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ABSTRACT

We propose a Bayesian spline model which uses a natural cubic B-spline basis
with knots placed at every development period to estimate the unpaid claims.
Analogous to the smoothing parameter in a smoothing spline, shrinkage priors
are assumed for the coefficients of basis functions. The accident period effect is
modeled as a random effect, which facilitate the prediction in a new accident pe-
riod. For model inference, we use Stan to implement the no-U-turn sampler, an
automatically tuned HamiltonianMonte Carlo. The proposed model is applied
to the workers’ compensation insurance data in the United States. The lower
triangle data is used to validate the model.
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1. INTRODUCTION

Modern enterprise risk management requires quantifying the uncertainty in
crucial point estimates. This motivates the development of various stochastic
models. In a general insurance company’s balance sheet, the claims reserve is al-
ways the largest liability and it is important to estimate this liability accurately.
An over-estimated reserve will increase the required capital and hence increase
the capital costs to an insurer, while an under-estimated reserve can hide an
insolvency problem.

Friedland (2010) discussed several deterministic claims reserving algorithms
that return point estimates. Two monographs on stochastic claims reserving
are Taylor (2000) and Wüthrich and Merz (2008). As one of the most widely
used algorithms, the chain ladder method is studied frequently. Mack (1993,
1999) formulated the prediction uncertainty associated with the chain ladder
method. In fact, many stochastic claims reserving models are based on the
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chain ladder method. This method is characterized by a multiplicative mean
function with two factor covariates: accident period and development period.
However, with factor covariates, it is impossible to (a) extrapolate the tail factor
and (b) predict a new accident period. The main purpose of this paper is to
address these two problems.

There are several extant papers that address the tail factor issue.Mack (1999)
chose a tail factor by observing the trend of last few age-to-age factors in the tra-
ditional chain ladder method. Together with Mack (1993), Mack (1999) formu-
lated the mean squared error of estimated unpaid claims. Wright (1990), Clark
(2003) and Zhang et al. (2012) used parametric curves to extrapolate the tail fac-
tor as part of themodel-fitting process.Wright (1990) derived the run-off pattern
as a curve based on a risk theoretic model of the claims generating process, using
the same model specification for claims reserving as for pricing: claim numbers
are modeled by a Poisson distribution and claim severities are modeled by a
gamma distribution. Zhang et al. (2012) modeled the cumulative claims rather
than the incremental claims as in most other literature. Hence, Zhang et al.
(2012) assumed an auto-regressive process error term, i.e., the cumulative claims
are not independent. For model inference, Wright (1990) and Clark (2003)
applied the maximum likelihood estimation in the generalized linear model
(GLM) framework, while Zhang et al. (2012) applied Markov chain Monte
Carlo method (MCMC) in a Bayesian framework. Zhang andDukic (2013) and
Antonio and Beirlant (2008) considered the equivalence between a penalized
spline regression and a mixed effects model. They called the proposed models
semi-parametric models since they allowed smoothing only of development pe-
riods. Both papers estimated the parameters in the models by MCMCmethod.
Verrall (1996) applied the generalized additivemodel (GAM) in order to smooth
over the accident period, using a locally weighted regression smoother. Verrall
et al. (2012) is a compromise between a chain ladder model and a parametric
curve model. It applied reversible jump MCMC (RJMCMC) to join the chain
ladder run-off pattern and the parametric curve run-off pattern. The model
parameters were estimated in WinBUGS with a RJMCMC add-in. The liter-
ature most relevant to our paper is England and Verrall (2001), in which the au-
thors smoothed over both the accident periods and development periods using a
smoothing spline in a GAM.We will discuss these models in detail in Section 2.

Essentially, there are three kinds of estimation for the uncertainty associated
with estimated reserves. The first is the method of moments, which is used in
Mack (1993) for the distribution-free model. The second is based on the re-
sampling property of maximum likelihood estimation in GLMs and GAMs.
Most statistical software can return the covariance matrix of linear predictors,
from which the mean squared error of the total unpaid claims can be derived.
The third is simulation-based estimation, including the bootstrap and MCMC
methods. While the bootstrap method is always used to infer a GLM in the
frequentist framework, MCMC is used to infer a Bayesian model. The first two
estimation methods return an analytical expression of the uncertainty of the
estimated reserve, while the third relies on the sample of simulated future claims
to infer the reserve and the associated uncertainty.
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Our approach to address the tail development issue is to expand the space
of the development period covariate by using basis functions. The number of
parameters associated with development periods equals the number of basis
functions. The non-significant parameters are shrunk to zero by the assumed
shrinkage priors. More specifically, we propose a Bayesian spline model, one
of the most popular basis expansion models. There are several books covering
the topic of spline models: Hastie and Tibshirani (1990), Ruppert et al. (2003),
Wood (2006), Hastie et al. (2009), James et al. (2013) and Bishop (2006). Shrink-
age priors are always chosen as Laplace distribution, Cauchy distribution, the
generalized double Pareto distribution, etc. Park and Casella (2008) discussed
inference using the Laplace prior distribution. Armagan et al. (2013) discussed
generalized double Pareto shrinkage.

Among Bayesian computational tools, MCMC methods (Metropolis et al.,
1953; Hastings, 1970) are popular and widely used. In the context of a Bayesian
model, MCMC methods can be used to generate a Markov chain whose sta-
tionary distribution is the posterior distribution of the quantities of interest. In
this paper, we consider a variant ofMCMC,HamiltonianMonte Carlo (HMC).
HMC was introduced to physics by Duane et al. (1987) and to statistical prob-
lems by Neal (1994, 2011). Compared with the random-walk Metropolis algo-
rithm where the proposed value is not related to the target distribution, HMC
proposes a value by computing a trajectory according to Hamiltonian mechan-
ics to take account of the target distribution. The programming ofHMC ismore
complicated than MCMC, so we use Sampling Through Adaptive Neighbor-
hoods (Stan) (Stan Development Team, 2016) for model inference. Stan imple-
ments no-U-turn sampler (NUTS) (Homan and Gelman, 2014), an automati-
cally tuned HMC.

The paper is structured as follows. In Section 2, we review several stochastic
reserving models which can address the tail development. In Section 3, we pro-
pose a Bayesian spline model with random loss ratio effects for claims reserving.
We also give an introduction to HMC and the implementation in Stan. Section
4 contains a workers’ compensation insurance reserving example to illustrate
the proposed method. Section 5 contains our conclusion.

2. REVIEW OF EXISTING STOCHASTIC CLAIMS RESERVING MODELS WITH A
TAIL FACTOR

The claims are usually cross aggregated by two factors: period of accident and
period of development. We treat all claims with the same accident period as a
cohort and track its development in the future. The accident periods are de-
noted by i = 1, . . . , I, and the development periods by j = 1, . . . , I. Here we
consider the case when the number of accident periods is equal to the number
of development periods. The unit can be a quarter year, half year or a full year,
but the accident periods and development periods should use the same unit and
the intervals should be equal. The experience periods (or calendar periods) are
denoted by i + j , which contains a cross-section of experience from various
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accident periods lying on a diagonal line. The incremental claims of accident
period i during the development period j are denoted by yi, j . The cumula-
tive claims for accident period i as of development period j are defined as
ci, j :=

∑ j
l=1 yi,l , and the ultimate claims of accident period i as ci,∞ or ui , which

equals to ci,I when the claims are fully run-off by the development period I. The
unpaid claims of accident period i are defined as Ri :=

∑∞
j=I−i+2 yi, j . In the case

of no development after I, Ri = ci,I − ci,I−i+1. The total unpaid claims are de-
fined as R := ∑I

i=1 Ri .Wedefine the upper triangle as yu := {yi, j : i+ j ≤ I+1},
the lower triangle as yl := {yi, j : i + j > I + 1, j ≤ I}. Assuming all the claims
are paid until the development period J(> I), the tail development is defined
as yt := {yi, j : I < j ≤ J}.

Table A2 shows a typical structure of an incremental claims run-off trian-
gle, where the upper triangle yu is available by the end of most recent accident
year 1995. The earned premiums are measures of loss exposure of each accident
period. The loss reserving problem is to predict the lower triangle yl , and the
possible tail development yt given the upper triangle yu . The final reserve set
aside is not exactly equal to the summation of predicted lower triangle and tail
development but depends on the uncertainty around them.

