fw) =3 T (2.2
k=0 )

which is uniformly convergent for w in a disk D,(wo) = {w € 2, |w — wo| < r}
with centre at wo and radius r = inf,,cc\ o [w — wol. If there are two saddle points
wy and way, then that power series is its two-point Taylor series at w; and wsy [9],

oo

F(w) = lan(w — wi) +ap, (w — w)](w — wi)" (w — wy)", (2.3)

n=0
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where

ag = M’ a6 = M (2.4)
Wy — W1 wyp — w2

and, forn=1,2,3,...,

n+k—1 ) (D" f P (ws) + (1) kT ’“)(wl)

@ =T n' kl(n — (wq — wo)nth+l (25)
p_ 1 (n +k— 1)- (—1)"+1nf(”_k)(w1) + (D kP (ws)
nT ol kzzo kl(n —k)! (wg — w1)”+k+1 (2'6)

The expansion (2.3) is uniformly convergent for w in a Cassini oval
Or(wy,we) ={w € 2, |w—w||w—ws| <r}

with foci at w; and wy and ‘radius’ r = inf,cc\ o {|w — w1 ||w — wal} (see [9]).

If we now substitute (2.2) or (2.3) in (2.1) and interchange summation and inte-
gration, we obtain an expansion of F'(n). This is proved in the following two propo-
sitions.

PROPOSITION 2.1. Let the right-hand side of (2.2) converge uniformly to f(w) for
w € D, (wp) with |wo| < r. Then

=y B0 [y s 2 @)
k=0 ' r

Proof. If |wg| < r, then 0 € D, (wp). Then we can choose a small enough circle I’
n (2.1) such that I" € D, (wp). Therefore, expansion (2.2) is uniformly convergent
for w € I'. Introducing (2.2) in (2.1) and interchanging summation and integration
we obtain (2.7). O

PROPOSITION 2.2. Let the right-hand side of (2.3) converge uniformly to f(w) for
w € O (wy,ws) with |lwyws| < r. Then

- . d
n) = Zak / (w — wy ) (w — wg)ke"“’(w);w
k=0 7T

d
+Zak/ w — w)F (w — wy)FHLenP(®) qu} (2.8)

k=0

Proof. The proof is similar to that of proposition 2.1. O

In the remaining part of the paper we apply proposition 2.1 or proposition 2.2 to
three specific examples of integrals F'(n) representing Charher polynomials C%(nzx),
Laguerre polynomials L& (nz) and Jacobi polynomials P ﬂ)( ). In this way, we
obtain expansions of these polynomials for large values of n. In each example, we
prove that the corresponding expansions (2.7) or (2.8) are convergent in a certain
region of the variable x and that, in fact, they have an asymptotic nature for large n,
uniformly with respect to x in certain domains of the region of convergence.
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3. Asymptotic expansions of Charlier polynomials
in terms of Gamma functions

The Charlier polynomials are defined by the generating function

—aw x - a wn
e (1 4 w)" = ch(g;)ﬁ7 (3.1)
n=0 :

and have the explicit expression

C9(z) = Zn: (Z) <z> k(—a)" k. (3.2)

k=0

The Charlier polynomials are orthogonal with respect to a discrete distribution
on the positive real line. For an overview of properties, see [7]. Recent papers on
asymptotics include [1,2,5,6]. In this section we give a simple convergent expansion
of C%(zn), that has an asymptotic property for large n, uniformly for complex a in
compact sets and for complex & bounded away from 1. A uniform expansion that
holds for z in a compact neighbourhood of x = 1 is given in [1], where J-Bessel
functions are used in the approximations. Also, uniform expansions that hold for
—00 < z < 00 are given in [2].

THEOREM 3.1. For x # 1, a € C and n € N, the Charlier polynomials have the

expansion
a a/(l1—x) = (_a)k
Co(xn) =e Z T@k(% n), (3.3)
k=0
where
oA T T I'(nz+1-—mn)’ 150 T (1-z)(n(z-1)+1) '
and, for k=0,1,2,...,
r 1 1
Py (z,n) = (nz+1) soli(=k,—n,nr —n+1;1—x). (3.5)

I'lne—n+1)(1—2x)

The sequence {®r(z,n), k=0,1,2,...} satisfies the recurrence

1 z(1—k)—k x(1—k)
@ = Dy — Dy 3.6
k(2,n) n(@—1) 1k T 1 k 1($’n)+(x—1)2 k—2(z,n)|, (3.6)
where k = 2,3, ..., and is an asymptotic sequence for large n. For fixed k, we have
Dy (a,n) = O(n~ D2 (n)z]),,), 3.7)

when n — oo, where |« is the integer part of the real number a. The asymptotic
property holds uniformly with respect to complex x, |z — 1| > 6 > 0.

