
TLP 8 (2): 129–165, 2008. C© 2007 Cambridge University Press

doi:10.1017/S1471068407003158 First published online 21 June 2007 Printed in the United Kingdom

129

Experimenting with recursive queries in
database and logic programming systems

G. TERRACINA, N. LEONE, V. LIO and C. PANETTA

Dipartimento di Matematica, Università della Calabria,

Via P. Bucci, 87030, Rende (CS), Italy

(e-mail: {terracina, leone, lio, panetta}@mat.unical.it)

submitted 16 October 2006; revised 12 March 2007; accepted 20 April 2007

Abstract

This article considers the problem of reasoning on massive amounts of (possibly distributed)

data. Presently, existing proposals show some limitations: (i) the quantity of data that

can be handled contemporarily is limited, because reasoning is generally carried out in

main-memory; (ii) the interaction with external (and independent) Database Management

Systems is not trivial and, in several cases, not allowed at all; and (iii) the efficiency of

present implementations is still not sufficient for their utilization in complex reasoning tasks

involving massive amounts of data. This article provides a contribution in this setting; it

presents a new system, called DLVDB , which aims to solve these problems. Moreover, it

reports the results of a thorough experimental analysis we have carried out for comparing

our system with several state-of-the-art systems (both logic and databases) on some classical

deductive problems; the other tested systems are LDL++, XSB, Smodels, and three top-

level commercial Database Management Systems. DLVDB significantly outperforms even the

commercial database systems on recursive queries.

KEYWORDS: Deductive Database Systems, Answer Set Programming/Declarative Logic

Programming, recursive queries, benchmarks

1 Introduction

The problem of handling massive amounts of data received much attention in the

research related to the development of efficient Database Management Systems

(DBMSs). In this scenario, a mounting wave of data-intensive and knowledge-

based applications such as Data Mining, Data Warehousing, and Online Analytical

Processing has created a strong demand for more powerful database languages

and systems. An important effort in this direction has been carried out with the

introduction of the latest standard for SQL, namely, SQL99 (SQL: 1999) (American

National Standards Institute 1999), which provides, among other features, support

to object-oriented databases and recursive queries.

However, the adoption of SQL99 is still far from being a “standard”; in fact,

almost all current DBMSs do not fully support SQL99 and, in some cases, they

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

130 G. Terracina et al.

adopt proprietary (nonstandard) language constructs and functions to implement

parts of it. Moreover, the efficiency of current implementations of SQL99 constructs

and their expressiveness are still not sufficient for performing complex reasoning

tasks on huge amounts of data.

The needed expressiveness for reasoning tasks can be provided by logic-based

systems. In fact, declarative logic programming provides a powerful formalism

capable of easily modeling and solving complex problems. The recent development

of efficient logic-based systems such as DLV (Leone et al. 2006), Smodels (Niemelä

et al. 2000), XSB (Rao et al. 1997), ASSAT (Lin and Zhao 2002, 2004), Cmodels

(Giunchiglia et al. 2004, 2006), CLASP (Gebser et al. 2007), etc. has renewed the

interest in the area of non-monotonic reasoning and declarative logic programming

for solving real-world problems in a number of application areas. However, “data-

intensive” problems cannot be handled in a typical logic programming system

working in main-memory.

In the past, Deductive Database Systems (DDSs) have been proposed to combine

the expressive power of logic-based systems with the efficient data management of

DBMSs (Gallaire et al. 1984; Ceri et al. 1990; Grant and Minker 1992; Arni et al.

2003); basically, they are an attempt to adapt typical Datalog systems, which have

a “smalldata” view of the world, to a “largedata” view of the world via intelligent

interactions with some DBMSs. Recently, emerging application contexts such as the

ones arising from the natural recursion across nodes in the Internet, or from the

success of intrinsically recursive languages such as XML (Winslett 2006), renewed

the interest in such kinds of systems (Abiteboul et al. 2005; Loo et al. 2005).

However, the main limitations of currently existing DDSs reside both in the

fact that reasoning is still carried out in main-memory—this limits the amount of

data that can be handled—and in the limited interoperability with generic, external,

DBMSs they provide. In fact, generally, the reasoning capabilities of these systems

are tailored on a specific (either commercial or ad hoc) DBMS.

