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Abstract. We consider C2 Hénon-like families of diffeomorphisms of R2 and study the
boundary of the region of parameter values for which the non-wandering set is uniformly
hyperbolic. Assuming sufficient dissipativity, we show that the loss of hyperbolicity
is caused by a first homoclinic or heteroclinic tangency and that uniform hyperbolicity
estimates hold uniformly in the parameter up to the bifurcation parameter and even, to
some extent, at the bifurcation parameter.

1. Introduction and statement of results
Our aim in this paper is to study the boundary of hyperbolicity of certain families of two-
dimensional maps.

1.1. Hénon-like families. We say that a family of C2 plane diffeomorphisms is called a
Hénon-like family if it can be written in the form

fa,b,η(x, y) = (1 − ax2
+ y, bx) + ϕ(x, y, a)

where a ∈ R, b 6= 0 and ϕ(x, y, a) is a C2 ‘perturbation’ of the standard Hénon family
ha,b(x, y) = (1 − ax2

+ y, bx) [Hén76] satisfying

‖ϕ‖C2(x,y,a) ≤ η.

In this paper we consider |b|, η > 0 fixed sufficiently small and investigate the dynamics as
the parameter a is varied. For simplicity we shall therefore omit b and η from the notation
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and denote a Hénon-like family by { fa}. For future reference we remark that the inverse
of fa is given by an equation of a similar form:

f −1
a (x, y) = (y/b, x − 1 + ay2/b2) + ϕ̃(x, y, a)

where ‖ϕ̃‖C2(x,y,a) → 0 as ‖ϕ‖C2(x,y,a) → 0. We shall suppose without loss of
generality that

‖ϕ̃‖C2(x,y,a) ≤ η.

1.2. The boundary of hyperbolicity.

1.2.1. Basic background. Hénon and Hénon-like families have been extensively studied
over the past 30 years or so. One of the earliest rigorous results on the subject is [DN79], in
which it was shown that the non-wandering set �a,b is uniformly hyperbolic for all b ≥ 0
and all sufficiently large a (depending on b). On the other hand, for small b 6= 0 and a / 2
there exists positive probability of ‘strange attractors’ which contain tangencies between
stable and unstable leaves. This was first proved in [BC91] for the Hénon family and later
generalized in [MV93] to Hénon-like families, see also [WY01, LV03]. Owing to the
presence of tangencies, these attractors cannot be uniformly hyperbolic, but do turn out to
satisfy weaker non-uniform hyperbolicity conditions [BY93, BY00, BV01].

1.2.2. Complex methods. More recently Bedford and Smillie have described the
transition between these two regimes for Hénon families by identifying and describing
some of the properties of the boundary of uniform hyperbolicity [BS06]. In particular, they
show that, for small |b|, the non-wandering set is uniformly hyperbolic up until the first
parameter a at which a tangency occurs between certain stable and unstable manifolds.
Combining this with the statements contained in [BS02], their results also imply uniform
bounds on the Lyapunov exponents of all invariant probability measures at the bifurcation
parameter [Bed05]. Their methods rely crucially on previous work [BS04], which in turn
is based on the polynomial nature of the Hénon family, a feature that allowed Bedford
and Smillie to consider the complexification of the family and to apply original and highly
sophisticated arguments of holomorphic dynamics.

1.2.3. Real methods. In this paper we develop a new and completely different strategy
of approaching the problem, based purely on geometric ‘real’ arguments, which have the
advantage of applying to general C2 Hénon-like families. We also obtain the analogous
uniformity results by showing that the hyperbolicity expansion and contraction rates are
uniform right up to the point of tangency, and that even at the point of tangency some
strong version of non-uniform hyperbolicity continues to hold: all Lyapunov exponents of
all invariant measures are uniformly bounded away from 0.

THEOREM 1. For all |b| > 0 and η > 0 sufficiently small we have the following property.
For every Hénon-like family { fa} a∈R of plane diffeomorphisms, there exists a unique a∗

such that:
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(1) for all a > a∗ the non-wandering set �a is uniformly hyperbolic;
(2) for a = a∗ the non-wandering set �a∗ contains an orbit of tangency but is ‘almost

uniformly hyperbolic’ in the sense that all Lyapunov exponents of all invariant
probability measures supported on � are uniformly bounded away from 0.

Moreover, the bounds on the expansion and contraction rates for all a ≥ a∗ are
independent of a and of the family.

1.2.4. Singular perturbations. We remark that this is not the only existing definition of
Hénon-like in the literature. One standard approach is to consider ‘singular’ perturbations
of the limiting one-dimensional map corresponding to the case b = 0:

fa(x, y) = (1 − ax2, 0) + ϕa(x, y).

This formulation has some slight technical issues, however. For example, one cannot
assume that ‖ϕa‖C2 is small on all of R2 since that would violate the requirement that
fa be a global diffeomorphism of R2. This can be dealt with by restricting our attention
to some compact region, say [−2, 2] × [−2, 2], and supposing only that ‖ϕa‖C2 ≤ η in
this region. Our arguments apply in this case also and yield a more local result on the
hyperbolicity of the non-wandering set restricted to [−2, 2] × [−2, 2].

1.3. Basic definitions.

1.3.1. Non-wandering set. We recall that a point z belongs to the non-wandering set �

of f if it has the property that for every neighbourhood U of z there exists some n ≥ 1 such
that f n(U) ∩ U 6= ∅. The non-wandering set is always invariant and closed (and thus, if
bounded, also compact).

1.3.2. Uniform hyperbolicity. We say that a compact invariant set � is uniformly
hyperbolic (with respect to f ) if there exist constants Cu, Cs > 0, λu > 0 > λs and a
continuous decomposition T � = E s

⊕ Eu of the tangent bundle such that, for every
x ∈ �, any non-zero vectors vs

∈ E s
z and vu

∈ Eu
z and every n ≥ 1, we have

‖D f n
z (vs)‖ ≤ Cseλs n and ‖D f n

z (vu)‖ ≥ Cueλun . (1)

By standard hyperbolic theory, the stable and unstable subspaces E s
z , Eu

z are tangent
everywhere to the stable and unstable manifolds. In particular, uniform hyperbolicity is
incompatible with the presence of tangencies in � between any stable and any unstable
invariant manifolds associated to points of �.

1.3.3. Non-uniform hyperbolicity. A weaker notion of hyperbolicity can be formulated
in terms of invariant measures. For simplicity, we restrict our discussion to the two-
dimensional setting, as relevant to the situation we consider in this paper. Let µ be an
f -invariant ergodic probability measure with support in some compact invariant set �.
By Oseledec’s ergodic theorem [Ose68], there exist constants λu

≥ λs and a measurable
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decomposition T � = E s
⊕ Eu such that, for µ-almost every z and any non-zero vectors

vs
∈ E s

z and vu
∈ Eu

z , we have

lim
n→∞

1
n

log ‖D f n
z (vs)‖ = λs and lim

n→∞

1
n

log ‖D f n
z (vu)‖ = λu . (2)

The constants λs and λu are called the Lyapunov exponents associated with the measure µ.
We say that µ is hyperbolic [YP76, Pes77] if

λu > 0 > λs .

Clearly the estimates (1) imply the limits (2) for any µ. The converse, however, is false in
general: the measurable decomposition may not extend to a continuous one on all of �,
and the exponential expansion and contraction in (2) implies only a limited version of (1)
in which the constants Cs, Cu are measurable functions of x and not bounded away from
0. This definition of hyperbolicity in terms of Lyapunov exponents is sometimes called
non-uniform hyperbolicity and is consistent in principle with the existence of tangencies
between stable and unstable manifolds.

1.3.4. The boundary between uniform and non-uniform hyperbolicity. In general, there
may be many ergodic invariant probability measures supported in �, of which some
may be hyperbolic and some not. Even if they are all hyperbolic, the corresponding
Lyapunov exponents may not be uniformly bounded away from 0. The situation in which
all Lyapunov exponents of all ergodic invariant measures are uniformly bounded away
from zero is, in some sense, as ‘uniformly hyperbolic’ as one can get while admitting
the existence of tangencies. This situation can indeed occur, for example in the present
context of Hénon-like maps. A first example of a set satisfying this property was given
in [CLR06].

1.4. A one-dimensional version. After completing the proof of the Theorem 1 we
realized that much simpler versions of our arguments yield an analogous, new and non-
trivial result in the context of one-dimensional maps. We explain and give a precise
formulation of this result. We consider first the quadratic family

ha(x) = 1 − ax2.

We choose this particular parametrization for convenience and consistency with our two-
dimensional results, but any choice of a smooth family of unimodal or even multimodal
maps with negative Schwarzian derivative would work in exactly the same way. It is
well known that for a > 2 the non-wandering set �a is uniformly expanding, although we
emphasize that this result depends crucially on the negative Schwarzian derivative property.
As the negative Schwarzian property is not robust with respect to C2 perturbations,
standard methods do not yield this statement for such perturbations.

THEOREM 2. There exists a constant η > 0 such that if a family {ga} of C2 one-
dimensional maps satisfies

‖ga − ha‖C2 ≤ η,

then there exists a unique parameter value a∗ such that:
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(1) for all a > a∗ the non-wandering set � is uniformly hyperbolic;
(2) for a = a∗ the Lyapunov exponents of all ergodic invariant probability measures are

all positive and uniformly bounded away from 0.
Moreover, the rates of expansion and the bound on the Lyapunov exponents are uniform,
independent of the family and of the parameter.

The proof of this result is exactly the same as that of Theorem 1 but vastly simpler, as
all the more geometrical arguments concerning curvature etc become essentially trivial.

We emphasize that the uniform expansivity of �a for a particular parameter value a > 2
is of course robust under sufficiently small perturbations of fa , by standard hyperbolic
theory. However, this approach requires the size of the perturbation to depend on the
parameter a and, in particular, to shrink to zero as a tends to 2. The crucial point of our
approach, in both the one-dimensional and two-dimensional settings, is that the size of the
perturbation does not depend on the parameter.