Observe that, in the notation of Pochhammer’s symbol (a),, defined by

I'(a+n)

(a)o=1, (a)p= T(a) =ala+1)---(a+n—-1), n=0,1,2,..., (3.8)
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we have

I'(n — nzx)

Do(z) = (—1)nm

=(—1)"(—nz)p = (nx)(nz —1)--- (nz — (n—1)). (3.9)

Proof. From (3.1) we derive the integral representation

a n! —aw T dw
Cn(x):%/re (I+w) RS

where I is a circle with centre at the origin and radius less than 1. We write this
in the form | d
Ch(nx) = n—/ e_a“’e”"’(g“”)—w7 (3.10)
27 Jp w
where
oz, w) = xlog(l 4+ w) — logw.

—aw

The only saddle point of ¢(x,w) is wy = (x — 1)~L. The function e is an entire

function of w. Hence the expansion

B > —a ke—awo
e = Z%(w—wo)k (3.11)
k=0 ’

is locally uniformly convergent for w € C and x # 1. Therefore, after substituting
this expansion in (3.10) and using proposition 2.1, we obtain (3.3) with

/F(w — wo)* (1 + w)™" wilil . (3.12)

n!

Dp(z,n) = o

To obtain the recurrence (3.6), we write

aenW(zaw)

n—1 1 /F(w —wo)* (1 + w) — dw.

(
Prlen) = e
Integrating by parts and performing a few straightforward manipulations, we obtain
equation (3.6). Equalities (3.4) and (3.5) follow after simple calculations. The
asymptotic behaviour in (3.7) for large n follows from (3.4) and (3.6). From (3.4),
we see that @9 = O((n|z]),) (see formula (3.9)) and that $; = O((n|z|),/n). There-
fore, equation (3.7) is true for k = 0, 1. From here, the proof follows by induction
over k. If (3.7) holds up to k, then

1 = O(n 2 (n|z)),) and &) = O D2 (n|z)),).
Using this in (3.6), with k& replaced by k + 1, we have that
Dii1 = O(n (T2 (nfa)),).

Property (3.7) holds uniformly for |[x—1| > ¢ > 0, and also for complex x. Detailed
information on the asymptotic behaviour can easily be obtained from (3.12). O

From (3.9) it follows that ®y(z) has n zeros at x = m/n, m = 0,1,...,n — 1
(®1(x) has the same zeros, except for z = (n — 1)/n). See also table 1, where we
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Table 1. The zeros of Cji(nz) forn =10 and a =1
0.000000090 0.534 449998
0.100006223 0.680932968
0.200157621 0.855641877
0.301812498  1.068 772397
0.410358953  1.347867 376
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Figure 1. Numerical experiment on the approximation given in theorem 3.1 for large n and
x € [0,1). Continuous lines represent the Charlier polynomial C}(nx) for (a) n = 20 and
(b) n = 50. Dashed lines represent the first-order approximation given by e®/ =)@ (x, n).
Both graphics are cut for extreme values of the polynomials.

give numerical values of the zeros of C¢(nx) for n = 10 and a = 1. From the graphs
in figure 1, we also see that the early zeros are approximated quite well.

Table 2 gives approximate values of Cé(x,a) for z = 0.25, a = 1, and several
values of n.

REMARK 3.2. When in expansion (3.11), the expansion point wp is not equal to
the saddle point (z — 1)~!, we are not able to prove the asymptotic nature of
expansion (3.3). This follows from the integration by parts procedure mentioned in
the proof of theorem 3.1. On the other hand, we can show (3.7) directly from the
definition (3.12) with a change of variable like in the standard saddle-point method.