Except forModel (4), in which the response variable is cumulative claims, all
the following models and the Bayesian spline model in Section 3 treat incremen-
tal claims as the response variable, and they have a common assumption that,
given the mean parameters, incremental claims are independent of each other.

2.1. Mack’s model

Mack (1993, 1999) established a distribution-free claims reserving model. He
derived the mean squared error of both the individual future claims estimator
and the aggregated future claims estimator. The age-to-age factors fk and the
individual age-to-age factor Fi,k are defined by the following equations:

E(ci,k+1|ci,k, . . . , ci,1) = ci,k fk,

Fi,k = ci,k+1

ci,k
.

In Mack (1999), the tail factor estimate, denoted as f̂ult, is chosen by observing
the trend of the last few estimated age-to-age factors, f̂ j . For example, the R
function MackChainLadder estimates the tail factor via a linear extrapolation
of log( f̂ j − 1). The standard errors of f̂ult and F̂i,ult are chosen to satisfy the
following inequities:

s.e.( f̂k−1) > s.e.( f̂ult) > s.e.( f̂k),

s.e.(F̂i,k−1) > s.e.(F̂i,ult) > s.e.(F̂i,k), (1)

where k is an index with
f̂k−1 > f̂ult > f̂k.
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The standard error estimate of the tail claims, denoted as σ̂ult, can be calculated
as

σ̂ult = s.e.(F̂i,ult)
√
Ĉi,J .

Once the four quantities, f̂ult, s.e.( f̂ult), s.e.(F̂i,ult) and σ̂ult, are estimated, the
mean squared error of aggregated future claims can be calculated using the for-
mula in Mack (1999).

Mack’s model plays an important role in the claims reserving practice due
to its simplicity and ease of programming. In Section 4, we compare our results
with those from Mack’s model.

2.2. Parametric curve models

Rather than forming an additional stage in Mack’s model, estimation of the
tail factor is integrated into a parametric curve model fitting process. One of
the problems associated with curve fitting is to choose a curve flexible enough
to capture the systematic run-off pattern and still stable enough to discard the
noise. A curve with too few parameters will under-fit the underlying run-off
pattern, while one with toomany parameters will be too unstable for prediction.

The Hoerl curve model. Wright (1990) derived the incremental run-off pattern
as aHoerl curve based on a risk theoreticmodel of the claims generating process.
It used the same model specification in the claims reserving as in pricing: claim
numbers are fitted by a Poisson distribution and claim severities are fitted by a
gamma distribution. The simplified Hoerl curve model is as follows:

yi j
φ

∼ Poi
(

μi j

φ

)
,

μi j = exp(ei + ai + bi ln j + ci j), (2)

where φ is the dispersion parameter, ei is a measure of exposure in the i th acci-
dent period, ai is the accident period effect, bi and ci are the development period
effects in the i th accident period whose values can be estimated and smoothed
over the accident periods using Kalman filter. A special case is created by let-
ting bi = b and ci = c for all accident periods. Under this special case, the
incremental run-off pattern is the same for all accident periods.

Clark’s curve model. Clark’s curve model (Clark, 2003) assumes the underly-
ing cumulative run-off pattern is a loglogistic curve or a Weibull curve. Theo-
retically, any cumulative distribution function can be used to fit the underlying
cumulative run-off pattern. Clark’s curve model treats the incremental claims as
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a response variable and the model is specified as follows:

yi j
φ

∼ Poi
(

μi j

φ

)
,

μi j = Pi · LR · [G( j |ω, θ) − G( j − 1|ω, θ)], (3)

where Pi is the earned premium in the accident period i , LR is the loss ratio and
G(·|ω, θ) is a two-parameter growth curve. The parameters, LR, ω, θ and φ, are
estimated via the maximum likelihood. The tail factor can be extrapolated from
the estimated growth curve, i.e., G( j |ω̂, θ̂ ), j > I. In Section 4, we compare our
results with those from Clark’s curve model.

A non-linear curve model for cumulative claims. It is worth noting that Zhang et al.
(2012) modeled the cumulative claims rather than the incremental claims as in
most other literature. Since the cumulative claims are not independent, Zhang
et al. (2012) assumed an autoregressive process error term. Zhang et al. (2012)
also considered the dependence among insurance companies, i.e., dependence
among several run-off triangles, so their model can borrow credibility from
other companies for the parameter estimation. If only one insurance company
is considered, the model in Zhang et al. (2012) can be simplified as follows:

log ci j = log [eiaiG( j |ω, θ)] + ε j ,

ε j = ρε j−1 + δ j ,

δ j
i id∼ N(0, σ 2(1 − ρ2)),

ε0 ∼ N(0, σ 2), (4)

where ei has the same interpretation as inModel (2), and G(·|ω, θ) has the same
interpretation as in Model (3). Due to the dependent error structure, the model
has a complicated likelihood function. Zhang et al. (2012) estimated the param-
eters in this model via MCMC in WinBUGS.

2.3. Smoothing models

Antonio and Beirlant (2008) and Zhang and Dukic (2013) used a penalized
spline regression to smooth over the development periods. Verrall (1996) and
England and Verrall (2001) used GAMs to smooth over the accident periods
and both the accident and development periods, respectively.

Semi-parametric models. Antonio and Beirlant (2008) applied the statistical
method proposed by Crainiceanu et al. (2005). They re-parameterized a penal-
ized spline regression as a Bayesian mixed effects model, so that the penalized
regression spline can be solved using MCMC. The same model was studied
in Zhang and Dukic (2013). The Bayesian mixed effects model is specified as
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follows:

yi j
φ

∼ Poi
(

μi j

φ

)
,

logμi j = ai + f ( j),

f ( j) = b0 + b1 j + [Zc] j , (5)

where c = (c1, . . . , cK) is a K-vector with the prior ck ∼ N(0, σ 2
c ), and Z =

Z1Z
−1/2
2 is an I × K matrix. Here, Z1 is a I × K matrix with the i th row of

(|i − κ1|3, . . . , |i − κK |3), and Z2 is a K × K matrix with the (s, t) entry of
|κs−κt|3. κk, k = 1, . . . , K are the K knots which are chosen to capture the shape
of the run-off pattern. The non-informative priors are assumed for the other
parameters, ai , b0 and b1. The tail development from the development period
I + 1 to J could be involved if we added J − I rows below the matrix Z1 with
the i th row equal to (|i − κ1|3, . . . , |i − κK |3), i = I + 1, . . . , J.

Generalized additive models. Verrall (1996) smoothed over the accident peri-
ods using a locally weighted smoothing regression. England and Verrall (2001)
smoothed over both the accident periods and the development periods using
a smoothing spline. Both models belong to GAMs. We present the model in
England and Verrall (2001) as follows:

E(yi j ) = μi j ,

Var(yi j ) = φE(yi j )ρ,

logμi j = ei + a + sθAcc(i) + sθDev( j) + sθDev(ln j), (6)

where ei is interpreted the same as in Model (2), sθAcc(i) represents a smoothing
of accident period i , obtained using a smoothing spline with smoothing parame-
ter θAcc, sθDev( j) and sθDev(ln j) represent smoothing splines specifying the shape
of the run-off pattern, with smoothing parameter θDev chosen to be the same
for both functions. The value of ρ can be 0,1,2,3, which corresponds to normal,
over-dispersed Poisson (ODP), gamma and inverse Gaussian distribution of yi j ,
respectively, see Table A1.

2.4. A mixture model

Verrall and Wüthrich (2012) proposed a mixture model in the Bayesian frame-
work. They assumed a log linear development curve after a particular devel-
opment period. The model is a compromise between the chain ladder model
and a curve model. The run-off pattern is divided into two parts: a chain ladder
development pattern for the first few development periods, i.e., one parameter
for one development period and a curve development pattern for the remaining
development periods. RJMCMC is applied to perform parameter inference for
this model, since the parameter space changes during the inferential process.
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The incremental claims are assumed to follow an ODP distribution with the
dispersion parameter fixed at the estimate from a frequentist GLM. The model
can be written as follows:

yi j
φ̂

∼ Poi
(

μi j

φ̂

)
, (7)

where

log(μi j ) =
{
c1 + ai + b j , j ≤ k
c2 + ai + d j, j > k.