1.5. Overview of the paper. We have divided our argument into three main sections. In
§2 we analyze the geometric structure of stable and unstable manifolds of the two fixed
points and define the parameter a∗ as the first value of a for which a tangency occurs
between some compact parts of these manifolds. We also identify a region D which we
show contains the non-wandering set. In §3 we define a ‘critical neighbourhood’ 1ε

outside of which our maps are uniformly hyperbolic by simple perturbation arguments.
However, 1ε does contain points of � and thus we cannot ignore this region. To control
the hyperbolicity in 1ε, we introduce the notions of ‘hyperbolic coordinates’ and ‘critical
points’ which form the key technical core of our approach. Finally, in §4 we apply these
techniques to prove the required hyperbolicity properties.

2. The non-wandering set
In this section we define the parameter a∗ that appears in the statement of our main
theorems, and show that for a ≥ a∗ the non-wandering set is contained in the closure of
the unstable manifold of a hyperbolic fixed point restricted to a certain compact region
of R2.

2.1. The parameter a∗. Below we will define the bifurcation parameter a∗ as the first
value of a for which there is a tangency between certain compact parts of the stable and
unstable manifolds of the fixed points. This does not immediately imply that a∗ is a first
parameter of tangency, although this will follow from our proof of the fact that the non-
wandering set is uniformly hyperbolic for all a > a∗.

2.1.1. Fixed points and invariant manifolds for the one-dimensional limit. For the
endomorphisms ha = ha,0 with a ≥ 2, there are two fixed points

pa =
−1 +

√
1 + 4a

2a
and qa =

−1 −
√

1 + 4a

2a
(pa > qa),
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FIGURE 1. First two ‘generations’ of W s (q∗) and W s (p∗).

which are both hyperbolic. For the special parameter value a = 2, to simplify the notation
we write f∗ = h2,0 and denote the two fixed points by p∗ = (1/2, 0), q∗ = (−1, 0).

Since q∗ and p∗ are repelling in the horizontal direction, their stable sets are simply
their preimages:

W s(q∗) =

⋃
n≥0

f −n
∗ (q∗) and W s(p∗) =

⋃
n≥0

f −n
∗ (p∗).

In particular, these sets contain the following curves:

f −1
∗ (q∗) = {(x, y) : f∗(x, y) ≡ (1 − 2x2

+ y, 0) = (−1, 0)} = {y = 2x2
− 2}

and

f −2
∗ (q∗) = {(x, y) : f∗(x, y) ≡ (1 − 2x2

+ y, 0) = (1, 0)} = {y = 2x2
}.

The first preimage of q∗ is a parabola with a minimum at (0, −2), intersecting the x-axis
at x = ±1 and having slope equal to −4 at the point q∗ = (−1, 0); the second is a parabola
with a minimum at (0, 0). Similarly we can compute

f −1
∗ (p∗) = {(x, y) : f∗(x, y) ≡ (1 − 2x2

+ y, 0) = (1/2, 0)} = {y = 2x2
− 1/2}

which is a parabola with a minimum at (0, −1/2), intersecting the x-axis at x = ±1/2 and
having slope equal to 2 at the point p∗ = (1/2, 0); and

f −2
∗ (p∗) = {(x, y) : f∗(x, y) ≡ (1 − 2x2

+ y, 0) = (−1/2, 0)} = {y = 2x2
− 3/2}

which is a parabola with a minimum at (0, −3/2). See Figure 1 for plots of
f −1
∗ (q∗), f −2

∗ (q∗), f −1
∗ (p∗) and f −2

∗ (p∗).
The unstable manifolds W u(q∗) and W u(p∗) can be defined and computed in a similar

way and are easily seen to be horizontal.
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FIGURE 2. Fixed points and their local stable and unstable manifolds for the orientation-reversing (b > 0) and the
orientation-preserving (b < 0) cases (dashed curves indicate negative eigenvalues).

2.1.2. Fixed points for Hénon-like families. Consider first the Hénon family
ha,b(x, y) = (1 − ax2

+ y, bx). For b 6= 0, ha,b is a diffeomorphism. The hyperbolicity
of the fixed points implies that there exists a neighbourhood of the set {(a, 0) : a ≥ 2}

corresponding to pairs of parameters for which there are analytic continuations qa,b, pa,b

as hyperbolic fixed points of ha,b. Considering η small, we also have that the analytic
continuations q fa and p fa are also well defined and hyperbolic. For simplicity we shall
often just refer to these two points as q and p, leaving implicit their dependence on f .

Explicit formulas for qa,b, pa,b can be easily derived from the equation (1 − ax2
+

y, bx) = (x, y) but these would not be particularly useful. Instead, we just observe that
the fixed points must lie on the line {y = bx} and so, for a ≈ 2 and b ' 0, the vertical
coordinates of qa,b and pa,b are negative and positive, respectively, and the opposite is
true for b / 0. Clearly the same holds for q = q fa and p = p fa if η is sufficiently small.
Moreover, the determinant of ha,b is given by

det Dha,b = det
(

−2ax 1
b 0

)
= −b,

which is constant and negative if b is positive, positive if b is negative. We thus refer
to the case b > 0 as the orientation-reversing case, and the case b < 0 as the orientation-
preserving case. Recall that the determinant of a matrix is the product of the eigenvalues,
and thus the sign of the determinant has implications for the signs of the eigenvalues which,
as we shall see, in turn have implications for the geometry of the stable and unstable
manifolds of the fixed points. For b = 0 the fixed points p∗ and q∗ have derivatives 4
and −2, respectively; thus, for b 6= 0 and η small, the expanding eigenvalues of p and q
are ≈4 and ≈−2, respectively. This implies that for the orientation-reversing case b ' 0,
the contracting eigenvalues of q and p must be less than and greater than 0 respectively,
while for the orientation-preserving case b < 0, they must be greater than and less than 0
respectively. The two situations are illustrated in Figure 2, with dashed lines showing the
invariant manifolds corresponding to negative eigenvalues.

2.1.3. Analytic continuation of stable and unstable manifolds. By classical hyperbolic
theory, compact parts of the stable manifolds depend continuously on the map (see,
e.g., [PdM82]). Therefore, for small b and small η the analytic continuations q, p
of the fixed points q∗ and p∗ have stable and unstable manifolds which are close to
those computed above for the limiting case. Elementary calculations show that the
actual geometrical relations between these continuations depend on whether we consider
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FIGURE 3. Invariant manifolds for a > a∗.

the orientation reversing (b > 0) or the orientation-preserving (b < 0) case, and are as
illustrated in Figure 3. We let

0u
a (p) ⊂ W u

a (p), 0s
a(q) ⊂ W s

a (q), 0u
a (q) ⊂ W u

a (q)

denote the compact parts of the stable and unstable manifolds as shown in Figure 3 and note
that since for b = 0 and a > 2 the unstable manifolds of pa and qa extend to the whole of
the line, for each a > 2 and b > 0 sufficiently small we have that W u

loc(p) crosses W s
loc(p)

four times, and for each a > 2 and b < 0 sufficiently small W u
loc(q) crosses W s

loc(q) four
times; we can also ensure that the compact parts defined above and in Figure 3 intersect
transversally. Again this continues to hold also for a Hénon-like family for sufficiently
small η.

2.1.4. Definition of a∗. We are now ready to define the parameter a∗. Fix b 6= 0.
For an orientation-reversing (b > 0) Hénon-like family fa , let

a∗
= inf{a : 0s

a(p) and 0u
a (q) intersect transversally}.

For an orientation-preserving b < 0 Hénon-like family fa , let

a∗
= inf{a : 0s

a(q) and 0u
a (q) intersect transversally}.

We also define a parameter â as the infimum of values a for which W u
loc(p) crosses W s

loc(p)

four times (when b > 0) or W u
loc(q) crosses W s

loc(q) four times (when b < 0). Clearly these
are weaker conditions than those defining a∗ and thus a∗

≥ â. Notice that a∗ and â both
converge to a = 2 as b and η tend to 0.

2.2. Localization of the non-wandering set. In this section we carry out a detailed
geometrical study aimed at showing that the non-wandering set is contained in a relatively
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FIGURE 4. The region D.

restricted region. To prove hyperbolicity we then only need to focus our efforts in this
region. For the moment we restrict ourselves to the orientation-reversing case. At the end
we shall remark how the orientation-preserving case follows by identical arguments with
a few minor changes of notation. First of all we let D denote the closed topological disc
bounded by compact pieces of W u(p) and W s(q) as shown in Figure 4. The main result
of this section is the following.

PROPOSITION 1. For all a > â we have

� ⊂ W u(p) ∩D ∩ {[−2, 2] × (−4b, 4b)}.

Remark. In this paper we are interested in parameters a ≥ a∗(≥ â), but it is worth
observing that from Proposition 1 it follows that for all a ∈ (â, a∗), and so in particular for
a certain range of parameter values which may contain multiple tangencies, the recurrent
dynamics is captured to some extent by the dynamics on W u(p). This includes all complex
dynamical phenomena associated with the unfolding of the tangency at the parameter
a∗ (indeed, it includes the range of parameters considered by Benedicks and Carleson
in [BC91]).

We split the proof of Proposition 1 into several lemmas. Once again we deal first with
the case b > 0, and at the end of the proof indicate the modifications needed to deal with
b < 0. We first define a relatively ‘large’ region R and show that � ⊂ R; we then show in
separate arguments that � ⊂D and � ⊂ W u(p), and finally refine our estimate to obtain
the statement in Proposition 1. Let

R = (−2, 2) × (−4, 4b) ⊂ R̂ = (−2, 2) × (−4, 2).
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FIGURE 5. Regions V1 to V6.