3.1. Details on the convergence

It is of interest to verify the speed of convergence of the expansion in (3.3).
We consider equation (3.12), with k& = kn, and determine the saddle point of
(w — wp)®(1 + w)*w™?t, where  is large. We consider z fixed, and for z < 1 we
verify that a positive saddle point w, occurs with wy ~ 1/[(1 — 2)k]. There is a
negative saddle point, which is not relevant. We have

K"e" (1 —x)"

[(w+ - wo)ﬂ(l + w+)ww11]n ~ (1 7 l‘)k

Multiplying this with a*n!/k! (see (3.3) and (3.12)) and using in Stirling’s approx-
imation of the factorials only the dominant parts, that is, k! ~ (k/e)¥, we see that
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Table 2. Numerical experiment on the convergence rate of expansion (8.3)
forx=0.25 anda =1
(Here,

- (—a)*
C(z,N) = /17 Z qu'k(m,n)
k=0 ’

represents the truncated series in (3.3). All the rows are multiplied by an appropriate
constant in order to keep the numbers small.)

n CL(0.25n) C%(z,0) CZ(z,1) C(z,2) CX(x,3) C&(x,4) C&(z,5)

10 —1.03630 —0.97736 —1.02335 —1.04747 —1.00438 —1.03633 —1.0363

30  4.35872 4.03823 4.28867 4.35077 4.35762 4.35858  4.35870
50 —4.86727 —4.65813 —4.82829 —4.86464 —4.86701 —4.86725 —4.86726
90 —2.94851 —2.87926 —2.93699 —2.94808 —2.94848 —2.94851 —2.94851

the main information on a*n!®y.(k,n)/k! is given by

eFkmak (1 — )"
(1 —x)kkk

where k is large compared with n and x, x < 1. We see that the ratio of successive
terms is about a/[(1 — z)k].

For other values of z, also complex, a similar analysis can be given, with some
care in choosing the saddle points and defining the branches in the complex plane.

4. Asymptotic expansions of Laguerre polynomials
in terms of Hermite polynomials

The Laguerre polynomials can be defined by the generating function
1=ty e /D =N Lo(a)t", a,xeC, |t <1, (4.1)
n=0

and have the representation

- n+ o) z*
Lo(z) =) (~1)* — 4.2
v =0 (0 ) (12
To derive the asymptotic expansion, we use the Cauchy integral that follows from
function (4.1),

1

L) = 5 [ e/ -yt S (43)
where I' is a circle around the origin with radius less than 1. The many-valued
functions (1 — w)* appearing here and in the theorem assume the principal branch

that is equal to 1 at w = 0.
The asymptotics for large n, fixed «, is considered in [4]. For real z, two uniform
expansions are given, one involving the J-Bessel function for z in an interval that
contains the origin, and one in terms of the Airy function for = in an interval
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containing the transition near the largest zero of L% (z). In this section we give an
asymptotic expansion of L% (nx) in terms of LY? (nx), which, in fact, is an Hermite
polynomial. We consider x > 1 and for these values the expansion is convergent
and is in particular of interest because this is the interval that contains the large
zeros and the transition point at z = 4.

When the parameter « of the Laguerre polynomial is large, the asymptotic
behaviour can be described in terms of Hermite polynomials (see [4]). For example,
we have the limit

n/2r1a (_1)n2—n/2 £
lim o~ PLY(zva+a) = ———H, <\/§> (4.4)
In [8] we have extended this limit by giving an asymptotic representation for large
« and n fixed in terms of Hermite polynomials. For more details on large o asymp-
totics, we refer to [12]. The approach in this section is quite different because we
take « fixed and n large.

From (4.3), we obtain

1 ene(@w) o
(@) - - =
L e (45)
where W
oz, w) = R log w, fw)= (1 —w)t/2 e (4.6)

The function ¢(z,w) has two conjugate saddle points,

—1—*1‘:|:*1§7 E=+vz(4d—x). (4.7)

The square root defining £ is positive for 0 < = < 4; for x > 4, we define
¢ =iy/xz(x —4), again with positive square root. In the expansion of the Laguerre
polynomials, we allow that the saddle points coalesce.