Non-informative priors are assumed for c1, c2, ai , b j and d. RJMCMC lets the
data “determine” the location of the “change point” k, where the two run-off
patterns are connected. However, RJMCMC is not easy to code and it involves
between-model jumps and within-model jumps. While Verrall and Wüthrich
(2012) wrote the specific RJMCMC, Verrall et al. (2012) used an add-in, named
“Jump”, in WinBUGS to implement RJMCMC.

2.5. Incurred-paid ratio method

Incurred-paid ratio method makes use of the additional information from the
incurred claims data to calculate the tail factor. There is always payment delay in
the paid claims run-off triangle. If we do not expect newly reported IBNR claims
after the last development period, the incurred claims comprise all claims, and
they are the estimated ultimate claims by claims adjusters. The incurred-paid
ratio of accident period is defined as

Qi, j :=
cIi, j
ci, j

,

where cIi, j denotes the cumulative incurred claims of the accident period i until
the development period j . The tail factor is chosen by inspecting the upper right
incurred-paid ratio triangle. For the prediction uncertainty, Mack’s model can
be applied. Several assumptions about the incurred claimsmust be fulfilledwhen
using this method. For more details, please refer to Section 2.5 inWüthrich and
Merz (2015).

3. A BAYESIAN NATURAL CUBIC SPLINE MODEL WITH RANDOM LOSS RATIO
EFFECTS MODEL

In this paper, we assume the earned premiums are known, hence the coefficients
of accident periods are interpreted as the loss ratios. Most literature assumes
that the accident periods have fixed effects. Under a fixed effects model, we can-
not predict the claims in a new accident period. Here we assume the accident
periods have random effects to facilitate the prediction in a new accident pe-
riod. The multiplication of a new accident period’s loss ratio estimate and its
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earned premium is an estimate of the new accident period’s ultimate loss. In
the Bayesian framework, a random effect effectively means a two-level prior
structure, which will be demonstrated in the model specification.

The incremental run-off pattern is smoothed by a natural cubic spline. Un-
like the GAM in England and Verrall (2001) and the semi-parametric model
in Antonio and Beirlant (2008), which maximized the penalized residual sum
of squares (RSS) to estimate the coefficients of basis functions, in this paper,
we assume shrinkage priors for the coefficients of basis functions. Gelman et al.
(2015) discuss the Bayesian basis function models and shrinkage priors in detail
(p.487).

Splines are a combination of polynomials and step functions. Polynomial
models tend to capture the shape of the data as long as there are high-degree
polynomials. A disadvantage of the polynomial models is global representation,
which means all the data points can affect parameter estimation and every pa-
rameter can affect the shape of the polynomial. A step functionmodel partitions
the data into several parts and fits each part using a basis function whose value
is zero for the remaining parts of the data. Step function models have the disad-
vantage of discontinuity at the boundaries of partition. Spline models combine
the continuity property of polynomial models and the piecewise property of
step function models. For example, a cubic spline is a series of piecewise-cubic
polynomials joined continuously up to the second derivatives.

3.1. Model description

The response variable is the incremental claims, rather than the cumulative
claims as in Zhang and Dukic (2013). We follow the generalized form used in
England and Verrall (2001) and specify the model as follows:

E(yi j ) = μi j = Pi × LRi × G( j),

Var(yi j ) = φ̂V(μi j ) = φ̂μ
ρ

i j ,

G( j) = F( j)∑J
l=1 F(l)

, j = 1, . . . , J,

log F( j) =
I∑

h=1

βhbh( j), j = 1, . . . , J,

LRi |αLR, μLR
iid∼ Gamma(αLR, αLR/μLR),

βh|σ 2
β

i id∼ DoubleExp(0, σ 2
β ), h = 1, . . . , I, (8)

where Pi is the earned premium of the accident period i (assumed to be known),
LRi is the random loss ratio effect of accident period i , G is the “normalized”
incremental claims run-off pattern, F is the “raw” incremental claims run-off
pattern, φ̂ is the plug-in dispersion parameter (estimated via maximum quasi-
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likelihood), V is the variance function, the interpretation of ρ is the same as in
Model (6), bh are basis functions, the hyper-parameter μLR is interpreted as the
average loss ratio and the hyper-parameter 1/αLR measures the spread of loss
ratios for different accident periods. The hyper-priors for the hyper-parameters
will be discussed later. Note that the prior for LRi applies for i > I, in which
LRi is the loss ratio for a new accident period i .

The coefficients of basis functions, βh , follow a shrinkage prior. A shrink-
age prior has high density at zero and heavy tails to avoid over-shrinking. It
can be a t distribution with a small degree of freedom, or a double exponential
distribution (Laplace distribution). The Laplace prior induces sparsity in the
posterior mode, in that the posterior mode can be exactly equal to zero, which
is related to the Lasso method (Park and Casella, 2008). The Laplace prior is
the prior with the heaviest tails that still produces a computationally convenient
unimodal posterior density. An alternative is to use a generalized double Pareto
prior distribution (Gelman et al., 2014), which resembles the double exponential
near the origin while having arbitrarily heavy tails. Here we choose a Laplace
distribution, where σ 2

β can be given a non-informative hyper-prior or assumed to
be constant. We consider two special cases. When σ 2

β → 0, there is no shrinkage
on the coefficients, and themodel approaches to the chain laddermodel, i.e., one
coefficient for one development period. When σ 2

β → ∞, the shrinkage force is
infinitely strong, and themodel approaches to the log-linear chain laddermodel,
i.e., the logarithm of run-off pattern is a straight line.

The “normalized” run-off pattern satisfies the desirable condition of summa-
tion equal to 1, which implies thatG( j) is the incremental proportion of ultimate
claims. The transformation from F to G can be viewed as adding a constraint
to the “raw” run-off pattern F . If we replaced G with F in the mean function,
the predictive distribution of future claims would not be affected; however, the
interpretation of LRi , μLR and αLR would not be straightforward. Another im-
plication of using “normalized” run-off pattern is that the ultimate claims of
accident period i depend on LRi rather than βh . This implication is crucial in
predicting the ultimate claims amount for a new accident period.

In our model, the development period is treated as a continuous covariate
and the basis functions expand the space of the development period covariate.
A common choice for bh is a polynomial. The mechanism of defining the set of
{bh : h = 1, . . . , I} determines the behaviour of log F . We consider log F as full
rank natural cubic splines, which use polynomials as basis functions with knots
placed at every distinctive value, i.e., knots placed at every development period.
An alternative is to use a fixed-knot1 natural cubic spline basis, which leads to
similar fit assuming the knots are chosen properly. The I knots implies a natural
cubic spline with I degrees of freedom and hence I coefficients associated with
I basis functions. The underlying logic is as follows. To join I+1 pieces of three-
order polynomials (with intercept) continuously at the I knots up to the second
derivatives, we have 4×(I+1)−3× I = I+4 degrees of freedom.Moreover, to
obtain the “natural” property, we constrain the spline as a straight line beyond
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the two boundary knots, so four degrees of freedom are lost, implying I degrees
of freedom left at the end.

We can rewrite log F as

log F( j) = [Bβ] j ,

where B is a J × I matrix, β = (β1, . . . , βI) is a I-vector and [Bβ] j is the j th
element of the J-vector Bβ. The dimension of B is determined by the number of
knots and the number of development periods including the tail development.
The matrix B can be written as

B =

⎡⎢⎣b1(1) b2(1) · · · bI(1)
b1(2) b2(2) · · · bI(2)
· · · · · · · · · · · ·
b1(J) b2(J) · · · bI(J)

⎤⎥⎦ .

There are multiple bases {bh : h = 1, . . . , I} which can span the same set of
functions. TheR function ns can return an orthogonal natural cubic spline basis,
called the B-spline basis. The orthogonal matrix has computational efficiency.
Our experience shows that the computing time of a spline using a B-spline basis
is much less than that of a spline using a truncated basis (not an orthogonal ba-
sis). Under the definition of natural cubic spline, for any β, we have the following
linear condition in the tail development period:

[Bβ]I+1 − [Bβ]I = [Bβ]I+2 − [Bβ]I+1 = . . . = [Bβ]J − [Bβ]J−1.

Corresponding to ρ = 0, 1, 2, 3, there are four candidates for the error dis-
tribution: normal, ODP, gamma and inverse Gaussian. As Table A1 shows, the
variance of the incremental claims can be constant, proportional to the mean,
proportional to the mean squared, or proportional to the mean cubic corre-
spondingly. Typically, we choose a suitable distribution family by checking the
diagnostic plot of residuals. However, due to the special data structure of run-
off triangle, the pattern shown in the residual plot sometimes is misleading. We
will illustrate this point in Section 4.