We also define the following six (overlapping) regions (see Figure 5):

V1 = {(x, y) : x ≤ −2, y ≤ |x |},

V2 = {(x, y) : x ≤ 2, y ≤ −4},

V3 = {(x, y) : x ≥ 2, y ≤ 2},

V4 = {(x, y) : x ≥ −2, y ≥ 2},

V5 = {(x, y) : x ≤ −2, y ≥ |x |},

V6 = {(x, y) : |x | ≤ 2, y ≥ 4b}.

Then

R̂ = R2
\ (V1 ∪ · · · ∪ V5) and R = R2

\ (V1 ∪ · · · ∪ V6)

and we prove the following lemmas.

LEMMA 1. � ⊂ R.

Proof. We show that the orbit of every point (x, y) ∈ Vi , i = 1, . . . , 6, is unbounded
in either backward or forward time. This implies that no such point is non-wandering.
For n ∈ Z, let (xn, yn) = f n

a (x, y). We shall use repeatedly the fact that a ≈ 2 and b ≈ 0.
For (x, y) ∈ V1 we have x ≤ −2 and y ≤ |x |, therefore x1 = 1 − ax2

+ y +

ϕ1(x, y, a) ≤ 1 − ax2
+ |x | + η ≤ −2 and y1 = bx + ϕ2(x, y, a) ≤ −2b + η < |x1|, as

long as η is sufficiently small. Thus (x1, y1) ∈ V1, and |x1| ≥ ax2
− |x | − 1 − η ≥ 2|x |.

Repeating the calculation we have |xn| ≥ 2n
|x | and so |xn| → ∞.

For (x, y) ∈ V2 we have x1 = 1 − ax2
+ y + ϕ1(x, y, a) ≤ −2 and y1 = bx +

ϕ2(x, y, a) ≤ 2b + η < |x1|. Thus (x1, y1) ∈ V1 and so |xn| → ∞.
Similarly, for (x, y) ∈ V3 we have x1 = 1 − ax2

+ y + ϕ1(x, y, a) ≤ 1 − 2 · 22
+ 2 +

η ≤ −2 and y1 = bx + ϕ2(x, y, a) ≤ 2b + η < |x1|. Thus (x1, y1) ∈ V1 and we argue
as above.

For (x, y) ∈ V4 we consider backward iterations of fa . Note that (x−1, y−1) =

(y/b, x − 1 + ay2/b2) + ϕ̃(x, y, a). Then x−1 ≥ 2/b − η ≥ −2 and y1 ≥ −2 + 4a/b2
−

η ≥ 2. Thus f −1(x, y) ∈ V4 and y1 ≥ y/b. Therefore y−n ≥ y/bn and so |y−n| → ∞.
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FIGURE 6. Regions Ri
0.

For (x, y) ∈ V5 we have y ≥ |x | ≥ 2. Thus x1 ≥ y/b − η ≥ 2 and y1 ≥ y2/b2
≥ 2.

So f −1(x, y) ∈ V4, and we argue as above.
For (x, y) ∈ V6 we have x−1 = y/b + ϕ̃2(x, y, a) ≥ 2 and y−1 ≥ 2. Therefore

fa(x, y) ∈ V4 and again we argue as above. 2

LEMMA 2. D ⊂ R̂.

Proof. The arguments used above have implications for the locations of the stable and
unstable manifolds of the fixed points. Indeed, the stable manifolds of the fixed points
cannot intersect V1 ∪ V2 ∪ V3 since all points in this region tend to infinity in forward
time, whereas, by definition, points in the stable manifolds tend to the fixed points under
forward iteration. Similarly, the unstable manifolds of the fixed points cannot intersect
V4 ∪ V5 since all points in this region tend to infinity in backward time. By definition, D
is bounded by arcs of stable and unstable manifolds of the fixed point as in Figure 4, and
therefore D ⊂ R2

\ (V1 ∪ · · · ∪ V5) = (−2, 2) × (−4, 2). 2

LEMMA 3. � ⊂D.

Proof. To show that � ⊂D we refine the strategy used in the proof of the previous lemma,
and show that the orbits of all points outside D are unbounded in either backward or
forward time. Since we have already shown that � ⊂ R, we need only consider points
in the region R \D.

Subdividing. We write

R \D = R0 ∪ R1 ∪ R2 ∪ R3

where the regions R0, R1, R2, R3 are defined as follows. Consider the points A, B of
intersection between W u(p) and W s(q) and the points C, D of intersection between
W s(q) and y = 4b; see Figure 6. We let R0 denote the closed region bounded by the
arcs of manifolds AC , AB, B D and the line segment C D. Similarly, let R1 denote the
region bounded by the arcs of manifolds H F , F A, AC and the line segment HC . We let
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R3

R2 R1 R0

R3
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J

~

FIGURE 7. Regions R1 to R3 and R̃3.

R2 be the region bounded by the arcs of W u(p) and W s(q) between the points E and F ,
as in Figure 6; see also Figure 7. Then let R3 = R \ (D ∪ R0 ∪ R1 ∪ R2). We also define

R̃3 ⊂ R3

as the region satisfying −2b − η < y < 2b + η at the left-hand side of the arc of W s(q)

between the points I and J of intersection of that manifold with the lines y = −2b − η and
y = 2b + η, as shown in Figure 7.

Points of R0 escape in backward time. Since b is small, we have that all the points
(x, y) ∈ R0 satisfy x > 0.2. Notice that for the unperturbed Hénon map ha,b(x, y) = (1 −

ax2
+ y, bx), any piece of curve γ with slope less than 1/10 contained in the region where

|x | > 0.2 is mapped to another curve with slope less than 1/10. Indeed, letting (v1, v2)

denote a tangent vector to γ with |v2|/|v1| < 1/10, we have (v′

1, v′

2) = Dha,b(v1, v2) =

(−2axv1 + v2, bv1) whose slope is |v′

2|/|v
′

1| = |b/(−2ax + (v2/v1))| < 1/10, provided b
is small and a is close to 2. For future reference, note that if |x | > 0.5, we also have that the
norm of (v1, v2) is uniformly expanded. So, since fa is close to ha,b in the C2 topology,
we can assume that fa also has this property in R0.

Now denote by αn the successive images of the segment C D intersected with R0. Since
these images cannot intersect each other, and C D has a point of the stable manifold of p,
the curves αn determine a system of ‘fundamental domains’ in R0: they cross R0 from one
stable boundary to the other, and they converge to the arc of unstable manifold AB. Let
Ri

0 be the region of R0 between αi−1 and αi , with α0 = C D (see Figure 6), and notice that
f −1(Ri

0) ⊂ Ri−1
0 . We also have that f −1(R0) falls outside R. This implies that R0 \ AB

does not intersect �, and any point which has an iterate in R0 \ AB is not in �.
Points of R1 map to R3. We show that f (R1) ∩ R ⊂ R3. Indeed, the unstable eigenvalue

of p is positive and therefore f (R1) must remain on the same side of W s(q) as R1.
Also, since f (R) ⊂ R × [−2b − η, 2b + η], we have that f (R1) does not intersect any
of D, R0, R1, R2.

Points of R3 map to R̃3. We now show that f (R3) ⊂ R̃3. Again, we use the fact that
f (R) ⊂ R × [−2b − η, 2b + η]. Then, since one of the components of the boundary of
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C′

A′ B′ E′ F′

D′ H′G′

FIGURE 8. Invariant manifolds and the region D for b < 0.

R3 is an arc of the stable manifold of q containing the fixed point q, and the unstable
eigenvalue of q is positive, we conclude that the image of R3 is contained R̃3.

Points of R̃3 escape in forward time. We can assume, if b is small, that all the points
(x, y) in R̃3 satisfy x < −0.5 (notice that, for b = 0, we have q = (−1, 0)). Take t to be a
point in R̃3 \ W s(q), and connect t to the boundary of R̃3 by a horizontal line inside R̃3;
this determines a point t ′ ∈ W s(q). Again, by the proximity of f and ha,b, and the fact that
vectors with slope smaller than 1/10 in R̃3 ∩ R are sent by Dha,b to vectors with slope
smaller than 1/10, and uniformly expanded, we have that the horizontal distance between
f (t) and f (t ′) is uniformly expanded. Applying f repeatedly, as long as the image is
inside R̃3 ∩ R, we have that the horizontal distance between the successive images of t and
W s(q) increases exponentially. Hence the forward images of t leave R for some positive
time.

Points of R2 map to R0 in backward time. Notice that f −1(R2) ∩ R ⊂ R0 since all the
other regions in R outside D are mapped forward to the region R̃3, and so do not contain
points of the backward image of R2. Moreover, the unstable boundary of R2 belongs to
W u(p) and approaches p as we apply f −1, while the stable boundary cannot cross W s(q),
thus f −1(R2) does not intersect D. Since f −1(R2) ∩ R ⊂ R0, the points in there that are
not in W u(p) leave R for backward iterations. 2

LEMMA 4. � ⊂ W u(p).

