
J. Fluid Mech. (2019), vol. 863, pp. 927–955. c© Cambridge University Press 2019
doi:10.1017/jfm.2018.904

927

Local and global pairing instabilities of two
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We investigate theoretically and experimentally the stability of two interlaced helical
vortices with respect to displacement perturbations having wavelengths that are large
compared to the size of the vortex cores. First, existing theoretical results are recalled
and applied to the present configuration. Various modes of unstable perturbations,
involving different phase relationships between the two vortices, are identified and
their growth rates are calculated. They lead to a local pairing of neighbouring helix
loops, or to a global pairing with one helix expanding and the other one contracting.
A relation is established between this instability and the three-dimensional pairing of
arrays of straight parallel vortices, and a striking quantitative agreement concerning
the growth rates and frequencies is found. This shows that the local pairing of
vortices is the driving mechanism behind the instability of the helix system. Second,
an experimental study designed to observe these instabilities in a real flow is
presented. Two helical vortices are generated by a two-bladed rotor in a water
channel and characterised through dye visualisations and particle image velocimetry
measurements. Unstable displacement modes are triggered individually, either by
varying the rotation frequency of the rotor, or by imposing a small rotor eccentricity.
The observed unstable mode structure, and the corresponding growth rates obtained
from advanced processing of visualisation sequences, are in good agreement with
theoretical predictions. The nonlinear late stages of the instability are also documented
experimentally. Whereas local pairing leads to strong deformations and subsequent
breakup of the vortices, global pairing results in a leapfrogging phenomenon, which
temporarily restores the initial double-helix geometry, in agreement with recent
observations from numerical simulations.

Key words: vortex flows, vortex instability, vortex interactions

1. Introduction
Helical vortices are elementary flow structures that have received much attention

over the years. This interest is partly due to their appearance in applications related

† Email address for correspondence: thomas.leweke@univ-amu.fr
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to industrial flows involving, for instance, horizontal-axis wind turbines (Vermeer,
Sørensen & Crespo 2003), marine propellers (Felli, Camussi & Di Felice 2011),
swirling jets (Meliga, Gallaire & Chomaz 2012) and helicopters (Leishman 2006).

Central to the study of vortex dynamics is the question of instability, which is
found to have direct consequences for some of the applications mentioned above.
Examples include wind farms, where an unperturbed wake consisting of coherent
helical tip vortices imposes a much higher loading on a downstream turbine than
a turbulent wake (Sørensen 2011), and rapidly descending helicopters, where an
instability of the helical tip vortices may be related to the onset of the dangerous
vortex-ring state, characterised by strong thrust fluctuations and a sudden loss of lift
(Leishman, Bhagwat & Ananthan 2004).

The interaction between concentrated vortices can lead to different types of
instabilities. They can be divided into displacement instabilities, where the vortex
core is locally shifted as a whole, and core instabilities, which modify the internal
structure of the core, as discussed by Leweke, Le Dizès & Williamson (2016) for
vortex pairs and Leweke et al. (2014) for helical vortices. The present work is
concerned with the former type. The first comprehensive account of the stability of a
single helical vortex filament with respect to infinitesimal displacement perturbations
was given by Widnall (1972), who determined their evolution and growth rates using
the self-induced velocities from the Biot–Savart relation. Widnall (1972) identified
unstable modes at different wavelengths, characterised by out-of-phase perturbations
on neighbouring loops of the helical vortex. Gupta & Loewy (1974) later extended
this work to configurations with multiple interdigitated helices, calculating the growth
rates of unstable modes using the self- and mutually induced velocities again through
the Biot–Savart formalism.

A more recent study addressing the issue of stability in an array of helical vortices
is the one by Okulov (2004). Unlike earlier efforts relying on the integration of the
Biot–Savart law, Okulov considered an expression of the induced velocity involving
Kapteyn series, first established by Kawada (1936) and later again by Hardin (1982),
and was able to provide an analytical solution to the problem. The results were used
to predict the instability of helical vortex systems (e.g. in Okulov & Sørensen 2010)
with respect to uniform deformations (contraction, dilatation) of each vortex.

Stability problems of this type are today routinely addressed using numerical
simulations. Examples concerning helical vortices include the studies of Ivanell et al.
(2010) and Sarmast et al. (2014), who modelled the wake of a rotor with the actuator
line method (Sørensen & Shen 2002). These authors performed a spectral analysis of
the resulting nonlinear flow and determined the spatial growth rates of the individual
modes. The temporal linear stability problem was also recently revisited by Selçuk,
Delbende & Rossi (2018), who determined the growth rates and corresponding
unstable modes of a helix configuration via time-stepping methods applied to the
linearised Navier–Stokes equations.

Whereas the theoretical and numerical development has been thriving in this field,
precise experimental studies concerning the dynamics and instabilities of helical
vortices are rather scarce. Although the existence of an instability involving vortex
pairing had been observed already by Alfredsson & Dahlberg (1979), quantitative
comparisons between experiment and theory have largely remained absent. One
attempt is the study by Nemes et al. (2015), who considered the wake of a two-bladed
rotor and presented a comparison between the experimentally estimated growth rates
and those reported by Widnall (1972) and Gupta & Loewy (1974). However, due to
the lack of a controlled method for perturbing the vortices, the data exhibited a large
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amount of scatter that prevented the identification of individual modes. In the recent
study reported in Quaranta, Bolnot & Leweke (2015), a series of experiments on
a single helix generated by a one-bladed rotor were performed. Different instability
modes could be individually excited through controlled perturbations, and very close
agreement between the theoretical and experimental mode shapes and growth rates
was found.

In the present study, the work of Quaranta et al. (2015) is extended to the
configuration with two interlaced helical vortices. The article is structured as follows.
In § 2, key results from previous theoretical work are recalled and applied to the
two-helix configuration, and an analogy with the three-dimensional pairing instability
of straight vortices is established. Then § 3 gives a description of the experimental
set-up and the perturbation methods used to excite the instabilities. The presentation of
the experimental results is divided into three parts. In § 4, the measured properties of
the unperturbed rotor wake are presented; in § 5, the observations and measurements
concerning the linear displacement instability are shown and compared to theoretical
predictions; and § 6 covers the later stages of the instability, which is dominated by
the nonlinear evolution of the perturbations. A summary of the main findings and
conclusions are given in § 7.

