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TWO NEW SERIES OF PRINCIPLES IN THE INTERPRETABILITY
LOGIC OF ALL REASONABLE ARITHMETICAL THEORIES

EVANGORIS AND JOOST J. JOOSTEN

Abstract. The provability logic of a theory T captures the structural behavior of formalized provability
in T as provable in T itself. Like provability, one can formalize the notion of relative interpretability giving
rise to interpretability logics. Where provability logics are the same for all moderately sound theories of
some minimal strength, interpretability logics do show variations.
The logic IL(All) is defined as the collection of modal principles that are provable in any moderately

sound theory of some minimal strength. In this article we raise the previously known lower bound of
IL(All) by exhibiting two series of principles which are shown to be provable in any such theory. Moreover,
we compute the collection of frame conditions for both series.

§1. Introduction. Relative interpretations in the sense of Tarski, Mostowski, and
Robinson [12] are widely used in mathematics and in mathematical logic to interpret
one theory into another. Roughly speaking, such an interpretation between two
theories is a translation from the language of one theory to the language of the other
so that the translation preserves logical structure and theoremhood.
We shall write U � V to denote that a theory U interprets a theory V . Once we
know that U � V , this provides us much information; for example the consistency
of U implies the consistency of V and also, various definability results carry over
from the one theory to the other. Famous examples of interpretations are abundant:
the theory of the natural numbers into the theory of the integers, set theory plus the
continuum hypothesis into ordinary set theory (in fact, set theory plus the negation
of the continuumhypothesis can also be interpreted into ordinary set theory, though
this fact is less well known), non-Euclidean geometry into Euclidean geometry, etc.
Interpretability, being a syntactical notion, allows for formalization very much as
one can formalize the notion of provability. As such, we can consider interpretability
logics which will actually extend the well-known provability logic GL named after
Gödel andLöb.We shall see that the interpretability logic of a theory is the collection
of all structural properties of interpretability that it can prove.
Where all modestly correct theories of some minimal strength—let us call them
reasonable theories in this article—have the same provability logic GL, the situation
is different in the case of interpretability and different theories have different logics.
It is an open question to determine the logic of interpretability principles being
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2 EVANGORIS AND JOOST J. JOOSTEN

provable in any reasonable theory. This article reports on substantial progress on
this open question by increasing the previously known lower bound.

§2. Preliminaries. Let U and V denote theories with languages LU and LV
respectively. A relative interpretation j from V into a theory U—we will write
j : U � V—is a pair 〈�(x), t〉 where �(x) is a formula of LU that specifies the
domain in which V will be interpreted and t is a translation, mapping symbols of
LV to formulas of LU providing a definition in U of these symbols.
For further details, we refer the reader to [16] and just mention some particular-
ities here. For example, we restrict to languages with only constant and relations
symbols and treat function symbols as functional relations. Moreover, we restrict
ourselves to one-dimensional interpretations where each object in the one theory is
represented as one object in the other theory, as opposed to a sequence of objects,
as in the case of higher dimensional interpretations as studied, for example in [10].
Further, we do not allow for extra parameters in our interpretation. Thus, an
n-ary relation symbol R in the language of V will be mapped by t to a formula Rt

in the language of U with exactly n free variables. If the language of V contains
equality, we do not require that t maps equality to equality.
The translation t is extended to a translation j of formulas in the usual way
by having j commute with the connectives and relativize the quantifiers to the
domain specifier �(x) as follows:

(∀x ϕ(x))j := ∀x (
�(x) → ϕj(x)

)
. We will

not go too much into details but the main point is that interpretations are primar-
ily syntactical notions—especially for finite languages—and as such allow for an
arithmetization/formalization very much as formal proofs do.

2.1. Arithmetic. In order to formalize the notion of interpretability within some
base theory T one needs to require some minimal strength conditions on T . In
particular, we shall require that T can speak of numbers where to code syntax
and we shall assume1 that the language of T contains the language of arithmetic
〈+,×, S, 0, 1 <,=〉.
We will need that the main properties of the basic syntactical operations like
substitution are provable within T . For reasonable coding protocols this implies
that we need to require the totality of a function of growth-rate�1(x) := x �→ 2|x|2
where |x| denotes the integral part of the binary logarithm of x.
Further, to perform basic arguments we need a minimal amount of induction
and actually a surprisingly little amount of induction suffices. Buss’s theory S12 has
just the needed amount of induction and proves the totality of �1 and this shall be
our base theory (formulated in the standard language of arithmetic).
Alternatively,we could have taken as base theory IΔ0+Ω1 which consists ofRobin-
son’s arithmetic Q together with induction for bounded formulas with parameters

1One can consider a slightly more general setting where theoriesT do not directly speak of the natural
numbers but where it is assumed that T is decent in some sense and comes with an interpretation N
of the natural numbers (see e.g., [17]). One then only has to require that N satisfies sufficiently many
axioms of number theory so that the arithmetisation of syntax can be performed. For example, ZFC set
theory does not contain the language of arithmetic but we can easily perceive the numbers as ‘living’
inside set theory, that is, there is a natural interpretation of the numbers in ZFC.
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and the axiom Ω1 stating that the graph of �1 defines a total function. We refer the
reader to [5] and [2] for further details.
A sharply bounded quantifier is one of the form ∀x<|y| where |y| denotes the
integer value of the binary logarithmofy. The class Δb0 contains exactly the formulas
where each quantifier is sharply bounded. The class Σb1 arises by allowing bounded
existential quantifiers and sharply bounded universal quantifiers to occur over Δb0
formulas. It is essential that the �1 function may occur in the bounding terms. By
∃Σb1 we denote those formulas that arise by allowing a single unbounded existential
quantifier over a Σb1 formula. The complexity classes Πn, Σn and Δn refer to the
usual quantifier alternations hierarchies in the standard language of arithmetic.
In this article we shall only be concerned with first-order theories containing the
language of arithmetic with a poly-time recognizable set of axioms extending S12
and shall often refrain from repeating (some of) these conditions. We shall write
�Tφ as the ∃Σb1 formalization of φ being provable in the theory T and refrain from
distinguishing formulas from their Gödel numbers or even the numerals thereof.
When I is a formulawith one free variable we shall denote by�ITφ the formalization
of φ being provable in the theory T with a proof that satisfies I . It is well known
that we can express provable Σ1 completeness using formalized provability.

Lemma 2.1. For any theory T extending S12 we have that

T � ∀α (
�Tα → �T�Tα

)
.

We will use U � V to denote the formalization of “the theory V is interpretable
in the theory U”. If we abbreviate the existential quantifier over numbers that code
a pair 〈�(x), t〉 defining an interpretation by ∃intj we can write

U � V := ∃intj ∀� (�V� → �U�j). (1)

An interpretation j : U � V can be used as a uniform way to obtain a model of
V inside any model of U . If U satisfies full induction, then we see that actually the
defined model of V is an end extension of the model of U : we define f(0) := 0 and
f(x + 1) := f(x) +j 1j and by induction see that ∀x∃y f(x) = y. As such, we
see that any Σ1 consequence of U must necessarily also hold in V . Since �Tϕ is a
Σ1 formula, the insight on end extensions is reflected in what is called Montagna’s
principle

(U � V )→ (
(U ∪ {�Tϕ})� (V ∪ {�Tϕ})

)
. (2)

In case U does not have full induction, we can still define the graph F (x, y) of
the function f from above, but we can no longer prove that the function is total.
However, we can prove that ∃y F (x, y) is progressive, that is, we can prove

∃y F (0, y) ∧ ∀x (∃y F (x, y)→ ∃y F (x + 1, y)).
In particular, the formula ∀x′≤x ∃y F (x′, y) defines an initial segment within U .
A common trick in weak arithmetics is to use this initial segment as our natural
numbers instead of applying induction (which is not necessarily available). By
Solovay’s techniques on shortening initial segments we may assume that they obey
certain closure properties giving rise to the what is called a definable cut.
A formula J is called a T -cut whenever T proves all of
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4 EVANGORIS AND JOOST J. JOOSTEN

1. J (0) ∧ ∀x (J (x)→ J (x + 1));
2. J (x) ∧ y < x → J (y);
3. ∀x ∀y

(
J (x) ∧ J (y)→ J (x + y) ∧ J (xy) ∧ J(�1(x))).

