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Linear stability analysis of a premixed flame
with transverse shear
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One-dimensional planar premixed flames propagating in a uniform flow are susceptible
to hydrodynamic instabilities known (generically) as Darrieus–Landau instabilities.
Here, we extend that hydrodynamic linear stability analysis to include a lateral shear.
This generalization is a situation of interest for laminar and turbulent flames when
they travel into a region of shear (such as a jet or shear layer). It is shown that the
problem can be formulated and solved analytically and a dispersion relation can be
determined. The solution depends on a shear parameter in addition to the wavenumber,
thermal expansion ratio, and Markstein lengths. The study of the dispersion relation
shows that perturbations have two types of behaviour as wavenumber increases.
First, for small shear, we recover the Darrieus–Landau results except for a region at
small wavenumbers, large wavelengths, that is stable. Initially, increasing shear has a
stabilizing effect. But, for sufficiently high shear, the flame becomes unstable again
and its most unstable wavelength can be much smaller than the Markstein length of
the zero-shear flame. Finally, the stabilizing effect of low shear can make flames with
negative Markstein numbers stable within a band of wavenumbers.

Key words: flames, instability, reacting flows

1. Introduction
Premixed flames are unstable to perturbations owing to gas expansion effects in

what is called the Darrieus–Landau or hydrodynamic instability (DL) (Darrieus 1938;
Landau 1945). There have been numerous analytical, numerical and experimental
studies of premixed flames. The basic configuration corresponds to a nominally
planar flame propagating against a mixture of reactants (or stabilized by an opposing
flow matching the flame speed). Apart from the DL instability, flames can be unstable
owing to thermo-diffusive effects (different diffusivity of heat and mass) (Sivashinsky
1976; Clavin & Williams 1982; Matalon & Matkowsky 1982; Pelcé & Clavin 1982),
flow interaction (Buckmaster 1977; Matalon 1983; Searby & Clavin 1986), and
heat loss to walls and gravity (Joulin & Sivashinsky 1994). The most amplified
wavenumber depends, among other things, on the stabilizing role of curvature
and strain (through diffusion) that can be parameterized in linear stability analysis
by one or two length scales called the Markstein lengths (Markstein 1964; Clavin &
Williams 1982; Clavin & Graña-Otero 2011), that are of the order of the preheat-zone
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FIGURE 1. (Colour online) Sketch of flame configuration.

flame thickness. Furthermore, after the linear phase of instability one encounters a
nonlinear phase where the amplitude of the flame stabilizes (Sivashinsky 1977, 1990;
Creta & Matalon 2011a). Further reviews on laminar and turbulent premixed flames
can be found in Sivashinsky (1983), Matalon (2007), Driscoll (2008) and Lipatnikov
& Chomiak (2010).

Analytical studies can start with the so-called hydrodynamic limit where the
stability properties of the flame can be explained quite accurately by ignoring the
internal structure of the flame and considering it as an infinitesimally thin jump in
density from the high value upstream of the flame to the low value downstream of
the flame front. This works well for Lewis numbers close to unity, where the Lewis
number is defined as the ratio of the thermal to the mass diffusivity of the species.
The effect of non-uniformities in the incoming flow has been considered in numerous
studies, e.g. Clavin & Williams (1982), Ashurst & Sivashinsky (1991), Berestycki &
Sivashinsky (1991), Brailovsky & Sivashinsky (1993, 1995), Aldredge (1996), Kagan,
Sivashinsky & Makhviladze (1998), Kortsarts et al. (1998), Audoly, Berestycki &
Pomeau (2000), Kagan & Sivashinsky (2000). These studies considered essentially
the effects induced by changes in the streamwise (flame normal) aligned velocity
(some in the small perturbation limit, others nonlinearly). Here, we consider a new
case where the flame tangential velocity is not uniform. This can occur when a flame
propagates into a region of free shear flow. The purpose of this communication is the
analytical description of the simplest situation: near unity Lewis numbers; no other
flow but that induced by shear; and completely linear behaviour (early time). With
sufficient extensions, this configuration may be useful in understanding more complex
problems in turbulent premixed flames. Recent direct numerical simulations (DNS) by
Hawkes et al. (2012), where a set of twin premixed flames propagate into a region
of turbulence created by planar shear layers, are an example of such a flow.