2. Theoretical background
2.1. Base flow

A simplified model of a two-bladed rotor wake is given by a system of two infinite
helical vortex filaments in a cylindrical coordinate system (r, θ, z), as shown in
figure 1. The defining parameters of the helix geometry are the radius R and the
pitch h′ of the helical centreline of each vortex. The two vortices are separated
azimuthally by an angle π, and their unperturbed positions can be written as

rm =

rm
θm
zm

=
 R
θ +mπ

h′θ/(2π)

 , θ ∈R, (2.1)

where m = 1, 2 is the helix index. The distance h = h′/2 is the separation between
neighbouring vortex loops at constant θ .

For the present analysis, the internal structure of the vortices is assumed to be that
of a Batchelor vortex, characterised by Gaussian distributions of axial vorticity and
velocity. In local cylindrical coordinates (ρ, φ, ξ ) of the vortex, the radial profiles of
azimuthal and axial velocities read

vφ(ρ)=
Γ

2πρ
[1− exp(−ρ2/a2)] and vξ (ρ)= Vmax

ξ exp(−ρ2/a2), (2.2a,b)

where Γ is the vortex circulation, a is the core radius and Vmax
ξ is the amplitude of

the core velocity.
The non-dimensional parameters characterising the flow are the Reynolds number

Re= Γ /ν (where ν is the kinematic viscosity), the scaled vortex separation h/R and
core radius a/R, and the axial flow parameter

W = 2πaVmax
ξ /Γ , (2.3)

which represents the ratio between the maximum axial and swirl velocities. As
discussed in Quaranta et al. (2015), the relevant time scale for the development
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FIGURE 1. Schematic of two interlaced infinite helical vortices, including the relevant
parameters: pitch h′ of one helix, separation h of neighbouring helix loops, radius R, core
size a and circulation Γ .

of the long-wave instability studied here is given by 2h2/Γ , which is used to
non-dimensionalise time t, as well as the instability growth rate σ and frequency ω,
according to t∗ = tΓ /(2h2), σ ∗ = 2σh2/Γ and ω∗ = 2ωh2/Γ (non-dimensional
quantities are denoted with an asterisk).

We here also make use of the concept of an equivalent Rankine-type core
size. Widnall, Bliss & Zalay (1971), among others, showed that, for long-wave
displacement perturbations, a vortex with velocity profiles given by (2.2) exhibits the
same self-induced dynamics as an equivalent Rankine vortex (constant core vorticity)
without axial flow, having a core radius

ae = a
√

2 exp
[

1
4
−
γ

2
+

W2

2

]
≈ 1.36a exp

(
W2

2

)
, (2.4)

where γ ≈ 0.577 is Euler’s constant. This relation is used in § 5 for the comparison
between experimental and theoretical results.

2.2. Long-wavelength instability
Following the work by Widnall (1972) and Gupta & Loewy (1974), the stability
of the base configuration is analysed by determining the evolution of displacement
perturbations of the form

δrm =

δr̂m

δθ̂m

δẑm

 exp[αt+ i(kθ + ϕm)], (2.5)

where k represents the real azimuthal wavenumber (number of wavelengths per helix
turn), and α = σ + iω is the complex growth rate. Let ϕ = ϕ2 − ϕ1 be the phase
difference between the perturbations of the two vortices at the same axial position z.
The pairing instability involves a constant phase shift of the perturbations between
neighbouring vortices at the same azimuthal position θ . Only two values of ϕ can
produce such a constant phase difference in the two-helix geometry: ϕ = 0 (in-phase
perturbations) and ϕ =π (out-of-phase perturbations).
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FIGURE 2. Theoretical growth rate (σ ∗) and frequency (ω∗) of the long-wave instability
of two helical Rankine vortices with h/R= 0.41 and ae/R= 0.05, as predicted by Gupta
& Loewy (1974). (a) Without fixed phase correlation between the two vortices. (b) For
perturbations having the same phase at each z (ϕ = 0). Frequencies are shown only for
unstable modes with the highest growth rate.

The evolution of the filaments’ shapes is obtained by computing their mutually
and self-induced velocities from the Biot–Savart law. For two thin-cored vortices with
circulation Γ , the velocity u induced at a point r0 in the domain is given by

u(r0)=−
Γ

4π

2∑
m=1

∫
[r0 − r(lm)] × dlm

|r0 − r(lm)|3
, (2.6)

in which lm is the curvilinear coordinate along the mth vortex, whose centreline
is described by lm. For points on either one of the centrelines, the corresponding
integral diverges. It can be desingularised either through a cutoff method (Crow 1970;
Widnall 1972), where the singularity is excluded from the integration, or by adding
an appropriately chosen finite constant in the denominator (Rosenhead 1930; Moore
1972; Gupta & Loewy 1974). Both the cutoff distance and the constant depend on
the core size and the velocity distribution within the core. Details can be found, for
example, in Saffman (1992).

By linearising the evolution equations, based on (2.6), for the two helical filaments
with displacement perturbations of the form (2.5), an eigenvalue problem is obtained
for the complex growth rate α and the corresponding eigenvectors δr̂m, which
represent the mode shapes, as a function of the wavenumber k. Figure 2(a) shows a
typical theoretical growth-rate curve σ ∗(k) and the corresponding frequencies ω∗(k),
calculated with the formalism of Gupta & Loewy (1974) for the flow parameters
corresponding to the reference configuration in our experimental study (see § 4). The
growth rate has local maxima at integer values of k, including k = 0. The highest
values are close to π/2. The unstable modes include both in-phase and out-of-phase
perturbations (see also figure 7 below). When the phase difference ϕ is forced to
be zero, the lobes around even values of k disappear from the growth-rate curve,
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and one obtains the result shown in figure 2(b). This is relevant for the experimental
case, when the perturbations are triggered by a modulation of the rotor rotation
(see § 3): for a rigid two-bladed rotor, these perturbations are necessarily in phase for
the two vortices. The frequencies of the most unstable modes are zero or close to
zero, indicating that these perturbations are steady or only slowly oscillating in time.

The spatial structure of the unstable deformation modes can be seen in figure 3
for the first two maxima of the growth-rate curve with non-zero k. The deformations
are in phase for k = 1 and out of phase for k = 2. They result in a local pairing
of successive vortex loops at 2k locations around the azimuth, as highlighted by the
shaded circles in the developed plan views. Figure 3(c) illustrates that an in-phase
perturbation with k= 2 does not lead to local pairing of neighbouring vortex elements,
which explains why σ ∗(k= 2) vanishes in figure 2(b). The same is true for in-phase
deformations at all even values of k.