Let Cut(J ) denote the conjunction of these three requirements. Sometimes we
want to quantify over cuts within T so that these cuts can then of course be non-
standard. We shall use ∀CutJ � and ∃CutJ � to denote ∀J (�TCut(J ) → �) and
∃J (�TCut(J ) ∧ �) respectively. Sometimes we shall write x∈J instead of J (x).
Sometimes we will need to find a cut J inside another cut I . In such cases we
will not just require that the Gödel number of the formula J is in I but moreover
we shall require that the proof that J is a cut can also be found within I . Thus, for
example, ∃CutJ∈I � will be short for ∃J(�ITCut(J ) ∧ �).
We note that if �(v) ∈ ∃Σb1 , then ∃CutJ �(J ) is again provably equivalent to an

∃Σb1 formula.
Let us get back to the role of induction in Montagna’s principle. If j : U � V
and U does not prove full induction, then j will not define an end extension of
any model of U . However, it is easy to see that j does define, using the progressive
formula ∀x′≤x ∃y F (x′, y), a definable cut in U on which f is an isomorphism.
This is reflected in a weakening ofMontagna’s principle also referred to as Pudlák’s
principle.

Lemma 2.2. Let T be a theory containing S12 and let U and V be theories.

T � U � V → ∃CutJ ∀�∈Δ0
(
U ∪ {(∃x �)J}� V ∪ {∃x �}

)
. (3)

2.2. The interpretability logic of a theory. Interpretability logics are designed to
capture structural behavior of formalized interpretability just as provability logic
captures the structural behavior of formalized provability. To this end we consider a
propositional modal language with a unary modal operator� to model formalized
provability and a binary modal operator � to model formalized interpretability of
sentential extensions of some base theory. Let us make this more precise.
Thus, let us fix an arithmetical theory T ; By ∗ we will denote a realization, that
is, any mapping from the set of propositional variables to sentences of T . The map
∗ is extended to the set of all modal formulas of interpretability logics as follows
(⊥)∗ := 0 = 1;
(¬A)∗ := ¬A∗;
(A ∧ B)∗ := A∗ ∧ B∗ and likewise for the other connectives;
(�A)∗ := �TA∗;
(A� B)∗ := (T +A∗)� (T + B∗).

Note that we use the same symbol � for the binary modal operator as for the
sentence in the language of arithmetic as defined in (1). We can now define the
interpretability logic of a theory as those modal principles which are provable under
any realization. With some liberal notation this is captured in the following.

Definition 2.3. Let T be a theory containing S12. We define the interpretability
logic of T as

IL(T) := {A | ∀ ∗ T � A∗}.
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Further, we define the interpretability logic of all arithmetical theories extending S12
by

IL(All) := {A | ∀T ∀ ∗ T � A∗}.
2.3. Small witnesses. As a direct corollary to (2)—Montagna’s principle—we
can conclude that

(A� B)→ (
(A ∧�C )� (B ∧�C )

) ∈ IL(T)
whenever T proves full induction. However, there is no direct reflection of Pudlák’s
principle on the level of interpretability logics since Pudlák’s principle would
translate to

(A� B)→ (
(A ∧�JC )� (B ∧�C )

) ∈ IL(T)
for the particular cut J corresponding to j : A � B and this cannot be expressed
in our modal language. In a sense, �JC corresponds to finding a small witness
of the provability of C . As we shall see, there are various occasions where we can
conclude that such small witnesses exist. The main ingredient in obtaining such
small witnesses is expressed by the so-called Outside big, inside small lemma.
To formulate the lemma we should first provide a means to speak under the scope
of a provability predicate about numbers that are given externally. As usual this
is done via the notion of numerals. A numeral is a syntactical term that uniquely
denotes a number. Since unary numerals grow too big, we will resort to dyadic
numerals. Dyadic numerals ñ are defined recursively by 0̃ := 0, 2̃n := SS0× ñ and,
2̃n + 1 := S

(
SS0 × ñ). Clearly, dyadic numerals are exponentially much shorter

than unary numerals.

Lemma 2.4 (Outside big, inside small). For T,U any theories extending S12, we
have that

T � ∀CutJ ∀x �UJ (x̃).
Proof. Given J and given x, not necessarily in J , we can construct a proof-
object to the extent that x ∈ J in the obvious way. A proof of ñ ∈ J will follow the
built-up of ñ using the standard proofs of lemmas to the effect that ∀x (x ∈ J →
(SS0 × x) ∈ J) and ∀x (x ∈ J → S(SS0 × x) ∈ J). We refer to e.g., [2, 8] for
details. �
The next lemma tells us that small witnesses suit the purpose of inner model
constructions.

Lemma 2.5 (Formalized Henkin construction). For theories T,U and V all
extending S12 we have

T � ∀CutJ (U ∪ {ConJ (V )}� V ).
Proof. (Sketch) The theory T can verify that the usual Henkin construction can
be formalized in U without many problems where J plays the role of the natural
numbers. Instead of applying induction to obtain a maximal consistent setMV as
a consistent branch of infinite length in Lindenbaum’s lemma, we can now only
conclude that the length of the branch is within some cut I which is a shortening of
J thereby yielding a setMI

V which is contradiction-free on I .
The setMI

V can be used to obtain a term model and we define an interpretation
j : (U ∪ {ConJ (V )} � V ) from the term model as usual so that provably φj ↔
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6 EVANGORIS AND JOOST J. JOOSTEN(
φ ∈ MI

V

)
. Note that since the interpretation of identity can be any equivalence

relation, there is no need to move to equivalence classes in the construction of our
term model. By construction we have

�U∀φ∈I
(
(ConJ (V ) ∧�JV φ)→ φ ∈ MI

V

)
.

By the outside big, inside small principle and the formalized deduction theorem we
now conclude that

∀φ (�Vϕ → �U∪{ConJ (V )}ϕ
j )

which, by (1) is nothing but (U ∪ {ConJ (V )}�V ). We refer to [15] where one can
see that the necessary induction for this argument is available in S12 and that moving
from φ ∈ MI

V to φ
j by applying the commutation clauses can be done in p-time. �

Using these lemmaswe can infer in various occasions the existence of small witnesses
to provability. Given two sentences α and � , it is common practice to denote(
T ∪ {α}) �

(
T ∪ {�}) by α �T � . Moreover, it is common practice to omit

theory subscripts in both the interpretation predicate �T and in the provability
predicate �T and we will do so too. As such, both the arithmetical predicate and
modal operator are denoted by the same symbol but the context will always clearly
indicate which reading to employ.

Lemma 2.6. For any theory T we have T � ¬(α � ¬	)→ ∀CutK♦(α ∧�K	).
Proof. Reason in arbitrary T by contraposition and apply the Henkin construc-
tion on a cut. �
As a corollary to this lemma, we see that

(A� B)→ (¬(A� ¬C )� (B ∧�C )
) ∈ IL(T)

for any T extending S12. It is an open problem to classify the modal principles that
hold in any theory extending S12. This article raises the previously known lower
bound.
We formulate some other direct corollaries of the outside-big inside-small
principle in the following useful lemma.

Lemma 2.7. Let T be any theory containing S12. We have that

1. T � ∀ 	∈∃Σb1 ∀CutJ (∃x 	 → � ∃x∈J 	);
2. T � 
 → ∀CutK �
K for any formula 
 in ∃Σb1 ;
3. T � ∀α (�α → ∀CutK ��Kα ).
One ingredient in proving interpretability principles arithmetically sound, is to
find small witnesses. Another ingredient tells us how we can keep these witnesses
small. A simple generalization of Pudlák’s lemma which was first proved in [7] and
tells us how to do so.

Lemma 2.8. Let T be a theory extending S12.

T � ∀α, � ∀intj
(
j : α � � → ∀CutI ∃CutJ j : (α ∧�J 	)� (� ∧�I 	)

)
.