The non-informative hyper-priors are assumed for αLR, μLR, and σ 2
β as fol-

lows:

αLR ∼ Gamma(0.0001, 0.0001),

μLR ∼ Gamma(0.0001, 0.0001),

σ 2
β ∼ Gamma(0.0001, 0.0001).

The two-level prior structure for LRi essentially implies that LRi is not indepen-
dent unconditionally. The posterior of loss ratio LRi is a trade-off between the
data evidence and the prior. The precision parameter, αLR, implies the degree of
effect of the prior on the posterior. If αLR → 0, the prior degenerates to a non-
informative prior and the posterior of LRi is determined by the data. In this
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case, the model is close to a chain ladder model. If αLR → ∞, the prior poses a
strong effect on the posterior of LRi , and overrides the evidence from data. In
this case, the model is close to a Bornhütter–Ferguson model (Bornhütter and
Ferguson, 1972).

An obvious question is why we choose a natural cubic spline rather than
a quadratic spline or a higher order spline. It turns out that the natural cubic
spline is a solution to a fitting problem of finding a function tominimize the sum
of the RSS and the integral of the squared second derivatives of this function.
Remarkably, even without constraining this function as splines, it can be shown
that this function is a natural cubic spline with knots placed at the unique values
of the covariate (Hastie et al., 2009).

3.2. Model inference

While we consider only one error distribution, the ODP distribution, the cal-
culation in this section would also be applied for other error distributions. The
ODP distribution implies that the variance of the incremental claims is propor-
tional to their means, i.e., ρ = 1 inModel (8). The plug-in dispersion parameter,
φ̂, is obtained by fitting a frequentist quasi-GLMwith the accident periods and
the development periods as the factor covariates and a logarithm link function
(see Model (15)).

The main task in Bayesian model inference is to obtain the posterior distri-
bution of parameters of interest. According to Bayes’ theorem,

p
(
LR, β, μLR, αLR, σ

2
β | yu)

× ∝ p(yu | LR, β)p(LR | μLR, αLR)p
(
β|σ 2

β

)
p(μLR)p(αLR)p

(
σ 2

β

)
=

∏
yi j∈yu

Poi

⎛⎝ yi j
φ̂

∣∣∣∣∣∣
Pi LRi exp

(∑I
h=1 βhbh( j)

)
φ̂

∑J
l=1 exp

(∑I
h=1 βhbh(l)

)
⎞⎠

×
I∏

i=1

Gam (LRi |αLR, αLR/μLR)

I∏
h=1

DExp
(
βh | 0, σ 2

β

)
×Gam(μLR|0.0001, 0.0001)Gam(αLR|0.0001, 0.0001)
×Gam

(
σ 2

β |0.0001, 0.0001) , (9)

where Poi(x|a) denotes the probability density function of a Poisson distri-
bution with parameter a evaluated at x, as for the notation Gam(x|a, b) and
DExp(x|a, b). The right-hand side of Equation (9) is not a commonly used dis-
tribution. We apply HMC to sample from the posterior distribution (9). The
discussion of HMC is deferred to the next section.

Ultimately, we want to get the predictive distribution of the future claims.
According to the relationship between joint distribution and marginal distribu-
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tion, the predictive distribution of future claims follows:

p
(
yl , yt | yu)
=

∫
LR,β,μLR,αLR,σ 2

β

p
(
yl , yt, LR, β, μLR, αLR, σ

2
β |yu) dLRdβdμLRdαLRdσ 2

β

=
∫
LR,β,μLR,αLR,σ 2

β

p(yl , yt, | LR, β)p
(
LR, β, μLR, αLR, σ

2
β | yu)

×dLRdβdμLRdαLRdσ 2
β , (10)

where p(yl , yt | LR, β) is the ODP density function and p(LR, β, μLR, αLR,

σ 2
β | yu) is the posterior density function of parameters. From Equation (10), to

get a sample of future claims, we can first simulate a sample of parameters from
the posterior distribution (9), then simulate a sample of future claims from the
ODP distribution given LR, β equal to the sampled parameters.

For a new accident period i > I, the loss ratio LRi is not in the posterior
distribution (9), i.e., LRi /∈ LR. So we generate LRi from

p(LRi |yu) =
∫

μLR,αLR

p(LRi |μLR, αLR)p(μLR, αLR|yu)dμLRdαLR

=
∫

μLR,αLR

p(LRi |μLR, αLR)

×
[∫

LR,β,σ 2
β

p
(
LR, β, μLR, αLR, σ

2
β | yu) dLRdβdσ 2

β

]
dμLRdαLR

=
∫
LR,β,μLR,αLR,σ 2

β

p(LRi |μLR, αLR)p
(
LR, β, μLR, αLR, σ

2
β | yu)

×dLRdβdμLRdαLRdσ 2
β . (11)

Suppose we get a T sample {(μt
LR, α

t
LR) : t = 1, . . . ,T} from p(LR, β, μLR,

αLR, σ
2
β | yu). For each sampled vector (μt

LR, α
t
LR), we simulate an LRti from

p(LRi |μLR = μt
LR, αLR = αtLR), a gamma distribution. Given LRti , the ultimate

claims of the new accident period i can be simulated from the ODP distribution
as follows:

ui
φ̂

|LRti ∼ Poi
(
Pi LRti

φ̂

)
.

3.3. Hamiltonian Monte Carlo

Duane et al. (1987) first proposed HMC in physics, and Neal (1994, 2011) first
introducedHMC to statistical problems. A good reference is Betancourt (2017).
Unlike the random-walkMetropolis algorithm, where the proposed value is not
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related to the target distribution, HMC proposes a value by computing a tra-
jectory according to Hamiltonian mechanics which takes account of the target
distribution.

Our target distribution is p(LR, β, μLR, αLR, σ
2
β | yu). According to

Equation (9), we know the kernel part of p(LR, β, μLR, αLR, σ
2
β | yu) except

for a constant multiplied to it. For compactness and generality, we denote the
target distribution (9) as p(θ). An equal length of 2I+3 vectorψ is chosen as an
auxiliary variable distributed as p(ψ) with the covariance matrix 
. We define
the negative log probability density function of θ and ψ as follows:

U(θ) := − log p(θ), K(ψ) := − log p(ψ).

As an analogy toHamiltonianmechanics, θ can be viewed as the position andψ

can be viewed as the momentum, which are both time-dependent parameters,
i.e., θ = θ(t) and ψ = ψ(t). U(θ) is called the potential energy and K(ψ) is
called the kinetic energy. The joint density p(θ, ψ) defines a Hamiltonian func-
tion as follows:

H(θ, ψ) := − log p(θ, ψ) = − log p(θ) − log p(ψ) = U(θ) + K(ψ). (12)

The Hamiltonian mechanics evolve according to Hamilton’s equations of
motion:

dθi

dt
= ∂H

∂ψi
= ∂K

∂ψi
,

dψi

dt
= − ∂H

∂θi
= − ∂U

∂θi
. (13)

For computer implementation, Equation (13) must be approximated by dis-
cretizing time, using some small step size, δ. The Hamiltonian mechanics in the
next infinitesimal time can be approximated by the leapfrog method as follows:

ψi (t + δ/2) = ψi (t) − (δ/2)
∂U
∂θi

(θi (t)),

θi (t + δ) = θi (t) + δ
∂K
∂ψi

(ψi (t + δ/2)),

ψi (t + δ) = ψi (t + δ/2) − (δ/2)
∂U
∂θi

(θi (t + δ)). (14)

This updatewould keepHamiltonian function (12) constant if δ is small enough,
i.e., H(θ(t), ψ(t)) ≈ H(θ(t + δ), ψ(t + δ)). Note that for equations (13) and
(14) only, t is interpreted as the continuous time variable. For the remainder, t
is usually interpreted as the tth iteration.