A special kind of unstable perturbation corresponds to the wavenumber k = 0. As
shown in figure 4, it is out of phase and involves a radial expansion of one helix and
a contraction of the other one, resulting in a pairing that is uniform in the azimuthal
direction θ of the flow. In figure 5, various theoretical predictions for the growth rate
of this uniform (or global) pairing, as a function of the pitch parameter h/R, are
collected and compared. All have in common that they tend to σ ∗=π/2 for h/R→ 0,
and that the growth rate initially increases with h/R. This can partly be understood by
considering an analogy with arrays of straight vortices, as depicted in the developed
plan views of figure 6. The relevant length scale for the pairing instability in these
systems is the shortest distance between the vortices (b in figure 6), which is smaller
than h. From simple geometry one can obtain the corresponding ‘corrected’ expression
for the growth rate in the two-helix system as

σ ∗ =
π

2

[
1+

1
π2

(
h
R

)2
]
, (2.7)

which is plotted as the dash-dotted line in figure 4. This prediction neglects the
curvature of the vortices, and it is seen that the results taking into account the
full three-dimensional structure of the vortex system rapidly deviate from this simple
approach for increasing h/R. In the following section, the straight-vortex-array analogy
is further explored also for the local pairing of two helical vortices.

2.3. Pairing instability
In Quaranta et al. (2015), a link was established between the (local) pairing
instability of a single helical vortex and the pairing of an array of point vortices
in two dimensions (Lamb 1932), which represent straight parallel vortices in
three dimensions. We here refine this comparison by extending it to the theory of
three-dimensional stability of vortex arrays developed by Robinson & Saffman (1982),
and apply it to the two-helix system. Following Lamb (1932), Robinson & Saffman
(1982) considered a row of identical Rankine vortices (circulation Γ , core size ae,
separation distance lRS), sinusoidal displacement perturbations with a wavenumber
kRS along the vortex centrelines, and a phase difference Φ between neighbouring
vortices. They determine the growth rate of the three-dimensional pairing instability,
non-dimensionalised by Γ /(2πl2

RS), as a function of the base flow and perturbation
parameters. As for the pairing of straight vortices (kRS = 0) studied by Lamb (1932),
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FIGURE 3. Geometrical deformation and local paring predicted by Gupta & Loewy (1974)
for the case h/R=0.45. (a) For k=1, perturbations on both vortices are in phase at each z.
(b) For k = 2, perturbations are out of phase. (c) In-phase perturbations with k = 2, no
pairing occurs. Three-dimensional views on the left and developed plan views on the right.
The vertical direction of the plan views is compressed by a factor of 2.

the growth rate is highest for out-of-phase perturbations (Φ =π) between neighbours,
but its value decreases with increasing wavenumber kRS.

We can transpose this result to the case of two interlaced helical vortices by
considering the developed plan view in figure 6, where the system appears as a
periodic array of inclined straight vortices. From the geometrical relations in this
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FIGURE 4. Theoretical perturbation mode for global pairing (k= 0); three-dimensional and
developed plan views.

0 1

Gupta & Loewy (1974)

Straight-vortex analogy
Selcuk (2016)
Okulov & Sørensen (2010)

2 3 4 5

2.5

2.0

1.5

1.0

0.5
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FIGURE 5. Maximum growth rate for global paring (k= 0), as a function of the relative
vortex separation h/R; comparison of various theoretical results. The analytical studies
of Gupta & Loewy (1974) and Okulov & Sørensen (2010) consider helical Rankine
vortices, whereas Selçuk (2016) determines the stability of helical Lamb–Oseen vortices
numerically. The equivalent core size is ae/R = 0.12 for all cases. The straight-vortex
analogy corresponds to (2.7).

figure, one can find the expressions of the parameters in Robinson & Saffman’s
(1982) analysis as a function of the helix parameters:

lRS = b= h
2πR

L
= hG−1/2, (2.8)

kRS =
2πk

L
=

k
R

G−1/2, (2.9)

with G= 1+ (h/R)2/π2.
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FIGURE 6. Schematic of the developed plan view of the double helix, with the definitions
of the parameters employed in the analysis.

Φ is the phase shift between points 1 and 4 in figure 6. It can be calculated
knowing that the phase difference between 1 and 2 is ϕ (= 0 or π), the one between
2 and 3 is πk, and the one between 3 and 4 is a fraction −2∆/L of the latter,

with ∆= 2h2/L. This leads to

Φ = ϕ +πkG−1. (2.10)

For a given helix geometry h/R and displacement perturbation with wavenumber
k and phase difference ϕ, the parameters lRS, kRS and Φ can be obtained from
(2.8)–(2.10). Together with the core size ae, the non-dimensional complex growth rate
α∗RS for three-dimensional pairing is then found from equations (2.24) of Robinson &
Saffman (1982) and transformed into the current scaling via

α∗ =
G
π
α∗RS. (2.11)

The (real) growth rates and frequencies obtained from this procedure for in-phase
(ϕ = 0) and out-of-phase (ϕ = π) perturbations of the reference configuration in the
experimental study are plotted in figure 7(a). They are compared to the result from
the stability analysis by Gupta & Loewy (1974) shown in figure 7(b), which takes
the helical geometry of the base flow fully into account. It is quite striking that the
growth rates are nearly identical. The more complex variation of the frequencies is
also captured qualitatively well by the simplified model.

The prediction in (2.11) is based on the assumption that the helical vortex system
behaves locally like an array of straight vortices. The results are expected to become
invalid for large helix pitch, for which the two-helix system locally tends towards
a vortex pair configuration, where other instability mechanisms, such as the Crow
instability (Crow 1970) are likely to become dominant. Figure 7(c,d) shows the
comparison for a larger pitch (h/R= 1, where each helical vortex has pitch 2R). The
range of unstable wavenumbers decreases with increasing pitch. The straight-vortex
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FIGURE 7. Predictions of the growth rate and frequency spectrum. (a,c) Based on the
results for three-dimensional pairing of straight vortices by Robinson & Saffman (1982).
(b,d) From the full stability analysis of the double-helix system (Gupta & Loewy 1974).
(a,b) For h/R= 0.41 (experimental case) and (c,d) for h/R= 1. In-phase (red) and out-of-
phase (blue) perturbations of the two vortices, ae/R= 0.05.

model still predicts quite accurately the growth rates and frequencies, even if new
modes start to appear in the full calculation (e.g. just above k= 2 in figure 7d).

The above analysis has shown that the growth rate of the displacement instability
of interlaced helical vortices with moderate pitch and small core size can be predicted
surprisingly well from the characteristics of three-dimensional pairing of arrays of
straight vortices, which demonstrates that pairing is the underlying mechanism for
this instability. In the next sections, an experimental study involving a two-bladed
rotor is described, which allows the pairing instability to be observed in a real flow,
and the theoretical predictions discussed above to be compared to measurements.
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FIGURE 8. Experimental set-up. Side view of the water channel test section.