2.4. Modal interpretability logics. When working in interpretability logic, we
shall adopt a reading convention that will allow us to omit many brackets. Thus,
we say that the strongest binding ‘connectives’ are ¬, � and ♦ which all bind
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equally strong. Next come ∧ and ∨, followed by � and the weakest connective is
→. Thus, for example, A � B → A ∧ �C � B ∧ �C will be short for (A � B) →(
(A ∧�C )� (B ∧�C )

)
.

If we do not disambiguate a formula of nested conditionals (→ or �), then
this should be read as a conjunction. For example, A � B � C should be read as
(A� B) ∧ (B � C ) and likewise for implications.
We first define the core logic ILwhich shall be present in any other interpretability
logic. As before, we work in a propositional signature where apart from the classical
connectives we have a unary modal operator� and a binary modal operator �.

Definition 2.9 (IL). The logic IL contains apart from all propositional logical
tautologies, all instantiations of the following axiom schemes.

L1 �(A→ B)→ (�A→ �B);
L2 �A→ ��A;
L3 �(�A→ A)→ �A;
J1 �(A→ B)→ A� B;
J2 (A� B) ∧ (B � C )→ A� C ;
J3 (A� C ) ∧ (B � C )→ A ∨ B � C ;
J4 A� B → (♦A→ ♦B);
J5 ♦A� A.
The rules of the logic are Modus Ponens (from A → B and A, conclude B) and
Necessitation (from A conclude �A).

It is not hard to see that IL ⊆ IL(All). By ILM we denote the logic that arises by
adding Montagna’s axiom scheme

M : A� B → A ∧�C � B ∧�C

to IL. It follows from our earlier observations that ILM ⊆ IL(T) and the other
inclusion can be proven too. A theory T is called Σ01-sound if it proves no false
Σ01-sentences.

Theorem 2.10 (Berarducci [1], Shavrukov [11]). If T is Σ01-sound and proves full
induction, then IL(T) = ILM.

The logic ILP arises by adding the axiom scheme

P : A� B → �(A� B)

to the basic logic IL. If T is finitely axiomatizable it is easy to see that (1) is
provably equivalent to a Σ1 formula so that by provable Σ1 completeness we see that
ILP ⊆ IL(T) for any finitely axiomatized theoryT that proves that exponentiation is
a total function. IfT canmoreover prove the totality of superexponentiation supexp
then the inclusion can be reversed too. Here, supexp(x) is defined as x �→ 2xx with
2n0 := n and 2

n
m+1 := 2

(2nm).

Theorem 2.11 (Visser [14]). If T is finitely axiomatizable, proves the totality of
supexp, and is Σ01-sound, then IL(T) = ILP.

It follows that IL ⊆ IL(All) ⊆ (ILP∩ ILM). In this article we shall focus on these
bounds.
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2.5. Relational semantics. We can equip interpretability logics with a natural
relational semantics often referred to as Veltman semantics.

Definition 2.12. AVeltman frame is a triple 〈W,R, {Sx}x∈W 〉whereW is a non-
empty set of possible worlds, R a binary relation onW so thatR−1 is transitive and
well-founded. Here, each Sx is a binary relations on x↑ (where x↑ := {y | x R y}).
The requirements are that the Sx are reflexive and transitive and the restriction of
R to x↑ is contained in Sx , that is R ∩ (x↑) ⊆ Sx .
A Veltman model consists of a Veltman frame together with a valuation V :

Prop → P(W ) that assigns to each propositional variable p ∈ Prop a set of worlds
V (p) inW where p is stipulated to be true. This valuation defines a forcing relation
� ⊆W×Form telling us which formulas are true at which particular world:

x � ⊥ for no x ∈W ;
x � A→ B :⇔ x � A or x � B;
x � �A :⇔ ∀y (x R y → y � A);
x � A� B :⇔ ∀y

(
x R y ∧ y � A→ ∃z (y Sx z ∧ z � B

)
.

For a Veltman modelM = 〈W,R, {Sx}x∈W ,V 〉, we shall writeM |= A as short
for ∀x∈W M, x � A.

The logic IL is sound and complete with respect to all Veltman models ([3]).
Often one is interested in considering all models that can be defined over a frame.
Thus, given a frame F and a valuation V on F we shall denote the corresponding
model by 〈F , V 〉. A frame condition for a modal formula schema A is a formula F
(first or higher order) in the language {R, {Sx}x∈W } so thatF |= F (as a relational
structure) if and only if ∀valuationV 〈F , V 〉 |= A.
It is easy to establish that the frame condition for P is x R y R z Sx u → z Sy u
where x R y R z Sx u is short for x R y ∧ y R z ∧ z Sx u. Likewise, it is elementary
to see that the frame condition forM is given by y Sx z R u → y R u. In this article
we shall compute the frame conditions for two new series of principles in IL(All).
Often we shall denote a valuation V directly by the induced forcing relation

�. Given a Veltman model 〈F ,�〉 we define a C -assuring successor—denoted by
RC�—as follows

x RC� y :=
(
x R y ∧ y � C ∧ ∀z (y Sx z → z � C )

)
.

§3. A slim hierarchy of principles. In this section we present a hierarchy of
interpretability principles in IL(All) of growing strength. For a well-behaved sub-
hierarchy we shall compute the frame conditions and prove arithmetical soundness.
There is no particular ‘slimness’ inherent to the hierarchy presented here. The main
reason for our name is that we tend to depict the frame conditions (see Figure 1) in
a slim way as opposed to the depicted frame conditions for the series of principles
that we refer to as a broad series of principles (see Figure 2).
Here and in the next section we shall refrain from denoting arithmetical sentences
by greek lower-case letters and modal formulas by latin upper-case letters. We will
use the latter for both and the context will clearly tell which reading to use.
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3.1. A slim hierarchy. Let ai , bi , ci and ei denote different propositional variables
for i ∈ �. Inductively, we define a series of principles as follows.

R0 := a0 � b0 → ¬(a0 � ¬c0)� b0 ∧�c0;

R2n+1 := R2n[¬(an � ¬cn)/¬(an � ¬cn) ∧ (en+1 � ♦an+1);
bn ∧�cn/bn ∧�cn ∧ (en+1 � an+1)];

R2n+2 := R2n+1[bn/bn ∧ (an+1 � bn+1);
♦an+1/¬(an+1 � ¬cn+1);
(en+1 � an+1)/(en+1 � an+1) ∧ (en+1 � bn+1 ∧�cn+1)].

To illustrate how these substitutions work we shall calculate the first five principle
schemes.

R0 := A0 � B0 → ¬(A0 � ¬C0)� B0 ∧�C0;
R1 := A0 � B0 → ¬(A0 � ¬C0) ∧ (E1 � ♦A1)� B0 ∧�C0 ∧ (E1 � A1);
R2 := A0 � B0 ∧ (A1 � B1)→ ¬(A0 � ¬C0) ∧ (E1 � ¬(A1 � ¬C1)) �

B0 ∧ (A1 � B1) ∧�C0 ∧ (E1 � A1) ∧ (E1 � B1 ∧�C1);
R3 := A0 � B0 ∧ (A1 � B1)→

¬(A0 � ¬C0) ∧ (E1 � ¬(A1 � ¬C1) ∧ (E2 � ♦A2)) �
B0 ∧ (A1 � B1) ∧�C0 ∧ (E1 � A1) ∧ (E1 � B1 ∧�C1 ∧ (E2 � A2));

R4 := A0 � B0 ∧ (A1 � B1 ∧ (A2 � B2))→
¬(A0 � ¬C0) ∧ (E1 � ¬(A1 � ¬C1) ∧ (E2 � ¬(A2 � ¬C2))) �
B0 ∧ (A1 � B1 ∧ (A2 � B2)) ∧�C0 ∧ (E1 � A1) ∧(
E1 � B1 ∧ (A2 � B2) ∧�C1 ∧ (E2 � A2) ∧ (E2 � B2 ∧�C2)

)
.

It is easy to see that the hierarchy defines a series of principles of increasing
strength as expressed by the following lemma.

Lemma 3.1. For each natural number n we have that ILRn+1 � Rn.

Proof. By an easy case distinction. We see that �IL R2n+1 → R2n by choosing
En+1 := ♦� and An+1 := �. To see that �IL R2n+2 → R2n+1 we choose Cn+1 := �
and Bn+1 := An+1. �
Thus, to understand the hierarchy well, it suffices to study a well-behaved cofinal
subsequence of it. To this end we define the following hierarchy.
For any n ≥ 0 we define schemata Xn , Yn and Zn as follows.