Summarizing: (i) Database systems are nowadays robust and flexible enough to

efficiently handle large, possibly distributed, amounts of data; however, their query

languages are not sufficiently expressive to support reasoning tasks on such data.

(ii) Logic-based systems are endowed with highly expressive languages, allowing them

to support complex reasoning tasks, but they work in main-memory, and, hence, can

only handle limited amounts of data. (iii) DDSs allow to access and manage data

stored in DBMSs, however, they perform their computations mainly in main-memory

and provide limited interoperability with external (and possibly distributed) DBMSs.

This work provides a contribution in this setting, bridging the gap between

logic-based DDSs and DBMSs. It presents a new system, named DLVDB , which is

logic-based (like a DDS) but can do all the work in mass-memory and, in practice,

does not have any limitation in the dimension of input data; moreover, it is capable

to exploit optimization techniques both from DBMS (e.g., join orderings, Garcia-

Molina et al. 2000) and DDS theory (e.g., magic sets, Beeri and Ramakrisnhan 1991;

Mumick et al. 1996).

DLVDB allows for two typologies of execution: (i) direct database execution,

which evaluates logic programs directly on database, with a very limited usage

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 131

of main-memory but with some limitations on the expressiveness of the queries,

and (ii) main-memory execution, which loads input data from different (possibly

distributed) databases and executes the logic program directly in main-memory. In

both cases, interoperation with databases is provided by ODBC connections; these

allow handling, in a quite simple way, data residing on various databases over the

network. To avoid possible confusion, in the following we use the symbol DLVDB

to indicate the whole system when the discussion is independent of the execution

modality; however, when it is needed to distinguish between the two execution

modalities, we use the symbol DLVIO to indicate the main-memory execution,

whereas the symbol DLVDB to indicate the direct database execution.

Summarizing, the overall contributions of this work are the following: (i) The

development of a full-fledged system enhancing in different ways the interactions

between logic-based systems and DBMSs. (ii) The development of an efficient,

purely database-oriented, evaluation strategy for logic programs that minimizes the

usage of main-memory and maximizes the advantages of optimization techniques

implemented in existing DBMSs. (iii) The definition of a framework for carrying out

an experimental comparative analysis of the performance of state-of-the-art systems

and DLVDB . (iv) The execution of a thorough experimentation that shows that

DLVDB beats, often with orders of magnitude, logic-based systems (LDL++, XSB,

and Smodels1) and even commercial DBMSs both for running times and amount of

handled data on classical deductive problems (Bancilhon and Ramakrishnan 1988).

The work is organized as follows. Section 2 presents the reasoning language

supported by the system, whereas Section 3 describes the functionalities it provides.

In Section 4, the main implementation principles adopted in the development of

DLVDB are discussed, and Section 5 illustrates its general architecture. Section 6

first presents an overview of the state-of-the-art systems related to DLVDB , then it

describes the experimental analysis we have carried out to compare DLVDB with these

systems on classical DDS problems. Finally, in Section 7, we draw our conclusions.

2 The reasoning language of the system

In this section, we briefly describe the syntax and the semantics of the reasoning

language adopted by the DLVDB system. This is basically Disjunctive Logic Pro-

gramming (DLP) with aggregate functions under the answer set semantics; we refer

to this language as DLP
A in the following. The interested reader can find all details

about DLP
A in Faber et al. (2004).

Before starting the presentation, it is worth pointing out that the direct database

execution modality supports only a strict subset of the reasoning language supported

by the main-memory execution. In particular, while DLVIO supports the whole lan-

guage of DLV (including disjunction, unlimited negation, and stratified aggregates),

DLVDB supports or-free programs with stratified negation and aggregates.

1 It is worthwhile noting that, since benchmark programs are stratified, they are completely solved by the
grounding layer of Smodels (LParse). This is the reason why we have not experimented with ASSAT,
Cmodels, and CLASP, as they also use LParse for grounding.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

132 G. Terracina et al.

2.1 Syntax

We assume that the reader is familiar with standard DLP; we refer to atoms,

literals, rules, and programs of DLP as standard atoms, standard literals, standard

rules, and standard programs, respectively. For further background, see Baral (2002)

and Gelfond and Lifschitz (1991).