2. Flame model and mathematical formulation
The hydrodynamic linear stability analysis assumes that a planar flame propagates

at a constant speed in the direction normal to itself, which is counterbalanced by
an opposite flow of premixed reactants. The problem configuration is illustrated
in figure 1. This generalization has the feature that there is a transverse pressure
gradient orthogonal to the density gradient and it has a background of constant
(initial) vorticity. The flame is considered as an infinitesimally thin sheet where fast
reaction occurs. Effects of buoyancy are neglected. Given these assumptions, the
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only influence of combustion in this problem is thermal expansion of the flow and
the consequential discontinuities of thermal properties. As is well known, thermal
expansion deflects the downstream streamlines from the parallel upstream streamlines
incoming towards the flame. The downstream streamlines are also parallel far from the
flame. The present configuration is a generalization of the classical Darrieus–Landau
problem. The present extension incorporates a transverse shear flow parallel to the
flame plane which can be described analytically by v = Sx, where S is a constant.
This flow is still divergence free. The flame front is described by the implicit relation
G= x−F(y, t)= 0 and the flame normal and local flame velocity in the case of small
perturbation are given by

n= ∇G
|∇G| =

1
|∇G|

(
1,−∂F

∂y

)
, sf = 1

|∇G|
∂F
∂t
, (2.1a,b)

where n is the flame normal pointing towards the burned gases and sf denotes the
flame surface velocity. The flame front separates the neighbourhood of the flame into
unburned (left) and burned (right) regions. Fluid properties of interest, including flow
velocity u and v, pressure p, and density ρ, are denoted with subscripts (·)− and (·)+
in unburned and burned gas regions, respectively. The thermal expansion ratio r is
defined as the ratio of burned gas density to unburned gas density, and it is therefore
less than unity. The local flame speed, sL, is assumed given by

sL = so
L (1−L κ +Lsn · ∇u · n) , (2.2)

where so
L denotes the burning velocity of the laminar planar flame, κ denotes the

curvature of the flame front, and L and Ls denote the Markstein lengths due to
curvature and strain, respectively, see Clavin & Graña-Otero (2011). The Markstein
lengths have a characteristic magnitude of the order of the laminar flame thickness.

In order to reduce the problem to its simplest form, quantities are non-
dimensionalized using the laminar planar flame thickness lF and burning velocity
so

L, giving the following non-dimensional quantities:

u∗ = u
so

L
, v∗ = v

so
L
, p∗ = p

ρuso2
L
, ρ∗ = ρ

ρu
, M = L

lF
,

x∗ = x
lF
, y∗ = y

lF
, t∗ = t

lF/so
L
, S∗ = SlF

so
L
, Ms = Ls

lF
.

 (2.3)

To simplify further the notation, we will drop the ‘*’ superscript since it will not
induce any confusion later. The results will depend on the Markstein numbers M and
Ms. Under this normalization, the flow velocity ahead of the flame is U−= 1 and the
density is ρ−= 1, while behind the flame we have U+ (to be determined below from
the jump conditions) and ρ+ = r.

The flow is governed by Euler’s equations (in this inviscid approximation) at both
sides of the flame sheet, such that

∂u
∂x
+ ∂v
∂y
= 0, (2.4)

∂u
∂t
+ u

∂u
∂x
+ v ∂u

∂y
=− 1

ρ

∂p
∂x
, (2.5)
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∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
=− 1

ρ

∂p
∂y
. (2.6)

The pressure and velocity at either side of the flame are related by the corresponding
jump conditions (Williams 1985), which are derived from conservation of mass and
momentum across the flame, giving