Proof. Notice first of all that by the λ-lemma we have q ∈ W u(p). Now suppose for
contradiction that there exists z = (x, y) ∈ � with z /∈ W u(p). Then there exists ε and
an ε-neighbourhood Bε(z) of z with Bε(z) ∩ W u(p) = ∅. Since � is f -invariant we
have f −n(z) ∈ �( f ) ⊂D for all n ∈ N and therefore z ∈ f n(D) for all n ∈ N. Notice
that the boundary ∂ f n(D) lies in W u(p) ∪ f n(E Bs), where E Bs denotes the piece of
W s(q) between E and B, as in Figure 6. It is enough therefore to show that for large
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n, ∂ f n(D) is ε-dense in f n(D), as this will imply that Bε(z) ∩ W u(p) 6= ∅, contradicting
the assumption. Because f is (strongly) area-contracting, the area of f n(D) tends to
zero as n → ∞. In particular, we must have that Bε(z) ∩ ∂ f n(D) 6= ∅ for all n ≥ N
sufficiently large. Moreover, the length of the part of the boundary which belongs to W s(q)

also tends to zero. Thus most of the boundary belongs to W u(p) and so we must have
Bε(z) ∩ W u(p) 6= ∅ for all n sufficiently large. 2

2.2.1. Completion of the proof of Proposition 1. Combining the results of the lemmas
stated above we have that � ⊂ W u(p) ∩D. The statement in Proposition 1 now follows
immediately by observing that � ⊂D implies � ⊂ f (D) and that f (D) ⊂ [−2, 2] ×

[−4b, 4b] directly from the definition of f if η is sufficiently small.
Finally, in the case b < 0, we consider the stable and unstable manifolds of q crossing

as in Figure 8 (the rectangle R is exactly the same), determining the region D in this case.
The proof is entirely analogous, considering the points A′, B ′ etc corresponding to the
points A, B etc above. 2

3. Hyperbolic coordinates and critical points
The key idea of our whole strategy is the notion of dynamically defined critical point which
relies on the fundamental notion of hyperbolic coordinates. In this section we introduce
these notions and develop the main technical ideas which we will use. In §3.1 we clarify the
relations between various constants used in the argument and introduce some preliminary
geometric constructions. In §3.2 we discuss the definition and basic theory of hyperbolic
coordinates. In §3.3 we introduce the idea of admissible curves and prove certain estimates
concerning the images of admissible curves. Finally, in §3.4 we introduce the notion of a
dynamically defined critical point and prove that such critical points always exist in images
of certain admissible curves.

3.1. Preliminary geometric definitions and fixing the constants.

3.1.1. Fixing the constants. We now explain the required relations between the different
constants used in the proof, and the order in which these constants are chosen. All constants
are positive. First of all we fix the values of two constants

δ = 1/10 and α = 1/2.

The meanings of these constants will be introduced in §3.1.2 and §3.3 below. Even though
we specify the actual numerical values of these constants, we shall continue to use them
as general constants in the argument because they have specific geometric meanings and it
is useful to keep track of their occurrence throughout the paper. We then fix a constant k0

large enough so that
√

δ

2
√

3

(√
3

√
5

)k0−1

> 1. (3)
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FIGURE 9. The neighbourhoodsQ and V .

In §3.1.3 we fix a constant ε which will then remain unchanged. Finally, at certain places in
the argument, we will require a to be sufficiently close to 2 and |b| and η to be sufficiently
small.

We remark that we can suppose that a is close to 2 without compromising the fact that
hyperbolicity holds for all larger values of a. Indeed, once we fix a neighbourhood of 2
in the a parameter space, we can always guarantee uniform hyperbolicity for values of
a > 2 outside this neighbourhood by taking |b| and η sufficiently small (depending on the
neighbourhood).

3.1.2. The fixed point neighbourhoods. Recall first of all that the map f∗ = h2,0 has two
fixed points p∗ and q∗ = (−1, 0) with f∗(1, 0) = q∗. Let Q=Q0 := Bδ(q∗) be the open
ball of radius δ centred at q∗, and let V = V0 be the component of f −1

∗ (Q) not intersecting
Q; see Figure 9. The expanding eigenvalue at the point q∗ is equal to 4 and so we can
suppose that |a − 2|, |b|, η are all small enough so that ‖D fz‖ > 3 for all z ∈Q. Then,
for n ≥ 0, let

Qn( f ) =

n⋂
i=0

f −i (Q0) and Vn( f ) = f −1(Qn( f )) ∩ V.

Notice that Vn is just the component of f −1(Qn( f )) containing (1, 0). Since Qn is
a neighbourhood of q for every n, the set Vn \ f −1(W s

δ (q)), where W s
δ (q) denotes the

connected component of W s(q) ∩Q0 containing q, has two components. Let

V−
n = Vn ∩D and V+

n = Vn \ V−
n .

Notice that a piece of W s(q) forms the boundary between V+
n and V−

n . We mention for
future reference a simple estimate which we shall use below.

LEMMA 5. d(z, f −1(W s
δ (q))) ≥ δ/5k for all z ∈ Vk \ Vk+1.

Proof. z ∈ Vk \ Vk+1 implies, by definition, d(zk+1, q) ≥ δ. For points z close to
f −1(W s

δ (q)) this also means d(zk+1, W s
δ (q)) ≥ δ since such points come very close to

the fixed point q and escape the δ-neighbourhood of q along the direction of W u(q). Thus,
using the fact that the norm of the derivative D f in D is uniformly bounded above by 5,
we obtain the result. 2
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3.1.3. The critical neighbourhood. For ε > 0 we define a critical neighbourhood

1ε = (−ε, ε) × (−4b, 4b).

Note that we can take ε sufficiently small so that q f ∈ f (V) and

f (1ε) ⊂ Vk0 .

From now on we consider ε fixed. We also let

1 = 1a = {x ∈ 1ε : f (x) /∈D}.

For a sufficiently close to 2 and |b| and η sufficiently small we have uniform hyperbolicity
outside 1ε. We state this fact more formally in the following.

LEMMA 6. For every λ̂ ∈ (0, log 2) and |a − 2|, |b|, η > 0 sufficiently small, there exists
a constant Cε > 0 such that for all k ≥ 1, any point z with z, f (z), . . . , f k−1(z) /∈ 1ε,
and any vector v with slope less than α, we have

slope D f k
z (v) < α, (4)

‖D f k
z (v)‖ ≥ Cεeλ̂k

‖v‖. (5)

If, moreover, f k(z) ∈ 1, then we have

‖D f k
z (v)‖ ≥ eλ̂k

‖v‖. (6)

Proof. This is a standard result (see, for example, [BC91] or [MV93]) and so we omit the
details. We just mention that it follows from the fact that the limiting one-dimensional map
h2,0 satisfies uniform expansivity estimates outside an arbitrary critical neighbourhood 1ε

(with constant λ̂ arbitrarily close to log 2 but constant Cε depending on ε and arbitrarily
small for ε small); see, e.g., [dMvS93].

Considering this one-dimensional map as embedded in the space of two-dimensional
maps and using the fact that uniform hyperbolicity is an open condition, we obtain the
statement in the lemma for |b|, η 6= 0 sufficiently small. 2

3.2. Hyperbolic coordinates. The notion of ‘hyperbolic coordinates’ is inspired by
some constructions in [BC91, MV93], developed in [LV03] and formalized in [HL06]
as an alternative framework with which to approach the classical theory of invariant
manifolds. Here we review the basic definitions and theory to the extent to which they
will be required for our purposes.

3.2.1. Hyperbolicity of compositions of linear maps. We recall the notion of hyperbolic
coordinates and give the basic definitions and properties in the general context of C2

diffeomorphisms of a Riemannian surface M . For z ∈ M and k ≥ 1, let

Fk(z) = ‖D f k
z ‖ and Ek(z) = ‖(D f k

z )−1
‖
−1

denote the maximum expansion and the maximum contraction, respectively, of D f k
z . Then

we think of the quantity
Hk(z) = Ek(z)/Fk(z)
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as the hyperbolicity of D f k
z . Notice that Hk ≤ 1 always. The condition Hk = Ek/Fk < 1

implies that the linear map D f k maps the unit circle S ⊂ Tz M to an ellipse
Sk = D f k

z (S) ⊂ T f k (z)M with well-defined major and minor axes. The unit vectors
e(k), f (k) which are mapped, respectively, to the minor and major axis of the ellipse and are
thus the most contracted and most expanded vectors, respectively, are given analytically as
solutions to the differential equation d‖D f k

z (cos θ, sin θ)‖/dθ = 0 which can be solved to
give the explicit formula

tan 2θ =
2[(∂x f k

1 )(∂y f k
1 ) + (∂x f k

2 )(∂y f k
2 )]

(∂x f k
1 )2 + (∂x f k

2 )2 − (∂y f k
1 )2 − (∂y f k

2 )2
.

Here f = ( f1, f2) are the two coordinate functions of f . Notice that e(k) and f (k) are
always orthogonal and do not in general correspond to the stable and unstable eigenspaces
of D f k .

3.2.2. Hyperbolic coordinates and stable and unstable foliations. We define the
hyperbolic coordinates of order k at the point z as the orthogonal coordinates Hk(z)
given at z by the most contracted and most expanded directions for D f k

z . If f is C2 and
Hk(z) < 1, then hyperbolic coordinates are defined in some neighbourhood of z and give
two orthogonal C1 vector fields. In particular, they are locally integrable and thus give rise
to two orthogonal foliations. We let E (k) denote the stable foliation of order k formed by
the integral curves of the vector field {e(k)

} and F (k) denote the unstable foliation of order
k formed by the integral curves of the vector field { f (k)

}.

3.2.3. Hyperbolic coordinates for Hénon-like maps. A crucial property of hyperbolic
coordinates and finite order stable and unstable foliations is that, under very mild
assumptions, they converge in quite a strong sense as k → ∞. We formulate a version
of this property here in our specific context.

PROPOSITION 2. For every k ≥ 1, hyperbolic coordinates Hk and stable and unstable
foliations E (k) and F (k) are defined in V+

∪ V−

k . Moreover,
(1) the angle between each stable direction e(k) and the slope of f −1(W s

δ (q))(≈2);
(2) the curvature of each stable leaf
are both .b. Also, the C2 distance between leaves of E (k) and leaves of E (k+1) is .bk.