2.1.1 Set terms

A (DLP
A) set term is either a symbolic set or a ground set. A symbolic set is a pair

{Vars :Conj}, where Vars is a list of variables and Conj is a conjunction of standard

atoms.2 A ground set is a set of pairs of the form 〈t : Conj 〉, where t is a list of

constants and Conj is a ground (variable free) conjunction of standard atoms.

2.1.2 Aggregate functions

An aggregate function is of the form f(S), where S is a set term and f is an aggregate

function symbol. Intuitively, an aggregate function can be thought of as a (possibly

partial) function mapping multisets of constants to a constant.

The aggregate functions that are currently supported are #count (number of

terms), #sum (sum of non-negative rational numbers), #min (minimum term,

undefined for empty set), #max (maximum term, undefined for empty set), and

#avg (average of non-negative rational numbers).3

2.1.3 Aggregate literals

An aggregate atom is f(S) ≺ T , where f(S) is an aggregate function, ≺∈ {=, <, �,

>, �} is a predefined comparison operator, and T is a term (variable or constant)

referred to as guard.

An example of aggregate atom is: #max{Z : r(Z), a(Z,V)} > Y .

An atom is either a standard (DLP) atom or an aggregate atom. A literal L is

an atom A or an atom A preceded by the default negation symbol not; if A is an

aggregate atom, then L is an aggregate literal.

2.1.4 DLP
A programs

A DLP
A rule r is a construct

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm,

where a1, . . . , an are standard atoms, b1, · · · , bm are atoms, n � 0, and m � k � 0.

The disjunction a1 v · · · v an is referred to as the head of r, whereas the conjunction

b1, . . . , bk, not bk+1, . . . , not bm is the body of r. We denote the set {a1, . . . , an} of the

2 Intuitively, a symbolic set {X : a(X,Y), p(Y)} stands for the set of X-values making a(X,Y), p(Y) true,
that is, {X |∃Y s .t . a(X,Y), p(Y) is true}.

3 The first two aggregates correspond respectively to the cardinality and weight constraint literals of
Smodels.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 133

head atoms by H(r) and the set {b1, . . . , bk, not bk+1, . . . , not bm} of the body literals

by B(r). B+(r) and B−(r) denote respectively the set of positive literals and the set

of negative literals occurring in B(r).

A DLP
A program P is a set of DLP

A rules.

In addition, DLP
A allows for built-in predicates (Faber and Pfeifer, 1996) in its

rules, such as the comparative predicates equality, less than, and greater than (=, <,

>) and arithmetic predicates such as addition or multiplication (+, *).

2.1.5 Safety

A global variable of a rule r is a variable appearing in a standard atom of r; all

other variables are local variables. A rule r is safe if the following conditions hold:

(i) each global variable of r appears in a positive standard literal in the body of r;

(ii) each local variable of r appearing in a symbolic set {Vars : Conj} appears in

an atom of Conj , and (iii) each guard of an aggregate atom of r is a constant or

a global variable. A program P is safe if all r ∈ P are safe. In the following, we

assume that DLP
A programs are safe.

Let the level mapping of a program P be a function || || from the predicates in P to

finite ordinals; moreover, given an atom A = p(t1, . . . , tn), we denote by Pred (A) its

predicate p.

2.1.6 Stratifiednot programs

A DLP
A program P is called stratifiednot (Apt et al. 1988; Przymusinski 1988), if there

is a level mapping || ||s of P such that, for every rule r: (1) for any l ∈ B+(r), and for

any l′ ∈ H(r), ||Pred(l)||s � ||Pred(l′)||s; (2) for any l ∈ B−(r), and for any l′ ∈ H(r),

||Pred(l)||s < ||Pred(l′)||s; and (3) for any l, l′ ∈ H(r), ||Pred(l)||s = ||Pred(l′)||s.

2.1.7 Stratifiedaggr programs

A DLP
A program P is called stratifiedaggr (Dell’Armi et al. 2003b), if there is a level

mapping || ||a of P such that, for every rule r: (1) if l appears in the head of r, and

l′ appears in an aggregate atom in the body of r, then ||Pred(l′)||a < ||Pred(l)||a;
and (2) if l appears in the head of r, and l′ occurs in a standard atom in the body

of r, then ||Pred(l′)||a � ||Pred(l)||a. (3) If both l and l′ appear in the head of r, then

||Pred(l′)||a = ||Pred(l)||a.
Example 2.1

Consider the program consisting of a set of facts for predicates a and b, plus the

following two rules:

q(X) :- p(X),#count{Y : a(Y ,X), b(X)} � 2. p(X) :- q(X), b(X).

