
Proceedings of the Royal Society of Edinburgh, 134A , 143{158, 2004

Closed characteristics of second-order Lagrangians
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We study the existence of closed characteristics on three-dimensional energy
manifolds of second-order Lagrangian systems. These manifolds are always
non-compact, connected and not necessarily of contact type. Using the speci¯c
geometry of these manifolds, we prove that the number of closed characteristics on a
prescribed energy manifold is bounded below by its second Betti number, which is
easily computable from the Lagrangian.

1. Preface

Second-order Lagrangian systems are de­ ned variationally by extremizing action
functionals of the form J [u] =

R
I

L(u; u0; u00) dt. The Lagrangian L depends not only
on the state variable u and its ­ rst derivative, but also on its second derivative,
which is not the usual situation for variational problems in classical mechanics. The
Euler{Lagrange equations of such systems are given by

d2

dt2

@L

@u00 ¡ d

dt

@L

@u0 +
@L

@u
= 0 (1.1)

and are, in essence, fourth-order di¬erential equations. These systems have recently
been used in many models in physics and engineering, and the literature pertaining
to them is extensive. We refer the reader to [6{8] and the references therein for
more information.

Under the natural hypothesis that L is convex in u00, a second-order Lagrangian
system is equivalent to a two-degrees-of-freedom Hamiltonian system in R4 endowed
with its standard symplectic form !. The Hamiltonian is given by

H(u; u0; u00; u000) =

µ
@L

@u0 ¡ d

dt

@L

@u00

¶
u0 +

@L

@u00 u00 ¡ L(u; u0; u00): (1.2)

Introducing the symplectic coordinates x = (u; v; pu; pv), the Hamiltonian becomes
H(x) = puv + L ¤ (u; v; pv), where L ¤ is the Legendre transform of L with respect to
u00. Hamilton’s equations of motion are equivalent to (1.1) and yield a dynamical
system ¿ t on R4. The Hamiltonian H foliates R4 with three-dimensional energy
manifolds ME = fx 2 R4 j H(x) = Eg. These manifolds are invariant under the
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®ow ¿ t, and the dynamical behaviour of the system can be studied on an individual
energy manifold. An energy manifold is regular if E is a regular value of H . In
the context of second-order Lagrangians, this is equivalent to the condition that
@u 0 0 L(u; 0; 0) 6= 0 whenever L(u; 0; 0)+E = 0. See x 4 for a discussion of the singular
case. For more details on second-order Lagrangians, see [11].

Recently, the analysis of periodic orbits, or closed characteristics, on given energy
manifolds has become an important issue in the study of general Hamiltonian sys-
tems [5, 9, 13]. In this paper, we study the geometric structure speci­ c to second-
order Lagrangian systems and place it in this broader context.

Given an arbitrary (2n ¡ 1)-dimensional manifold M embedded in (R2n; !), with
! the standard symplectic form, one can construct a Hamiltonian system for which
M is the energy manifold for E = 0. The particular choice of the Hamiltonian
is not intrinsic to the problem of ­ nding periodic orbits, which can be phrased
in more geometric terms. The speci­ c geometry of M and the 2-form ! de­ ne a
characteristic line bundle,

EM = f(x; ¹ ) 2 TxM n f0g j !x( ¹ ; ² ) = 0 8 ² 2 TxMg» T M:

The vector ­ eld of any Hamiltonian H satisfying M = H¡1(0) is a section of
this bundle. The trajectory of a periodic orbit can thus be regarded as a closed
characteristic of the line bundle, i.e. an embedding ® : S1 ! M of the circle into
M for which

T ® = EM j ® :

This formulation of the problem relates the existence of periodic orbits of the dif-
ferential equation (1.1) to the geometric and topological properties of its energy
manifolds.

Motivated by a novel result by Rabinowitz [9], Weinstein [13] conjectured in the
1970s that any compact hypersurface M 2 (R2n; !), with the additional require-
ment that

¬ ( ¹ ) 6= 0; 0 6= ¹ 2 EM ;

for some 1-form ¬ with d¬ = !, i.e. M is of contact type relative to !, has at least
one closed characteristic. This conjecture was later proved by Viterbo [12].

Energy manifolds determined by second-order Lagrangians do not ­ t within this
theory for two reasons, they are always non-compact and they are not necessarily of
contact type in (R4; !), as was proved in [2]. Even with a more general formulation
via Reeb vector ­ elds, the latter issue cannot necessarily be resolved (see [2]).
However, in this paper, we show that these manifolds possess certain geometric and
topological properties that guarantee the existence of closed characteristics.

In order to reduce the amount of technical detail, we restrict ourselves, for now,
to Lagrangians that satisfy the following hypotheses.

(H1) L(u; v; w) = 1
2 w2 + K(u; v).

(H2) K(u; v) > ¡ C(juj) ¡ C(juj)jvj ® , ® < 4, where C(juj) is locally bounded.

Note that (H2) is a lower bound on K; an upper bound is not necessary. These
hypotheses can be weakened, as discussed in x 4. We now formulate the main result
of this paper.
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Theorem 1.1. Let M be a regular energy manifold of a second-order Lagrangian
system with C2 Lagrangian L satisfying hypotheses (H1) and (H2). Then the num-
ber of closed characteristics on M is bounded below by the second Betti number
dim H2(M).

The proof of theorem 1.1 also provides a method for computing the second Betti
number of M . Indeed, for any Lagrangian system with @2

wL > ¬ > 0, the homotopy
type of M can be determined directly from the sign of its `potential’, L(u; 0; 0) + E
(see x 4 and [2]).