(r− 1)
∂F
∂t
= r
(

u+ − ∂F
∂y
v+

)
−
(

u− − ∂F
∂y
v−

)
, (2.7)

(ru+ − u−)
∂F
∂t
= ru+

(
u+ − ∂F

∂y
v+

)
− u−

(
u− − ∂F

∂y
v−

)
+ p+ − p−, (2.8)

(rv+ − v−)∂F
∂t
= rv+

(
u+ − ∂F

∂y
v+

)
− v−

(
u− − ∂F

∂y
v−

)
− ∂F
∂y
(p+ − p−). (2.9)

The main difference with classical Darrieus–Landau analysis is the presence of v
terms which cannot be neglected from the outset. Using (2.7) for the flat flame
reference conditions we obtain U+ = 1/r. Then, one can obtain from the momentum
conservation equations that p± = −Sy + p0±. Note that it is not known a priori that
the shear at both sides of the flame, S±, is the same, but one can verify that the
jump conditions are solvable only if S− = S+ = S. The quantitative relation between
constants of integration p− and p+ remains unknown. Given the equalities above,
pressure terms can be used to substitute horizontal velocity terms into the jump
conditions, (2.8), providing

1
r
− 1+ p0+ − p0− = 0. (2.10)

If one sets the additive constant p0− = 0, then p0+ is equal to (r− 1)/r.

3. Perturbation analysis
Following the notation in Peters (2010) for the classical DL analysis, we introduce a

perturbative expansion on a small parameter ε denoting the amplitude of a deformation
in the original flat flame surface. The fields are now written as

u− = 1+ εû− +O(ε2), u+ = 1
r
+ εû+ +O(ε2), (3.1a,b)

v− = Sx+ εv̂− +O(ε2), v+ = Sx+ εv̂+ +O(ε2), (3.2a,b)

p− =−Sy+ εp̂− +O(ε2), p+ = 1− 1
r
− Sy+ εp̂+ +O(ε2). (3.3a,b)

Furthermore, we introduce a coordinate transformation to simplify the analysis, given
by x= ξ +F(η, τ ), y=η, and t= τ . In this frame of reference, the flame surface G=0
corresponds to ξ = 0. Finally, we write F= εf +O(ε2) and take f to be a quantity of
order one. Introducing these expansions in (2.4)–(2.6) results to first order in

∂ û
∂ξ
+ ∂v̂
∂η
= 0, (3.4)

∂ û
∂τ
+ 1

r
∂ û
∂ξ
+ Sξ

∂ û
∂η
+ 1

r
∂ p̂
∂ξ
= 0, (3.5)
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∂

∂τ

(
Sf + v̂)+ 1

r
∂v̂

∂ξ
+ Sû+ Sξ

∂v̂

∂η
+ 1

r
∂ p̂
∂η
= 0, (3.6)

where û(ξ , η, r, τ ), v̂(ξ , η, r, τ ) and p̂(ξ , η, r, τ ) can be used to represent both
solutions to the left and right of ξ = 0: û− = û(ξ , η, 1, τ ) for ξ < 0 and û+ =
û(ξ , η, r, τ ) for ξ > 0; and similarly for the other fields. Introducing the perturbation
expansion in the jump conditions, one gets to first order (after evaluating the jump
condition at ξ = 0)

(r− 1)
∂f
∂τ
= rû+ − û−, (3.7)

0= 2(û+ − û−)+ p̂+ − p̂−, (3.8)

0= v̂+ − v̂− −
(

1− 1
r

)
∂f
∂η
. (3.9)

Note that most terms in the tangential velocity jump equation due to the presence of
shear can be ignored because they are of higher order, just as happens in the premixed
flame without shear (Matalon & Matkowsky 1982; Pelcé & Clavin 1982).