The program is stratifiedaggr , as the level mapping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2

satisfies the required conditions. If we add the rule b(X) :- p(X), then no level-

mapping exists and the program becomes not stratifiedaggr . �

Intuitively, the property stratifiedaggr forbids recursion through aggregates.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

134 G. Terracina et al.

2.1.8 Supported languages

The direct database execution modality (DLVDB) currently supports only DLP
A

programs that are disjunction free, stratifiednot, and strat-ifiedaggr . Note that both

built-in predicates and aggregates are supported.

Conversely, the main-memory execution modality (DLVIO) supports all DLP
A

programs that are stratifiedaggr . As a consequence, unrestricted negation, disjunction,

and non-recursive aggregates are supported.

2.2 Answer set semantics

2.2.1 Universe and base

Given a DLP
A program P, let UP denote the set of constants appearing in P, and

BP be the set of standard atoms constructible from the (standard) predicates of P
with constants in UP. Given a set X, let 2

X
denote the set of all multisets over

elements from X. Without loss of generality, we assume that aggregate functions

map to Q (the set of rational numbers).

2.2.2 Instantiation

A substitution is a mapping from a set of variables to UP. A substitution from the

set of global variables of a rule r (to UP) is a global substitution for r; a substitution

from the set of local variables of a symbolic set S (to UP) is a local substitution for

S . Given a symbolic set without global variables S = {Vars : Conj}, the instantiation

of S is the following ground set of pairs inst(S): {〈γ(Vars) : γ(Conj)〉 | γ is a local

substitution for S}.4
A ground instance of a rule r is obtained in two steps: (1) a global substitution

σ for r is first applied over r; (2) every symbolic set S in σ(r) is replaced by its

instantiation inst(S). The instantiation Ground(P) of a program P is the set of all

possible instances of the rules of P.

Example 2.2

Consider the following program P1:

q(1) v p(2, 2). q(2) v p(2, 1). t(X) :- q(X),#sum{Y : p(X,Y)} > 1.

The instantiation Ground(P1) is the following:

q(1) v p(2, 2). t(1) :- q(1),#sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.

q(2) v p(2, 1). t(2) :- q(2),#sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1. �

2.2.3 Interpretations

An interpretation for a DLP
A program P is a set of standard ground atoms, that is,

I ⊆ BP. A positive literal A is true w.r.t. I , if A ∈ I; it is false otherwise. A negative

literal not A is true w.r.t. I; if A 	∈ I , it is false otherwise.

An interpretation also provides a meaning for aggregate literals.

4 Given a substitution σ and a DLP
A object Obj (rule, set, etc.), we denote by σ(Obj) the object obtained

by replacing each variable X in Obj by σ(X).

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 135

Let I be an interpretation. A standard ground conjunction is true (resp. false)

w.r.t. I if all its literals are true. The meaning of a set, an aggregate function, and

an aggregate atom under an interpretation is a multiset, a value, and a truth value,

respectively. Let f(S) be a an aggregate function. The valuation I(S) of S w.r.t. I

is the multiset of the first constant of the elements in S whose conjunction is true

w.r.t. I . More precisely, let I(S) denote the multiset [t1 | 〈t1, . . . , tn :Conj 〉 ∈S∧ Conj

is true w.r.t. I]. The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the

result of the application of f on I(S). If the multiset I(S) is not in the domain of f,

I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P).

An instantiated aggregate atom A = f(S) ≺ k is true w.r.t. I if: (i) I(f(S)) 	= ⊥,

and (ii) I(f(S)) ≺ k holds; otherwise, A is false. An instantiated aggregate literal

not A = not(f(S) ≺ k) is true w.r.t. I if: (i) I(f(S)) 	= ⊥, and (ii) I(f(S)) ≺ k does

not hold; otherwise, A is false.

2.2.4 Minimal models

Given an interpretation I , a rule r is satisfied w.r.t. I if some head atom is true w.r.t.