X0 = a0 � b0;
Y0 = ¬(a0 � ¬c0);
Z0 = b0 ∧�c0;

Xn+1 = an+1 � bn+1 ∧ (Xn);
Yn+1 = ¬(an+1 � ¬cn+1) ∧ (en+1 � Yn);

Zn+1 = bn+1 ∧ (Xn) ∧�cn+1 ∧ (en+1 � an) ∧ (en+1 � Zn).

For any n ≥ 0 define
R̃n = Xn → Yn � Zn.
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To see how this proceeds, let us evaluate the first couple of schematic instances:

R̃0 := A0 � B0 → ¬(A0 � ¬C0)� B0 ∧�C0;
R̃1 := A1 � B1 ∧ (A0 � B0)→

¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) �
B1 ∧ (A0 � B0) ∧�C1 ∧ (E1 � A0) ∧ (E1 � B0 ∧�C0);

R̃2 := A2 � B2 ∧ (A1 � B1 ∧ (A0 � B0))→
¬(A2 � ¬C2) ∧

(
E2 � ¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0))

)
�

B2 ∧ (A1 � B1 ∧ (A0 � B0)) ∧�C2 ∧ (E2 � A1) ∧(
E2 � B1 ∧ (A0 � B0) ∧�C1 ∧ (E1 � A0) ∧ (E1 � B0 ∧�C0)

)
.

It is clear that the R̃k hierarchy is directly related to the Rk hierarchy:

Lemma 3.2. For each natural number k we have R2k := R̃k[Xi /Xk−i ; Ei/Ek+1−i ],
where X ∈ {A,B,C}.
Proof. By visual inspection we see that it holds for k = 0, 1. It is proven in
full generality by an easy induction. To prove the lemma, it is best to consider the
place-holders like Ai etc. as propositional variables since otherwise in principle, for
example, Ai could contain Ei as a subformula. �
For the remainder of this section, we shall focus on the R̃k hierarchy and begin
by computing a collection of frame conditions.

3.2. Frame conditions. For any n ≥ 0 we define a ternary relation Gn(x, y, z) on
Veltman-frames as follows.

G0(x, y, z) = ∀u (z R u ⇒ y Sx u),
Gn+1(x, y, z) = ∀u (z R u ⇒ y Sx u ∧ ∀v (u Sx v ⇒ Gn(z, u, v)

)
.

For every n ≥ 0 we define the first-order frame condition Fn as follows.
Fn = ∀w, x, y, z (wR x R y Sw z ⇒ Gn(x, y, z)).

The main result of this subsection is that F2n is the frame correspondence of R̃n.
For n = 0 this has been established in [4]. It is easy to see that Gn+1(x, y, z) implies
Gn(x, y, z) so that Fn+1 also implies Fn. The frame conditions Fk are depicted in
Figure 1 for the first three values of k.
In what follows we let F = 〈W,R,S〉 be an arbitrary Veltman-frame. With a
forcing relation � we will always mean a forcing relation on F . For our convenience
we define

A−1 ≡ X−1 ≡ Z−1 ≡ �.
Before we can prove a frame correspondence we first need a technical lemma.

Lemma 3.3. For all k ≥ 0 and all x, y, z ∈W . If G2k(x, y, z) then for any forcing
relation � for which

x � Yk and x RCk� y and z � Xk−1,

we also have
z � �Ck ∧ (Ek � Ak−1) ∧ (Ek � Zk−1).
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w
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Sx1

w

x0
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y1x2

y2 x3

y3
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Sx0

Sx0
Sx1
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Sx2

Figure 1. From left to right we have depictedF0 toF2. SinceFk+1
implies Fk we have only depicted the content ofFk+1 which is new
w.r.t. Fk . As such we should read the pictures as: “if all un-dashed
relations are as in the picture, then also the dashed relation should
be present”.

Proof. Weshall writexRCky as short forxRCk� y andprove the claim by induction
on k. With the convention that A−1 ≡ Z−1 ≡ � the lemma is trivial for k = 0. So
assume k > 0. Let � be a forcing relation and take x, y and z such that

x � ¬(Ak � ¬Ck) ∧ (Ek � Yk−1), (4)

x RCk y, (5)

z � Xk−1, (6)

G2k(x, y, z). (7)

Take an arbitrary u ∈W with zR u. By (7) we have y Sx u and thus by (5) we have
u � Ck . This shows z � �Ck .
To show that also the other two conjuncts hold at z assume that u � Ek . By (4)
we find some v with u Sx v and

v � Yk−1. (8)

In order to show z � Ek � Ak−1 we have to find some a with u Sz a � Ak−1. We
note that Yk−1 implies ♦Ak−1 thus there exists some a with v R a � Ak−1. By (7)
we have G2k−1(z, u, v) and thus u Sz a.
In order to show that also z � Ek�Zk−1 wehave to find some bwith uSzb � Zk−1.
We just used that Yk−1 implies ♦Ak−1, but we note that Yk−1 implies the stronger
statement that ¬(Ak−1 � ¬Ck−1). Thus there exists some a with a � Ak−1 and

v RCk−1 a. (9)
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As above, by (7) we have G2k−1(z, u, v) and thus u Sz a and zRa. By (6) there exists
a b with a Sz b and

b � Bk−1 ∧ (Xk−2). (10)

Since u Sz a whence also u Sz b holds, we will be done if we show that b � Zk−1. To
show that the remaining conjuncts of Zk−1 hold at b (that is b � �Ck−1 ∧ (Ek−1 �
Ak−2)∧ (Ek−1�Zk−2)) simply observe that G2k−2(v, a, b) and use (8), (9), and (10)
to invoke the (IH) on v, a and b. �
Corollary 3.4. If F |= F2k , then F |= R̃k .

Proof. Fix a forcing relation � and let w, x ∈W such thatw � Xk andwR x �
Yk . Then for some y we have x RCky �Ak . Thus there exists z with y Sw z and

z � Bk ∧ (Xk−1) (11)

(recall X−1 ≡ �). Since F |= F2k we have G2k(x, y, z). Thus by Lemma 3.3 we get
z � �Ck ∧ (Ek � Ak−1) ∧ (Ek � Zk−1) . (12)

Combining (11) and (12) gives z � Zk . �
The reversal of this corollary is again preceded by a technical lemma. We shall
denote by ak , bk , ck , and ek , propositional variables that shall play the role of the
Ak , Bk ,Ck and Ek respectively in the principles R̃n. Likewise, by Xk we shall denote
the formula that arises by substituting aj for Aj in Xk and bj for Bj . The formulas
Yk and Zk are defined similarly.

Lemma 3.5. For any k ≥ 0 and all x, y, z ∈ W . If for all forcing relations � for
which

x � Yk and x R
ck
� y and z � Xk−1

we also have
z � �ck ∧ (ek � ak−1) ∧ (ek � Zk−1),

then G2k(x, y, z).
Proof. Induction on k. Let x, y, z ∈W and assume the conditions of the lemma.
Unfolding the definition of G2k(x, y, z) shows us that we have to show that
1. for all u with z R u we have y Sx u (k ≥ 0);
2. and for all v and a with u Sx v and v R a we have u Sz a (k > 0);
3. and for all b with a Sz b we have G2(k−1)(v, a, b) (k > 0).

We will show 3.2 and 3.2 ‘by hand’ and invoke the (IH) for 3.2. In each of the three
cases we will choose similar but different forcing relations �.
We first show 3.2. So let z R u. Define

w � ck ⇔ y Sx w and w � ak ⇔ w = y.
And let all the other variables be false everywhere. ThenxRck� y andx � ¬(ak�¬ck).
Since none of the ei nor aj with j �= k holds anywhere in the model, we trivially
have x � Yk and z � Xk−1 and thus according to the conditions of the lemma in
particular z � �ck . By definition of � we thus have ySxu which proves 3.2. Note
that for k = 0 we only have to look after 3.2 hence we have now dealt with the base
case of our induction.

https://doi.org/10.1017/jsl.2019.90 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.90


TWONEW SERIES IN IL(ALL) 13

Now we continue to show 3.2 assuming k > 0. Choose any v and a with uSxv
and vRa. As above define

w � ck ⇔ y Sx w and w � ak ⇔ w = y.
We now also define

w � ek ⇔ w = u and,
w � ak−1 ⇔ w = a ⇔ w � bk−1 and,
w � ck−1 ⇔ a Sz w.