4.1. Construction of the expansion

The function f(w) of (4.5) is analytic in £2 = C\ [1, 00) and we can expand f(w)
in in a two-point Taylor expansion at the two saddle points w¥, using a slightly
different form of (2.3),

o0

Fw) = "[A + Brw](w — wh)F(w — w)*. (4.8)
k=0

After substituting expansion (4.8) in (4.5) and interchanging summation and inte-
gration, we obtain

L) (zn) Z [Ax P (x,n) + B (z,n)], (4.9)
k=0
where
1 (@) dy
- Ak k€T dw
Op(z,n) = 27ri/p(w w)¥(w—w") 0= w)Z w (4.10)
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and
1 k ., enwl(zw)

We have

&o(z,n) = LI/ (ng) = iH (v/nz)

0 9 - n - n!22"+1\/ﬁ 2n+1 )
(4.12)
_1\n—1
Yy(z,n) = L;lff)(nx) = (=1) Hyp, 1 (v/nx),

(n —1)122n=1/nx
and, for k=1,2,3,...,

k k
k s iy k . iy
auten) =Y ()FILYED ), e = (D)L )
j=0

=0
(4.13)
The sequences {Px(x,n)} and {¥;(z,n)}, k=0,1,2,..., satisfy the recurrences
1
= —— {a\ Py Bp_o + 011 + bWy o), 4.14
k n_2k+%{a1k1+a2k2 11 + b2 o} ( )
with
a; = (k—1)(2* —22—2) — %,
as = (k—1)z(2 — x),
by =(k—1)(2—32)+ 3(1 — ),
by = (k — Da(4x — 22 — 2),
and
1
U = ———{coPr + c1Pp—1 + coPp o + d1¥y 1 + doW¥p 2}, (4.15)
n—2k+ 3
with
co=(2-3k)z+2(k—1)+ (1 —z),
o =(1—-k)a®+4(k —1)2® + kx +2(1 — k) + 2(z — 1),
c2 = —bo,
di = (4k — 3)2* + 2(4 — 5k)x + 2(k — 1) + 3(2® — 3z + 1),
dy = (k — Da(z® — 622 + 9z — 2).
To verify the recursions (4.14) and (4.15), we write
1 Hene(w)
& - _ _ k-1 k-1 1— 4.1
w(z,n) 5t /C(w wh)  Hw—wT)"T VI —w 50 dw, (4.16)
1 Jene(z,w)
U (z,n) = g /C(w —wh) P (w —w )P /T - weT dw, (4.17)
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1 o ene@w) gy

Wk_l(m,n)—w"'@k_l(a:,n): %/C(w—uﬁ')k(w—w )k 1mz,
(4.18)

1 e (@w) - dyy

- B Y e | Y
27ri/c(w W) ) T

(4.19)

Up_1(x,n) —w Pp_q1(z,n) =

Integrating by parts in (4.16) and (4.17), using (4.18) and (4.19) and after straight-
forward manipulations we obtain (4.14) and (4.15). Formulae (4.12) and (4.13)
follow from (4.10) and (4.11) after simple calculations.

THEOREM 4.1. Expansion (4.9) is convergent, uniformly for a € C in compact sets,
and x > 146 > 1. Moreover, {Pr(x,n)} and {¥r(x,n)} are asymptotic sequences
for large n,

(4.20)

Py (2,n) = O(n~ D2 [|@g (2, )| + Wo(%n)],}
io(w,n) = O(n~ VN @y (2, 0)| + %o (x, )],

asn—o0o and k=0,1,2,....

Proof. We apply proposition 2.2. Expansion (4.8) is uniformly convergent for w
inside the Cassini oval with foci wt and w™ and ‘radius’ r = |w; — w*||Jw; —w™,
where w; = 1 is the singular point of f. Using (4.7), it follows that » = x. The
points w are inside the Cassini oval if they satisfy |w — wT||w — w™| < r = .
Because wTw™ = 1, the origin w = 0 is inside the oval only if x > 1. Hence the
contour I' of (4.5) can be taken completely inside the oval only if z > 1 (see also
figure 2). This proves the convergence of (4.9) for z > 1. The asymptotic behaviour
in (4.20) follows from (4.12) and the recursions (4.14) and (4.15). More detailed
asymptotic information can be obtained from the integrals in (4.10) and (4.11). O

Figure 3 gives graphs of Lgfl) (nz) and its approximations based on the first two
terms in expansion (4.9). In table 3 we give approximate values of L' (xn) for
a =1, x = 3.5, and several values of n.