Proof. Analogous convergence results are formulated and proved in great generality
in [HL06] under weak (subexponential) growth of the derivative. Here we shall need only
some very particular cases of these estimates and therefore we first describe the specific
setting in which they will be applied here. The main ingredient for the proof is the fact
that by our choice of δ and assuming that |a − 2|, |b| and η are small enough, we have that
‖D f (z) − D f∗(q∗)‖ is small for all z ∈Q and thus

Ek(z0) ≤ bk and Fk(z0) ≥ 3k for all z0 ∈ Vk . (7)

It follows immediately that hyperbolic coordinates of order k and their associated foliations
are well defined in Vk . Points in V−

k are then re-injected intoD \Q and these hyperbolicity
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estimates can no longer be guaranteed, a priori, for all time. Points in V+

k , however, are
outside D and therefore, by the arguments of §2, eventually escape towards infinity. In
particular, the required hyperbolicity conditions can be guaranteed to hold for all positive
iterates. This implies that hyperbolic coordinates of order k are well defined in V+

∪ V−

k
as in the statement of the proposition.

The statements about the direction of the stable directions, the curvature of the
leaves and the C2 distance between stable leaves of different orders all follow directly
from [HL06, Main theorem]. These calculations are purely technical and do not add to
our geometrical understanding of this situation; we therefore omit the details and refer the
reader to that paper. 2

3.3. Admissible curves. Recall that the curvature κ(s) of a parametrized curve γ (s) =

(x(s), y(s)) is given by

κ(s) =
|ẋ ÿ − ẏ ẍ |

‖(ẋ, ẏ)‖3 =
|γ̇ × γ̈ |

|γ̇ |3
.

The equivalence between the two formulas comes from the relation (v1, v2) × (w1, w2) =

v1w2 − v2w1.

Definition 1. For α > 0, we say that a C2 curve γ = γ (s) = (x(s), y(s)) is admissible if
|ẏ(s)|/|ẋ(s)| < α and |κ(s)| < α for all s.

We remark that both the curvature and the slope of tangent vectors of a curve are
independent of the parametrization, and thus so is the definition of admissibility. We
shall want to compare the curvature at a point of a curve and at the corresponding point
of its image; so, suppose γi−1(s) is a parametrized C2 curve and γi (s) = f (γi−1(s)). For
simplicity we shall often omit the parameter s and simply write D f to denote the derivative
at the point γi−1(s).

PROPOSITION 3. Let {γi }
n
i=0 be a sequence of C2 curves with γi = f i (γ0). Suppose that

for some s, n is a ‘hyperbolic time’ in the sense that

‖γ̇n(s)‖ ≥ Ceλ j
‖γ̇n− j (s)‖

for all j = 0, . . . , n − 1. Then for |b|, η sufficiently small, κ0(s) < α implies κn(s) <

κ0(s) < α.

COROLLARY 1. If γ ⊂D \ 1ε is admissible, then f (γ ) is also admissible.

Proof. This follows from Proposition 3 and the hyperbolicity outside 1ε. Condition (4)
implies that the slope of each tangent vector to f (γ ) is less than α and condition (5)
together with Lemma 3 gives the curvature less than α. 2

To prove Proposition 3 we first prove a general curvature estimate. We fix some bounded
neighbourhood R̂ of R and, as above, suppose {γi }

n
i=0 is a sequence of C2 (not necessarily

admissible) curves with γi = f i (γ0), all contained in R̂.
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LEMMA 7. There exists K > 0 independent of a, b, η such that for all i = 1, . . . , n
we have

κi (s) ≤ K (b + η)
|γ̇i−1(s)|3

|γ̇i (s)|3
κi−1(s) + K (b + η)

|γ̇i−1(s)|3

|γ̇i (s)|3
.

Proof. We use the formula κ = |γ̇ × γ̈ |/|γ̇ |
3 for the curvature. We have

γ̇i = (D f )γ̇i−1 =

(
f1,x f1,y

f2,x f2,y

)
γ̇i−1 =

(
−2axi−1 + ϕ1,x 1 + ϕ1,y

b + ϕ2,x ϕ2,y

)
γ̇i−1

and

γ̈i =

(
∇ f1,x · γ̇i−1 ∇ f1,y · γ̇i−1

∇ f2,x · γ̇i−1 ∇ f2,y · γ̇i−1

)
γ̇i−1 + (D f )γ̈i−1.

Therefore γ̇i × γ̈i is given by

(D f )γ̇i−1 ×

(
∇ f1,x · γ̇i−1 ∇ f1,y · γ̇i−1

∇ f2,x · γ̇i−1 ∇ f2,y · γ̇i−1

)
γ̇i−1 + (D f )γ̇i−1 × (D f )γ̈i−1 (8)

where

∇ f1,x =

(
−2a + ϕ1,xx

ϕ1,xy

)
, (9)

and

∇ f1,y =

(
ϕ1,xy

ϕ1,yy

)
; ∇ f2,x =

(
ϕ2,xx

ϕ2,xy

)
; ∇ f2,y =

(
ϕ2,xy

ϕ2,yy

)
. (10)

We shall estimate the two terms of (8) separately. These will yield the two terms in the
statement of the lemma. For the second term we have

|(D f )γ̇i−1 × (D f )γ̈i−1| = |det(D f )||γ̇i−1 × γ̈i−1| = |det(D f )|κi−1|γi−1|
3.

Indeed, for the first equality, |γ̇i−1 × γ̈i−1| is the area of the parallelogram defined by the
two vectors γ̇i−1 and γ̈i−1, and |(D f )γ̇i−1 × (D f )γ̈i−1| is the area of the parallelogram
defined by the two vectors (D f )γ̇i−1 and (D f )γ̈i−1 which of course is just the image
of the first parallelogram under D f . The second equality follows immediately from the
definition of κi−1. So it just remains to show that the value of |det(D f )| is bounded above
by some multiple of b and η. Indeed, writing f = h + ϕ we have, by the ‘row-linearity’ of
the determinant,

det(D f ) = det
(

h1x + ϕ1x h1y + ϕ1y

h2x + ϕ2x h2x + ϕ2y

)
= det

(
h1x h1y

h2x + ϕ2x h2x + ϕ2y

)
+ det

(
ϕ1x ϕ1y

h2x + ϕ2x h2x + ϕ2y

)
= det

(
h1x h1y

h2x h2x

)
+ det

(
h1x h1y

ϕ2x ϕ2y

)
+ det

(
ϕ1x ϕ1y

h2x h2x

)
+ det

(
ϕ1x ϕ1y

ϕ2x ϕ2y

)
.

Using h1x = −2a, h1y = 1, h2x = b, h2y = 0 and ‖ϕ‖C2 ≤ η, this gives

det(D f ) ≤ b + (2aη + η) + (2aη + η) + η = b + 4aη + 3η ≤ b + 12η
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where in the last step we have used the fact that a is close to 2. Substituting this above
gives the required bound for the second term of (8). To bound the first term we write

(D f )γ̇i−1 ×

(
∇ f1,x · γ̇i−1 ∇ f1,y · γ̇i−1

∇ f2,x · γ̇i−1 ∇ f2,y · γ̇i−1

)
γ̇i−1 =

(
a1 b1

c1 d1

) (
v1

v2

)
×

(
a2 b2

c2 d2

) (
v1

v2

)
.

The norm of this expression is bounded above by

|a1c1v
2
1 + a1d2v1v2 + b1c2v1v2 + b1d2v

2
2 − a2c1v

2
1 − a2d1v1v2 − b2c1v1v2 − d1b2v

2
2 |

≤ max{|a1c2 − a2c1|, |b1d2 − d1b2| + |a1d2 − c1b2| + |b1c2 − a2d1|} (v2
1 + v2

2)

≤ 4 max{|a1c2 − a2c1|, |b1d2 − d1b2|, |a1d2 − c1b2|, |b1c2 − a2d1|} (v2
1 + v2

2)

≤ 8 max{|a1c2|, |a2c1|, |b1d2|, |d1b2|, |a1d2|, |c1b2|, |b1c2|, |a2d1|} |γ̇i−1|
2.

All the terms contain a factor γ̇i−1. Each of the terms b2, c2, d2, see (10), contains a
bounded constant multiplied by the factor η; the term a2, see (9), is of the order of 2a but
here it is multiplied by either c1 or d1, each one of which contains a term that is bounded
by η. Therefore, there exists a constant K > 0 such that∣∣∣∣(D f )γ̇i−1 ×

(
∇ f1,x · γ̇i−1 ∇ f1,y · γ̇i−1

∇ f2,x · γ̇i−1 ∇ f2,y · γ̇i−1

)
γ̇i−1

∣∣∣∣≤ Kη|γi−1|
3. 2

Proof of Proposition 3. Applying Lemma 7 recursively we get

κn(s) ≤ K (b + η)κn−1(s)
|γ̇n−1|

3

|γ̇n|3
+ K (b + η)

|γ̇n−1|
3

|γ̇n|3

≤ (K (b + η))2κn−2
|γ̇n−2|

3

|γ̇n|3
+ (K (b + η))2 |γ̇n−2|

3

|γ̇n|3
+ K (b + η)

|γ̇n−1|
3

|γ̇n|3

≤ . . . .

Using the expansivity assumption and b, η small, this gives

κn(s) ≤
1

C3 (K (b + η)e−λ)nκ0(s) +
1

C3

K (b + η)e−λ

1 − K (b + η)e−λ
≤ κ0(s) ≤ α. 2

3.4. Critical points. The next proposition makes precise the notion of a critical point of
order k. We recall that γ is a C2 admissible curve if all its tangent vectors have slope less
than α and it has curvature less than α. We say that γ is a long admissible curve if it is an
admissible curve which crosses the entire length of 1ε.

PROPOSITION 4. Let γ ⊂ 1ε ∩D be a long admissible curve. Then there exists a unique
point c(k)

∈ γ such that γ0 = f (γ ) has a (quadratic) tangency at c(k)
0 = f (c(k)) ∈ V−

k ∪

V+ with the stable foliation E (k), for any k ≥ k0. Moreover, there exists a constant K ,
independent of b, η, such that d(c(k)

0 , c(k+1)
0 ) ≤ K bk . In particular, the sequence {c(k)

0 } is
Cauchy.