Let all the other propositional variables be false everywhere. Now v � Yk−1 and
thus x � Yk . It is not hard to see that we also have z � Xk−1 and thus according to
the condition of the lemma we have in particular z � ek � ak−1. Since z R u � ek
there must be an a′ with u Sz a′ � ak−1. Since a is the only world that forces ak−1
we must have u Sz a.
To finish and show 3.2 choose b such that a Sz b. We want to show that

G2(k−1)(v, a, b). Invoking the (IH) it is enough to show that for any forcing relation
� for which

v � Yk−1, and v R
ck−1
� a and b � Xk−2, (13)

we also have
b � (ek−1 � ak−2) ∧ (ek−1 � Zk−2) ∧�ck−1. (14)

Our strategy in proving this is as follows. We slightly tweak � to obtain �′. This �′

is similar to � in that (13) still holds and moreover
b � A⇔ b �′ A for subformulas A of (ek−1 � ak−2) ∧ (ek−1 � Zk−2) ∧�ck−1.

(15)
However, it is (possibly) different in that we now know that x �′ Yk , and x R

ck
�′ y

and, z �′ Xk−1 so that we may apply the main assumption of the lemma to �′

concluding z �′ �ck ∧ (ek � ak−1) ∧ (ek � Zk−1). The latter will help us conclude
(14).
Thus we consider an arbitrary forcing relation � that satisfies (13). We modify �
to obtain �′ such that it satisfies

w �′ ak ⇔ w = y;
w �′ ek ⇔ w = u;
w �′ ck ⇔ y Sx w;
w �′ ak−1 ⇔ w = a;
w �′ bk−1 ⇔ w = b.

Apart from these modifications, �′ will coincide with �. It is a straightforward
check to see that we have (13) for �′ and that moreover (15) holds. In addition, by
the definition of �′ we now also have

x �′ Yk and x Rck�′ y and z �′ Xk−1. (16)

Thus, we see that �′ satisfies the antecedent of the condition of the lemma. Con-
sequently, we have z �′ ek � Zk−1. Since z R u �′ ek , there must exist some b′

with u Sz b′ �′ Zk−1. But now, since bk−1 is a conjunct of Zk−1 and b is the only
world that �′-forces bk−1, we must have b �′ Zk−1. In particular, we conclude
b �′ (ek−1 � ak−2) ∧ (ek−1 � Zk−2) ∧�ck−1; by (15) the same holds for � and we
are done. �
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Putting this all together gives us the frame correspondence for R̃k .

Theorem 3.6. For any Veltman frame F and any natural number k ≥ 0 we have
F |= F2k ⇐⇒ F |= R̃k ⇐⇒ F |= R2k.

Proof. The second equivalence is a direct consequence of Lemma 3.2 so we focus
on the first equivalence.
The⇒ direction is just Corollary 3.4. For the other direction, fix some k, assume
thatF |= R̃k and letwRxRySw z. We have to show thatG2k(x, y, z). Now consider
any forcing relation � that satisfies x Rck� y, and x � Yk and, z � Xk−1. By Lemma
3.5 it is enough to show that

z � �ck ∧ (ek � ak−1) ∧ (ek � Zk−1). (17)

Now consider a forcing relation �′ where �′ is like � except that
v �′ ak ⇔ v = y and v �′ bk ⇔ v = z.

Notice that x Rck�′ y and thus also x �′ Yk . But now we have w �′ Xk as well and
thus w �′ Yk � Zk . Thus there must be some z′ with x Sw z′ � Zk . Since bk is a
conjunct of Zk and z is the only world where bk is forced we must have z �′ Zk .
Since �ck ∧ (ek � ak−1) ∧ (ek � Zk−1) does not involve ak nor bk we have (17). �
3.3. Arithmetical soundness. Via a series of lemmata we shall prove Theorem 3.7
to the effect that the hierarchy {Ri}i∈� is arithmetically sound in any reasonable
arithmetical theory.

Theorem 3.7. Each of the Ri is arithmetically sound in any theory extending S12.

It is sufficient to prove that each of the R2m is arithmetically sound in any reason-
able arithmetical theory whence we shall focus on the principles R̃i . We shall first
exhibit a soundness proof of R̃1 and then indicate how this is generalized to the rest
of the hierarchy. Before proving the arithmetical soundness of R̃1 we first need to
prove some auxiliary lemmas.

Lemma 3.8. Let T be any theory extending S12. We have that for any arithmetical
sentences E1, A0, B0 and C0 that

T � E1 � ¬(A0 � ¬C0)→ ∃CutJ �
(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0)

)
.

Proof. Reason in T and assumeE1�¬(A0�¬C0). Note that by Lemma 2.6 we
have E1 � ∀CutK♦(A0 ∧ �KC0). Consequently, by Pudlák’s Lemma, which is our
Lemma 2.2, we get ∃J (E1 ∧∃CutK∈J �J¬(A0 ∧�KC0)�⊥)

. But this is provably
the same as ∃CutJ �

(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0)

)
as was to be shown. �

Lemma 3.9. Let T be any theory extending S12. We have that for any arithmetical
sentences E1, A0, B0 and C0 that

T � ∃CutJ �
(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0)

) → E1 � A0.
Proof. Reason in T . From the assumption we get in particular that

∃CutJ �
(
E1 → ♦JA0

)
so that

∃CutJ E1 � ♦JA0 � A0. �
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Lemma 3.10. Let T be any theory extending S12. Then, for any arithmetical
sentences E1, A0, B0 and C0 we have that

T � (A0 � B0) ∧ ∃CutJ �
(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0)

) → E1 � B0 ∧�C0.
Proof. Reasoning in T we get from

∃CutJ �
(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0)

)
that ∀CutK (

E1 � A0 ∧�KC0
)
. We combine this with

A0 � B0 → ∃CutJ (
A0 ∧�JC0 � B0 ∧�C0

)
to conclude E1 � B0 ∧�C0. �
With these technical lemmas we can prove soundness of R̃1.
Lemma 3.11. Let T be any theory extending S12. We have that for any arithmetical
sentences E1, A1, B1, A0, B0 and C0 that

T � A1 � B1 ∧ (A0 � B0)→
¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) �

B1 ∧ (A0 � B0) ∧�C1 ∧ (E1 � A0) ∧ (E1 � B0 ∧�C0).
Proof. We reason in T . To begin, we observe that by Pudlák’s Lemma we have

A1 � B1 ∧ (A0 � B0)→ ∃CutK (
A1 ∧ 
K � B1 ∧ 
 ∧ (A0 � B0)

)
(18)

holds for any 
 ∈ Σ1.
Next, using our new technical lemma and Lemma 2.6 we get

¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) →
∀CutK♦(A1 ∧�KC1) ∧ ∃CutJ �

(
E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)

) →
∀CutK♦

(
A1 ∧�KC1 ∧ ∃Cut J∈K �K

(
E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)

))
.

The last step is due to the principle of outside-big inside-small (Lemma 2.4) and
allows us to conclude

∀CutK
(

¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) �

A1 ∧�KC1 ∧ ∃Cut J∈K �K (
E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)

) )
.

We can combine this with the particular cut K from (18) to obtain

A1 � B1∧(A0 � B0)→ ¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) �
B1 ∧ (A0 � B0) ∧�C1 ∧ ∃CutJ � (

E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)
)
.

(Note that�KC1 ∧ ∃Cut J∈K �K (
E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)

)
is equivalent to an ∃Σb1

sentence relativized to K .) Our technical lemmas 3.9 and 3.10 tell us that

(A0 � B0) ∧ ∃CutJ � (
E1 → ∀Cut L∈J ♦J (A0 ∧�LC0)

) →
(E1 �A0) ∧ (E1 � B0 ∧�C0)

and we are done. �
The soundness proofs for R̃k are essentially not much different. We shall indicate
where the soundness proof for R̃1 needs to bemodified and begin with modifications
of the technical lemmas.
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However, first we must inductively define a series of important formulas. In our
definition we work with more variables than actually needed. However, we have
chosen to do so since our variables can be interpreted as numbers or as formulas
and we wish to avoid expressions like ∀CutJ � ∃J∈J φ.