REMARK 4.2. The expansion in (4.9) has a meaning for all complex z, and has
for all fixed x an asymptotic meaning. The expansion is uniformly convergent for
|z > 140> 1.

4.2. Details on the coefficients

The expressions (2.5) and (2.6) for the coefficients in (2.3) can be used in the
present case also. We first write

oo

Flw) = far(w = w™) + aj(w = wh)][(w = w)(w - wh)], (4.21)

k=0
and compare this with (4.8). By comparing coefficients of equal powers, it follows
that Ay and By, can be expressed in terms of ai and aj,. We have, for k =0,1,2,. ..,

+

Ap = —apw™ —ajw™, By = ay + aj,.
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0 N -
. \

W)

x=7.5, x =8 (lemniscate) and x=8.5

Figure 2. Cassini ovals for the expansion (4.8) for several values of z. For w inside the
ovals, the expansion is convergent. For 0 < x < 1, the origin is outside the oval; for z = 4,
it is a circle; for x = 8, a lemniscate. For = > 8, the oval splits up into two parts. All ovals
go through the point w = 1, a singular point of f(w).

@ R0

| ]

|M' | l.>
|\\‘/1U p L

Figure 3. Numerical experiments on the approximation of theorem 4.1 for large n
and =z € (0,4]. Continuous lines represent the Laguerre polynomial LY (nz) for (a)
n = 10 and (b) n = 20. Dashed lines represent the first-order approximation given by
AoPo(z,n) + BoWo(x,n). Both graphics are cut for extreme values of the polynomials.

=V
)
~
=

e

We have
Ay = —2Re(wtay), By, = 2Re(ax), ag =i(1—w )¢, (4.22)

and, for k=1,2,3,...,

ak:i(mjl)!(a;)k_j{ (1] (-1 |
=0

Bl (k — §)I(i6)k+i+1 | (1 — w)a+k—i—1/2 o (1 —w—)oth—i—1/2

(4.23)
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Table 3. Numerical experiment on the convergence rate of expansion (4.9)
forx=35and a=1

(Here,
N

L (2, N) = Y [Ax®k (@, n) + Byl (x,n)]
k=0
represents the truncated series in (4.9). All the rows are multiplied by an appropriate
constant in order to keep the numbers small.)

n LP@E5n)  LPE50 LYE51) LY352)

10 0.340 506 0.343 249 0.341 724 0.340 495

30 —8.94039 —8.865 31 —9.03530 —8.95798
50 —5.05678 —5.05941 —5.067 64 —5.058 01
90 6.565 56 6.563 28 6.57572 6.566 01

n  L&(35,3) LY(35,4) LY 35,5)

10 0.340 449 0.340490 0.340 504

30 —8.94213 —8.940 45 —8.940 38
50 —5.05689 —5.056 80 —5.056 78
90 6.565 47 6.565 53 6.565 56

The coefficients can also be computed from the recursion relations

z(k+1)Apt1 — z(k + 1)Bygr = (o — 2 + 2k) A — (zk + 1) By, (124)
2(k +1)App1 — z(x — 3)(k + 1) By = (o + 3 + 2k) By, '

where £ =0,1,2,.... Let, for 1 < z < 4, z = 4sin® ( 6). Then w* = e*? and
Ay = —2°11 sinﬂ(%G) cos[3(0 — m)B — 4], By = 2°11 sinﬁ(%(‘)) cos[3(0 — m)A).
where [ = 5 — . This gives real expressions for the first coeflicients to start the

recursion relatlons in (4.24). For z > 4, we can obtain expressions in terms of
hyperbolic functions by writing x = 4c0sh2(%9), which gives w* = —e®? and

Ag = —2°+1 coshﬁ(%ﬂ) cosh[(0(38 — 1)], By = 2°11 COShB(% ) cosh(263).