The nonlinear stages occurring at later times (i.e. far downstream in the rotor wake)
are also documented.

3. Experimental set-up and methods
Experiments have been performed in a recirculating free-surface water channel. The

set-up is similar to the one used in the work by Bolnot (2012) and Quaranta et al.
(2015); it is briefly described here again for completeness. The test section of the
water channel (figure 8) is 150 cm long, 38 cm wide and 50 cm high. In order to
generate a pair of helical vortices, a two-bladed rotor with a geometry based on the
low-Reynolds-number airfoil A18 by Selig et al. (1995) is used (figure 9a). It has a
radius of R0 = 80 mm, and was designed to approximate a Joukowsky rotor with a
constant radial circulation distribution over the outer 75 % of the radius. The blades
have a tip chord ctip = 10 mm, and their chord and twist distributions are shown in
figure 9.

The rotor is mounted on a 15 mm diameter shaft equipped with an ogive tip, which
is driven by a computer-controlled stepper motor. In nearly all experiments presented
here, the rotation rate of the shaft is f0 = 4 Hz. For the reference configuration, the
rotor was operating in a uniform incoming flow with velocity U = 37 cm s−1, which
gives a tip-chord-based Reynolds number of around 20 000 and a tip speed ratio λ=
2πR0 f0/U= 5.40. Certain experiments were carried out at other tip speed ratios, in an
interval around this value, which were obtained by varying the free-stream velocity.

Local pairing is triggered by imposing controlled displacement perturbations of the
two helices through periodic modulations of the blade rotation frequency f . By varying
the rotation rate, both tip vortices are simultaneously shifted in the axial direction with
respect to their unperturbed positions, i.e. this shift is in phase at the same coordinate
z (see § 2.2). Considering perturbations of the type in (2.5), the z-coordinate of the
first helix (m= 1) should then have the form

zp =
h′

2π
θ + d cos(kθ), (3.1)

where d is the amplitude. A perturbation of this type with k = 1 (out-of-phase
displacement of successive loops) is sketched in figure 10(a). Since the rotor moves
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FIGURE 9. Two-bladed rotor geometry: (a) computer-aided design (CAD) drawing, and
measured radial profiles of (b) chord c and (c) twist angle ζ of the blades.
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FIGURE 10. (a) Schematic of the experimental perturbation of the double helix for local
pairing, consisting of an axial displacement (k= 1, d/h= 0.25). The dashed lines represent
the unperturbed geometry. With a rigid rotor, only in-phase perturbations can be produced.
(b) Modulation of the rotor rotation rate f as a function of time t, for a perturbation with
k= 1 and d/h= 0.05.

with a velocity 2hf0 in the axial direction, in the frame of reference of the helical
vortex, one has z= 2hf0t. Differentiation with respect to time and the relation θ̇ = 2πf
lead to

f = f0

[
1−πk

d
h

sin(kθ)
]−1

, (3.2)

which can be integrated numerically to obtain the rotation rate as a function of
time, to be programmed into the motor controller. An example for k = 1 and an
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FIGURE 11. (a) Schematic of a perturbed helix configuration with k= 0 (global pairing).
Two helices of slightly different radius are generated by a radial offset of the two-bladed
rotor. The dashed lines indicate the unperturbed geometry. (b) Photos of the blade tips
used to measure the offset.

amplitude d/h = 0.05 is shown in figure 10(b). In this case, the frequency variation
has an amplitude of approximately 15 %. As shown by Quaranta et al. (2015), this
seemingly large variation does not induce a significant modulation of the vortex
parameters. In particular, the circulation was found to vary by only a few per cent.

Uniform pairing with k = 0 cannot be controlled in the same way. It was instead
triggered by generating two helical vortices of slightly different radius through a small
radial offset of the rotor, as illustrated in figure 11. Offsets of only a few millimetres
were sufficient in practice, since this mode is the most unstable pairing mode.

The vortices were visualised using two fluorescent dyes (fluorescein and rhodamine),
applied to the blade tips outside the water, and subsequently illuminated by laser light.
Additional visualisations were obtained by injecting dye at a fixed location in the rotor
plane, in order to observe and measure the flow along the vortex cores (see figure 15
below).

Velocity fields and vorticity distributions were obtained from two-dimensional
particle image velocimetry (PIV) in the centre plane of the rotor wake. These
measurements were used to determine the base flow properties of the helical vortices,
in particular their circulation and core size.

More details about the set-up, visualisation procedure and PIV measurements can
be found in Bolnot (2012) and Quaranta et al. (2015).

4. Unperturbed rotor wake
4.1. Base flow parameters

In this section, the properties of the undisturbed wake behind the two-bladed rotor,
which corresponds to the basic state of the stability study, are discussed. This flow is
visualised in figure 12(a). Although the system is unstable, the turbulence intensity in
the water channel (<1 %), the vibration levels of the rotor support and the asymmetry
in the rotor geometry were sufficiently low, so that no significant perturbation of the
regular helix structure could be seen in the field of observation. The latter extended
for more than three rotor diameters and was limited in the downstream direction by
the support structure of the shaft. The experimental helix system matches well with
the theoretical base flow shown in figure 12(b) (see also figure 1).
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(a)

(b)

FIGURE 12. (a) Dye visualisation of the unperturbed system of two interlaced helical
vortices. The rotor (radius R0 = 80 mm) is on the left, flow is from left to right.
(b) Schematic of the theoretical unperturbed base flow (uniform helices), shown in a
perspective projection corresponding to the experimental observation conditions (camera
located at 75 cm from the rotor shaft).

In figure 13(a), the phase-averaged azimuthal vorticity field in the near-wake centre
plane of the rotor is plotted. It clearly shows the tip vortices along with the root
vortices of opposite-signed vorticity at r/R0≈ 0.4, and the boundary layer on the shaft.
It is notable that the root vortices have a slightly smaller pitch than the tip vortices.