The evolution in Hamiltonian mechanics implies a very specific proposal
procedure: starting from the t− 1th iterated values of (θ t−1, ψ t−1), (θ∗, ψ∗) are
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proposed via leapfrog method (14). The detailed HMC algorithm in the tth it-
eration is as follows:

1. First, a value ψ t−1 for the momentum is drawn from a distribution p(ψ).
2. Next, the Hamiltonian mechanics (θ t−1, ψ t−1) evolves via the following

leapfrog method for L steps to get the proposed value (θ∗, ψ∗):

ψ
t−1+δ/2
i = ψ t−1

i + (δ/2)
∂ log p(θ t−1)

∂θi
,

θ t−1+δ
i = θ t−1

i − δ
∂ log p(ψ t−1+δ/2)

∂ψi
,

ψ t−1+δ
i = ψ

t−1+δ/2
i + (δ/2)

∂ log p(θ t−1+δ)

∂θi
.

Note that θ∗ = θ t−1+δL, ψ∗ = ψ t−1+δL.
3. A Metropolis accept step is conducted with the acceptance rate as

min{1, exp[H(θ t−1, ψ t−1) − H(θ∗, ψ∗)]}.
4. θ t = θ∗ if the proposed value is accepted and θ t = θ t−1 if not. Discard

ψ∗.

If there were no approximation errors from the leapfrog discretization (i.e.,
δ → 0), the leapfrog trajectory would follow the exact trajectory and we would
definitely accept (θ∗, ψ∗) since exp[H(θ t−1, ψ t−1) − H(θ∗, ψ∗)] = 1. However,
there are always errors given the non-zero step size δ. Neal (2011) suggested that
HMC is optimally efficient when its acceptance rate is approximately 65%, while
an optimal acceptance rate for the random walk Metropolis–Hastings (M–H)
algorithm is around 23% (Roberts et al., 1997).

The no-U-turn sampler (NUTS). In MCMC, all the tuning parameters should
be fixed during the simulation that will be used for inference, otherwise the al-
gorithm may converge to the wrong distribution. BUGS has an adaptive period
during which suitable tuning parameters are selected. There are three tuning
parameters in HMC: the covariance matrix 
 in p(ψ), the step size δ and the
number of steps L.

NUTS (Homan and Gelman, 2014) can dynamically adjust the number of
leapfrog steps L at each iteration to send the trajectory as far as it can go dur-
ing that iteration. If such a rule is applied in isolation, the simulation will not
converge to the desired target distribution. The full NUTS is more complicated,
going backward and forward along the trajectory in a way that satisfies detailed
balance.

Stan. The programming of NUTS is muchmore complicated than anM–H
algorithm and even more complicated than HMC. We use Stan to implement
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theNUTS inferential engine. Along with this algorithm, Stan can automatically
optimize δ to match an acceptance rate target and estimate 
 based on warm-
up iterations. Hence, we do not need to specify any tuning parameters in Stan.
Besides NUTS, Stan can also approximate Bayesian inference using variational
Bayes and perform penalized maximum likelihood estimation if we specify the
priors as the penalized term.

The key steps in Stan include data and model input, computation of the log
posterior density (up to an arbitrary constant such as in distribution (9)) and
its gradients, a warm-up phase in which the tuning parameters, δ and 
, are set,
an implementation ofNUTS tomove through the parameter space, convergence
monitoring and sample summary statistics at the end.

Compared with BUGS, Stan works seamlessly with R. Stan can analyze all
the examples in the BUGS manual. It provides more instructive error messages
than BUGS, which is particularly helpful when we work with a “black box”
inferential engine. Furthermore, Stan can perform parameter inference for the
multilevel models with unknown covariance matrices, which BUGS can not eas-
ily deal with, and it is easier to specify the support of parameters in Stan. On
the other hand, Stan does not accommodate all the likelihood functions; in con-
trast, BUGS can accommodate any distribution via the zero trick2. Random
quantities such as the future claims cannot be simulated in Stan, while BUGS
can update the parameters and simulate the future claims at the same time.

4. EXAMPLE: WORKERS’ COMPENSATION INSURANCE DATA

Workers’ compensation insurance covers the liability associated with work-
related injuries. The benefits of workers’ compensation include salary replace-
ment, doctor cost, hospital cost, rehabilitation, etc. The duration of a claim
payment depends on the attributes of the claim. For example, a lump sum death
benefit may be paid to a surviving dependant, or a life-time annuities to a per-
manently injured worker. In aggregate, workers’ compensation insurance is a
long-tailed insurance.

The dataset analyzed in this section is workers’ compensation claims data
for the United States, which is available from the Casualty Actuarial Soci-
ety website. The claims data is extracted from Schedule P-Analysis of Losses
and Loss Expenses in the National Association of Insurance Commission-
ers (NAIC) database. Meyers (2015) described the dataset in detail. This
dataset was also studied in Zhang et al. (2012) and Zhang and Dukic (2013).
Our analysis uses five self-explanatory variables: GRCODE, AccidentYear,
DevelopmentLag, CumPaidLoss and EarnedPremNet. The company being
studied in this section is California Casualty Group with the GRCODE code
of 337.

The claims data for the GRCODE 337 insurer is a rectangle containing 10
accident years, from 1988 to 1997, and 10 development years; see Table A2. We
extract the upper triangle from the first eight accident years (1988 to 1995) as
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FIGURE 1: Top row: The scaled Pearson residual plots of frequentist GLMs fitted to the upper triangle
(8 × 8) using an ODP distribution and a gamma distribution. Bottom row: The scaled Pearson residual plots
of frequentist GLMs fitted to the rectangle (8 × 10) using an ODP distribution and a gamma distribution.

the training dataset and the remaining lower triangle and tail development as
the out-of-sample validation dataset. The accident years 1996 and 1997 are used
to illustrate how to predict the future claims for a new accident year. Obviously,
there remain unpaid claims after 10 development years. For the purpose of out-
of-sample model validation, we do not predict the claims after 10 development
years. Hence, for this example, Model (8) has the indexes I = 8 and J = 10.
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4.1. Choice of error distribution

In comparison with a frequentist GLM, a disadvantage of Bayesian modeling
is that we need to spend more time to simulate from the posterior distribution
in order to assess the model. For a frequentist GLM, the diagnostic plots are
available in seconds through most statistical softwares. To guide the choice of a
suitable error distribution from Table A1, we do a preliminary analysis using a
frequentist GLM.A frequentist quasi-GLM is fitted to the upper triangle (8×8)
as follows:

yi j
φ

∼ Poi
(

μi j

φ

)
,

logμi j = log Pi + ai + b j , (15)

where the logarithm link function is assumed, log Pi is the offset term and the
variance function equals to the mean.

The scaled Pearson residuals are defined as

epi j = yi j − ŷi j√
φ̂ ŷi j

,

where φ̂ = 45.64 (in thousands of dollars), and ŷi j is the fitted value.
If the error distribution is suitable, epi j should display a constant spread
over the fitted values. The residual plot is shown in the top-left of Fig-
ure 1. The funnel shape implies that the variance function should equal
to the mean to a power greater than 1. Hence, another frequentist quasi-
GLM with the same link function but with a variance function equal to
mean squared is fitted. Surprisingly, there are no obvious changes in the
new residual plot, as shown in the top-right of Figure 1. We then fit the
full run-off rectangle (8 × 10) using the two error distributions: an ODP and
a gamma. Two residual plots are shown at the bottom of Figure 1, from which
it is now clear that the ODP distribution is more appropriate than the gamma
distribution. In fact, the similar pattern of the top two residual plots in Figure
1 is due to the special triangle shape of the dataset. This also demonstrates the
danger when we choose a proper error distribution according to the residual
plot of the upper triangle.

4.2. Model inference

We use the plug-in estimate φ̂ = 45.64 from the above frequentist GLM. In
Stan, we simulate four chains, eachwith 10,000 iterations, which takes around 35
seconds.3 The first half of these iterations are discarded as burn-in. For every 10
iterations in the second half, one is chosen as the inference sample. Hence, there
are 2,000 iterations left, from which we make inference about the parameters
and quantities of interest.
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Table A3 in Appendix displays two statistics to judge the efficiency and con-
vergence of HMC: the effective sample size (labelled as “n eff”) and the poten-
tial scale reduction factor (labelled as “Rhat”). The effective sample size is the
adjusted sample size with regard to the autocorrelation among the sampled val-
ues. All the “n eff”s are smaller than 2,000 and the deviation from 2,000 reflects
the degree of autocorrelation among the sampled values. The potential scale
reduction factor is derived by comparing the within-chain variability and the
between-chain variability. A potential scale reduction factor close to 1 indicates
the convergence. According to the last two columns in Table A3 in Appendix,
HMC is converged after 5,000 iterations.