I whenever all body literals are true w.r.t. I . An interpretation M is a model of a

DLP
A program P if all r ∈ Ground(P) are satisfied w.r.t. M. A model M for P is

(subset) minimal if no model N for P exists such that N ⊂ M.

2.2.5 Answer sets

We now recall the generalization of the Gelfond-Lifschitz transformation to pro-

grams with aggregates from Faber et al. (2004).

Definition 2.3 (Faber et al. 2004)

Given a ground DLP
A program P and a total interpretation I , let PI denote the

transformed program obtained from P by deleting all rules in which a body literal is

false w.r.t. I . I is an answer set of a program P if it is a minimal model of Ground(P)I .

Example 2.4

Consider the following two programs:

P1 : {p(a) :-#count{X : p(X)} > 0.} P2 : {p(a) :-#count{X : p(X)} < 1.}

Ground(P1) = {p(a) :-#count{〈a : p(a)〉} > 0.} and Ground(P2) = {p(a) :-
#count{〈a : p(a)〉} < 1.}; consider also interpretations I1 = {p(a)} and I2 = ∅. Then,

Ground(P1)
I1 = Ground(P1), Ground(P1)

I2 = ∅, and Ground(P2)
I1 = ∅, Ground(P2)

I2 =

Ground(P2) hold. I2 is the only answer set of P1 (because I1 is not a minimal model

of Ground(P1)
I1), whereas P2 admits no answer set (I1 is not a minimal model of

Ground(P2)
I1 , and I2 is not a model of Ground(P2) = Ground(P2)

I2). �

Note that any answer set A of P is also a model of P because Ground(P)A ⊆
Ground(P), and rules in Ground(P) − Ground(P)A are satisfied w.r.t. A.

3 System functionalities

As pointed out in the Introduction, the presented system allows for two typologies

of execution: (i) direct database execution (DLVDB), which is capable of handling

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

136 G. Terracina et al.

Auxiliary-Directives ::= Init-section [Table-definition]+ [Query-Section]? [Final-section]*
Init-Section ::=USEDB DatabaseName:UserName:Password [System-Like]?.
Table-definition ::=
[USE TableName [(AttrName [, AttrName]*)]? [AS (SQL-Statement)]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?.
|
CREATE TableName [(AttrName [, AttrName]*)]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?
[KEEP_AFTER_EXECUTION]?.]
Query-Section ::= QUERY TableName.
Final-section ::=
[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]
System-Like ::= LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Fig. 1. Grammar of the auxiliary directives.

massive amounts of data but with some limitations on the expressiveness of the

query program (see Section 2), and (ii) main-memory execution (DLVIO), which

allows the user to take full advantage of the expressiveness of DLP
A and to import

data residing on DBMSs but with some limitations on the quantity of data to reason

about, given by the amount of available main-memory.

The system, along with a manual and some examples, is available for download at

http://www.mat.unical.it/terracina/dlvdb. In the following, we provide a general

description of the main functionalities provided by DLVDB and DLVIO . The interested

reader can find all details on the system’s Web site.

3.1 Direct database execution

Three main peculiarities characterize the DLVDB system in this execution modality:

(i) its ability to evaluate logic programs directly and completely on databases

with a very limited usage of main-memory resources; (ii) its capability to map

program predicates to (possibly complex and distributed) database views; and (iii)

the possibility to easily specify which data are to be considered as input or as output

for the program. This is the main contribution of our work.

Roughly speaking, in this execution modality the user has his data stored in

(possibly distributed) database tables and wants to carry out some reasoning on

them; however, the amount of such data, or the number of facts that are generated

during the reasoning, is such that the evaluation cannot be carried out in main-

memory. Then, the program must be evaluated directly in mass-memory.

To properly carry out the evaluation, it is necessary to specify the mappings

between input and output data and program predicates, as well as to specify whether

the temporary relations possibly needed for the mass-memory evaluation should be

maintained or deleted at the end of the execution. These can be specified by some

auxiliary directives. The grammar in which these directives must be expressed is

shown in Figure 1.