Definition 2. We call c(k) and c(k)
0 respectively a critical point and critical value of order

k, associated with the long admissible curve γ .
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We remark that critical values c(k)
0 of finite order are not guaranteed to be outside D;

however, we shall show below that their limit points as k → ∞, i.e. the ‘real’ critical points,
always fall strictly outside D for a > a∗.

Given a parametrized curve γ0 = γ0(t) and its image γ1 = γ1(t) = f (γ0(t)), we denote
by κ0(t) the curvature of γ0 at the point γ0(t) and by κ1(t) the curvature of γ1 at the
point γ1(t).

LEMMA 8. Let γ0(t) be an admissible curve and let γ1(t) = f (γ (t)) = (ξ1(t), η1(t)).
Suppose that for some t we have η̇1(t) 6= 0 and |ξ̇1(t)/η̇1(t)| < 1. Then |κ1(t)| > a/b � 1.

Lemma 8 essentially says that if the tangent direction of the image of an admissible
curve at a certain point is roughly vertical (or at least contained in the ‘vertical’ cone
between the positive and the negative diagonals), then the curvature at this point is strictly
bounded away from 0. This does not apply to admissible curves outside 1ε, since we have
shown above (Corollary 1) that images of such curves are still admissible and therefore
their tangent directions are roughly horizontal. We will instead apply it below to the images
of admissible curves inside 1ε as a way of pinpointing the location of folds.

Proof. First recall that the curvature κ1(t) is independent of the choice of parametrization,
and also that the condition |ξ̇1(t)/η̇1(t)| < 1 is independent of the parametrization since
|ξ̇1(t)/η̇1(t)| is just the slope of the tangent vector. We therefore choose the parametrization

γ0(t) = (t, y(t)).

For simplicity we also omit the subscript 1 from the coordinate functions of γ1 and just
write γ1(t) = (ξ(t), η(t)). From the definition of f we have

(ξ(t), η(t)) = (1 + at2
+ y(t) + ϕ1(γ0(t)), bt + ϕ2(γ0(t))),

(ξ̇ (t), η̇(t)) = (−2at + ẏ(t) + ∇ϕ1(γ0(t)) · γ̇0(t), b + ∇ϕ2(γ0(t)) · γ̇0(t)),

(ξ̈ (t), η̈(t)) = (−2a + ẏ(t) + D2ϕ1(γ0(t)) [γ̇0(t)]
2, D2ϕ2(γ0(t)) [γ̇0(t)]

2).

Choosing η sufficiently small, for example so that 4‖∇ϕ2(γ0(t))‖(1 + α) < b, this implies

3b/4 ≤ |η̇(t)| ≤ 5b/4. (11)

We can now compute the curvature κ1(t). First notice that the condition |ξ̇1(t)/η̇1(t)| < 1
implies ‖(ξ̇ (t), η̇(t))‖ ≤

√
2|η̇(t)|; thus we have

κ1(t) =
|ξ̈ (t)η̇(t) − ξ̇ (t)η̈(t)|

‖(ξ̇ (t), η̇(t))‖3
≥

|ξ̈ (t)η̇(t) − ξ̇ (t)η̈(t)|

4|η̇(t)|3
.

Dividing numerator and denominator by |η̇(t)| and using the conditions |ξ̇1(t)/η̇1(t)| < 1
and (11), we get

κ1(t) ≥
|ξ̈ (t) − (ξ̇ (t)/η̇(t))η̈(t)|

4|(η̇(t))|2
≥

|ξ̈ (t)| − |(ξ̇ (t)/η̇(t))| |η̈(t)|

4|(η̇(t))|2

≥
|ξ̈ (t)| − |η̈(t)|

4|(η̇(t))|2
≥

|ξ̈ (t)| − |η̈(t)|

7b2 .
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FIGURE 10. Hyperbolic coordinates.

Finally, from the formulas for ξ̈ (t) and η̈(t) and the fact that |ẏ(t)| ≤ α by the admissibility
of γ0, we get

|ξ̈ (t)| − |η̈(t)| ≥ 2a − α − 2‖ϕ‖C2 ≥ a

as long as η is sufficiently small. 2

Proof of Proposition 4. The existence of a tangency between f (γ ) and the stable foliation
E (k) follows by the simple geometric observation that the image of a long admissible curve
necessarily ‘changes direction’ between one endpoint and the other. Thus, by a simple
intermediate value argument it follows that there is some point of tangency.

Now, Proposition 2 says that the leaves of the stable foliations E (k) are close to the piece
of stable manifold f −1(W s

δ (q)) and thus have slope close to 2, and that their curvature is
small. In particular, the point of tangency must occur at some point at which the tangent
direction to f (γ ) is close to 2 and therefore Proposition 4 shows that at this point of
tangency f (γ ) has strictly positive curvature. This implies that the tangency is quadratic
as well as unique (see Figure 10). 2

4. Hyperbolicity estimates
This is the final and main section of the paper. We apply the notion of hyperbolic
coordinates and dynamically defined critical points to prove Theorem 1. In §4.1
we combine the hyperbolic coordinates and the curvature estimates to show that all
components of the unstable manifold W u(p) in 1ε are almost horizontal curves with
small curvature; in particular they all have well-defined critical points. In §4.2 we take
advantage of the structure of critical points on such components to show that points in
the critical region 1ε \ 1 recover hyperbolicity after some bounded number of iterations
depending only on the parameter a. In §4.3 we then extend these estimates to uniform
expansion estimates on all of W u(p), with a hyperbolicity constant Ca depending only
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on the parameter. In §4.4 we then show how to extend this hyperbolicity to the closure
of W u(p) and thus to the whole non-wandering set �. Finally, in §4.5, we consider the
bifurcation parameter value a = a∗ and show that all Lyapunov exponents are uniformly
bounded away from 0.

4.1. Shadowing. Let

λ = min
{

1
2

ln
3

√
5
, λ̂

}
. (12)

PROPOSITION 5. For all a ≥ a∗, all components of W u(p) ∩ 1ε are long admissible
curves. Moreover, for all z ∈ W u(p) ∩ (1ε \ 1), any vector v tangent to W u(p) at z
and k ≥ 1 such that f (z) ∈ Vk \ Vk+1, we have

‖D f k
z (v)‖ ≥ eλk

‖v‖.

We emphasize that Proposition 5 holds also for parameter values for which the first
tangency occurs.

Proof. We first prove the expansivity statement and then the admissibility of leaves of
W u(p) in 1ε.

4.1.1. Expansion. If γ (s) = (x(s), y(s)) ⊂ 1ε ∩D is a long admissible curve, we
consider the tangent vectors γ̇ (s) and their images γ̇0(s) = D f (γ̇ (s)). By Proposition 4,
γ̇0 is tangent to the stable direction e(k) at the point c(k)

0 . For this and other nearby points
on γ we can write the tangent vector as

γ̇0 = h(k)
0 f (k)

+ v
(k)
0 e(k),

where ( f (k), e(k)) is the orthogonal basis given by the most expanded and most contracted
direction for D f k , and h(k)

0 and v
(k)
0 are the components of γ̇0 in this basis. Notice that the

basis itself depends on the point. Proposition 2 implies that the basis varies very slowly with
the base point, and Proposition 4 implies that the tangent vector γ̇0 is varying at positive
speed with respect to this basis. We omit the calculations which are relatively standard;
see, for example, [LV03]. Specifically, this implies that the component h(k)

0 of the tangent
vector γ̇0 at some point z0 = f (z) ∈ γ0 is proportional to the distance between z and the
critical point c(k) of order k. In our setting, the constants actually give

|h(k)
0 (z0)| ≥ d(z, c(k)). (13)

We can now prove the following.

LEMMA 9. Suppose γ ⊂ 1ε is an admissible curve, z ∈ γ , z0 = f (z) ∈ Vk \ Vk+1 and
c(k) is the critical point of order k in γ . Then for a vector w tangent to γ at z and all
j = 0, . . . , k, we have

‖D f j+1
z (w)‖ ≥ 3 j d(z, c(k))‖w‖.

In particular,
‖D f k+1

z (w)‖ ≥ eλ(k+1)
‖w‖.
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Proof. The first estimate follows immediately from (13) and (7). To prove the second we
need to find a bound for d(z, c(k)) in terms of k. Using the quadratic nature of γ0 and the
proximity to the one-dimensional map 1 − ax2 with a ≈ 2, we obtain

d(z, c(k)) ≥
1
3

√
d(z0, c(k)

0 ). (14)

To estimate d(z0, c(k)
0 ) we use the observation that the ‘real’ critical value c0 on γ0, i.e. the

point of tangency between γ0 and the limiting stable foliation E (∞), lies necessarily either
on W s(q) (this is only a possibility if a = a∗) or to the right of W s(q) in Q. We write this
as δ0 = d(c0, W s(q)) ≥ 0. Combining this with Lemma 5 and the rate of convergence of
critical points of finite order d(ck

0, c0) ≤ K bk as mentioned in Proposition 4, and taking b
sufficiently small, we get

d(z0, c(k)
0 ) ≥ d(z0, W s(q)) + d(W s(q), c0) − d(c(k)

0 , c0)

≥
δ

2
5−k

+ δ0 − K bk
≥

δ

3
5−k .