These equations are coupled with the kinematic equation of the flame surface, which
requires

sf = v · n− sL. (3.10)

This condition is imposed using a level set equation, given by

∂G
∂t
+ v · ∇G= sL|∇G|, (3.11)

where the flame velocity sL incorporates the effects of curvature and strain, according
to

sL = 1−M κ +Msn · ∇u · n, (3.12)

where κ denotes the curvature of the flame, κ =−∇ · n. With all these elements, we
obtain

∂G
∂t
+ u

∂G
∂x
+ v ∂G

∂y
= (1−M κ +Msn · ∇u · n)

√(
∂G
∂x

)2

+
(
∂G
∂y

)2

. (3.13)

Introducing the perturbation expansion, we obtain to first order in ε, the following
boundary condition:

û−|ξ=0 = ∂f
∂τ
−M

∂2f
∂η2
+Ms

(
∂ û−
∂ξ

∣∣∣∣
ξ=0

− S
∂f
∂η

)
. (3.14)

4. Solution and dispersion relation
We now seek a general solution of the above equations and boundary condition of

the form

ψ = ψ̃(ξ) exp(στ − ikη), (4.1)

where ψ denotes any of the unburned or burned side fields (û±, v̂±, p̂±) and

f = f̃ exp(στ − ikη). (4.2)

The parameter σ is termed here the amplification factor and k denotes the wavenumber
of the perturbation. The system of seven linear differential equations is closed for
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ũ±, ṽ±, p̃± and f̃ , giving

dũ
dξ
− ikṽ = 0, (4.3)

(σ − ikSξ)ũ+ 1
r

dũ
dξ
+ 1

r
dp̃
dξ
= 0, (4.4)

Sσ f̃ + ũS+ (σ − ikSξ)ṽ + 1
r

dṽ
dξ
− ik

1
r

p̃= 0, (4.5)

with the boundary condition

ũ−|ξ=0 −Ms
∂ û−
∂ξ

∣∣∣∣
ξ=0

= (σ +M k2 + ikMsS)f̃ . (4.6)

The general solution of ũ(ξ , r) can be obtained from this closed system of
differential equations by eliminating ṽ (using (4.3)) and p̃ (using (4.5)) and has
the general form

ũ(ξ , r)= c1e−kξ + c2ekξ + c3
{

e−kξerfi[g−(ξ)] − ekξ+2i(σ/S)erfi[g+(ξ)]
}
, (4.7)

where

g±(ξ)= (1+ i)
k(ξrS± i)+ irσ

2
√

krS
, (4.8)

and erfi(z)=−i erf(iz) denotes the imaginary error function (an entire function). Note
that r is retained as an independent parameter in the function ũ in order to represent
both solutions ũ− (when setting r = 1) and ũ+. The constants c1±, c2± and c3± at
both sides of the flame must be determined by requiring that perturbations vanish as
|ξ |→∞. From the properties of erfi(z) for large z, we have

erfi(z)∼ i sgn(Re(z))+ ez2

√
πz

for z→∞. (4.9)

This implies that c1− = c3− = 0 and c2+ = ie2iσ/Sc3+. The complete solution is
cumbersome to write but it can be evaluated at ξ = 0 easily and combined with
(3.7)–(3.9) to form a linear system of equations for the free parameters c2−, c1+ and
c3+. In order for this system to have a non-trivial solution, its determinant must be
zero, resulting in the dispersion relation

−√ks
[
r2(k(Mc −Msφ)+ 2φ + 1)+ r(k(Mc +Ms(φ + 2))+ iMss− 1)+ iMss

]
+ (k2r(Mc(rφ + 1)+Ms(φ + 1))+ k

(
r2φ(φ + 1)− iMss(rφ − 1)

)+ 2irsφ
)

×
√

π(r− 1)
(1− i)

e(ik(rφ+1)2/2s)

[
1− erf

(
(1+ i)

√
k(rφ + 1)