4.3. An alternative form of the expansion

By using in (4.5) the substitution

fw) = ag+ Bow + (w — w™ ) (w — w)go(w), (4.25)
where ag and fy follow from substituting w = w*, we obtain, by integrating by
parts,

(@) ene(zw) Qo
Ly (nx) = ag@o(z,n) + BoWo(x, n) A0 w’ (4.26)
where
fi(w) = w(l - )3/2 V1 —wgo(w)]. (4.27)
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Continuing this procedure, we obtain the expansion in negative powers of n,
= ﬁ
L) (nz) = do(x,n Z (z,n Z (4.28)

where oy and [ follow from
frlw™) =ap +Bpw™,  fi(wh) = ay + B, (4.29)
where, with fo(w) = f(w) and for Kk =0,1,2,...,
fu(w) = oy, + Brw + (w —w”)(w —wh)gr(w),

(4.30)

Srri(w) = w(l - )3/2 (V1= wgr(w)].
The expansion in (4.28) also follows from rearranging expansion (4.9) by using the
recursion relations for @y (x,n) and ¥y (z,n) in (4.14) and (4.15).

5. Asymptotic expansions of Jacobi polynomials
in terms of Chebyshev polynomials

The large-n asymptotics for the Jacobi polynomials is discussed in [3, vol. II,
§10.14], in particular, for x € (—1,1). For  bounded away from the points £1,
elementary functions (sine and cosine functions) can be used for describing the
asymptotics. For = close to =1, Bessel functions can be used (Hilb-type formulae).

In this section we develop a convergent expansion that is valid for € (—1,1) and
the terms of the expansion constitute asymptotic scales for large n. It is possible
to extend the results to complex values of x, but this will not be considered here.
The first approximants are Chebyshev polynomials, which, in fact, are elementary
functions, and the other terms can be obtained from recursions that show the
asymptotic property.

5.1. Construction of the expansion

The starting point is the integral representation that follows from [3, vol. II,
p. 172],

1 (-D" [ (1-w—2)*(1+w+x)? dw
(a.3) — np(w,w) =0
G 21 2n /F (1—-2)*(1+x)8 ¢ w’ (5-1)

where we consider z € (—1,1); the function ¢(x,w) is defined by
o(xz,w) =log(l+w+x) +log(l —w —z) — logw

and I is a simple closed contour, in the positive sense, around w = 0. The points
w = —x41 are outside the contour, and (1—w—=)®/(1—2)® and (1+w+x)?/(1+x)"
are to be taken as unity when w = 0.

The function ¢(z,w) has two conjugate saddle points:

wt = two, wo = 1V1 — 22. (5.2)
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We expand the integral by using the function
flw) = (1—2) V21 4 2) P V2(1 —w — 2)°HV2(1 4w + )P /2,
which is analytic in
C\{(—o00, -1 —2z]U[l —z,00)}.
We expand, using a slightly different form of (2.3),

oo

flw) =Y [Ax + Bru](w® — wg)", (5.3)
k=0

where the coefficients A and By can be expressed in terms of the derivatives of
f(w) at w = twp (see the next subsection for more details).

After substituting expansion (5.3) in (5.1) and interchanging summation and
integration, we obtain

k:=0
where
1 — 2 1-— d
By, = SV [ o D ot 40, (5.5)
27r w) w
(—1)" / ) " duw
0 = 1—a2)kw nee(@w) 5.6
k(man) i Qnm F(w + x ) ($7w)e w ( )
and
W(z,w) =1 —w—2z)(1+w+ ). (5.7)
We have

Do (z,n) = P,g_l/z’_l/Q)(x), Uy (z,n) = —%(1 —x )bel/ 1/2) (x). (5.8)

These Jacobi polynomials are Chebyshev polynomials,

e 2-2n(2p)! 2-21(2p + 1)
p2-y gy = 2 =0 P22y = 2 0T g (g,
A (@) = S Tule). P @) = L)
(5.9)
In terms of elementary functions,
B _ sin(n+1)0
T, (cos @) = cosnb, Uy (cost) = ey (5.10)
Furthermore,
1—a?
] =——4 1o —4 — 1), 2n — 1)¥, —1
1($,n) 4(n+1)[ (n+ ) 0(x7n) m(n ) O(xan)""( n ) O(x’n )],
(5.11)
—3(1 —2?) 9
Uy (z,n) = {2[n+ 1 —22°n]P(x,n) + 2(2n — V)¥(z,n — 1)}