Theorem 1.1 is a generalization of the situation for ­ rst-order Lagrangian sys-
tems L(u; u0) = 1

2 (u0)2 + F (u) where H = 1
2 (u0)2 ¡ F (u). An energy manifold M is

one dimensional, and each compact component of (regular) M consists of a single
periodic solution. Thus the number of closed characteristics is exactly dim H1(M ).
For second-order Lagrangians, dim H2(M ) is only a lower bound. One can eas-
ily give examples of systems with in­ nitely many di¬erent closed characteristics
(see [11]). Note that, for Lagrangians of the special form L = L(u; u00), hypothe-
sis (H2) becomes void and the similarity between ­ rst- and second-order systems
becomes even stronger.

In [11, theorem 12, p. 1408], a version of theorem 1.1 was proved under an addi-
tional hypothesis that the Lagrangian satis­ es a twist property, de­ ned in the next
section. For some systems, this property can be veri­ ed (see [11, lemma 9, p. 1405]),
but in many cases it cannot. Theorem 1.1 is an improvement of this previous result,
removing the twist hypothesis. However, we do draw on the results for twist systems
to prove theorem 1.1.

2. Geometry of second-order Lagrangians

To establish the existence of closed characteristics on energy manifolds of second-
order Lagrangian systems, we use their variational structure. A closed characteristic
is equivalent to a periodic solution u, which can be found as a critical point of the
action, i.e.

¯ u;T

Z T

0

[L(u; u0; u00) + E] dt = 0;

where T > 0 is the period of u. Note that variations are taken in T as well as u.
We consider functions that have a simple pro­ le consisting of two monotone laps:

u + , which increases from some minimal value u1 to a maximal value u2, and u¡,
which decreases from u2 back to u1, with u0 = 0 at u1 and u2. If u+ and u¡ are
solutions, then their concatenation u + #u¡ is called a `broken geodesic’, and the
extrema u1 and u2 will be called concatenation points. Note that a broken geodesic
need not be a solution to (1.1) at its concatenation points, since the third derivatives
need not match (see [11]).

We obtain a periodic solution from the method of broken geodesics in two steps.
First we must determine when monotone laps exist between given values of u, and
this is accomplished in x 3 via minimization. Then it must be shown that there exists
a broken geodesic that is a solution to (1.1), which follows from the geometric and
topological properties of M , as we now explain.

https://doi.org/10.1017/S0308210500003127 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003127


146 W. D. Kalies and R. C. A. M. VanderVorst
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Figure 1. The increasing and decreasing laps u + and u ¡ , respectively.

From the Hamiltonian (1.2), solutions must satisfy

@L

@u00 u00 ¡ L(u; 0; u00) = E

at points where u0 = 0. We denote this level set in the (u; u00)-plane by N . Note
that N is the section of M de­ ned by M \ fu0 = 0g. Indeed, M \ fu0 = 0g is
the cylinder N £ R, where the R variable is determined by the pu coordinate. Due
to the convexity of L with respect to u00, the manifold N consists of two graphs
in the (u; u00)-plane. In particular, the projection º of N onto the u-axis can be
characterized by º N = fu : L(u; 0; 0) + E > 0g, and the sets N \ f(u; u00) j u > 0g
and N \ f(u; u00) j u 6 0g are graphs over º N . A particular connected component
of º N will be denoted by I, and will be referred to as an interval component.

We will consider broken geodesics whose values lie in a single interval compo-
nent I. Given such a component I of º N , de­ ne B = f(u1; u2) 2 I £ I : u1 < u2g.
For given laps u + and u¡ let p +

u1
, p+

u2
and p¡

u1
, p¡

u2
be the pu values at the concate-

nation points. As shown in [11], if the condition

p +
u1

¡ p¡
u1

= 0 and p +
u2

¡ p¡
u2

= 0 (2.1)

is satis­ ed at the concatenation points, then u + #u¡ is a periodic solution, and
thus a closed characteristic.

Let (u1; u2) 2 B and p+
u1

; p +
u2

2 R. Consider the trajectory

x(t) = ¿ t(u1; 0; p +
u1

; pv(u1))

of the Hamiltonian ®ow. Here, pv = u00 is a function of u1, since the initial point
has v = u0 = 0, and hence is in N . Thus there are two choices for pv(u1), and we
will choose pv(u1) > 0.

De­ ne f+ (u1; p +
u1

) and g + (u1; p +
u1

) to be the values of u and pu at the ­ rst max-
imum of º x(t), respectively (see ­ gure 1). As p +

u1
! 1, then f + (u1; p +

u1
) ! u1.

The maps f+ and g + are well de­ ned for ­ xed u1 with decreasing p +
u1

as long
as f+ (u1; p +

u1
) 6 max I . In addition, the f+ and g+ are smooth in (u1; p +

u1
) on the

domain of de­ nition P + . We can de­ ne analogous maps f¡(u2; p¡
u2

) and g¡(u2; p¡
u2

)
as the values of u and pu at the ­ rst minimum of a decreasing lap (see ­ gure 1),
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Figure 2. The cotangent bundle T ¤B and the intersecting
Lagrangian submanifolds L + and L ¡ .

with domain of de­ nition P¡. Let

L + = f(u; f + (u; pu); pu; g + (u; pu))g;

L ¡ = f(f¡(u; pu); u; g¡(u; pu); pu)g

be subsets of the cotangent bundle T ¤ B. Then L § are two-dimensional submani-
folds of T ¤ B given as graphs over the (u1; pu1 )-plane and the (u2; pu2 )-plane, respec-
tively (see ­ gure 2).