Substituting this into (14) and using the fact that we can assume k ≥ k0 together with the
definition of k0 in (3) and of λ in (12), we have

3kd(z, c(k)) ≥

√
δ

2
√

3

(
3

√
5

)k

≥ eλ(k+1). 2

4.1.2. Admissibility. Returning to the proof of Proposition 5, to obtain the statement
about admissibility, notice first of all that by combining Lemma 9 with Lemma 3 we
immediately obtain the statement that if γ ⊂ W u(p) ∩ 1ε is admissible and k is the first
time that f k(γ ) ⊂ 1ε, then f k(γ ) is admissible. Now, by choosing |b| and η small we
can guarantee that W u

loc(p) ∩ 1ε is a long admissible curve. Moreover, every piece of
W u(p) ∩ 1ε is the image of some curve in W u

loc(p) ∩ 1ε and is therefore admissible. 2

4.2. Hyperbolicity after returns to 1ε. Proposition 5 gives a pointwise recovery time
for the hyperbolicity of points in the critical region, based on their position. The following
proposition gives a key uniformity estimate in the phase space for each parameter a > a∗.

PROPOSITION 6. For all a > a∗ there exists a constant Na such that for z ∈ W u(p) ∩

1ε ∩ �( f ) and v a tangent vector to W u(p) at z, there exists n(z) ≤ Na such that
D f n(z)

z (v) is almost horizontal and

‖D f n(z)
z (v)‖ ≥ eλn(z)

‖v‖.

We remark that the constant N is not uniformly bounded in a and in particular does
not apply to a = a∗. However, it gives us a uniformity statement in z which will imply, as
we shall see below, uniform hyperbolicity for each given parameter value a > a∗. For the
proof we need to extend the definition of admissibility naturally to curves which are only
differentiable of class C1+1 (Lipschitz continuous derivative).

Definition 3. We say that γ (s) ⊂ 1ε is a C1+1 admissible curve if |ẏ|/|ẋ | < α and γ̇ (s) is
Lipschitz with Lipschitz constant ≤α.
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We also give the formal definition of a ‘real’ critical point, which applies both to C2

and to C1+1 admissible curves.

Definition 4. We say that c ∈ γ is a critical point if e(∞) is defined at f (c) ∈ γ and
coincides with D fc(γ̇ (c)).

LEMMA 10. For every a > a∗, every z ∈ W u(p) ∩ 1ε ∩ � lies on a C1+1 admissible
curve γ which is the limit of C2 admissible curves in W u(p), and γ contains a unique
critical point c(γ ) with d(z, c) > 0.

Proof. We split the proof into two parts.
Every point lies on an admissible curve. We show first of all that every point

z ∈ W u(p) ∩ 1ε ∩ � lies on a C1+1 admissible curve which is the limit of C2 admissible
curves in W u(p). Let z ∈ W u(p) ∩ 1ε ∩ � and let zn → z be a sequence with
zn ∈ W u(p) ∩ 1ε ∩ �. By Proposition 5, each zn belongs to a long admissible curve
γn ⊂ W u(p). We can write these as functions γn : I → R with I = [−ε, ε] and suppose
that they converge pointwise to γ : I → R. Since I is compact and γn, γ̇n are bounded
and equicontinuous sequences, we have that γ is C1 and γn → γ in the C1 topology. To
see that γ̇ is Lipschitz, let x, y ∈ I and observe that each γ̇n is a Lipschitz function with
uniformly bounded Lipschitz constant α. Then we have |γ̇n(x) − γ̇n(y)| ≤ α|x − y| and
hence |γ̇n(x) − γ̇n(y)| ≤ α|x − y|.

Every admissible curve contains a critical point. We now show that any such curve
γ contains a unique critical point. We show first that it must contain at most one, and
then argue that it must contain at least one. Let θ(γn(t)) be the angle between the vectors
D f(t,γn(t))(1, γ ′

n(t)) and e(∞)( f (t, γn(t)). Since the image of each admissible curve is
quadratic with respect to E (∞), we have that θ(γn(t)) has a strictly non-zero derivative
having at most one root corresponding to a point of tangency between f (γn) and E (∞).
Since γn → γ in the C1 topology, θ(γ (t)) also has strictly non-zero derivative having at
most one root corresponding to a point of tangency between f (γ ) and E (∞). To see that
such a point exists, observe that if a > a∗, then the graph of γ crosses the boundary of 1

twice and f (γ ∩ 1) is outsideD where the foliation E (∞) is well defined, with the extreme
points of f (γ ∩ 1) both lying on a piece of W s(q) which is a leaf of the foliation E (∞).
This implies that there exists a point outside the interior of D where f (γ ) is tangent to
E (∞). 2

Lemma 10 allows us to define a canonical set Ca of critical points as the union of all
critical points c(γ ) for C1+1 admissible curves γ which are C1 limits of long admissible
curves of W u

∩ 1ε. In the next lemma we show that this set is bounded away from the set
of non-wandering points.

LEMMA 11. For all a > a∗ we have d(Ca, �) > 0.

We emphasize that d(Ca, �) is not uniformly bounded in the parameter. The constant
Na in Proposition 6 will be defined below in terms of d(Ca, �).

Proof. Notice first of all that Ca ⊂ 1ε and thus Ca is bounded. Let ck = c(γk) be a sequence
converging to some point c; we need to show that c ∈ Ca . Since each γk is the limit of long
admissible curves, we can consider sequences γ

(n)
k → γk for each k. Using Lemma 10
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and the fact that {γ
(k)
k } converges pointwise to γ , we conclude that this convergence is

in fact C1. Since θ(γ
(k)
k (ck)) → 0, we have that θ(γ (c)) = 0 and this implies that c is a

critical point as required.
We have therefore shown that the critical set Ca is compact. Since � is also compact,

it is sufficient to show that Ca ∩ � = ∅ to imply that they are at some positive distance
apart. Disjointness follows from the observation that the image of a critical point is always
outside D, while � is an invariant set contained in D. 2

Proof of Proposition 6. By Lemma 11 and the uniform approximation of the critical set C
by the finite-order critical sets C(n), there exists Na sufficiently large so that the following
two conditions hold (using also λ < log 3):

d(C(Na)
a , Ca) < d(Ca, �)/2 and 3Na d(C(Na)

a , �) ≥ eλNa . (15)

Now consider z ∈ 1ε ∩ W u(p) ∩ � and let n ≥ 1 be such that f (z) ∈ Vn \ Vn+1. Recall
that f (1ε) ⊂ Vk0 , therefore such an n is always well defined except for those points which
map exactly to the curve f −1(W s

δ (q) that forms the boundary between V+ and V−1. For
these points we take n = +∞, and then let

n(z) = min{n, Na}.

If n ≤ Na , the statement follows from Proposition 5; otherwise, our choice of Na in (15)
gives

‖D f Na (v)‖ ≥ 3Na d(z, C(Na)
a )‖v‖ ≥ 3Na d(�, C(Na)

a )‖v‖

≥ 3Na d(�, Ca)‖v‖/2 ≥ eλNa ‖v‖.

The first inequality follows from Lemma 9, the second one follows from z ∈ �, the third
one follows from the first part of (15), and the last one follows from the second part of
(15).

Finally, considering the components of v in hyperbolic coordinates, we have ‖v
(Na)
Na

‖ ≤

(b/3)Na and ‖h(Na)
Na

‖ ≥ eλNa , therefore D f Na (v) is almost horizontal. 2

4.3. Uniform hyperbolicity on W u(p). The following proposition is essentially a
corollary of Proposition 6. However, we state it separately as it gives an explicit
construction of the constant Ca of hyperbolicity for each a > a∗. Before stating the result,
we define this constant.

Let C−

Na
= min{‖(D f j

z )−1
‖
−1

: x ∈D, 1 ≤ j ≤ Na} and C+

Na
= max{‖D f j

z ‖ : x ∈D,

1 ≤ j ≤ Na} denote the maximum possible contraction and the maximum possible
expansion exhibited by any vector v ∈ TxR2 for any point x ∈D in at most Na iterations.
Letting Cε denote the constant of hyperbolicity as in (5) on page 1064, we then let

Ca = min
{

Cε

C+

N

,
C−

N e−λN

C+

N

}
.
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PROPOSITION 7. For all a > a∗, all z ∈ W u(p) ∩ �( f ) and all vectors w tangent to
W u(p) at z, we have

‖D f n
z (w)‖ ≥ Caeλn

‖w‖

for all n ≥ 1.

Proof. Let z ∈ W u(p) ∩ �( f ) and let w be tangent to W u(p) at z. Since we do not assume
anything about the location of z, the vector w may or may not be almost horizontal. We
distinguish these two possibilities.

Case 1: w is almost horizontal. Let 0 ≤ k1 < · · · < ks < n be the sequence of returns
of the iterates of z to 1ε (with k1 = 0 if z ∈ 1ε and k1 > 0 otherwise). Then for each ki

we have an integer ni = n(zki ) ≤ Na given by Proposition 5. Hence we can write

ki+1 = ki + ni + qi

where qi is the number of iterates during which the point remains outside 1ε. From
Proposition 5 and properties (4) and (6), the images of the vector at these iterates remain
horizontal and we have

‖D f ki
z (w)‖ ≥ eλki ‖w‖

for all i = 1, . . . , s, and in particular for i = s. If ks + ns ≤ n, applying (6) to the
remaining iterates gives ‖D f n

z (w)‖ ≥ Cεeλn
‖w‖ ≥ Caeλn

‖w‖ as required.
If ks + ns > n, we have expansion for the first ks iterates, giving ‖D f ks (w)‖ ≥

eλks ‖w‖. There follow n − ks ≤ ns ≤ Na iterates (since ns ≤ Na) during which we can
bound the contraction coarsely by the Na th power of the maximum contraction in the
region D, which gives

‖D f n(w)‖ ≥ C−

N eλks ‖w‖ = C−

N e−λN eλn
‖w‖.

Case 2: w is not almost horizontal. We now suppose that w is not almost horizontal.

CLAIM 1. There exists
Na ≥ m > 0

such that f −m(z) ∈ 1ε and w−m = D f −m(w) is almost horizontal.