4n+1)(n+2) 5.12)
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and, for k = 2,3,4,...,

k .
_ B\ (1 —a2®)** o5 122j-172)
aiem =3 (V) SR (@)

5 .
k 1— 2\k+j . X
Tp(z,n) = —3(1 — 2?) Z ( > %Pﬁijrjﬁ’z”l/z) ().

i=o M 4J

The sequences {®Py(x,n)} and {¥;(z,n)} satisfy the recursion relations

1
D= ———|a1P;_ Dy b1, boWy.
k n+2k_1[a1k1+azk2+1k1+2k2],
1
vy, = +2k[00@k+01¢k 1+ 2P + d1¥_1 + da¥i_2],

where

ay = (1 —2?)(6k — 5),

ay = —4(k —1)(1 — 2?)%,
by = —x(4k — 3),

by = 4x(k —1)(1 — 2?),

co = —x(4k — 1),

c1 = z(1 —2%)(8k — 5),

ey = —4x(1 — 2?)*(k - 1),
dy = 3(2k — 1)(1 — 2?),

dy = —4(1 — 2%)%(k — 1).

551

(5.13)

(5.14)

(5.15)

(5.16)

For the relations between Jacobi and Chebyshev polynomials, we refer to [13,
pp. 152, 153]. The expressions in (5.11) and (5.12) follow from contiguous rela-

tions of the Jacobi polynomials (see [13, p. 166]).
To verify the recursions in (5.15) and (5.16), we write

P (z,n) = 1 — / (w? +1 -2 W (z w)wdw
LA 27T1 nQn\/l — SC2 ’ ow ’
14 1— g%kt —— dw.
w(z,n) = 27T1n2”m./ (w? + 1 — 23 W (2, w) 5 w

(5.17)

(5.18)

Integrating by parts in (5.17) and (5.18) and after straightforward manipulations
we obtain (5.15) and (5.16). The asymptotic behaviour pointed out above follows
from the definition of the Jacobi polynomials and the recurrences (5.15) and (5.16).

THEOREM 5.1. Expansion (5.4) is convergent for x € (—1,1). Moreover, {®y(z,n)}

and {¥(x,n)} are asymptotic sequences for large n,
Py (x,n) = (’)(n—t(k+1)/2j)’ Wy (x,n) = O(n—L(k—&-l)/QJ)’

asn — oo and k=0,1,2,....
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Proof. Expansion (5.3) is uniformly convergent for w inside the Cassini oval of focus
w® and ‘radius’

r=min{{l+z+w||l+z+w ||l —z+w' |l —z+w |} =2(1—|z|).

Hence (5.3) is convergent for w € C such that |w? + 1 — z%| < 2(1 — |z[). From
proposition 2.2, it follows that (5.4) is convergent for 1 —2? = [wTw™| < 2(1 - |x]),
that is, for all z € (—1,1). The asymptotic property follows from the recursion
relations in (5.15) and (5.16). O

5.2. Details on the coefficients

The expressions for (2.5) and (2.6) for the coefficients in (2.3) can also be used
in the present case. We first write

o0

= ax(w — wo) + aj,(w + wo)] (w? — wi)*, (5.19)
k=0

and compare this with (5.3). By comparing coefficients of equal powers, it follows
that Ay and By, can be expressed in terms of ax and aj,. We have, for k =0,1,2,. ..,

A, = ( —ak)wo, By :ak—f—a;.
After straightforward manipulations, we find

2Imlar V1 — 2?] 2Reay,

(= aeria( T gpre 0 = et g

where
(1 — 2 +we)*t/2(1 + & — wg)#+1/2
2w0

ag = (5.21)

and, form=1,2,3,...,

L& (m+k—1)!
dm = kzzo Kl (m — k)!(2wg)mHE+T

N m= kY [ KD (0 = )-8 Dk
. =0 < J >{(1 *xfwo)jfo‘fl/Q(lerer )m*k*j*ﬁfl/Z
m(=1)F* (—a = 1);(=8 = Dm—i—j }

T —z w21+ x — wo)m k12
(5.22)

Figure 4 gives graphs of Py(f"ﬂ )(J;) and its approximations based on the first two
terms in expansion (5.4). In table 4 we give approximate values of pP (z) for
o= %, 8= %, r = 0, and several values of n.
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Figure 4. Numerical experiments about the approximation of theorem 5.1 for large n and
—1 < z < 1. Continuous lines represent the Jacobi polynomial P> (z) for (a) n = 10 and
(b) n = 20. Dashed lines represent the first-order approximation given by Ao®¢ + Bo%o.