The submanifolds L § are, in fact, Lagrangian submanifolds of T ¤ B. Condi-
tion (2.1) implies that intersection points of the manifolds L § correspond to bro-
ken geodesics that are periodic solutions, i.e. u1 = f¡(u2; pu2 ), f+ (u1; pu1 ) = u2,
pu1 = g¡(u2; pu2 ) and g + (u1; pu1 ) = pu2 .

In the special case that there exist unique laps u + and u¡ for all (u1; u2) 2 B,
then the system is a twist system, as mentioned in the introduction. In this case,
L § are exact Lagrangian submanifolds of T ¤ B, i.e. L § are the graphs of exact
1-forms on B provided by generating functions for the laps [11]. In this case, a
direct variational principle exists in terms of just the extrema u1 and u2. This case
is analysed in detail in [11], and will be used here to prove the main result. If the
Lagrangian system is not a twist system, a generating function can still be found
by considering the full action JE as in [1]. However, in this paper, we will use a
continuation principle to study L + \ L ¡ via continuation to a twist system.

We denote by º : T ¤ B ! B the canonical projection onto the base and by º ¤ the
projection onto the (pu1 ; pu2 ) coordinates of a point in T ¤ B. The following lemma
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is proved by theorem 3.12 in x 3 and shows that, for any Lagrangian satisfying (H1)
and (H2), the projections º L § cover the base, which plays a crucial role in our
intersection theory.

Lemma 2.1. Let L satisfy hypotheses (H1), (H2). Then, for each pair (u1; u2) 2 B,
there exist increasing and decreasing laps u + and u¡ (in C5), respectively. In par-
ticular, º L § = B.

The next lemma establishes that the intersection set º ( L + \L ¡) is always strictly
contained in B for Lagrangians satisfying (H1) and (H2).

Lemma 2.2. Let L satisfy hypotheses (H1) and (H2). Then

º ( L + \ L ¡) \ @B = ;;

where @B = B \ (R2 n intR2 B). Moreover, if cl(B) is compact, then there exists a
compact set B̂ » intR2 B such that º ( L + \ L ¡) » B̂.

Proof. Let º ¡1(u1; u2) = ± be a ­ bre in T ¤ B. For each point (u1; u2) 2 B,
lemma 2.1 implies that ± \ L § 6= ;. Take a point (u1; u2) 2 @B and consider the
points (p +

u1
; p +

u2
) 2 ± \ L + and (p¡

u1
; p¡

u2
) 2 ± \ L ¡. Lemma 7 of [11] implies that,

for each pair (p +
u1

; p +
u2

) and (p¡
u1

; p¡
u2

), either p +
u1

¡ p¡
u1

or p +
u2

¡ p¡
u2

has a de­ nite
sign (strictly negative). Thus, for any boundary point (u1; u2) 2 @B, we have

º ¤ ( ± \ L + ) 6= º ¤ ( ± \ L ¡); (2.2)

which implies that º ( L + \ L ¡) \ @B = ;.
Now assume that cl(B) is compact, and hence I is a compact interval component.

De­ ne
B ¯ = f(u1; u2) 2 B j u1 > min I + ¯ ; u2 6 max I ¡ ¯ g:

From lemma 8 of [11], there exists ¯ 0 > 0 such that, for all ¯ 6 ¯ 0, the boundaries
fu1 = min I + ¯ g and fu2 = max I ¡ ¯ g satisfy equation (2.2). This proves that
º ( L + \ L ¡) \ @B ¯ = ;, where @B ¯ is de­ ned in same way as @B. De­ ne the diag-
onal 4 = f(u1; u2) 2 cl(B) j u1 = u2g. Suppose now that there exists a sequence of
points (un

1 ; un
2 ) accumulating at cl(B̄ ) \ 4. Then it follows from lemma 5 of [11]

that
k(p +

un
1

¡ p¡
un

1
; p +

un
2

¡ p¡
un

2
)k ! 1 as n ! 1

for any pair (p +
un

1
¡ p¡

un
1

; p +
un

2
¡ p¡

un
2

) in ( ± n\L + )£( ± n\L ¡), where ± n = º ¡1(un
1 ; un

2 ).
The latter combined with the behaviour of L + \ L ¡ on @B ¯ now implies that there
exists a compact set B̂ » intR2 B ¯ » intR2 B such that º ( L + \ L ¡) » B̂.

To study L + \ L ¡, we use the intersection number ´ ( L + ; L ¡). Our approach is to
de­ ne ´ ( L + ; L ¡) via the Brouwer degree by constructing proper equations on T ¤ B
whose zero sets are L §. This can be done in many ways and the intersection number
´ ( L + ; L ¡) does not depend on the particular choice of the de­ ning equations.

Let

F + (u1; pu1 ; u2; pu2 ) = [u2 ¡ f + (u1; pu1 ); pu2 ¡ g + (u1; pu1 )];

F¡(u1; pu1 ; u2; pu2 ) = [u1 ¡ f¡(u2; pu2 ); pu1
¡ g¡(u2; pu2 )];
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where the domain of de­ nition of F + is (u1; pu1 ) 2 P + , (u2; pu2 ) 2 I £ R and
the domain of de­ nition of F¡ is (u2; pu2 ) 2 P¡, (u1; pu1 ) 2 I £ R. Then L § are
the level sets F ¡1

§ (0) in T ¤ B. De­ ne F (u1; pu1 ; u2; pu2 ) = [F+ ; F¡] on P + £ P¡.
Then the zero set of F is F ¡1(0) = L + \ L ¡, which is bounded and contained
in int(P + £ P¡). The latter follows from lemma 2.2. Indeed, for any intersection
point, (u1; u2) 2 B̂, we have u1 2 int I. If (u1; pu1 ) 2 @P + , then u1 2 @I , a
contradiction. Thus (u1; pu1

) 2 int P + . Similarly, it follows that (u2; pu2
) 2 int P¡.