Proof. We show first of all that some preimage of z lies in 1ε. Indeed, z ∈ W u(p) implies
that z−n → p as n → ∞ and therefore that w−n is almost horizontal for sufficiently large
n since the local unstable manifold of p is admissible. By the invariance of the unstable
conefield outside 1ε, images of w−n remain almost horizontal unless some return to 1ε

takes place.
Now let m > 0 be the smallest integer such that f −m

∈ 1ε. Then w−m is almost
horizontal since every component of W u in 1ε is almost horizontal. From Proposition 6
it follows that D f n(z−m )

z−m (w−m) is almost horizontal and therefore m ≤ n(zm) ≤ Na ;
otherwise w will be almost horizontal. 2

Returning to the proof of Proposition 7, we can now argue as in case 1 to obtain
exponential growth starting from time −m:

‖D f n(w)‖ = ‖D f n+m(w−m)‖ ≥ C ′eλ(n+m)
‖w−m‖ (16)
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where C ′
= min{Cε, C−

N e−λN
}. Moreover,

‖w‖ = ‖D f m(w−m)‖ ≤ ‖D f m
‖ ‖w−m‖ ≤ C+

N ‖w−m‖.

Substituting this back into (16) completes the proof. 2

4.4. Uniform hyperbolicity on �. We have obtained uniform expansion estimates for
vectors tangent to W u(p). In this section we show that these estimates can be extended to
�. This part of the argument uses very little of the specific Hénon-like form of the map
and therefore we state it in a more abstract and general context.

PROPOSITION 8. Let f : R2
→ R2 be a C1 diffeomorphism and � a compact invariant set

with |det D f | < 1 on �. Suppose that there exists some invariant submanifold W that is
dense in � and for which there exist constants C, λ > 0 such that ‖D fz(v)‖ ≥ Ceλn for all
z ∈ W ∩ � and v tangent to W . Then � is uniformly hyperbolic with hyperbolic constants
C and λ.

Proposition 8 completes the proof of part (1) of Theorem 1 and shows that the rates of
expansion and contraction admit uniform bounds independent of the parameter.

Proof. We shall show that � is uniformly hyperbolic by constructing an invariant
hyperbolic splitting E s

z ⊕ Eu
z at every point of � and then showing that this splitting is

continuous. We carry out this construction in several steps. The starting point is the
observation that Eu

z is already given by the tangent direction to W for all points z ∈ � ∩ W .

LEMMA 12. For any z ∈ � and any sequence z j ∈ W with z j → z, the sequence Eu(z j )

converges to a (unique) limit direction Eu(z). Each vector v ∈ Eu(z) satisfies

‖D f n
z (v)‖ ≥ Ceλn

‖v‖ and ‖D f −n
z (v)‖ ≤ C−1e−λn

‖v‖

for all n ≥ 1.

Proof. Suppose z ∈ � and let z j ∈ W be a sequence with z j → z. Consider the sequence of
corresponding directions Eu(z j ). By compactness (of the space S1 of possible directions)
there must exist some subsequence z ji such that the corresponding directions Eu

ji
converge

to some direction which we call Eu(z). Notice that a priori this direction is not unique since
it depends on the choice of subsequence. We shall show first that the forward expansion and
backward contraction estimates hold, and then show that this actually implies uniqueness.

Let v ∈ Eu
z and let v ji ∈ Eu

z ji
be a sequence with v ji → v. Then for each n ∈ N we have,

by the continuity of D f n ,
‖D f n

z j
(v j )‖ → ‖D f n

z (v)‖.

By assumption we know that ‖D fz ji
(v j )‖ ≥ Ceλn

‖v j‖ and therefore

‖D f n
z (v)‖ ≥ Ceλn

− ε

for any ε > 0. Therefore ‖D f n
z (v)‖ ≥ Ceλn and, since this holds for every n, we have

the required statement as far as the expansion in forward time is concerned. To prove
contraction in backward time it is sufficient to prove it for points on W and then apply
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exactly the same approximation argument. For z ∈ W this follows immediately from the
uniform expansivity assumption in forward time. Indeed, letting v−n = D f −n

z (v), the
expansivity assumption gives

‖v‖ ≥ ‖D f n
z−n

(v−n)‖ ≥ Ceλn
‖v−n‖

which immediately implies ‖v−n‖ ≤ C−1e−λn
‖v‖.

It remains to show uniqueness of Eu(z) for each z ∈ �. Suppose, for contradiction,
that we could find two sequences z j → z and z̃ j → z with corresponding directions Eu

z j

and Eu
z̃ j

converging to two different directions Eu
z and Ẽu

z . Let v ∈ Eu
z and ṽ ∈ Ẽu

z . Then

v, ṽ must be linearly independent and thus every other vector w ∈ TzR2 can be written as
a linear combination w = a1v + a2ṽ for some a1, a2 ∈ R. By linearity and the backward
contraction estimates obtained above this implies that

‖w−n‖ = ‖D f −n
z (w)‖ → 0

as n → ∞. Since w was arbitrary this implies that all vectors are shrinking to zero in
backward time. But this is impossible since we have assumed that |det D f | < 1 and thus
|det D f −1

| > 1 on �. 2

COROLLARY 2. At every point z ∈ � there exists a unique tangent space splitting Eu
z ⊕

E s
z which is invariant by the derivative D f and which satisfies the standard uniform

hyperbolicity expansion and contraction estimates.

Proof. Lemma 12 gives the expanding direction Eu
z of the splitting with the required

hyperbolic expansion estimates in forward time. The invariance for points in W is
automatic (since tangent directions to W are mapped to tangent directions to W ), and
the invariance for general points follows immediately from the definition of Eu

z = lim Eu
z j

,
the invariance of Eu

z j
for z j ∈ W , and the continuity of D f .

The stable direction E s
z is given immediately by the limit of the sequence e(n) of vectors

most contracted by D f n
z , as discussed in §4.1. This also automatically gives the uniqueness

and invariance. 2

To complete the proof of Proposition 8, we just need to show that the given tangent space
splitting is continuous. This follows by standard arguments from the uniqueness proved in
Corollary 2. Indeed, for any z ∈ � and any sequence z j ∈ � with z j → z, every limit point
of the corresponding sequence of splittings Eu

z j
⊕ E s

z j
must also be a splitting Ẽu

z ⊕ Ẽ s
z .

By approximation arguments identical to those used above, it follows that this splitting
must also satisfy the uniform hyperbolic contraction and expansion estimates. Therefore,
by uniqueness, it must coincide with the existing splitting Eu

z ⊕ E s
z . This completes the

proof that � is uniformly hyperbolic. 2

4.5. Lyapunov exponents for fa∗ . Finally, it remains to consider the dynamics of fa∗ .
Recall that a∗ is defined on page 1056 as the first parameter for which a tangency occurs
between the compact parts of W s(q) and W u(p); see Figure 11 for the pictures in the two
cases b > 0 and b < 0.
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FIGURE 11. Invariant manifolds for a = a∗.

We need to show that, for a = a∗, all Lyapunov exponents are uniformly bounded away
from 0. We show that for each point z ∈ �a∗ not in the orbit of tangency T (it is not
necessary to consider the orbit of tangency since this is a countable set without recurrence
and therefore cannot support any invariant probability measure) there exists a constant Cz ,
a vector vz , and a sequence {ni } with ni → ∞ such that for all i ≥ 0,

‖D f ni
z (vz)‖ ≥ Czeλni ‖vz‖.

This is obviously true if the orbit of z never enters 1ε in forward time or if it enters
1ε only a finite number of times. Indeed, suppose that there exists some k such that
f i (z) /∈ 1ε for all i ≥ k, and let w be a vector which is mapped to the horizontal vector
wk = D f k

z (w) after k iterations. By (5) we then have ‖D f k+n
zk

(w)‖ ≥ Cεeλn
‖wk‖ for all

n ≥ 1. This implies that there exists a constant Cz such that ‖D f k+n
z (w)‖ ≥ Czeλ(k+n)

‖w‖

for all n ≥ 1.
Otherwise, there exists an infinite sequence 0 < m1 < · · · < mk < · · · such that mk →

∞ and f mk (z) ∈ 1ε. By Lemma 10, zmi = f mi (z) lies on either a C2 long admissible
curve or a C1+1 long admissible curve which is the C1 limit of C2 long admissible
curves in W u(p). Since z has an infinite number of returns to 1ε, this implies in
particular that z /∈ W s(q), so zmi /∈ W s(q), and hence there exists ni = n(zmi ) such that
f (zmi ) ∈ Vni \ Vni +1. Therefore exactly the same arguments as in Lemmas 9 and 12 show
that for a vector vi tangent to such an admissible curve γ at zmi , we have

‖D f ni +1
zmi

(vi )‖ ≥ eλ(ni +1)
‖vi‖. (17)

Notice that since the C1 limits of C2 admissible curves are unique, as proved above, we
have vi+1 = D f mi+1−mi (vi ). Then, by (5) and (17), we have

‖D f mi +ni +1−m1(v1)‖ ≥ eλ(mi +ni +1−m1)‖v1‖.

We can then define vz = D f −m1(v1) and have ‖D f mi +ni +1(vz)‖ ≥ Czeλ(mi +ni +1)
‖vz‖

where the constant Cz is required simply to compensate for the possible lack of expansion
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for the first n1 iterates. In particular, Cz can be chosen by considering the maximum
possible contraction along the orbit of z for the first n1 iterations:

Cz = min
‖v‖=1

‖D f n1
z (v)‖.

We have therefore shown that, for each z ∈ �,

lim sup
n→∞

1
n

ln ‖D f n
z ‖ ≥ λ.

This clearly implies the same bound for the limit wherever it exists. In particular, any point
which is typical for some ergodic invariant probability measure, and for which such a limit
does therefore exist, will have a positive Lyapunov exponent at least λ. By dissipativity
this immediately implies also that the other Lyapunov exponent is negative and uniformly
bounded away from 0 both in the dynamical space and in the parameter space.
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