The radius and pitch of the tip vortex system were measured from the dye
visualisations by detecting the centres of the dye loops (corresponding to the vortex
cores) at the top and bottom of the helix, and tracing these throughout the wake
using image-tracking software (Brown 2017). In order to compensate for the scatter
in the measurements, due partly to temporal fluctuations in the wake, several vortex
ridges were traced and their corresponding trajectories averaged. The resulting helix
radius and vortex separation are plotted as a function of the distance from the rotor
in figures 14(a) and 14(b), respectively. As expected for a rotor operating in the
wind turbine regime, the radius increases with downstream distance from the rotor
plane; it reaches its asymptotic value R∞ after two to three radii. The distance
between successive helix loops is around 45 % of the blade span, and varies little

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.904


Pairing instabilities of two helical vortices 941

0 1 2 3 10110010-1 0 0.5 1.0 1.5

200

150

100

50

102

101

100

20

10

0 1 2 3

1.6

1.2

0.8

0.4

0

30

-30

¡®-0.8

amaxamax

a

√ ƒ
 (c

m
 s-

1 )

√ ƒ
 (c

m
 s-

1 )

ø œ
 (s

-
1 )

® (cm) ® (cm) ® (cm)

z/R0

r/
R 0

ø œ
R 0

/U
0

(a)

(b) (c) (d)

FIGURE 13. (a) Phase-averaged azimuthal vorticity field (ωθ ) in the centre plane of the
rotor, obtained from 300 PIV measurements. (b) Velocity profile of the vortex inside
the circle in (a). The measurements (u) are in close agreement with the theoretical
profile provided by Moore & Saffman (1973) (solid line, see their equation (3.9) with
n= 0.8). The dashed line represents a fit to a Gaussian profile having the same maximum.
(c) Log–log plot of the velocity profile, showing that the azimuthal velocity varies as ρ−0.8

outside the core. (d) Vorticity profile of the same vortex. The line is a fit to a Gaussian
distribution, using only the core data (first nine measurements).

in the downstream direction. Considering the maxima of the azimuthal vorticity, the
parameters R and h could also be obtained from the PIV measurements. As seen in
figure 14, the outcomes of the two techniques are in good agreement with each other.

The circulation of the tip vortices was calculated from the velocity field using
line integrals on circular paths of diameter h, as shown in figure 13(a). It increases
gradually over a distance of 1.5 rotor radii (figure 14c), which is a signature of the
roll-up process of the initial vortex sheet shed by the blade. The reference circulation
(Γ∞) for the base flow configuration is the one measured at the downstream end
of the PIV field. The root vortex circulation, obtained in a similar way, is only
approximately 30 % of the tip vortex circulation. This low value can be understood
by considering the boundary layer developing on the rotor shaft. Owing to the zero
streamwise velocity on the shaft surface, the boundary layer contains approximately
twice as much circulation (per distance h) as the tip vortices. Part of this circulation
mixes with, and cancels a large fraction of, the root vortex circulation, through the
complicated flow behind the rotor hub.
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FIGURE 14. Characteristic parameters of the double-helix configuration and their
downstream evolution. Geometric parameters: (a) helix radius R and (b) separation h
between neighbouring helix loops. Vortex parameters: (c) circulation Γ and (d) core size a.
The dashed line in (d) is a fit to the viscous expansion of a two-dimensional Gaussian
vortex core, a=

√
4ν(t− t0).

4.2. Vortex core velocities
The swirl velocity profile of the tip vortices was measured from the PIV data using
local polar coordinates (ρ, φ) centred on a given vortex. Figure 13(b) shows a profile
of the azimuthally averaged azimuthal velocity in these coordinates, which allows a
determination of the core size amax. This profile differs from the one of a Gaussian
vortex, which underestimates the velocities outside the core, indicating that the outer
region also contains circulation. A better fit to the experimental data is provided by
the theoretical velocity distribution given by Moore & Saffman (1973) for laminar
vortices resulting from the vortex sheet roll-up behind a lifting surface. In particular,
the azimuthal velocity is found to vary as ρ−0.8 outside the core (figure 13c).

Since the vortex Reynolds number is here of the order of 104, one might expect
some degree of turbulence inside the vortices. Phillips (1981) has calculated the
velocity profiles of turbulent wing-tip vortices, which turn out to be very close to
the laminar profiles of Moore & Saffman (1973). The identification of the turbulent
nature based on the measured swirl velocity or circulation profiles therefore seems
hardly possible. In our case, the inner core region (for ρ . amax), which has the main
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influence on the pairing instability, appears to be laminar, since its size increases on
a time scale dictated by the molecular viscosity of the fluid (figure 14d).

As discussed in more detail in Quaranta et al. (2015), the core structure influences
the self-induced velocity of the vortex through the equivalent Rankine core radius
ae (see § 2.1). Theoretical work of Fabre (2002) suggests that profiles with the same
amax have a very similar equivalent core size, so that the development for Gaussian
vortices outlined in § 2.1 also can be applied to the experimental vortices. (In addition,
the instability growth rate is found to depend only weakly on the vortex core size, in
the range of parameters considered in this study.) The downstream evolution of the
characteristic (Gaussian) core radius a≈ amax/1.12 (derived from (2.2a)) is plotted in
figure 14(d); it follows the laminar viscous growth of a Gaussian vortex fairly well.
As a representative value to use in the stability calculations, the core radius near
z/R0= 2 is chosen. The core size a can also be obtained from the vorticity profile of
the vortex (figure 13d). For a Gaussian vortex, it is the half-width at a fraction 1/e
of the maximum value. The core sizes obtained from the measured vorticity profiles,
using this criterion, are roughly the same as the ones obtained from the profiles of
the swirl velocity.

The tip vortex generated from the roll-up of a vortex sheet behind a wing or blade
also contains an axial velocity component (along the vortex centreline), as derived by
Batchelor (1964). Inside the core, the pressure is lower compared to the upstream flow,
such that fluid elements entering the vortex core may experience a noticeable axial
acceleration. As a result, the axial flow inside the core will behave like a jet in the
frame of reference of the helix. Taking into account the effects of viscosity and the
boundary layer on a wing, Moore & Saffman (1973) developed a model which showed
that the axial flow inside the core can be either in the same direction as the motion
of the wing tip or opposite to it, depending on the load distribution of the wing, the
chord and the Reynolds number.

In the present experiments, the axial core flow is visualised using a method similar
to that used by Quaranta et al. (2015), where dyed fluid is injected at a fixed location
in the vicinity of the rotor plane (z= 0). As seen in figure 15(a), the dye follows the
motion of the blades. In the reference frame of a blade, this motion corresponds to a
velocity deficit within the cores of the tip vortices.