Table 4. Numerical experiment on the convergence rate of expansion (5.4)
forx =0, a:% andﬂ:%
(Here,

P,(z,N) = [Ax®i(z,n) + Bl (z,n)]
k=0

represents the truncated series in (5.4).)

P7(13/2,1/2)(0) P,(0,0) P,(0,1) P,(0,2)

10 -0.336376  —0.348029 —0.348029 —0.337153
30 —0.201847  —0.204304 —0.204304 —0.201909
50  —0.157618  —0.158781 —0.158781 —0.157636
90 —-0.118124  —-0.118612 —0.118612 —0.118128

n P,(0,3) P,(0,4) P,(0,5)

10 —-0.336376 —0.336340 —0.336 360
30 —0.201839 —0.201845 —0.201847
50 —0.157615 —0.157617 —0.157618
90 —0.118123 —0.118124 —0.118124

6. A few other examples of convergent asymptotic expansions

Consider the integral for the modified Bessel function (for properties of the special
functions in this section, we refer to [3,13])

5 (22)"e 1ef2zt _\p—1/2
I,(2) é)/o [t(1—1¢)] dt. (6.1)

- 2o+

The usual method for obtaining the asymptotic expansion for large z consists of
substituting the expansion

Q== (”; 5)<—t>k
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and by interchanging the order of summation and integration. The resulting inte-
grals are not evaluated over [0, 1] but over [0, co0). This latter step gives the divergent
asymptotic expansions. If we integrate over [0, 1], we obtain an expansion in terms
of incomplete gamma functions,

> v— 3\ +k+3,22)
I(2) = \/%F o ZO ( )(Zz) . (6.2)

For fixed values of z, the incomplete gamma functions have the asymptotic behav-
iour
ef2z(2z)u+k+1/2

1+ 0Okt k 6.3
PR 1+0(k )], — 00, (6.3)

YW +k+35,22) =

and we see that the terms behave like O(k=*~3/2). So convergence is guaranteed

if Rev > —%. A further examination of the terms of the expansion shows that,

for large z, it is better to use the asymptotic property of the expansion (the ratio
of successive terms is of order O(1/z)). The incomplete gamma functions can be
computed by using a backward recursion scheme.

Another example is the K-Bessel function given by

2) — VT(22)VeF [ N v—1/2
K(2) = R /O [#(1 + 6]~ 1/2 dt. (6.4)

Again, expanding

(2= (1’; 5)(t)k

gives the standard expansion. A convergent expansion can be obtained by using

(t+ 1)~ Y2 = ch(til)k cr = (—1)F (5 . ”). (6.5)

This gives a convergent expansion in terms of confluent hypergeometric functions

9= et e R v )
k=0 '

We have

U(o 1_

L -v22)=1, UL -v22) = (2)" 2 0(-1 - v,22), (6.7

again an incomplete gamma function. Other U-functions can be obtained by recur-
sion. For large k, the U-function behaves like [11],

KW (k, L —v,22) = O(k“e™2V2F2),

where « is some constant. It follows that the convergence is better than in the
previous example.

As a final example we consider an expansion of the Kummer function. Tricomi [14]
has derived several convergent expansions of the 1F}-function in terms of Bessel
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functions that are useful for evaluating the function when the parameters are large.
For example, we have (see [14])

o] n/2
1F1(a’ c; z) = 62/211(0)(%2)(176)/2 Z An(li, %C) <42,‘<;) Jc—1+n(2\/ HZ), (68)
n=0
where Kk = %c —a and the A, (k,\) are coefficients in the generating function
(1 — 2)"F A1 4 2) 7" A = Z Ap(k,N)2". (6.9)
n=0

The series in (6.8) is convergent in the entire z-plane. Moreover, it can be used
for the evaluation of 1F(a,c; z) for large k, because the series has an asymptotic
property. For further details on these expansions, we refer to [14].
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