We would be confronted with no convergence of β and LR, if we replaced
the normalized run-off pattern G with the raw run-off pattern F in Model
(8). In this case, the posterior distribution of μLR and αLR cannot be inter-
preted intuitively, so the prediction of ultimate claims in a new accident year
would be problematic. Nevertheless, the means, μi j , would converge, and there
would be no effect on the predictive distribution of future claims of old accident
years.

Posterior distribution of parameters and quantities of interest. Table A3 in Appendix
lists the posterior statistics of LR, β, μLR, αLR, and σ 2

β . The “mean” column
contains the estimated posterior means, calculated as follows:

θ̂ := Ê(θ |yu) = EP∗(θ) =
∑T

t=1 θ t

T
,

where a generic symbol θ is used to denote any parameter of interest, P∗ de-
notes the empirical distribution of the inference sample, θ t is the tth sampled
value from the posterior distribution (9), and T = 2, 000 is the inference sam-
ple size. The “se mean” column contains the standard error of θ̂ , calculated as
follows:

s.e.(θ̂) = s.e.P∗(θ)√
T

=
∑T

t=1(θ
t − θ̂ )2√

T(T − 1)
.

The “sd” column contains the estimated standard error of parameters, calcu-
lated as follows:

ŝ.e.(θ |yu) = s.e.P∗(θ) =
∑T

t=1(θ
t − θ̂ )2√

T − 1
.

The next five columns contain the 2.5%, 25%, 50%, 75% and 97.5% quantiles of
the inference sample. The 2.5% and 97.5% quantiles are the side points of the
95% central posterior density region (CPDR).

The posterior medians and the 50% CPDRs of loss ratios for each accident
year are plotted in Figure 2. The realized loss ratios are all in the 50% CPDR
except for the accident years 1994, 1996 and 1997. The spread becomes wider
as accident years increase, since the evidence of data in recent accident years
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FIGURE 2: The box plot of posterior loss ratio for each accident year, compared with the realized loss ratios.

is weaker than that in early accident years. Note that there are no historical
claims in the new accident years 1996 and 1997. The empirical distribution of
new accident years loss ratio is obtained from the simulation (11).

The summary statistics for β do not tell us much about the development
pattern. We are more interested in the shape of G. For each sampled value βt in
the inference sample, we can generate a set of Gt( j), j = 1, . . . , J as follows:

Gt( j) =
exp

(∑I=8
h=1 β t

hbh( j)
)

∑J=10
l=1 exp

(∑I=8
h=1 β t

hbh(l)
) .

Note that the generated Gt( j) satisfies the normality condition, i.e.,∑J=10
l=1 Gt(l) = 1 for t = 1, . . . ,T. Upon the generated Gt( j), we can get the

posteriormean and the 95%CPDRofG, which is shown in Table A4. The wider
interval in the tail development is statistically desirable since there is no data to
infer this period. However, from the perspective of actuaries, the variability in
the tail development should decrease since there are fewer outstanding claims.
We might assume a strong prior for the tail development by observing the trend
of the run-off pattern.

Table A4 also lists the run-off patterns fromMack’s model and Clark’s curve
model. Both models estimate an “aggregated” tail factor. We distribute the
proportion of tail evenly to the development years 9 and 10. The Bayesian spline
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model andMack’s model have comparable run-off patterns, while Clark’s curve
model has a much larger tail factor. A Weibull growth curve is used in Clark’s
curve model, whose fit is much better than a log-logistic growth curve.

Predictive distribution of future claims of the accident years 1988 to 1995. For each
sampled vector, (β t, LRt), in the inference sample, a set of means are calculated
by the equation, μt

i j = Pi LRti G
t( j). Then a set of future claims are simulated

from φ̂Poi(μt
i j/φ̂). As the support of a Poisson distribution is given by the set

of non-negative integers, only multiplied values of φ̂ will be generated. Alterna-
tively, we can use a gamma distribution with the same mean and variance as the
ODP distribution to simulate the future claims:

yti j ∼ Gamma
(
Pi LRti G

t( j)

φ̂
,
1

φ̂

)
. (16)

We will assess the accuracy of the gamma approximation of ODP distribution
in Section 4.3.

Figure A1 in Appendix shows the posterior means and the 95% CPDRs of
the future incremental claims. The 95% CPDRs cover the most realized points.
Later, we will calculate the coverage rate of the 95% CPDRs as a measure of
predictive accuracy. Table A5 compares the predicted unpaid claims from the
Bayesian spline model, Mack’s model and Clark’s curve model. The posterior
mean of total unpaid claims is estimated as 133,175 thousand dollars compared
with the estimate of 134,752 thousand dollars inMack’s model (with tail factor)
and 144,702 thousand dollars in Clark’s model. The standard error of the total
unpaid claims is estimated as 8,116 thousand dollars compared with 5,547 thou-
sand dollars inMack’s model and 8,270 thousand dollars in Clark’s model. The
95% CPDR of total unpaid claims is (119, 797, 151, 610) covering the realized
total unpaid claims, 129,374 thousand dollars.

In Mack’s model, the standard errors for the predicted unpaid claims in the
accident years 1988 to 1992 are significantly less than those estimated from the
other two models. This is due to the deliberately chosen small standard error
of the tail factor in Mack’s model as shown in (1). In the other two models, the
tail factor cannot be estimated accurately (i.e., the standard error of tail factor
is large) from the upper triangle, which is remote from the tail development.

Predictive distribution of future claims of the accident years 1996 and 1997. The earned
premiums of the accident years 1996 and 1997 are 60,244 and 45,933 thousand
dollars. Applying the method discussed in Section 3.2, we get the estimated pos-
terior mean of ultimate claims for the accident year 1996 as 37,980 thousand
dollars with the standard error of 9,554 thousand dollars and the 95%CPDR of
(21, 195, 58, 181), and the estimated posterior mean of ultimate claims for the
accident year 1997 as 29,325 thousand dollars with the standard error of 7,393
thousand dollars and the 95% CPDR of (16, 709, 45, 351).
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FIGURE 3: The scaled Pearson residual plots of a frequentist GLM fitted to the rectangle (8 × 10) using an
ODP distribution.

The realized ultimate claims of the accident years 1996 and 1997 are 68,225
and 55,377 thousand dollars. The model underestimates the ultimate claims sig-
nificantly, which is due to the unusually high loss ratios in the accident years
1996 and 1997. Special knowledge of the U.S. insurance market for that decade
and actuarial judgment are required to get a reasonable informative prior for
the loss ratios in the accident years 1996 and 1997.

4.3. Model assessment

In this section, we check three crucial assumptionsmade the constant dispersion
φ̂, the ODP error distribution and the gamma approximation in (16).

Constant dispersion. It is worth checking the constant dispersion assumption
as the true dispersion might vary across development years. We re-draw the
third plot in Figure 1 with the development years as the x axis. The constant
spread shown in Figure 3 indicates the validation of the constant dispersion
assumption. Be aware that this plot may be distorted when a triangle dataset
is used, as a triangle dataset has more data points in the earlier development
years.
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Error distribution. The posterior means of scaled Pearson residuals are de-
fined as

ē pi j = 1
T

T∑
t=1

yi j − μt
i j√

φ̂μt
i j

.

The plot of the posterior means of scaled Pearson residuals against the log-
arithm of the posterior mean of fitted values is similar to the first plot in
Figure 1. This shows an increasing spread pattern; as discussed above, this fun-
nel shape is due to the triangle structure of the dataset and does not imply a
higher order variance function. If we randomly selected cells from the rectan-
gle to form a training set, the residual plot would not be misleading. In this
example, the first two development years’ claims amount to nearly 40% of the
ultimate claims (see Table A4), so there tend to be a greater number of large
response values in the upper triangle (corresponding to the earlier development
years). The seemingly lesser spread in the area of small linear predictors is due
to the smaller number of data points in this area (corresponding to the later
development years).