Since º ( L + \ L ¡) » B̂, the boundedness of F ¡1(0) follows from continuity. These
facts combined justify the de­ nition

´ ( L + ; L ¡) = deg(F; P + £ P¡; 0)

(cf. [3]). Since dim L § = 2, we have

´ ( L + ; L ¡) = ´ ( L ¡; L + ):

We are now ready to prove the main result.

Proof of theorem 1.1. Let M be a regular energy manifold corresponding to H(x) =
E. We compare the Lagrangian system determined by L0 = L = 1

2
w2 + K(u; v)

with the system determined by L1 = 1
2 w2 + K(u; 0). The latter system is of Swift{

Hohenberg type, which is shown to be a twist system in [11]. The two systems are
related by continuation. Speci­ cally, de­ ne L ¶ = (1 ¡ ¶ )L0 + ¶ L1. Then the energy
manifolds M ¶ are regular for all ¶ 2 [0; 1]. Hence each M ¶ is homotopy equivalent to
M = M0. Moreover, from the de­ nition of L ¶ , it is clear that the sections N ¶ = N
and the base manifolds B ¶ = B for all ¶ 2 [0; 1].

Since M0 and M1 are homotopy equivalent, the Betti numbers dim Hk(M0) and
dim Hk(M1), k > 0, are equal. In [2, x 7], it was shown that dim H2(M1) is equal
to the number of compact components of the section N , which can be computed
directly from the graph of the potential K(u; 0), i.e. the number of compact intervals
on which K(u; 0) + E > 0.

Since L1 de­ nes a twist system, the results in [11], speci­ cally lemma 8 illustrated
in ­ gure 2, imply via a Conley index argument that, for each compact component
of N , the overall degree deg(F; P + £ P¡; 0) is §1, and hence ´ ( L 1

+ ; L 1
¡) = §1. The

sign of ´ ( L 1
+ ; L 1

¡) depends on the orientations of L § induced by their de­ nition as
level sets of F§. Since L ¶ satis­ es hypotheses (H1) and (H2) and @2

wL ¶ = 1 > 0
for all ¶ 2 [0; 1], the results of lemma 2.1 apply for all ¶ 2 [0; 1]. Moreover,
lemma 2.2 implies that º ( L ¶

+ \ L ¶
¡) » B̂ for some compact set B̂ » B uniformly

for all ¶ 2 [0; 1].
Now, the continuation property of the degree can be used to show that the inter-

section number can be continued for all ¶ 2 [0; 1]. This fact requires a little argu-
ment. For each ¶ 0 2 [0; 1], there exists an ° ( ¶ 0) > 0 and compact D ¶ 0 » P + £ P¡
such that L ¶

+ \ L ¶
¡ » D ¶ 0 for all ¶ 2 ( ¶ 0 ¡ ° ( ¶ 0); ¶ 0 + ° ( ¶ 0)) \ [0; 1]. Therefore,

deg(F; P ¶
+ £ P ¶

¡; 0) = deg(F; D ¶ 0 ; 0), i.e. the function ´ ( L ¶
+ ; L ¶

¡) is locally constant
on [0; 1]. Since [0; 1] is connected, ´ ( L ¶

+ ; L ¶
¡) is globally constant on [0; 1]. In partic-

ular, ´ ( L 0
+ ; L 0

¡) = ´ ( L 1
+ ; L 1

¡) 6= 0.
Hence, for each compact component of N , the energy manifold M contains a

closed characteristic. Therefore, the number of closed characteristics is at least
dim H2(M).

https://doi.org/10.1017/S0308210500003127 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003127


150 W. D. Kalies and R. C. A. M. VanderVorst

3. Existence of laps in the regular case

3.1. Properties of the Lagrangian action

Fix E 2 R and a compact component interval component I. Given

u = (u1; u2) 2 B;

b 2 K = f(b1; b2) 2 R2 : b1b2 > 0 and maxfj b1j; jb2jg < 1
2
g;

de­ ne

X ½ (u; b) = fu 2 H2([0; ½ ]) : u(0) = u1; u( ½ ) = u2; u0(0) = b1;

u0( ½ ) = b2 and u0(t) 6= 0 for t 2 (0; ½ )g

and

JE [u] =

Z ½

0

[1
2
ju00(t)j2 + K(u(t); u0(t)) + E] dt;

which is well de­ ned on X(u; b) =
S

½ 2 R+ X ½ (u; b). To prove lemma 2.1, we consider
the following minimization problem,

JE(u; b) = inf
u 2 X ½

½ 2 R+

JE [u];

and establish the existence of minimizers.
Minimization JE requires a growth condition on the Lagrangian. Hypothesis (H2)

implies the following property.

Lemma 3.1. If hypothesis (H2) holds, then, for every ° > 0, there exists C ° > 0
such that K(u; v) + E + ° ¡1v4 > ¡ C° jvj for all u 2 I and v 2 R.

Proof. Since u is bounded, we have K(u; v) > ¡ C ¡ C jvj ® . Thus

K(u; v) + E + ° ¡1v4 > ¡ C + E ¡ C jvj® + ° ¡1v4 > ¡ C ¤
°

for all u 2 I and v 2 R. Since K(u; 0) + E > 0 and @vK(u; 0) is bounded for u 2 I,
there exists C ° > 0 such that K(u; v) + E + ° ¡1v4 > ¡ C° jvj for all u 2 I and
v 2 R.