2
√

s

)]
= 0, (4.10)

where φ = σ/k denotes the phase speed, s = rS denotes a reduced shear parameter,
and Mc =M −Ms. As is the case for DL, (4.10) has two complex roots (owing to
the quadratic power in φ) and we are only interested in the root with the largest real
part, which determines the stability properties of the flame. The solution of (4.10) is
obtained by a classical Newton method. First, one can easily verify that for k= 0 we
have φ = 0. But, this is not always the best starting point of the Newton method if
we need to obtain the two roots of the solution, to ensure we are selecting the most
unstable mode. To select an appropriate initial point in the iterative method, the most
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reliable approach is to observe that for small k, the exponential and the error function
in (4.10) are both very nearly one and zero, respectively. Then, one can solve the
quadratic equation for φ (valid for small k to order

√
k) and obtain expressions for

the two approximate roots. The first root behaves as φ∼√k and the second as φ∼1/k.
From these initial conditions it is simple to trace the complete curves describing the
two solutions of φ as a function of k. It turns out that it is always the first root that
has the larger real part.

The current dispersion relationship can be compared with the DL relationship
without shear but including curvature and strain, see Creta & Matalon (2011b) (they
considered the case of a single Markstein number), which has solution

φ = {k(Mcr+Ms)+ r− ([k(Mcr+Ms)+ r]2 − r[kMs(1− r)+ r+ 1]
× [k(2Mc −Ms(r− 3))+ r− 1])1/2} /{r[kMs(r− 1)− (r+ 1)]}. (4.11)

Several distinguished limits will be discussed next to elucidate the effects of
the different parameters in the solution. Then, we will consider a few prototypical
situations of combustion of hydrogen, methane and propane with air, with Markstein
numbers suggested by Clavin & Graña-Otero (2011).

4.1. Limit of vanishing Markstein numbers
First, we consider the limit of zero Markstein numbers which is analogous to
the original DL instability result for a planar flame without shear. The dispersion
relationship in this case is obtained by setting Ms =Mc = 0 in (4.10), giving

−√ks
[
r2(2φ + 1)− r

]+ [k(r2φ(φ + 1))+ 2irsφ
]

×
√

π(r− 1)
(1− i)

e(ik(rφ+1)2/2s)

[
1− erf

(
(1+ i)

√
k(rφ + 1)

2
√

s

)]
= 0. (4.12)

Figure 2 shows the behaviour of Re(σ ) as a function of s, as well as the original DL
curve (s= 0 limit), for r= 1/7. As can be seen, the main role of shear is to stabilize
the flame at low wavenumbers (large wavelengths). The cross-over wavenumber, k0,
at which the flame becomes unstable depends on s and r and it can be obtained in
principle by setting φ= iφi in (4.12) and solving for k. Figure 3 shows the behaviour
of k0 for different values of s and r. It is observed that the dependence on s is
apparently linear while r changes the slope of these lines.

4.2. Limit of vanishing density jump
Another interesting limit is obtained by setting r= 1− δ where 0<δ� 1, analogously
to the thermodiffusive approximation. The main item that must be considered carefully
is the behaviour of Ms and Mc in this limit. It can be easily confirmed from Clavin
& Graña-Otero (2011) that both Markstein numbers remain finite as δ→ 0. Therefore,
to leading order in δ, (4.10) becomes

−√ks
[
(k(Mc −Msφ)+ 2φ + 1)+ (k(Mc +Ms(φ + 2))+ iMss− 1)+ iMss

]
+ (k2(Mc(φ + 1)+Ms(φ + 1))+ k (φ(φ + 1)
− iMss(φ − 1))+ 2isφ)= 0, (4.13)
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FIGURE 2. (Colour online) Classical Darrieus–Landau stability curves with shear
(zero Markstein numbers) for r= 1/7.
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FIGURE 3. (Colour online) Dependence of k0 on s for different r.

which can be solved explicitly for φ, giving

φ =−(k(Ms +Mc)+ isMs)=−(kM + isMs). (4.14)

This result is consistent with the same limit for the DL analysis without shear,
indicating that the flame is stable for positive M and unstable for negative M , and
that it is density variation that makes the flame unstable for positive M . Shear affects
σ only through the imaginary term (phase speed) that plays no role in stability of
the flame.