H1 := ∃CutJ1 �
(
E1 → ∀CutK1∈J1 ♦J1 (A0 ∧�K1C0)

)
;

Hk+1 := ∃CutJk+1 �
(
Ek+1 → ∀CutKk+1∈Jk+1 ♦Jk+1 (Ak ∧�Kk+1Ck ∧HKk+1k )

)
.

It is easy to see that for each k > 0 the formula Hk is an ∃Σb1 formula. The next
lemmas show us that Hk+1 are ∃Σb1 consequences of the Σ3 statements Ek+1 � Yk
which contain all the essential information for proving soundness. First we prove a
simple modification of Lemma 3.8.

Lemma 3.12. Let T be any theory extending S12. For any arithmetical sentences
E1, A0, B0 and C0 and for any ∃Σb1 formula 
 we have
T � E1 � ¬(A0 � ¬C0) ∧ 
 → ∃CutJ �

(
E1 → ∀CutK∈J ♦J (A0 ∧�KC0 ∧ 
K)

)
.

Proof. We repeat the proof of Lemma 3.8. Note that, by our reading conventions
the antecedent E1 � ¬(A0 � ¬C0) ∧ 
 should be read as E1 �

(¬(A0 � ¬C0) ∧ 

)
.

We reason in T and see that

¬(A0 � ¬C0) ∧ 
→∀CutK♦(A0 ∧�KC0) ∧ 

→∀CutK♦(A0 ∧�KC0 ∧ 
K).

As before, this final equation implies ∃CutJ �
(
E1 → ∀CutK∈J ♦J (A0 ∧ �KC0 ∧


K)
)
. �

With the following lemmawe see that theHk+1 are an∃Σb1 encoding of information
present in Ek+1 � Yk :

Lemma 3.13. Let T be a theory containing S12 and let the formulas Ei ,Ai , and Ci
be arbitrary. For any number k we have that

T � Ek+1 � Yk → Hk+1.
Proof. By an external induction on k. For k = 0 this is simply Lemma 3.8. For
the inductive case we reason in T and see that

Ek+2 � Yk+1 ≡ Ek+2 � ¬(Ak+1 � ¬Ck+1) ∧ (Ek+1 � Yk).

By the inductive hypothesis we have that Ek+1 � Yk → Hk+1 so that
Ek+2 � Yk+1 → Ek+2 � ¬(Ak+1 � ¬Ck+1) ∧Hk+1.

Since Hk+1 is equivalent to an ∃Σb1 formula, by Lemma 3.12 we see that
Ek+2 � ¬(Ak+1 � ¬Ck+1) ∧Hk+1 → Hk+2

as was to be shown. �
Moreover, the Hk+1 formulas contain all the information to get the induction
going as shown by the following lemma.

Lemma 3.14. Let T be a theory containing S12 and let the formulas Ei ,Ai , Bi , and
Ci be arbitrary. For any number k we have that

T � (Xk) ∧ Hk+1 → Ek+1 � Zk.
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Proof. By induction on k where the case k = 0 is just lemma 3.10. For the
inductive case, we reason in T and assume (Xk+1) ∧ Hk+2.
From the definition ofHk+2 we get

∃CutJk+2 �
(
Ek+2 → ∀CutKk+2∈Jk+2 ♦Jk+2 (Ak+1 ∧�Kk+2Ck+1 ∧HKk+2k+1 )

)
so that ∃CutJk+2 ∀CutKk+2 �

(
Ek+2 → ♦Jk+2(Ak+1 ∧�Kk+2Ck+1 ∧HKk+2k+1 )

)
whence

∀CutKk+2
(
Ek+2 � Ak+1 ∧�Kk+2Ck+1 ∧HKk+2k+1

)
. (19)

From Xk+1—which is by definition equal to Ak+1 � Bk+1 ∧ (Xk)—we find via
Pudlák’s lemma, our Lemma 2.2, a specific cutKk+2 such that for any formula 
 in
Σ1 we obtain Ak+1 ∧ 
Kk+2 �Bk+1 ∧ (Xk) ∧ 
. We can plug in this cut Kk+2 to (19)
to obtain via transitivity of � that

Ek+2 � Bk+1 ∧ (Xk) ∧�Ck+1 ∧Hk+1.
We are almost done but Bk+1 ∧ (Xk) ∧�Ck+1 ∧Hk+1 is not quite equal to Zk+1 as
was needed. The missing conjuncts are Ek+1�Ak and Ek+1 �Zk . The first is easily
seen to follow from Hk+1 and the second follows from the inductive hypothesis
applied to (Xk) ∧Hk+1. �
We are now ready to prove Theorem 3.7 that the whole hierarchy is arithmetically
sound.

Theorem 3.15. Let T be a theory containing S12 and let Ai , Bi , Ci and Ei be
arbitrary arithmetical formulas. We have for each number k that

T � R̃k id est T � Xk → Yk � Zk.

Proof. By an external induction on k where the base case is the soundness of R̃0
which has been proven in [4]. Thus, we reason in T assuming Ak+1 � Bk+1 ∧ (Xk).
We need to conclude that Yk+1�Zk+1. But Yk+1 is nothing but ¬(Ak+1�¬Ck+1)∧
(Ek+1 � Yk). By Lemma 3.13 we know that (Ek+1 � Yk) → Hk+1. Using this and
reasoning as before we obtain

¬(Ak+1 � ¬Ck+1) ∧ (Ek+1 � Yk) → ∀CutK♦(Ak+1 ∧�KCk+1) ∧ (Ek+1 � Yk)
→ ∀CutK♦(Ak+1 ∧�KCk+1) ∧Hk+1
→ ∀CutK♦(Ak+1 ∧�KCk+1 ∧HKk+1).

Consequently,

∀CutK (¬(Ak+1 � ¬Ck+1) ∧ (Ek+1 � Yk)� Ak+1 ∧�KCk+1 ∧HKk+1
)
.

This can be combined with Pudlák’s Lemma on Ak+1 � Bk+1 ∧ (Xk) to obtain
¬(Ak+1 � ¬Ck+1) ∧ (Ek+1 � Yk)� Bk+1 ∧ (Xk) ∧�Ck+1 ∧Hk+1.

It is easy to see that Hk+1 implies Ek+1 � Ak . Moreover, Lemma 3.14 tells us that
(Xk) ∧Hk+1 → Ek+1 � Zk so that we may conclude

¬(Ak+1�¬Ck+1)∧ (Ek+1�Yk)�Bk+1∧ (Xk)∧�Ck+1∧ (Ek+1�Ak)∧ (Ek+1�Zk)

as was to be shown. �
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§4. A broad series of principles. In this section we present a different series of
principles. We refer to this series as the broad series since the frame-conditions—see
Figure 2—are typically represented over a broader area than the slim hierarchy as
discussed above.

4.1. A broad series. In order to define the second series we first define a series of
auxiliary formulas. For any n ≥ 1 we define the schemata Un as follows.

U1 := ♦¬(D1 � ¬C ),
Un+2 := ♦((Dn+1 �Dn+2) ∧ Un+1).

Now, for n ≥ 0 we define the schemata Rn as follows.
R0 := A� B → ¬(A� ¬C )� B ∧�C,

Rn+1 := A� B →
(
Un+1 ∧ (Dn+1 � A)

)
� B ∧�C.

As an illustration we shall calculate the first four principles.

R0 := A� B → ¬(A� ¬C )� B ∧�C ;
R1 := A� B → ♦¬(D1 � ¬C ) ∧ (D1 � A)� B ∧�C ;
R2 := A� B → ♦

[
(D1 �D2) ∧ ♦¬(D1 � ¬C )

]
∧ (D2 � A)� B ∧�C ;

R3 := A� B → ♦
(
(D2 �D3) ∧ ♦

[
(D1 �D2) ∧ ♦¬(D1 � ¬C )

])
∧ (D3 � A)

�B ∧�C.
While the series Ri did define a hierarchy in that Ri+1 � Ri , we shall see that no such
relation holds for the series Ri .