Intuitively, the user must specify the working database in which the system has to

perform the evaluation. Moreover, he can specify a set of table definitions; note that

each specified table is mapped into one of the program predicates. Facts can reside

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 137

USEDB dlvdb:myname:mypasswd.
USE flight_rel (Id, FromX, ToY, Company) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Company1, Company2, FlightId) FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).
CREATE destinations_rel (FromX, ToY, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTION.
OUTPUT destinations AS composedCompanyRoutes IN dbTravelAgency:agencyName:agencyPasswd.

Fig. 2. Auxiliary directives for Example 3.2.

on separate databases or they can be obtained as views on different tables. Attribute

type declaration is needed only for a correct management of built-in predicates. The

USE and CREATE options can be exploited to specify input and output data as well

as temporary relations needed for the mass-memory instantiation. Finally, the user

can choose to copy the entire output of the evaluation or parts thereof in different

databases.

Example 3.1

Assume that a travel agency asks to derive all the destinations reachable by an

airline company either by using its aircrafts or by exploiting code-share agreements.

Suppose that the direct flight plans of each company are stored in a relation

flight rel(Id, FromX, ToY, Company) of the database dbAirports, whereas the

code-share agreements between companies are stored in a relation codeshare rel

(Company1, Company2, FlightId) of an external database dbCommercial. If a

code-share agreement holds between the company c1 and the company c2 for

flightId, it means that the flight flightId is actually provided by an aircraft of

c1 but can be considered also carried out by c2. Finally, assume that, for security

reasons, travel agencies are not allowed to directly access the databases dbAirports

and dbCommercial, and, consequently, it is necessary to store the output result in a

relation composedCompanyRoutes of a separate database dbTravelAgency supposed

to support travel agencies. The DLP
A program that can derive all the connections is:

(1) destinations(FromX,ToY , Comp) :- flight(Id, FromX,ToY , Comp).

(2) destinations(FromX,ToY , Comp) :- flight(Id, FromX,ToY , C2),

codeshare(C2, Comp, Id).

(3) destinations(FromX,ToY , Comp) :- destinations(FromX,T2, Comp),

destinations(T2, ToY , Comp).

To exploit data residing in the abovementioned databases, we should map the predic-

ate flight to the relation flight rel of dbAirports and the predicate codeshare to

the relation codeshare rel of dbCommercial. Finally, we have to map the predicate

destinations to the relation composedCompanyRoutes of dbTravelAgency.

Now suppose that, due to a huge size of input data, we need to evaluate the pro-

gram in mass-memory (on a DBMS). To carry out this task, the auxiliary directives

shown in Figure 2 should be used. They allow to specify the mappings between the

program predicates and the database relations introduced previously. �

It is worth pointing out that if a predicate is not explicitly mapped into a table,

but a relation with the same name and compatible attributes is present in the

working database, the system automatically hypothesize a USE mapping for them.

Analogously, if a predicate is not explicitly mapped and no corresponding table exists

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

138 G. Terracina et al.

in the working database, a CREATE mapping is automatically hypothesized for it. This

significantly simplifies the specification of the auxiliary directives; in fact, in the ideal

case—when everything is in the working database and each input predicate has the

corresponding input table with the same name—only the Init-Section and one of

CREATE or OUTPUT options are actually needed to run a program and check its output.

3.2 Main-memory execution

The main-memory execution modality of the system allows input facts to be (possibly

complex) views on database tables and allows exporting (parts of) predicates to

database relations. However, the program evaluation is carried out completely in

main-memory; this allows the system to evaluate more complex logic programs (see

Section 2) but at the price of a lower amount of data the system can handle, due to

the limited amount of main-memory.

The concept of importing and exporting data from external data sources into logic-

based systems is not new (see, for example, Lu et al. 1996; Rao et al. 1997; Arni et al.

2003); the contribution of this execution modality is mainly of technological relev-

ance and has the merit of providing Answer Set Programming with an easy way to ac-

cess distributed data spread over the network. Another advancement with respect to

existing proposals is its flexibility in the types of external source that can be accessed;

in fact, most of the existing systems are tailored on custom DBMSs, whereas our sys-

tem can be interfaced with any external source that provides an ODBC connection.

Intuitively, DLVIO can be exploited when the user has to perform very complex

reasoning tasks (in the NP class or higher) but the data are available in database

relations, or the output must be permanently stored in a database for further

elaborations.