4.3. Limit of strong density jump
An interesting limit arises when the density jump across the flame is very large, as
might be found in thermonuclear deflagrations. In this case, ρ+ can be much smaller
than ρ−, resulting in the limiting case 0 < r � 1. Note that it is possible to take
the limit r→ 0 in the dispersion relation (which gives a finite result) but it is not
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completely physical for the flow (it is a singular limit) because mass conservation will
result in an infinite velocity in the burned side, see (3.1b).

The dispersion relation for this limit can be obtained by manipulating (4.10), which
after some algebraic manipulations, gives

σ = 1− 2kMc − 3kMs − 2iMsS
2Ms

. (4.15)

The key technical detail in deriving the above equation is to observe that for large z
we have

erf(z)≈ 1− e−z2

√
πz
, (4.16)

where

z= (1+ i)
√

k(rφ + 1)

2
√

rS
, (4.17)

with r approaching zero. Then the terms in the last line of (4.10) become
√

rS(r− 1)√
k(1+ rφ)

, (4.18)

which transforms the dispersion relation into a quadratic equation that can be solved
explicitly for φ. This leads, after expansion in powers of r, to (4.15). One can also
verify easily that by setting S = 0 in (4.15) the amplification factor agrees with the
corresponding limit of (4.11) when r → 0. The main observation from this (now
simple) equation (4.15) is that shear does not affect the most unstable mode since it
contributes a purely imaginary term and the amplification factor is identical to that
of the DL instability without shear.

4.4. Zero strain case
This case corresponds to the original correction of Markstein to the DL analysis,
where only curvature is accounted for in the problem, Ms = 0 and Mc =M . The
interest of this situation is that the dispersion relation can be rescaled by M , by
choosing k→M k and s→ rSM , and the result is therefore generic and equivalent
to M = 1. We focus mostly on the case r= 1/7 to discuss the qualitative properties
of the solution. The results are similar for other sufficiently small values of r; the
dependence of the solution on r is investigated in more general terms in figure 6
below. Figure 4 shows real and imaginary parts of the root of (4.10) with the larger
real part for various reduced shear values and r= 1/7, as well as the DL amplification
factor without shear, (4.11).

As is well known, the first term in (4.11) dominates at small wavenumbers while
the second (stabilizing) term dominates at high wavenumbers. When comparing
the effect of shear, one can verify that σ approaches the DL result as s→ 0 (as
shown in figure 4a), which confirms that the analysis was carried out correctly. First,
concentrating on the real part of σ and as the value of s increases, the curves move
to the right and immediately introduce a gap of stability (negative Re(σ )) at the
smallest wavenumber, as shown in figure 2. At the same time, the peaks of the
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FIGURE 4. (Colour online) Real (a,c) and imaginary (b,d) values of σ with the larger
real part as a function of reduced wavenumber for M = 1, r= 1/7 and various s.

curves decrease and eventually they become completely negative at s≈ 0.17. Beyond
that value of s, the flame is stable at all wavenumbers. As s continues to increase,
the curve bends up and first becomes tangent to the σ = 0 axis at s ≈ 2.4. Beyond
this value of s, we recover a bell-shaped curve with a positive peak at a location
dependent on the value of s and a further decay towards negative values for growing
wavenumber (a consequence of the stabilizing role of curvature), see figure 4(c).
Second, figure 4(b) shows that the magnitude of the imaginary part of σ is negative
(being zero for DL in the unstable range of wavenumbers) for low s while it becomes
positive for large s. The consequence of σ not being purely real is that the solution
will have a travelling wave character, see (4.1).