For the purpose of comparing with theoretical results, we assume here that the
axial velocity profile may be approximated by a Gaussian profile, with a maximum
velocity Vmax

ξ (2.2b). The value of this maximum velocity, in the direction of the
vortex centreline, can be estimated by tracking in time the positions of the tips of the
dye pattern in figure 15(a). Several dye tip trajectories were obtained and averaged,
and after a straightforward but tedious geometrical transformation and derivation, one
obtains the downstream evolution of the maximum core velocity shown in figure 15(b).
The figure also shows the prediction that can be derived from the model of Moore &
Saffman (1973) for our case. For a (straight) viscous trailing vortex with an outer
velocity profile given by vφ(ρ) = β/ρ

n, their equation (3.30) predicts the maximum
core velocity as

Vmax
ξ =

β2

Usc2n
tip

(
s

ctip

)−n

Ren
cεn − 0.053

√
π(4− 2n)Us

(
s

ctip

)−1/2

, (4.1)

where Us = Lf0 (see figure 6 for L) is the blade-tip velocity with respect to the
fluid, Rec=Usctip/ν the tip-chord-based Reynolds number, s= (L/2h)z the coordinate
along the vortex centreline, and εn a constant depending on the exponent n. From
the measured vortex velocity profile in figure 13(c) one finds n = 0.8, resulting in
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FIGURE 15. (a) Visualisation of the axial flow within the vortex cores of the undisturbed
helices. The red arrow indicates the location in the rotor plane where dye is injected.
(b) Peak velocity along the centreline of the vortices as a function of downstream
distance. Symbols represent measurements obtained from visualisations such as in (a); the
line is the prediction in (4.1) based on Moore & Saffman (1973), using the measured
vortex properties. The shaded range represents the values occurring during the growth-rate
measurements.

Γ∞ = (68.8± 1.0) cm2 s−1 Re= 6900 (±100)
Vmax
ξ = (15± 5) cm s−1 W = 0.41 (±0.14)
R∞ = (8.7± 0.1) cm
h∞ = (3.6± 0.1) cm h∞/R∞ = 0.41 (±0.02)

amax = (0.30± 0.02) cm ae/R∞ = 0.050 (±0.006)

TABLE 1. Experimentally determined flow parameters of the unperturbed vortex system.

ε0.8 = −0.7 (figure 2 of Moore & Saffman (1973)). The solid line in figure 15(b)
shows the resulting prediction for Vmax

ξ (z/R0), where only the parameter β and the
origin for the downstream position were adjusted. The observed evolution (decrease)
of the velocity defect inside the tip vortices is well captured by the model. A
value representing the mean velocity during the exponential growth phase of the
pairing instability is kept for comparison with theory (see table 1). This velocity has
approximately the same magnitude as the maximum swirl velocity (see figure 13b)
and corresponds to approximately 7 % of the blade-tip speed.

The base flow properties and the non-dimensional parameters for the system of
two interlaced helical vortices in our experimental rotor wake are summarised in
table 1. Uncertainties are based on the scatter of the individual measurements, and
on estimates of the accuracy of the measurement procedures.

5. Pairing instabilities
5.1. Local pairing

When the symmetrically mounted rotor is rotating at a constant rate, the helix
structures generated in its wake do not show any significant deformation over the
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(a)

(b)

FIGURE 16. Rotor wake perturbed with a local pairing mode (k=1). (a) Experimental dye
visualisation for d/h∞ = 0.05; (b) corresponding theoretical prediction (the perturbation
amplitude is kept constant in the grey region).

first three diameters behind the rotor (figure 12). However, when slightly modulating
the rotation frequency, as outlined in § 3, displacement perturbations are introduced
that rapidly amplify and distort the vortex as it advects downstream, demonstrating
the instability of the system with respect to such perturbations.

Figure 16(a) shows a dye visualisation of the perturbation mode k = 1, triggered
with an initial displacement of amplitude d/h∞= 0.05. This mode corresponds to the
first maximum of the in-phase perturbation growth-rate curve in figure 2(b). At the
two azimuthal locations where the displacement of the vortex filaments is the largest,
local pairing occurs. The phase of the blade rotation modulation was chosen such
that this happens at the top and bottom in the view of figure 16(a). Figure 16(b)
presents the corresponding theoretical shape from the stability analysis. The temporal
growth from the theory is transformed into a spatial growth relevant for the rotor
geometry using the vortex convection speed 2hf0 and an appropriately chosen initial
perturbation amplitude and phase. The experimental and theoretical structures agree
very well, approximately up to the point where consecutive vortex loops are displaced
to the same downstream position (at z/R0 ≈ 3, near the centre of the figure), which
marks the end of the linear regime of the pairing instability (see also § 6).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.904


946 H. U. Quaranta, M. Brynjell-Rahkola, T. Leweke and D. S. Henningson

d1

h h d2

1
1

2
2

3
3(a) (b)

FIGURE 17. Schematic illustrating the displacement of the vortex cores in the upper half
of the centre plane due to local pairing. The distances d1 and d2 are used to estimate the
growth rate of the perturbation. (a) Unperturbed and (b) perturbed configuration.
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FIGURE 18. Averaged temporal evolution of the displacement amplitudes di (i = 1, 2),
defined in figure 17(b), for a perturbation with k= 1 and d/h∞ = 0.03. The slope of the
thick grey line gives the growth rate σ .

The growth rate of the instability was determined from visualisation sequences, for
various perturbation wavenumbers k. Every sequence contained an initial phase of
unperturbed flow (figure 12), which served as the reference configuration, followed
by a phase where the flow was perturbed with the rotation modulation (figure 10b).
The positions of the upper and lower sections of the vortex loops for the unperturbed
and perturbed flows were measured using tracking software (Brown 2017), and the
distances between them (marked as d1 and d2 in figure 17b) were calculated as a
function of time. Multiple individual measurements were made for each case, in order
to obtain the average trajectories with precision. Figure 18 shows a typical example
of the resulting amplitude evolution, from which the linear growth rate can easily be
determined.

The growth rates for local pairing were measured for various azimuthal wavenumbers
in the range 0< k< 4. In each experiment, it was verified visually that the amplified
perturbation was indeed the one corresponding to the imposed wavenumber. In certain
cases with off-maximum wavenumbers, the perturbation eventually dominating in the
visualisation could have a different wavenumber than intended, with a higher growth
rate. Whenever there was a doubt, the measurements were discarded. Figure 19
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FIGURE 19. Growth rate of the long-wave instability due to local pairing, as a function of
wavenumber. The symbols correspond to experimental measurements, and the solid line is
the theoretical prediction by Gupta & Loewy (1974) for in-phase perturbations on the two
vortices. The theoretical results are obtained using the base flow parameters in table 1.

shows all the valid growth rates that could be obtained in our experiments, as a
function of wavenumber. The comparison with the theoretical predictions for in-phase
perturbations, using the base flow parameter values corresponding to our experimental
configuration, shows good agreement.