The lower triangle and the tail development are also available, so we can
compare the predicted claims with the realized claims to assess the predictive
accuracy of the model. The coverage rate of the 95% CPDRs is defined as

1
|yl ∪ yt|

∑
yi j∈yl∪yt

ICPDRi j (yi j ),

where |A| is the cardinality of the set A, I�(x) = 1 if x ∈ � and I�(x) = 0 if
x /∈ �, and CPDRi j is the 95% CPDR for the (i, j)th cell. The coverage rate is
calculated as 95.45% when the ODP distribution is assumed, and it reduces to
52.27% when the gamma distribution is assumed (discussed later).

Another measure of the model fitness on the validation set is the posterior
empirical quantile values, defined as

qi j = FP′
i j
(yi j ) = PrP′

i j
(Yi j < yi j ), yi j ∈ yl ∪ yt,

where P
′
i j denotes the empirical distribution of the future claim sample {yti j :

t = 1, . . . ,T}. If the specified model is correct, qi j should be approximately
uniformly distributed. We plot the histogram and the quantile-to-quantile plot
of qi j in the top row in Figure 4, neither of which indicate any deviation from
the uniform distribution. The Kolmogorov–Smirnov (K–S) test of qi j returns a
p-value of 0.4629, revalidating the model assumption.

We compare the ODP error distribution with a gamma error distribution,
i.e., ρ = 2 in Model (8). The dispersion parameter in the gamma distribution is
fixed at φ̂ = 1/α̂ = 0.005128, which is estimated in a frequentist GLM similar
to Model (15) but with the gamma error distribution. The coverage rate of the
CPDRs is calculated as 52.27% and the p-value in the K–S test as 7 × 10−14,
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Histogram from gamma model

Posterior empirical quantiles

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−Q plot from gamma model

Theoretical quantiles from uniform

E
m

pi
ric

al
 q

ua
nt

ile
s 

of
 q

ij

FIGURE 4: Top row: The histogram and q-q plot of the posterior empirical quantiles qi j , obtained from the
Bayesian spline model (8) with an ODP error distribution. Bottom row: The histogram and q-q plot of the

posterior empirical quantiles qi j , obtained from the Bayesian spline model (8) with a gamma error
distribution.

both of which indicate that the gamma error distribution is not suitable for this
dataset. The conclusion is reconfirmed in the bottom row in Figure 4 which
displays the histogram and the q-q plot of qi j . The values of qi j are concentrated
at zero, which implies that the model with the gamma error distribution tends
to underestimate the future claims.

While the coverage rate and the posterior empirical quantiles discussed pre-
viously measure the predictive accuracy of the validation set, the information
criteria can be viewed as the fitness of the model on the training set penal-
ized by the model complexity. We calculate several information criteria com-
monly used in the Bayesian analysis, including leave-one-out information cri-
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terion (LOOIC), Watanabe–Akaike or widely available information criterion
(WAIC) and deviance information criterion (DIC), all of which are in the form
of a minus two log likelihood, plus double the number of effective parameters.
Another predictive accuracy measure is the expected log predictive density for
a new data point ỹi j , defined as

elpd := E f
(
log p(ỹi j |yui j )

) =
∫

log p(ỹi j |yui j ) f (ỹi j )d ỹi j ,

where p(ỹi j |yui j ) is the predictive distribution (10), and f is the unknown data
distribution. Applying the methods used in LOOIC, WAIC and DIC, we can
estimate elpd as elpdloo, elpdwaic and elpddic.

The Bayesian model complexity is indexed by the number of effective pa-
rameters including ploo, pwaic and pdic, which correspond to LOOIC, WAIC
and DIC, respectively. For more detailed discussion on the information crite-
ria, the elpd, and the number of effective parameters, see Section 7.1 in Gelman
et al. (2014). Table A6 compares the twomodels with theODP error distribution
and the gamma error distribution in terms of the predictive accuracy and the
model complexity discussed above. While the complexities of the two models
are comparable indicated by ploo, pwaic and pdic, all the information criteria and
the estimated elpds prefer the model with the ODP error distribution.

Gamma approximation. Finally, we assess the approximation of an ODP dis-
tribution by a gamma distribution as in (16). The quantiles from an ODP distri-
bution are compared with the corresponding quantiles from a gamma approxi-
mation as follows:

QODP(φ̂,μ)(q) vs. QGamma(μ/φ̂,1/φ̂)(q), (17)

where QD(q) denotes the q quantile from the distribution D and φ̂ = 45.64.
Considering the range of estimatedmean parameters in this example, we choose
μ = 1, 000 and 20, 000 for illustration. The quantile-to-quantile plot in Figure 5
compares 99 uniformly placed quantiles (i.e., 0.01, 0.02,. . . , 0.99 quantiles) from
the two distributions. Both the plots show a roughly straight line, which indi-
cates that the two distributions are close even in tails. Hence, the approximation
of an ODP distribution by a gamma distribution is suitable for the purpose of
mean, variance and tail-based riskmeasures. In fact, both distributions converge
to normal distribution as μ → ∞.

5. CONCLUSIONS

One contribution of this paper is to introduce a Bayesian spline model to the
claims reserving problem. The proposed model can address two problems that
confront the chain ladder model: the inclusion of a tail factor and the prediction
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FIGURE 5: Left: The quantile-to-quantile plot comparing an ODP distribution with a gamma distribution.
The parameters in (17) are φ̂ = 45.64, μ = 1, 000. Right: The quantile-to-quantile plot comparing an ODP

distribution with a gamma distribution. The parameters in (17) are φ̂ = 45.64, μ = 20, 000.

for a new accident period.WhileMack’s model with tail factor performs equiva-
lently for the total unpaid claims estimation in the analyzed example, our model
has stronger predictive power in terms of quantifying the predictive distribution
for the individual future claims. Due to the orthogonality of the B-spline basis,
the time consumed in the Bayesian computational machinery for our model is
much less than some Bayesian reservingmodels, such as the non-linear Bayesian
model in Zhang et al. (2012) and the mixed Bayesian model in Verrall et al.
(2012).

Another contribution of this paper is to apply HMC to make inferences
about a Bayesian model. The programming of HMC involves the calculation
of gradients of the posterior distribution, which is not necessary inMCMC.We
use Stan to implement the NUTS, an automatically tuned HMC. Stan relieves
the burden of programming HMC. However, when relying on Stan, we are re-
stricted to its built-in functions and distributions. The ODP distribution is not
a built-in distribution, so we work on the Poisson distribution assuming the dis-
persion parameter is fixed at a plug-in estimate. With the further development
of Stan, we expect it will extend its range of distributions and functions.

The detailed example illustrates the danger of selecting an error distribution
according to the residual plot, which is a routinemodel assessment practice. The
residual plot is misleading due to the triangle structure of the dataset. From the
prediction for new accident years, we can see that the actuarial judgment is im-
portant for getting a reasonable result since actuaries may have other important
information not contained in the dataset.

Finally, this example shows a typical Bayesian claims reserving procedure:
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1. Start from a simple model, such as a frequentist GLM, which is easy to
fit. Select a suitable mean function and an appropriate error distribution
according to the diagnostic plots and statistics.

2. Based on the simple model, construct the Bayesian model with particular
focus on the parameterization.

3. Apply a Bayesian computational machinery to sample from the posterior
distribution and simulate other quantities of interest.

4. Compare with alternative models in terms of the information criteria or
the predictive accuracy on the out-of-sample dataset if available.

During this procedure, it may be necessary to go back to step 2 from time to
time. For example, an absence of convergence in step 3may be due to inadequate
parameterization. Alternatively, a better model may be identified in step 4.
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NOTES

1. The knots are placed at selective development periods.
2. Based on a Poisson probability density evaluated at zero, see Lunn et al. (2000).
3. On a Mac of 4 GB 1,600 MHz DDR3 and 1.3 GHz Intel Core i5.
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APPENDIX

TABLE A1

FOUR ERROR DISTRIBUTIONS FOR THE INCREMENTAL CLAIMS: NORMAL, OVER-DISPERSED POISSON,
GAMMA AND INVERSE GAUSSIAN. ρ IS THE POWER OF MEAN IN THE VARIANCE FUNCTION V. THE

DISPERSION PARAMETER IS DENOTED BY φ.