Lemma 3.2. If u 2 X(u; b), then
Z ½

0

ju00j2 dt > 4(1 ¡ jbj 1 )

9ju2 ¡ u1j2

Z ½

0

ju0j4 dt ¡ 4jbj21
9ju2 ¡ u1j :

Proof. Since u is monotone, we can reparametrize by u0(t) = v(u) and let z(u) =
vjvj1=2(u). Transforming to (u; z) variables yields

JE [u(t)] = JE [z(u)] =

Z u2

u1

·
2
9
jz 0(u)j2 +

K(u; z2=3(u)) + E

z2=3(u)

¸
du;

with z 2 À + H1
0 ([u1; u2]), where À is a smooth function satisfying z(u1) = b

3=2
1 and

z(u2) = b
3=2
2 . Hence z is absolutely continuous with

z(u) ¡ z(u1) =

Z u

u1

z0( · ) d ·
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for all u 2 [u1; u2], which implies

jz(u) ¡ b
3=2
1 j2 6 ju2 ¡ u1j

Z u2

u1

jz0j2 du:

Note that, under this transformation,
Z ½

0

ju00(t)j2 dt =
4

9

Z u2

u1

jz0(u)j2 du and

Z ½

0

ju0(t)j4 dt =

Z u2

u1

jz(u)j2 du:

Therefore,
Z ½

0

ju00j2 dt

=
4

9

Z u2

u1

jz0j2 du

> 4

9ju2 ¡ u1j2

Z u2

u1

jz ¡ b
3=2
1 j2 du

=
4

9ju2 ¡ u1j2

·Z u2

u1

z2 du ¡ 2b
3=2
1

Z u2

u1

z du + b3
1ju2 ¡ u1j

¸

> 4

9ju2 ¡ u1j2

·Z u2

u1

z2 du ¡ 2b
3=2
1 ju2 ¡ u1j1=2

µZ u2

u1

z2 du

¶1=2

+ b3
1ju2 ¡ u1j

¸

> 4(1 ¡ b1)

9ju2 ¡ u1j2

Z u2

u1

z2 du ¡ 4b2
1

9ju2 ¡ u1j

> 4(1 ¡ jbj1 )

9ju2 ¡ u1j2

Z ½

0

ju0j4 dt ¡ 4jbj21
9ju2 ¡ u1j :

Now we use this inequality to prove that JE is bounded below on X(u; b), so
that the minimization problem is well posed, i.e. JE > ¡ 1.

Lemma 3.3. There exists a constant C(ju2 ¡ u1j; jbj1 ) > 0 such that JE [u] > ¡ C
for all u 2 X(u; b).

Proof. Applying lemmas 3.1 and 3.2, we obtain

JE [u] =

Z ½

0

[1
2
ju00j2 + K(u; u0) + E] dt

> 2(1 ¡ jbj1 )

9ju2 ¡ u1j2

Z ½

0

ju0j4 dt ¡ 2jbj21
9ju2 ¡ u1j +

Z ½

0

[K(u; u0) + E] dt

>
Z ½

0

·
K(u; u0) + E +

1

9ju2 ¡ u1j2
ju0j4

¸
dt ¡ 2jbj21

9ju2 ¡ u1j

> ¡
Z ½

0

Cu0 dt ¡ 2jbj21
9ju2 ¡ u1j

> ¡ Cju2 ¡ u1j ¡ 2jbj21
9ju2 ¡ u1j ;

which implies that JE [u] is bounded below on X(u; b).
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De­ ne the sublevel set Ja
E(u; b) = fu 2 X(u; b) : JE [u] 6 ag.

Lemma 3.4. There exist positive constants C1, C2 and T1, depending on a, ju2 ¡ u1j
and jbj 1 , such that, for any u 2 Ja

E(u; b), we have ½ > T1, ku00kL2([0;½ ]) 6 C1 and
ku0kL4([0;½ ]) 6 C2.

Proof. We have

a > JE [u]

=
1

2

Z ½

0

ju00j2 dt +

Z ½

0

[K(u; u0) + E] dt

>
·

2(1 ¡ jbj 1 )

9ju2 ¡ u1j2 ¡ 1

9ju2 ¡ u1j2

¸ Z ½

0

ju0j4 dt ¡ 2jbj21
9ju2 ¡ u1j ¡ Cju2 ¡ u1j:

Therefore, Z ½

0

ju0j4 dt 6 C(a; jbj 1 ; ju2 ¡ u1j);

which also implies Z ½

0

ju00j2 dt 6 C(a; jbj 1 ; ju2 ¡ u1j):

As for a lower bound on ½ , we argue as follows. Integrating u0 over [0; ½ ], we ­ nd
that

ju2 ¡ u1j 6 ½ 1=2ku0kL2 6 ½ 3=4ku0kL4 6 C½ 3=4:

Lemma 3.5. There exists C( ½ ; a; u; jbj 1 ) such that kukH2([0;½ ]) 6 C for all u 2
Ja

E(u; b).