5.2. Global pairing
As seen in § 2.2 (figure 7), a system of two interlaced helical vortices is also unstable
with respect to displacement perturbations that are out of phase. With the current set-
up using a rigid rotor, the only out-of-phase perturbation that could be imposed is the
one with k=0, without modulation of the rotor frequency (any such modulation would
again result in an in-phase perturbation). As explained in § 3, such a perturbation
could be obtained by introducing a small radial offset of the rotor (typically a few
per cent of R0), resulting in the generation of two helical vortices of slightly different
radii undergoing uniform pairing (figure 4). In order to explore the variation of the
growth rate for global pairing with the helix geometry (h/R, figure 5), four different
tip speed ratios λ were used by varying the free-stream velocity in the water channel.
For each case, the base flow parameters (helix geometry R and h; vortex properties
Γ and a) were determined as described in § 4.1.

Figure 20(a) shows a visualisation of global pairing, obtained with the reference
configuration (λ= 5.40) and a rotor offset δ/R0= 0.015. Pairing occurs simultaneously
around the azimuth of the rotor, and the agreement of the spatial structure with the
prediction derived from theory is again very good, up to the location of vortex loop
swapping at around z/R0= 3. Beyond this point, the rotor wake system almost returns
to its initial configuration. The late stages of the global pairing instability are further
analysed in § 6.
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(a)

(b)

FIGURE 20. Rotor wake perturbed with a global pairing mode (k= 0). (a) Experimental
dye visualisation for the case with tip speed ratio λ = 5.40 and radial rotor offset
δ/R0 = 0.015. (b) Corresponding theoretical prediction (the perturbation amplitude is kept
constant in the grey region).

The growth rate of the uniform pairing mode was again determined from video
recordings of dye visualisations. Unlike the case with local pairing, these videos
had no initial sequence with unperturbed flow, since the rotor offset could only be
set in advance. Therefore a different post-processing method was used, similar to
the one presented in Bolnot (2012). In this method, a group of three consecutive
vortex ridges is followed throughout the wake, and their corresponding trajectories
determined with the same image tracking software as used before (Brown 2017).
Figure 21 illustrates this configuration. Assuming a temporal development of the
pairing instability that is uniform along the vortex array, and using the fact that for
k= 0 the perturbations of neighbouring vortices are out of phase, it is straightforward
to show that d2

23 − d2
12 = 8h1z. In the linear regime of the instability, the distances

1y and 1z increase exponentially in time with growth rate σ , just like the distances
d1 and d2 in figure 17. This means that the temporal evolution of the difference
d2

23 − d2
12 can be used to determine the pairing instability growth rate directly from

the perturbed configuration, without knowledge of the unperturbed vortex positions.
An example of such a measurement is shown in figure 22.
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h
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Îz
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FIGURE 21. Schematic illustrating the displacement of the perturbed vortex cores in the
upper half of the centre plane. The distances d12 and d23 are used to estimate the growth
rate of the perturbation. The unperturbed and perturbed vortex positions are marked with
black and coloured bullets, respectively.
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FIGURE 22. Growth of the global pairing instability (k = 0), as measured in the upper
wake cross-section for λ= 5.40. (a) Averaged temporal evolution of d12 and d23 defined
in figure 21. (b) The difference d2

23− d2
12, whose exponential increase yields the instability

growth rate σ . The time t= 0 marks the instant when the vortex labelled 1 in figure 21 is
shed from the blade tip. The upper horizontal axis indicates the corresponding z-position
of the ‘second’ vortex loop (labelled 2).

The resulting growth rates for tip speed ratios λ = 4.47, 5.40, 6.67 and 8.04
are plotted in figure 23 as a function of the corresponding parameter h/R. They are
compared to the theoretical prediction based on the work of Gupta & Loewy (1974)
for k = 0. The overall agreement is good, even if the uncertainty and scatter in the
measurements, and the limited range of accessible values for h/R in our set-up, do
not allow for a solid experimental confirmation of the predicted increase of the growth
rate with increasing helix pitch.

6. Late stages and nonlinear evolution
As noted in figures 16 and 20 above, the deformations of the helical vortices

predicted by linear theory deviate from the experimentally observed ones in the
far wake of the rotor. The diagrams in figures 18 and 22(b) of the temporal
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FIGURE 23. Growth rate of the long-wave instability due to global pairing, as a function
of the distance between neighbouring helix loops. Symbols correspond to experimental
measurements, and the solid line is the theoretical prediction by Gupta & Loewy (1974)
for ae/R= 0.05.

evolution of the most unstable perturbations for local and global pairing also show
the corresponding spatial scale (upper axes). In both cases, the growth ceases to
be exponential beyond a distance of around 3R0 downstream of the rotor plane,
which corresponds quite closely to the location where two neighbouring helix loops
swap their axial positions. The dynamics of the helical vortex system beyond the
swapping location is governed by nonlinear effects. This location depends on the
amplitude of the initial perturbation, which here consists of a small streamwise or
radial displacement of the vortex loops, respectively. This dependence was studied
for the case of a single helical vortex by Quaranta et al. (2015). The observed vortex
swapping is sometimes referred to as leapfrogging. It is a well-known feature of
the dynamics of two concentric vortex rings (see e.g. Cheng, Lou & Lim 2015, and
references therein), and it was recently documented through numerical simulations
(Selçuk 2016; Selçuk et al. 2018) for two infinite helical vortices, where it is seen
to occur simultaneously everywhere: one helix expands and the other one contracts
and passes through the former.

For local pairing in the spatially evolving rotor wake, the leapfrogging also
occurs, but only locally around the azimuth, e.g. at the top and bottom in figure 16.
Subsequently, the wake structure becomes increasingly complex, and the concentrated
vortices eventually get so entangled that they break down into small-scale turbulence.
A similar behaviour was found for the late stages of local pairing in a single helical
vortex (Quaranta et al. 2015).

The nonlinear late stages of global pairing evolve quite differently. Interestingly,
after the leapfrogging, the wake almost recovers its initial double-helix structure, for
which then a new leapfrogging event can build up again through global pairing. Selçuk
et al. (2018) have numerically observed repeated leapfrogging of two helical vortices,
with the number of cycles (before merging) depending on the helix pitch and the
Reynolds number.
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(a) (b)

(c) (d)

FIGURE 24. Dye patterns averaged over 22 rotor revolutions, for various tip speed ratios
and δ/R0= 0.015: (a) λ= 4.47, (b) λ= 5.40, (c) λ= 6.70, (d) λ= 8.04. The white arrows
indicate the positions of the leapfrogging.