4.2. Frame conditions. It is not hard to determine the frame condition for the
first couple of principles in this series and in Figure 2 we have depicted the first three
frame-conditions. In this section we shall prove that the correspondence proceeds
as expected. Informally, the frame condition for Rn shall be the universal closure of

xn+1 R xn . . . R x0 R y0 Sx1 y1 . . . Sxn yn Sxn+1 yn+1 R u → y0 Sx0 u. (20)

In order to make this frame condition precise and prove it, we shall first recast it
in a recursive fashion. In writing (20) recursively we shall use those variables that
will emphasize the relation with (20). Of course, free variables can be renamed at
the readers liking.
First, we start by introducing a relation Bn that captures the antecedent of (20).
Note that this antecedent says that first there is a chain of points xi related by R,
followed by a chain of points yi related by different S relations. The relation Bn will
be applied to the end-points of both chains where the condition on the intermediate
points is imposed by recursion.

B0(x1, x0, y0, y1) := x1 R x1 R y0 Sx1 y1,
Bn+1(xn+2, x0, y0, yn+2) := ∃xn+1, yn+1

(
xn+2 R xn+1 ∧ Bn(xn+1, x0, y0, yn+1)

∧ yn+1 Sxn+2 yn+2
)
.

For every n ≥ 0 we can now define the first-order frame condition Fn as follows.
Fn := ∀xn+1, x0, y0, yn+1

(Bn(xn+1, x0, y0, yn+1)⇒ ∀u (yn+1 R u ⇒ y0 Sx0 u)
)
.
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Sx0

x3

x2

x1

x0

y0 y1 y2 y3

z

Sx1 Sx2 Sx3

Sx0

Figure 2. From left to right, this figure depicts the frame condi-
tionsF0 throughF2 corresponding to R0 through R2. The reading
convention is as always: if all the un-dashed relations are present
as in the picture, then also the dashed relation should be there.

Sometimes we shall write xn+1 Bn[x0, y0] yn+1 conceiving the quaternary relation
Bn as a binary relation indexed by the pair x0, y0. In what follows we let F =
〈W,R,S〉 be an arbitrary Veltman-frame. The next lemma follows from an easy
induction on n.

Lemma 4.1. For each number n we have that Bn[x0, y0] ⊆ R, that is, if
xn+1 Bn[x0, y0] yn+1, then xn+1 R yn+1.
To prove that F |= Fn implies F |= Rn we first need a technical lemma.

Lemma 4.2. Let w ∈W and � be a forcing relation on F . If
xk+1 � Uk+1 ∧ (Dk+1 � A),

then there exist x0, y0 and yk+1 such thatBk(xk+1, x0, y0, yk+1), x0RC� y0 and yk+1 �
A.

Proof. Induction on k. If k = 0 then Uk+1 = ♦¬(D1 � ¬C ) and the statement
is easily checked. For the inductive case, we assume

xk+2 � Uk+2 ∧ (Dk+2 � A).
Recall that Uk+2 := ♦((Dk+1 � Dk+2) ∧ Uk+1). Thus, there exists some xk+1 with
xk+2 R xk+1 and

xk+1 � (Dk+1 �Dk+2) ∧ Uk+1.

Applying the (IH) (with Dk+2 substituted for A) we find x0, y0 and yk+1 with
Bk(xk+1, x0, y0, yk+1), x0 RC� y0 and yk+1 � Dk+2. As Bk(xk+1, x0, y0, yk+1) we get
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xk+1Ryk+1 (Lemma 4.1). Since we had xk+2Rxk+1 we see thatxk+2Ryk+1 � Dk+2,
and since xk+2 � Dk+2 � A, we find some yk+2 with yk+1 Sxk+2 yk+2 and yk+2 � A.
By definition of Bk+1 we have Bk+1(xk+2, x0, y0, yk+2). �
Corollary 4.3. If F |= Fn then F |= Rn.

Proof. Induction on n. For n = 0 this is known (see [4]), so we assume n >
0. Let � be a forcing relation, let xn+1, xn ∈ W and assume xn+1 � A � B,
xn+1 R xn and xn � Un ∧ (Dn � A). By Lemma 4.2 we find x0, y0 and yn such that
Bn−1(xn, x0, y0, yn), with x0 RC� y0 and yn � A. We have that Bn−1(xn, x0, y0, yn)
implies xnRyn (Lemma 4.1) and thus since xn+1Rxn we also we havexn+1Ryn � A.
By assumption xn+1 � A � B so that for some yn+1 we have yn Sxn+1 yn+1 � B.
Clearly, we also have xn Sxn+1 yn+1 so that we are done if we have shown that
yn+1 � �C . To this purpose, we choose some u with yn+1 R u. Since we have that
Bn(xn+1, x0, y0, yn+1), by Fn we have also y0 Sx0 u. But x0 RC� y0 and thus we have
u � C , as required. �
To prove the converse implication, we start again with a technical lemma. As
before we shall denote by a, b, c , and dk , propositional variables that shall play
the role of the A, B, C and Dk respectively in the principles Rn. Let Uk denote the
formula that arises by simultaneously substituting c for C and dk for Dk in Uk .

Lemma 4.4. Let {a, c , d1, . . . , dk+1} be a collection of distinct propositional vari-
ables. If F |= Bk(xk+1, x0, y0, yk+1), then there exists a forcing relation � on F such
that

1. xk+1 � Uk+1 ∧ (dk+1 � a);
2. x � c iff y0 Sx0 x;
3. x � a ⇔ x = yk+1;
4. x � p for any p /∈ {d1, . . . , dk+1, c , a}.
Proof. The idea is very simple using the informal description of Bk being the
antecedent of (20). We define a valuation � so that di+1 is only true at yi and a
is only true at yk+1. Moreover, we define x � c iff y0 Sx0 x and x � p for any
p /∈ {d1, . . . , dk+1, c , a}. It is not hard to see that xk+1 � Uk+1 ∧ (dk+1 � a) for this
valuation �.
To make the argument precise, we proceed by induction on k. If k = 0 then

Bk(x1, x0, y0, y1) simply means x1 R x0 R y0 Sx1 y1 and we define
x � a ⇔ x = y1, x � c ⇔ y0 Sx0 x and, x � d1 ⇔ x = y0.

The lemma is easily checked if we further define x � p for any p /∈ {d1, c , a}.
For the inductive case we consider k > 0. Then Bk(xk+1, x0, y0, yk+1) implies that
there are xk and yk such that

xk+1 R xk Bk−1[x0, y0] yk Sxk+1 yk+1.
The (IH) (with dk+1 substituted for a) gives a forcing relation � such that

xk � Uk ∧ (dk � dk+1), x0 Rc� y0, x � dk+1 ⇔ x = yk
and x � p for p /∈ {d1, . . . , dk+1, c}. So we have xk+1 � ♦

(
Uk ∧ (dk � dk+1)

)
; in

other words xk+1 � Uk+1. We now define �′ as follows

x �′ a ⇔ x = yk+1 and x �′ p ⇔ x � p for p �= a.
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Clearly, the properties xk � Uk ∧ (dk � dk+1), a Rc� b, x � dk+1 ⇔ x = yk simply
extend to �′ and likewise we have that x �′ p for any p /∈ {d1, . . . , dk+1, c , a}.
Moreover, we now have xk+1 �′ dk+1 � a as well. �
As a corollary to this lemma, we can now obtain the full the frame conditions for
the principles Rn.

Theorem 4.5. For each number n we have F |= Fn iff F |= Rn.

Proof. The ⇒ direction is just Corollary 4.3 so we focus on the other direc-
tion. Thus, we suppose that F |= Rn, consider any xn+1, x0, y0, yn+1 ∈ W with
Bn(xn+1, x0, y0, yn+1) and set out to show that for any u with yn+1 R u we have
y0 Sx0 u. We now apply Lemma 4.4 and simultaneously substitute a for dn+1 and b
for a to see that there exists a forcing relation � such that

xn+1 � Un+1[dn+1/a] ∧ (a � b), x � c ⇔ y0 Sx0 x and x � b ⇔ x = yn+1.
Since n = 0 is known, we assume n > 0. Thus, we find xn with xn+1 R xn and
xn � Un−1 ∧ dn � a (note that Un−1[dn+1/a] = Un−1). Using F |= R

n
we see that

there must exist some x with x � b ∧ �c . But yn+1 is the only world that forces b
thus necessarily yn+1 � �c . By the choice of � we thus have that if yn+1 R u then
y0 Sx0 u. �
Using the frame condition we readily see that the broad series of principles does
not define a hierarchy.