Proof. By Cauchy{Schwarz,
Z ½

0

ju0j2 dt 6 C(a; jbj1 ; ju2 ¡ u1j) ½ 1=2;

which implies that

kukL1 ([0;½ ]) 6 C(a; jbj 1 ; ju2 ¡ u1j) ½ 3=4 + ju1j

and
Z ½

0

u2 dt 6 (C(a; jbj1 ; ju2 ¡ u1j) ½ 3=4 + ju1j)2 ½ :

Therefore,
kukH2([0;½ ]) 6 C(a; jbj 1 ; ju2 ¡ u1j; ju1j; ½ ):

To ­ nd a minimizer, we need to establish that JE is coercive and weakly lower
semicontinuous along a minimizing sequence. Lemma 3.5 implies coercivity provided
that ½ is uniformly bounded, which is proved in x 3.2 for the regular case. We now
show that JE is sequentially weakly lower semicontinuous along sequences for which
½ is bounded.
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Lemma 3.6. Suppose that un 2 X(u; b), with both kunkH2([0;½ n]) and ½ n uniformly
bounded. Then

lim inf
nk ! 1

JE [unk ] > JE [u]

for some u 2 H2([0; ½ ]).

Proof. We can rescale t to separate the dependence on ½ from variations in u. Let

X̂ ½ (u; b) = fq 2 H2([0; 1]) : q(0) = u1; q(1) = u2; q0(0) = b1=½ ;

q0(1) = b2=½ and q0(s) 6= 0 for s 2 (0; 1)g:

Let
X̂(u; b) =

[

½ 2 R+

X̂ ½ (u; b) » H2([0; 1]):

Then

JE [q] =

Z 1

0

·
1

2½ 3
jq00(s)j2 + ½ K

µ
q(s);

q0(s)

½

¶
+ ½ E

¸
ds

for q 2 X̂(u; b).
The functions qn(s) = un( ½ s) are uniformly bounded in H2([0; 1]), and hence we

can extract a weakly convergent subsequence qn * q with ½ n ! ½ . Observe that
the functional

R 1

0
½ [K(q; q0=½ ) + E] ds is continuous in ½ > 0 and weakly continuous

in q 2 H2([0; 1]). The functional (1=2 ½ 3)
R 1

0
jq00j2 ds separates the variables ½ and q

and is continuous in ½ and sequentially weakly lower semicontinuous in q. Hence

1

2½ 3

Z 1

0

jq00j2 ds 6 lim inf
n! 1

1

2 ½ 3
n

Z 1

0

jq00
nj2 ds:

Therefore, JE [q] 6 lim infn! 1 JE [qn].

Lemma 3.7. If JE(u; b) = JE [u] for some u 2 X(u; b), then u 2 C5([0; ½ ]) satis¯es
the Euler{Lagrange equation (1.1) and H(u; u0; u00; u000) = E.

Proof. This follows from standard regularity theory (cf. [7]).

Lemmas 3.5 and 3.6 imply that a minimizer exists in H2([0; ½ ]), provided that
½ is bounded along some minimizing sequence. Lemma 3.7 states that a minimizer
belonging to X(u; b) is a solution to the Euler{Lagrange equations. Therefore, we
must show that minimizing sequences exist for which ½ is bounded and the weak
limit belongs to X(u; b). This issue will be addressed in x 3.2 for the regular case.
We conclude this subsection with a technical lemma concerning the continuity of
the in­ ma JE(u; b) with respect to the parameter b.

Lemma 3.8. Suppose that bn ! b 2 K and un 2 X(u; bn), with ½ n ! ½ , JE [un] =
JE(u; bn) and un ! u in H2([0; ½ ]). Then JE [u] = JE(u; b).

Proof. Again we can rescale t to separate the dependence on ½ from variations
in u. Let À [ ½ ; b)] : [0; 1] ! R be a smooth strictly monotone function satisfying
À (0) = u1, À (1) = u2, À 0(0) = b1=½ and À 0(1) = b2=½ , and de­ ne

JE [q; ½ ; b] =

Z 1

0

L

µ
q + À ;

q0 + À 0

½
;

q00 + À 00

½ 2

¶
½ ds
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for
q 2 fq 2 H2([0; 1]) : q0(s) + À 0(s) 6= 0 for s 2 (0; 1)g:

Then
inf
q;½

JE [q; ½ ; b] = JE(u; b):

The family À [ ½ ; b] can be chosen to vary continuously in b, the family of functionals
JE [q; ½ ; b] is continuous in b for each ­ xed q and ½ . Therefore, the in­ mum JE(u; b)
is upper semicontinuous with respect to b (cf. [10]).

Let qn(s) = un( ½ ns) ¡ À [½ n; bn](s). Since JE [¢; ¢; b] is continuous, we have

JE [q; ½ ; b] = lim
n ! 1

JE [qn; ½ n; bn] = lim
n ! 1

JE(u; bn) 6 JE(u; b) 6 JE [q; ½ ; b]:

Therefore, JE [u] = JE [q; ½ ; b] = JE(u; b).

3.2. The existence of minimizers

In this section, we prove the existence of minimizers when u = (u1; u2) 2 int B
for a single interval component I, and hence we will assume that [u1; u2] is regular.
In this case, the following property is due to continuity.

(P3) There exist » > 0 and ¯ 0 > 0 such that K(u; v) + E > » > 0 for all (u; v) 2
[u1; u2] £ [ ¡ ¯ 0; ¯ 0].

Lemma 3.9. Under hypotheses (H1) and (H2), there exists a constant T2 > 0,
depending on a, jbj1 , ju2 ¡ u1j, 1=¯ 0 and 1=» , such that, for any u 2 Ja

E, we have
½ 6 T2.