ρ Distribution φ Var(yi j ) = φV(μi j )

0 yi j ∼ N(μi j , σ
2) σ 2 σ 2

1 yi j/φ ∼ Poi(μi j/φ) φ φμi j

2 yi j ∼ Gamma(α, α/μi j ) 1/α μ2
i j/α

3 yi j ∼ Inv-N(μi j , λ) 1/λ μ3
i j/λ
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TABLE A2

THE INCREMENTAL CLAIMS FOR THE GRCODE 337 INSURER. THE UPPER TRIANGLE FROM ACCIDENT YEAR 1988 TO 1995 IS EXTRACTED AS THE TRAINING DATASET.
THE DATA IN THE SHADOW IS USED FOR THE OUT-OF-SAMPLE VALIDATION. THE EARNED PREMIUMS ARE ASSUMED KNOWN. ALL THE NUMBERS ARE IN THOUSANDS

OF DOLLARS.

Development Year
Accident
Year 1 2 3 4 5 6 7 8 9 10 Premium

1988 9,558 13,220 10,520 7,050 4,798 2,902 1,734 841 1,189 127 99,779
1989 7,913 11,559 10,150 7,194 4,159 2,327 1,405 1,164 358 254 85,110
1990 8,744 15,558 11,104 8,006 4,645 2,840 1,982 1,077 484 417 82,187
1991 13,301 19,649 14,251 9,193 5,256 3,389 1,527 1,217 540 642 94,997
1992 11,424 17,662 12,948 8,876 5,496 3,031 1,592 1,325 683 369 100,508
1993 11,792 15,369 11,068 8,493 4,020 2,738 2,480 866 984 107 114,352
1994 11,194 15,699 11,595 7,092 3,256 1,723 1,560 1,307 1,240 589 106,540
1995 12,550 19,054 12,441 8,494 4,583 3,404 2,356 1,588 1,329 1,212 74,652
1996 13,194 18,280 12,596 7,623 5,427 3,333 3,046 2,706 1,218 802 60,244
1997 9,372 14,363 10,456 5,535 4,959 3,753 2,337 1,919 1,523 1,160 45,933
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TABLE A3

INFERENCE FOR PARAMETERS IN THE BAYESIAN SPLINE MODEL 8: 4 CHAINS, EACH WITH 10,000 ITERATIONS; WARMUP=5,000; THIN=10; POST-WARMUP DRAWS PER
CHAIN=500, TOTAL POST-WARMUP DRAWS=2,000.

Parameters Mean se mean sd 2.50% 25% 50% 75% 97.50% n eff Rhat

β1 1.153 0.007 0.306 0.477 0.974 1.182 1.342 1.710 1727 1.000
β2 0.796 0.009 0.372 −0.019 0.580 0.830 1.026 1.484 1700 1.000
β3 0.508 0.009 0.375 −0.306 0.287 0.537 0.750 1.206 1749 1.001
β4 −0.064 0.009 0.378 −0.898 −0.284 −0.027 0.160 0.646 1713 1.000
β5 −0.518 0.009 0.396 −1.377 −0.757 −0.488 −0.260 0.194 1767 1.001
β6 −1.295 0.007 0.304 −1.931 −1.490 −1.286 −1.091 −0.701 1765 1.001
β7 −0.408 0.020 0.818 −2.247 −0.877 −0.325 0.090 1.115 1715 1.000
β8 −2.382 0.006 0.241 −2.877 −2.532 −2.375 −2.217 −1.920 1951 1.000
LR1 0.517 0.000 0.016 0.486 0.506 0.517 0.528 0.550 2000 1.000
LR2 0.545 0.000 0.019 0.508 0.532 0.545 0.557 0.585 1998 0.999
LR3 0.662 0.001 0.022 0.621 0.647 0.661 0.676 0.708 1866 1.001
LR4 0.733 0.001 0.023 0.690 0.716 0.732 0.747 0.778 1845 1.000
LR5 0.635 0.001 0.022 0.595 0.620 0.634 0.649 0.680 1919 1.000
LR6 0.513 0.000 0.020 0.476 0.499 0.512 0.525 0.553 2000 0.999
LR7 0.561 0.001 0.026 0.513 0.542 0.561 0.578 0.612 2000 0.999
LR8 0.879 0.001 0.059 0.767 0.838 0.877 0.918 0.999 2000 0.999
μLR 0.634 0.001 0.057 0.534 0.598 0.631 0.664 0.749 1900 1.000
αLR 27.638 0.382 16.520 6.158 16.061 24.076 35.647 68.291 1874 1.003
σβ 1.099 0.011 0.490 0.501 0.773 0.988 1.295 2.305 2000 1.000
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TABLE A4

COMPARISON OF RUN-OFF PATTERNS FROM THE BAYESIAN SPLINE MODEL, MACK’S MODEL AND CLARK’S
CURVE MODEL. FOR MACK’S MODEL AND CLARK’S CURVE MODEL, AN “AGGREGATED” TAIL FACTOR IS
ESTIMATED, AND WE DISTRIBUTE THE PROPORTION OF TAIL TO THE DEVELOPMENT YEARS 9 AND 10.

Bayesian Spline Model
Dev.
Year Mean sd 2.50% 97.50% Mack Mean Clark Mean

1 18.42% 0.50% 17.44% 19.38% 18.35% 17.21%
2 26.92% 0.62% 25.66% 28.09% 26.99% 27.65%
3 20.33% 0.55% 19.20% 21.35% 20.39% 18.91%
4 14.09% 0.48% 13.13% 15.02% 14.13% 12.61%
5 8.49% 0.43% 7.68% 9.32% 8.51% 8.31%
6 5.34% 0.39% 4.60% 6.12% 5.31% 5.43%
7 3.30% 0.41% 2.52% 4.17% 3.22% 3.53%
8 1.68% 0.36% 1.03% 2.44% 1.64% 2.28%
9(Tail) 0.90% 0.50% 0.25% 2.16% 0.73% 2.04%
10(Tail) 0.54% 0.54% 0.05% 2.00% 0.73% 2.04%
Sum 100.00% 100.00% 100.00%

TABLE A5

COMPARISON OF THE PREDICTED UNPAID CLAIMS FROM THE BAYESIAN SPLINE MODEL, MACK’S MODEL
AND CLARK’S CURVE MODEL.

Bayesian Spline Model Mack’s Model Clark’s Model
Acc.
Year Mean sd 2.50% 97.50% Mean sd Mean sd Obs.

1988 751 585 112 2,278 750 74 1,273 368 1,316
1989 1,456 713 508 3,237 1,429 105 2,241 496 1,776
1990 3,503 836 2,238 5,487 3,432 199 4,643 757 3,960
1991 8,204 1,204 6,246 10,935 8,114 350 9,938 1,202 7,315
1992 12,916 1,299 10,580 15,760 12,839 778 14,637 1,486 12,496
1993 20,121 1,523 17,435 23,353 19,932 1,183 20,726 1,829 19,688
1994 32,627 2,135 28,679 37,096 32,421 1,953 32,064 2,567 28,362
1995 53,598 4,040 45,856 61,509 55,835 4,542 59,179 5,450 54,461
Sum 133,175 8,116 119,797 151,610 134,752 5,547 144,702 8,270 129,374
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TABLE A6

COMPARISON OF TWO MODELS WITH AN OVER-DISPERSED POISSON ERROR DISTRIBUTION AND A GAMMA
ERROR DISTRIBUTION. THE PREDICTIVE ACCURACY MEASURES INCLUDE COVERAGE RATE OF THE 95%

CPDRS, p-VALUE IN THE K–S TEST, AND EXPECTED LOG PREDICTIVE DENSITY (ELPD). THE INFORMATION
CRITERIA INCLUDE LEAVE-ONE-OUT INFORMATION CRITERION (LOOIC), WATANABE–AKAIKE OR WIDELY

AVAILABLE INFORMATION CRITERION (WAIC), AND DEVIANCE INFORMATION CRITERION (DIC). THE
MODEL COMPLEXITY IS INDEXED BY THE NUMBER OF EFFECTIVE PARAMETERS, p.

Measures Poisson Gamma

Coverage Rate 95.45% 52.27%
p-value 0.4629 < 10−13

elpdloo −153.6 −288.1
elpdwaic −151.0 −285.6
elpddic −150.9 −285.6
LOOIC 307.2 576.2
WAIC 302.0 571.1
DIC 301.8 571.1
ploo 14.1 14.1
pwaic 11.7 11.6
pdic 14.9 14.7
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FIGURE A1: The posterior means and the 95% CPDRs of incremental claims in the lower triangle and the
tail development. Each plot represents the incremental run-off pattern of an accident year.
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