Corollary 4.6. For n �= m we have ILRn � ILRm.
Proof. For each m �= n it is easy to exhibit a frame F so that F |= Fn but
F �|= Fm. �
4.3. Arithmetical soundness. We will now see that all the principles Rn are
arithmetically sound and begin with a simple lemma.

Lemma 4.7. For any theory T extending S12 and any natural number n > 0, we
have that

T � Un → ∀CutK ♦(Dn ∧�KC ).
Proof. We proceed by induction on n and first consider n = 1. Thus, we reason
in T and assume U1, that is, ♦¬(D1 � ¬C ). We conclude by Lemma 2.6 that
♦∀CutK ♦(D1 ∧�KC ), whence ∀CutK ♦♦(D1 ∧�KC ) and also

∀CutK ♦(D1 ∧�KC )

as was to be shown.
Next, we consider the inductive case, again reasoning in T and assuming Un+1
which is ♦

(
(Dn � Dn+1) ∧ Un

)
. Reasoning inside the ♦, by the (IH) we conclude

from Un that
∀CutJ ♦ (Dn ∧�JC ). (21)

By Lemma 2.8 we obtain from Dn �Dn+1 that

∀CutK ∃CutJ Dn ∧�JC �Dn+1 ∧�KC. (22)

Combining

Dn ∧�JC �Dn+1 ∧�KC → (
♦(Dn ∧�JC )→ ♦(Dn+1 ∧�KC )

)
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with (21) and (22) under a ♦ we conclude that
♦
(
(Dn �Dn+1) ∧ Un

)→♦
(∀CutK ♦ (Dn+1 ∧�KC )

)
→∀CutK ♦

(
♦ (Dn+1 ∧�KC )

)
→∀CutK ♦ (Dn+1 ∧�KC )

as was to be shown. �
With this lemma, we can now prove the soundness of the series Rn.

Theorem 4.8. For each natural number n we have that Rn is arithmetically sound
in any theory T extending S12.

Proof. Since we already know that R0 is sound, we consider n > 0. We reason
in T , assume A � B and set out to prove Un ∧ (Dn � A) � B ∧ �C . By Pudlák’s
Lemma we get

∃CutJ A ∧�JC � B ∧�C. (23)

On the other hand, by the generalization of Pudlák’s Lemma (Lemma 2.8) applied
to Dn � A we obtain that ∀CutJ ∃CutK Dn ∧�KC � A ∧�JC so that

∀CutJ ∃CutK (
♦(Dn ∧�KC )→ ♦(A ∧�JC )

)
.

By Lemma 4.7 we see that Un → ∀CutK♦(A ∧ �KC ). Combining these last two
observations, we see that

Un ∧ (Dn � A)→ ∀CutJ ♦ (A ∧�JC )
so that

∀CutJ Un ∧ (Dn � A)� A ∧�JC.
Combining this with (23) yields Un ∧ (Dn � A)� B ∧�C as was to be shown. �

§5. On the core interpretability logic IL(All). Apart from the principles men-
tioned earlier in this article the literature has considered various other principles
too. Some of those are

W: A� B → A� B ∧�¬A;
W∗: A� B → B ∧�C � B ∧�C ∧�¬A;
P0: A� ♦B → �(A� B);
R: A� B → ¬(A � ¬C )� B ∧�C .
In [13], IL(All) was conjectured to be ILW. In [15] this conjecturewas falsified and
strengthened to a new conjecture, namely that ILW∗, which is a proper extension
of ILW, is IL(All). In [6] it was proven that the logic ILW∗P0 is a proper extension
of ILW∗, and that ILW∗P0 is a subsystem of IL(All) (we write ILW∗P0 instead of
IL{W∗,P0}). This falsified the conjecture from [15]. In [6] it is also conjectured that
ILW∗P0 is not the same as IL(All).
In [8] it is conjectured that ILW∗P0=IL(All) and this conjecture was refuted in
[4] by proving that the logic ILRW is a subsystem of IL(All) and a proper extension
of ILW∗P0.
It is easy to see that A�♦B → �(A�♦B) ∈ ILP ∩ ILM. In [16] it was shown
however thatA�♦B → �(A�♦B) /∈ IL(All) thereby lowering the upper bound
IL(All) ⊆ ILP ∩ ILM. Since A� ♦B → �(A � ♦B) is reminiscent of the modally
incomplete principle P0, we remark here that the principle
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A� B → ¬(A� ♦C )� B ∧�¬C
implies A� ♦B → �(A� ♦B) so that it cannot be in IL(All) either.
The current article raises the previously known lower bound of IL(All). However,
it seems unlikely that this will be the end of the story and the two series presented
here seem amenable for interactions. Just bymere inspection of the frame conditions
we observe that

Fn = ∀w, x, y, z (B0(w, x, y, z)⇒ Gn(x, y, z)),
Fn = ∀w, x, y, z (Bn(w, x, y, z)⇒ G0(x, y, z)).

suggesting possible interactions. For example, a combination of R1 and R1 could
yield

A� B → (C � A) ∧ ♦¬(C � ¬D) ∧ (E � ♦F )� B ∧�D ∧ (E � F ).
We note that the two series presented in this article only spoke of S relations that
were imposed by the frame conditions. This suggests that a new conjecture can be
formulated.
In words the conjecture is expressed as follows. First we single out the second-
order frame conditions that are inherent to provability and interpretability. These
are the converse well-foundedness of the R relation as expressed by Löb’s axiom
�(�A → A) → �A and the converse well-foundedness of R ◦ Sx as expressed by
W. Over these frames, we will further impose the existence of all Sx relations that
are forced to be there in virtue of both the ILP and the ILM frame condition. The
logic of those frames is put forward as the new conjecture for IL(All).
To make this conjecture mathematically precise, we will introduce some notation.
Let F be a class of IL-frames. By IL[F] we shall denote the interpretability logic
corresponding to this class. That is,

IL[F] := {A | ∀F ∈ F ∀valuationV 〈F,V 〉 |= A}.
Let F (x, y, z) denote any sentence—first or higher order—in the language with a
binary relation R and infinitely many indexed binary relations Su . We now define
the following class of conditions

CILP∩S ILM := {F (x, y, z)→ x Sy z | ILP |= F (x, y, z)→ x Sy z ∧
ILM |= F (x, y, z)→ x Sy z}.

We wrote ILP |= F (x, y, z) → y Sx z to denote that for any Veltman frame
F for which F |= ILP we also have F |= F (x, y, z) → y Sx z. Likewise, we
speak of ILM |= F (x, y, z) → y Sx z. Of course, in this context the condition
F (x, y, z)→ x Sy z is equivalent to its universal closure. The class CILP∩S ILM should
thus capture all the Sx relations that are imposed both because of ILM and of ILP
frame conditions. We now define

All := {F |= ILW | ∀ C∈CILP∩S ILM F |= C}
The second author poses the new conjecture

Conjecture 5.1. IL(All) = IL[All].

It is easy to formulate the conjecture where the antecedent F (x, y, z) is replaced
by a set of sentences rather than a single sentence yet it seems hard to imagine that
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this is needed. Note that the conjecture only speaks of principles related to imposed
S relations. For example, this will leave out a principle like A�B → (♦A∧��C �
B ∧�C ) as formulated in [8] and whose frame condition is x R y R z Sx u R v →
∃wy R w R v.
As the referee did, we remark that with the current article out, it seems unlikely
that IL(All) will have a nice axiomatization. It may occur however that resorting
to a richer language may significantly simplify the answer. In [9] the second author
and Visser looked at such a richer language where constants for particular definable
cuts were available. In the light of the current article, we expect that studies as in [9]
will gain increasing importance.
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