To determine the speed of the travelling wave character of the solution, we
investigate the phase speed c = Im(φ) in figure 5. It can be seen that the phase
speed is negative for small s and positive for large s. The latter is consistent with
the direction of the imposed shear, but the former may appear counterintuitive, being
in the opposite direction. In fact, we can see in the distinguished limit r→ 1, (4.14),
that the expected result is to have a negative phase speed (assuming S > 0) for
Ms > 0. Here, one may note the fact that the results in figure 5 refer to Ms = 0
and therefore (4.14) predicts zero phase speed in this case. To address this difficulty,
(5.1) below shows the result for a Kelvin–Helmholtz interface between two fluids of
different densities using the same reference conditions as in the present flame. This
would be the limit of high shear, where the self-propagation feature of the premixed
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FIGURE 5. (Colour online) Phase speed c as a function of wavenumber for M =1, r=1/7
and various s. The phase speed is only plotted in the regions where Re(σ ) > 0.
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FIGURE 6. (Colour online) Most unstable wavenumber as a function of s for different r
and M = 1.

flame is negligible in comparison with the effect of shear. Since r < 1, the phase
speed is indeed negative for the Kelvin–Helmholtz mode and this is irrespective of
the values of Markstein numbers. It is, therefore, the positive phase speed behaviour
of the flame in the presence of large shear that is unexpected, and it must be the
result of the nonlinearities in the dispersion relation that couple with the finite heat
release. In other words, the phase speed is determined by the sign of r − 1, as in
(5.1), but in a manner controlled by s.

Figure 6 shows the wavenumber of the most unstable mode, k∗ (at the peak of
Re(σ )), as a function of the reduced shear parameter s for different values of r
relevant to typical combustion: 1/7 6 r 6 1/3 (other lower values of r give similar
results). Figure 6 shows that in all cases one observes that the ‘island’ of stability,
whose precise boundaries depend on the value of r, is present. This island appears
to exist for all practical values of r and therefore should be relevant in applications
when premixed flames propagate in regions of shear since the flame may experience
different stabilizing–destabilizing conditions depending on the local value of s.
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FIGURE 7. (Colour online) Vorticity for r = 1/7 at the most unstable wavenumber for
s= 0 (a) (DL with curvature effect only), s= 0.1 (b) and s= 5 (c).

To conclude, figure 7 shows isocontours of vorticity for DL, with curvature
stabilization only, and s= 0.1 and 5 in the post-flame region (downstream); vorticity
is zero upstream for all values of s. The vorticity can be calculated explicitly and
results in the following formula (valid for M = 1):

ω̃ =
(
∂ṽ

∂ξ
+ ikũ

)
e−ikη

= −2(1− i)
√

sk√
π

exp
[−k

(
(ξ + iη)+ i((1− rφ + isξ)2/2s)

)]
, (4.19)

which excludes the temporal modulation since the complete vorticity is travelling with
phase speed c. Figure 7 shows the real part of (4.19). The main change induced by
shear is the tilting of the isocontours in the direction of the imposed shear (upwards
in these figures). The picture for low s is similar to that at high s but there is a
larger density of ripples (smaller wavelengths) in the flame-normal direction while
the transverse wavelength depends on s, as can be seen in figure 6. Furthermore,
the complete vorticity solution will be traveling at the phase speed c (downwards or
upwards depending on s) and being amplified exponentially in time (since we are only
concerned with the unstable mode). Note that the vorticity decays to zero at large ξ
but at a rate that is slower than that of the DL solution.
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FIGURE 8. (Colour online) Amplification factors for a prototypical hydrogen–air flame
(a,b), lean methane–air flame (c,d) and lean propane–air flame (e,f ).

4.5. Behaviour in prototypical combustion conditions
We consider now the dispersion relation solution as a function of s for several
Markstein numbers discussed in Clavin & Graña-Otero (2011) as representative of
combustion of low-Lewis-number mixtures corresponding to hydrogen–air and close
to unity-Lewis-number mixtures characteristic of hydrocarbon combustion.