Proof. Let
S ¯ 0 = ft 2 [0; ½ ] : ju0(t)j > ¯ 0g;

where ¯ 0 is chosen in (P3). Since

jS̄
0
j̄ 4

0 6
Z ½

0

ju0j4 dt;

we have jS̄ 0
j 6 C(a; ¯ 2; ju2 ¡ u1j; 1=¯ 4

0). Let ° > 0. Then

a > JE [u]

>
Z

Sc
¯ 0

[K(u; u0) + E] dt +

Z

S̄
0

[K(u; u0) + E] dt

> » ( ½ ¡ jS ¯ 0
j) ¡ ° ¡1

Z

S̄ 0

ju0j4 dt ¡ C ° ju2 ¡ u1j;

which implies that ½ 6 T2(a; ¯ 2; ju2 ¡ u1j; 1=¯ 4
0 ; 1=» ), by lemma 3.4.

Lemmas 3.3 and 3.9 imply that action is bounded below on X(u; b), and the
time ½ is bounded on sublevel sets of JE . Therefore, lemma 3.6 implies that JE

is coercive and sequentially weakly lower semicontinuous along any sequence in
X(u; b) on which JE is bounded. Let

cl X ½ (u; b) = fu 2 H2([0; ½ ]) : un * u for some sequence un 2 X(u; b)g:
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Functions

u 2 cl X(u; b) =
[

½ >0

cl X ½ (u; b)

are monotone, possibly with critical in®ection points. We have shown that the
minimization problem is well posed in the sense that a minimizer exists in cl X(u; b).
However, we must still show that this minimizer lies in X(u; b) in order to apply
lemma 3.7.

Without loss of generality, we can assume that the following condition holds.

(P4) The constant ¯ 0 > 0 in (P3) can be chosen such that K(u; v) + E is non-
increasing in v for all (u; v) 2 [u1; u2] £ [ ¡ ¯ 0; ¯ 0].

Property (P4) is not a restriction on K . Consider the family of Lagrangians
ju00j2=2 + K(u; v) ¡ ¬ v. Then J ¬ ;E [u] = JE [u] ¡ ¬ ju2 ¡ u1j for all ¬ 2 R. Hence
the minimizers of J ¬ ;E are the same for all ¬ 2 R. Since [u1; u2] is compact, we
can choose ¬ > 0 such that @vK(u; 0) ¡ ¬ is strictly negative for all u 2 [u1; u2].
Then, replacing K(u; v) by K(u; v) ¡ ¬ v will satisfy (P4) without changing the
minimization problem, and since ¬ > 0, the growth condition (H2) is still satis­ ed.
Furthermore, property (P3) still holds with possibly smaller values of » and ¯ 0.
Property (P4) is used in the following lemma, which implies that a minimizer must
lie in X(u; b).

Lemma 3.10. Suppose [w1; w2] » [u1; u2]. Let u 2 cl X̂ ½ (w; b¤ ) for some b ¤ = (b; b)
with 0 < jbj < ¯ 0. De¯ne ^½ = jw2 ¡ w1j=b > 0 and w 2 X^½ (w; b¤ ) by w(t) = bt+w1.
Then JE [w] 6 JE [u] and w0(t) 6= 0. If u00 6² 0, then JE [w] < JE [u].

Proof. As in the proof of lemma 3.2, transforming u(t) and w(t) into (u; z) variables,
we have

JE [u] =
2

9

Z w2

w1

jz0j2 du +

Z w2

w1

·
K(u; z2=3) + E

z2=3

¸
du

>
Z w2

w1

·
K(u; jbj) + E

jbj

¸
du

= JE [w]: (3.1)

Here we have used properties (P3) and (P4).

Corollary 3.11. If u 2 cl X(u; b) is a minimizer of JE, then û0 6= 0 on [0; ½ ],
and hence u 2 X(u; b).

Proof. Suppose u has a critical point at t0. Since u is monotone, t0 is contained
in some maximal compact interval of critical points I. By continuity, for any
b ¤ = (b; b) with jbj su¯ ciently small, there is an interval [t1; t2] containing I such
that u0(t1) = u0(t2) = b. Let w1 = u(t1) and w2 = u(t2). Then, using lemma 3.10,
we can construct a function w 2 X(w; b ¤ ) such that JE [w] < JE [uj[t1;t2]]. Replac-
ing uj[t1;t2 ] by w yields a function û 2 H2([0; ^½ ]) such that JE [û] < JE [u], which
contradicts the fact that u is a minimizer.

We have proved the following theorem, which implies lemma 2.1.
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Theorem 3.12. Suppose that L satis¯es hypotheses (H1) and (H2) on an interval
component IE. If u 2 B and b 2 K , then there exists a strictly monotone minimizer
u 2 X(u; b) \ C5([0; ½ ]) of JE that satis¯es the Euler{Lagrange equation (1.1).

In fact, the above results prove theorem 3.12 for u 2 int B. In order to include all
of B, one can choose a sequence of minimizers un 2 X(un; b) with un ! u 2 @B. To
obtain a limit in X(u; b), we need to argue that ½ n is uniformly bounded. Suppose
not, i.e. ½ n ! 1. Since kunkH2([0;½ n ]) 6 C , we would obtain, after appropriate
shifts, a solution asymptotic to either u1 or u2, or both, which is a contradiction.

4. Extensions and concluding remarks

4.1. More general Lagrangians

Essentially, the hypotheses (H1) and (H2) in x 1 are stated in the manner most
convenient to implement the minimization in x 3 without too many technical details.
The analysis in that section is needed to establish the surjectivity of the projection
º L § onto the base B, which ensures that the continuation to a twist system is well
de­ ned. The geometric and topological considerations in x 2, other than surjectivity,
require merely the convexity of L in u00.