The leapfrogging (or vortex swapping) location can be found visually with some
precision by considering time-averaged dye visualisations of the blade-tip vortices.
Figure 24 shows examples of such averaged dye patterns, obtained for the four
different tip speed ratios, with the swapping locations marked by arrows. It is found
that this location moves upstream with increasing tip speed ratio. An increase of the
tip speed ratio from λ = 4.47 to λ = 8.04 decreases the extent of the linear wake
region by almost 50 %. Following the modelling by Sarmast et al. (2014) of the
linear phase of the pairing instability behind a rotor, the displacement amplitude
(e.g. d1 in figure 17b) can be expressed as a function of downstream distance:
d1(z)= d0 exp(c−1

1 λz/R0), where d0 is the initial amplitude at z= 0 and the parameter
c1 depends on the rotor properties. Assuming that, at the swapping location zs,
the perturbation amplitude is always given by the same fraction of h, and that h is
inversely proportional to the tip speed ratio (Sarmast et al. 2014), one has d1(zs)∝λ

−1,
which leads to zs

R0
=

c1

λ
(c2 − ln λ). (6.1)

When the rotor properties do not vary, and the initial amplitude d0 is the same (as
for the series in figure 24), c1 and c2 are constants. In figure 25, this prediction is
compared to the experimental measurements, and the agreement is found to be quite
good.

Multiple leapfrogging cycles could not be observed in our experiments, due to the
limited length of the observation interval downstream of the rotor. Nevertheless, for
the highest tip speed ratios (λ= 6.67 and 8.04), the onset of a second swapping could
be detected, as shown in figure 26. When rescaled values are used (figure 26b), a
surprisingly good agreement is found with the numerical results from Selçuk et al.
(2018) concerning the first swapping event, despite the differences in pitch, core size
and Reynolds number, and the fact that one configuration is spatially evolving and
the other one spatially uniform. This shows again that, for the pairing instability, the
relevant scales of length (deformation amplitude) and time are indeed h and 2h2Γ ,
respectively, and that the core size and Reynolds number have little effect in the range
of values considered here.
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FIGURE 25. Leapfrogging distance zs of neighbouring helix loops, as a function of the
tip speed ratio λ. The solid line is a least-squares fit of (6.1).
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FIGURE 26. (a) Temporal evolution of the radii Ri (i = 1, 2) of two consecutive vortex
loops for λ= 6.70 (h∞/R0 = 0.384, a/R0 = 0.034, Re= 4720), showing a complete cycle
of leapfrogging and the onset of a second cycle. (b) Rescaled values, using the local
radius R(z) of the unperturbed helices (figure 14a) and h∞, and comparison with the
numerical result (thin red lines) for two infinite helices with h/R= 0.943, a/R= 0.060 and
Re= 10 000 (Selçuk et al. 2018).

7. Summary and conclusions

In this study, the long-wave instability of a system of two interlaced helical vortices
has been investigated. This configuration is of fundamental interest in the context
of vortex dynamics and interactions, and it is also related to various applications
involving the flow behind rotors. Examples are wind turbine or helicopter wakes,
where instability phenomena of the vortex system can potentially have a significant
impact.
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The displacement instability of multiple helical vortices had previously been treated
theoretically by Gupta & Loewy (1974), who extended the analysis of a single helical
vortex by Widnall (1972). In the first part of the present work, we revisit these earlier
results and apply them to the two-helix flow subsequently studied experimentally.
The system is unstable with respect to periodic displacement perturbations, the most
unstable being those where the shift of neighbouring filaments (in the direction of
the helix centreline) is out of phase, leading to local pairing of the vortices. This can
occur when the perturbations on both vortices are, at the same axial position, either
in phase or out of phase. The growth-rate curve, as a function of the perturbation
wavenumber k (number of wavelengths in one helix turn), consists of a sequence of
lobes with maxima at integer values of k. Contrary to the single-helix case studied
in Quaranta et al. (2015), two helices may also undergo a global pairing for k= 0.

It is possible to establish a link between the long-wave instability of the two-helix
system and the three-dimensional pairing instability of an array of straight parallel
vortices. When transposing the theoretical results obtained by Robinson & Saffman
(1982) for the latter system to the helical geometry, a remarkably accurate prediction
for the growth rate is obtained, demonstrating again that pairing of neighbouring
filaments is the mechanism behind the long-wave instability of helical vortices with
moderate pitch.

In the second part of this work, an experimental study is carried out, aimed at
observing and characterising the various modes of the displacement instability in a
real flow. Experiments are performed in a water channel, where a two-bladed rotor
operating in the wind-turbine regime is used to generate the helical vortices. Carefully
controlled experimental conditions allow the observation of an unperturbed two-helix
system over a downstream distance of several rotor diameters, despite the highly
unstable nature of the flow. The characteristics of this base flow, i.e. the overall
helix geometry and the vortex velocity profiles (which reveal a significant velocity
defect on the vortex axis), are obtained from dye visualisations and PIV measurements.
Individual perturbation modes can then be triggered specifically and their structure and
growth measured in detail. In-phase perturbations with non-zero wavenumber, leading
to local pairing, are obtained by an appropriate modulation of the rotor rotation
frequency, whereas out-of-phase perturbations with zero wavenumber, resulting in
global pairing, are imposed by a radial offset of the rotor. For both cases, the mode
shapes and the growth rates obtained through the post-processing of visualisation
sequences are in good agreement with the corresponding theoretical predictions.

Experimentally, the phase of linear growth of the instability lasts until the maximum
displacement has reached a value where neighbouring filaments are located at the
same axial (downstream) position. For local pairing (k 6= 0), the subsequent nonlinear
evolution leads to strong deformations and a complex three-dimensional structure of
the helical system, and eventually to a breakup of the concentrated vortices. This
is similar to what is found for a single helical vortex (Quaranta et al. 2015). The
late stages of uniform pairing (k = 0) involve a global swapping (leapfrogging) of
the two helices, which is here observed and characterised for various rotor-tip speed
ratios. A quantitative comparison with results from the recent numerical simulations
by Selçuk et al. (2018) concerning the time evolution of the helix radius confirms that
the helix pitch is the relevant parameter for the scaling of the displacement amplitude
and (together with the circulation) for time and the growth rate.

The theoretical analysis and the specifically designed experiments presented in this
paper lead to a comprehensive assessment of the various unstable modes related to
the long-wave pairing instability of two interlaced helical vortices, since not only
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the theory, but also the experimental procedure, can select the modes individually.
In more general situations, such as full-scale applications involving rotor wakes,
many of these modes may be triggered and grow simultaneously and interact – see,
for example, the simulations of a three-bladed wind turbine wake by Sarmast et al.
(2014). In this situation, new phenomena may arise involving transient growth of
certain mode combinations. This, and the related question of optimal perturbations
leading to maximum amplitudes in a given finite time interval, will be explored in
future work.
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