Figure 8 shows dispersion relation results for a prototypical rich hydrogen–air flame
with Ms = 3 and Mc =−2.5 (a,b), a prototypical lean methane flame with Ms = 3.5
and Mc = 1.5 (c,d) and a lean propane flame with Ms = 0.5 and Mc = 1.5 (e,f ), all
at r= 1/6. In all cases, we reproduce qualitatively the result in the previous section.
Starting at s= 0 and with increasing s, the flame becomes less unstable and eventually
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FIGURE 9. (Colour online) Amplification factors for a flame with Ms = 2, Mc = −5
and r= 1/6.

it stabilizes completely at some small value of s. But, if s continues to increase,
the flame becomes unstable again within a range of wavenumbers, that grows with
increasing s, as seen in all the figures.

4.6. Negative Markstein numbers
Finally, we investigate the effect of shear on flames with negative Markstein numbers.
Traditionally, this regime is not often discussed because the flame is absolutely
unstable (at all wave modes). Also note that for s= 0 and negative strain, Markstein
number from equation (4.11) is singular at the finite value of k= (r+ 1)/((r− 1)Ms).
This is presumably an intrinsic limitation of the description based on a strictly zero
flame thickness when s= 0.

In the present configuration, the stabilization introduced by shear implies that
negative Markstein number flames can become conditionally unstable. This is clearly
observed in figure 9 where the amplification factor for a flame with Ms = 2 and
Mc=−5 is shown. This flame has negative Markstein number for the curvature term
and positive Markstein number for the strain term in the flame speed relationship. We
observe a stable region for small s at low wavenumbers, as before, but a conditionally
stable situation at higher s. This latter regime is analogous to the behaviour observed
for positive Markstein numbers before because the stabilization effect of strain is still
present. Note that the corresponding amplification factor for s= 0 is unconditionally
unstable for this flame. Figure 10 shows the result for a flame with both Markstein
numbers being negative, Ms = −2 and Mc = −5, where it is seen that the flame
is conditionally unstable. The amplification factor for small shear is very similar
to that of the s = 0 case (small shear does not stabilize the flame). We also do
not find a singularity of the amplification factor for negative Markstein numbers
when s is larger than approximately 0.32 (for this flame) and the flame seems to be
conditionally unstable always.

5. Discussion: the second region of instability
As discussed in the preceding sections, all flames are conditionally unstable for

sufficiently high shear, even with negative Markstein numbers. The reasons this
happens is unclear. One might conjecture that in this limit the flame propagation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.728


164 X. Lu and C. Pantano

2 10 12 14

50 250

0

20

10

30

40

0

200

600

400

–20

–10

–30

–200

(a) (b)

100 150 200

6 84

k

k

FIGURE 10. (Colour online) Amplification factors for a flame with Ms =−2, Mc =−5
and r= 1/6.

speed is negligible and the interface is therefore Kelvin–Helmholtz unstable with
a density jump given by heat release. This situation would correspond to that
of a sheared interface of two immiscible fluids of different densities. Now, a
straightforward stability analysis, see Drazin & Reid (1981), gives an amplification
factor of

σ = 2i(r− 1)S
(r+ 1)

, (5.1)

which corresponds to a neutrally stable interface. Therefore, it is not a Kelvin–
Helmholtz instability that dominates at high shear, but a truly intrinsic interaction of
the flame dynamics with shear.

6. Conclusions
A linear stability analysis of the behaviour of a laminar premixed flame subjected to

a constant lateral shear has been carried out analytically. The interest of this problem
resides in applications where a premixed flame can propagate into regions of free
shear flow, which can alter the flame behaviour. The analysis extends the classical
Darrieus–Landau instability analysis to include the stabilization effect produced
by flame curvature and strain. The dispersion relation is obtained and its roots
are discussed in detail. The stability analysis indicates that the flame show three
regimes as a function of a reduced shear parameter. At low shear, the behaviour
is analogous to Darrieus–Landau analysis, albeit with some correction, the flame
becoming progressively more stable as shear increases. Further increase in shear
results in unconditionally stable behaviour. Finally, as shear continues to increase, the
flame becomes unstable again with higher amplification rate and at lower wavelengths
than the low shear case. All solutions are stable at sufficiently high wavenumbers due
to curvature and strain stabilization. This island of stability is observed at all heat
release levels considered.
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