Thus hypotheses (H1) and (H2) can be weakened. For example, the conditions

(H10) 0 < ¬ 6 @2
wL(u; v; w) 6 ¬ ¡1 for all (u; v; w);

(H20) L(u; v; w) > 1
2 ¬ w2 ¡ C(juj) ¡ C(juj)jvj® , ® < 4,

where C(juj) is locally bounded, would also be su¯ cient. Hypothesis (H10) implies
that the action JE is well de­ ned on the Sobolev space H2(0; T ), and (H20) implies
that the action is bounded below. Moreover, the use of other function spaces would
allow super-quadratic growth of L in u00.

4.2. Sharp lower bounds

Consider the Lagrangian L(u; u0; u00) = 1
2
(u00)2 ¡ 1

4
(u0)4 and E > 0. The cor-

responding action is not bounded below. Indeed, if uA(t) = A sin( º (t ¡ 1
2T )=T ),

then

J [uA] =

Z T

0

[L(uA; u0
A; u00

A) + E] dt =
CA2

T 3
¡ C 0A4

T 3
+ ET:

Thus, for A large enough, J [uA] ! ¡ 1 as T ! 0. This example shows that the
minimization procedure can fail when ® > 4 in hypothesis (H2).

This problem is not just a failure of a particular method. For E = 0 in the previous
example, it is not di¯ cult to show that there are values u1 and u2 for which no
monotone laps exists. The growth condition (H2) is a geometric restriction. Since
M is non-compact, it is inevitable that some such restriction is necessary.

4.3. The topology of energy manifolds

For Lagrangians that satisfy the convexity hypothesis @2
wL > ¬ > 0, the topology

of the energy manifolds ME = H¡1(E) can be completely determined from the sign
changes in the potential L(u; 0; 0) + E. Consider the homotopy

L ¶ (u; v; w) = (1 ¡ ¶ )L(u; v; w) + ¶ [1
2 ¬ w2 + L(u; 0; 0)]
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of Lagrangians with corresponding Hamiltonians H¶ (x) = puv + L ¤
¶ (u; v; pv). If M

is regular, then it is immediately clear that M ¶ is regular for all ¶ 2 [0; 1]. So H ¶ (x)
de­ nes a cobordism between M = M0 and M1 = f 1

2
¬ w2 + puv ¡ L(u; 0; 0) = Eg. A

straightforward calculation shows that the height function ( ¶ ; x) ! ¶ has no critical
points, and hence standard Morse theory implies that M is homotopy equivalent
to M ¶ for all ¶ 2 [0; 1]. In fact, they are di¬eomorphic.

In [2], the homotopy type of M1 was computed for the regular case, which implies
L(u; 0; 0) + E has simple zeros. There is a deformation retraction of M1 onto a
bouquet of circles and 2-spheres. Consequently, the homology of M1 is determined
by its Betti numbers with ­ 0 = 1 and ­ n = 0 for n > 2. The second Betti number
­ 2 is the number of compact components of N , i.e. the number of compact intervals
in R on which L(u; 0; 0) + E > 0. The ­ rst Betti number is the number of compact
intervals on which L(u; 0; 0) + E 6 0, which depends on the behaviour of L(u; 0; 0)
as juj ! 1. In any case, ­ 1 2 f­ 2 ¡ 1; ­ 2; ­ 2 + 1g.

A simple example shows that the lower bound dim H2(M) in theorem 1.1 is
sharp. Let L(u; u0; u00) = 1

2 (u00)2 + 1
2u2 and E > 0. Then ME º S1 £ R2, with

dim H2(M) = 0, and solving the (linear) Euler{Lagrange equation explicitly shows
that there are no closed characteristics.

4.4. Singular manifolds

Singularities in M occur at critical points of L(u; 0; 0) + E. Depending on the
eigenvalues of these points as equilibrium points of the ®ow ’t, there are three
types of singularities: saddle (four real eigenvalues), saddle focus (four complex
eigenvalues) and centre (four imaginary eigenvalues).

Consider an energy manifold M with (isolated) singular points in the interior of
a compact component I of º N . The techniques in this paper imply that, for each
component of I n fsingular pointsg, there is a closed characteristic independent of
the type of the singularities. Note that this is already di¬erent from the ­ rst-order
Lagrangian case, where singular manifolds cannot contain closed characteristics.

However, in the second-order case depending on the type of the singularities,
even more closed characteristics must exist. It is shown in [11] that, if the twist
property holds on each component of I n fsingular pointsg and the singular points
are either of saddle-focus or centre type, then the twist property holds on all of I,
and additional closed characteristics exist with non-zero intersection number.

The arguments of this paper should be applicable in this case by continuation of
a singular manifold with saddle-focus or centre type singularities to a twist system.
The main issue is whether the surjectivity criterion in lemma 2.1 holds over all of I.
We leave the details for future work, but we do not foresee any major problems
in applying the techniques of [6, 7], which provide exactly the tools required to
minimize in the presence of a saddle-focus or centre equilibrium, to show, again by
minimization as in x 3, that the surjectivity condition holds.

4.5. Forcing of additional closed characteristics

For twist systems, it is shown in [4] that the existence of certain closed charac-
teristics can force the existence of a multitude of closed characteristics due to their
braiding and knotting. The above continuation method does not always immedi-
ately apply because the intersection numbers corresponding to these additional
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closed characteristics can be trivial, but, in certain cases, the topological informa-
tion obtained from the braid type will imply non-trivial intersection number. In
those cases, the arguments of this paper will imply the existence of more closed
characteristics. One might also attempt to prove the existence of multiple solutions
by more carefully studying the intersections using the fact that they are intersec-
tions of Lagrangian manifolds, which we leave for future work.
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