To perform these tasks, two built-in commands are added in DLVIO to the standard

DLP
A syntax, namely, the #import and the #export commands:

#import(databasename,“username”,“password”,“query”,predname, typeConv).

#export(databasename,“username”,“password”,predname,tablename).

An #import command retrieves data from a table “row by row” through the query

specified by the user in SQL and creates one atom for each selected tuple. The name

of each imported atom is set to predname, and is considered as a fact of the program.

The #export command generates a new tuple into tablename for each new truth

value derived for predname by the program evaluation.

An alternative form of the #export command is the following:

#export(databasename, “username”, “password”, predname, tablename,

“REPLACE where <condition>”)

which can be used to remove from tablename the tuples of predname for which

the “REPLACE where” condition holds; it can be useful for deleting tuples

corresponding to violated integrity constraints.

It is worth pointing out that if a DLP
A program contains at least one #export

command, the system can compute only the first valid answer set; this limitation

has been introduced mainly to avoid an exponential space complexity of the system.

In fact, the number of answer sets can be exponential in the input.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 139

Example 3.2

Consider again the scenario introduced in Example 3.1, and assume that the amount

of input data allows the evaluation to be carried out in main-memory. The built-in

commands that must be added to the DLP
A program of Example 3.1 to implement

the necessary mappings are:

#import(dbAirports, “airportUser”, “airportPasswd” , “SELECT * FROM flight rel”,

flight, type : U INT, Q CONST, Q CONST, Q CONST).

#import(dbCommercial, “commUser”, “commPasswd”, “SELECT * FROM codeshare rel”,

codeshare, type : Q CONST, Q CONST, U INT).

#export(dbTravelAgency, “agencyName”, “agencyPasswd”, destinations,

composedCompanyRoutes). �

Note that the syntax of DLVIO directives is simpler than that of DLVDB auxiliary

directives. This is because DLVIO is intended to provide an easy mechanism to load

data into the logic program and then store its results back to mass-memory, whereas

DLVDB is oriented to more sophisticated applications handling distributed data and

mass-memory-based reasoning, and, consequently, it must provide a richer set of

options in defining the mappings.

4 Implementation principles

The main innovation of our system resides in the evaluation of DLP
A programs

directly on a database. The evaluation process basically consists of two steps:

(i) the translation of DLP
A rules in SQL statements, (ii) the definition of an efficient

SQL query plan such that the computed answers are the same as the ones of the

main-memory execution, but where the evaluation process is completely carried out

in mass-memory. In the following, we first describe the general philosophy of our

mass-memory evaluation strategy, then we present the algorithms used to obtain

SQL statements from DLP
A rules.

4.1 General characteristics of the evaluation strategy

The evaluation of a program P starts from the analysis of its intensional component.

In particular, P is first transformed into an equivalent program P′ that can

be evaluated more efficiently by the subsequent steps. Transformations carried

out in this phase take into account various aspects of the input program; as an

example, they aim to (i) reduce the arity of intermediate relations whenever possible,

(ii) reduce the size of intermediate relations (Faber et al. 1999a), (iii) push down

constants in the queries by magic sets rewritings (Bancilhon et al. 1986; Ross 1990;

Beeri and Ramakrisnhan 1991; Mumick et al. 1996). All these optimizations do

not take into account the extensional component (the facts) of P; some other

optimizations are described in Faber et al. (1999a).

After this, the connected components and their topological order (i.e., the De-

pendency Graph (DG)) of the resulting program are computed. Then, it is evaluated

one component at a time, starting from the lowest ones in the topological order.

The evaluation of each component follows the Semi-Naive method (Ullman 1989)

with the enhancements showed in Balbin and Ramamohanarao (1987) and Zaniolo

et al. (1997) to optimize the evaluation of rules with non-linear recursion.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

140 G. Terracina et al.

In particular, the Semi-Naive algorithm applied to a component PC can be viewed

as a two-phase algorithm: the first one deals with non-recursive rules, which can be

completely evaluated in one single step; the second one deals with recursive rules,

which need an iterative fixpoint computation for their complete evaluation. At each

iteration, there are a number of predicates whose extensions have been already fully

determined (predicates not belonging to PC that have been therefore previously

evaluated), and a number of recursive predicates (i.e., belonging to PC) for which a

new set of truth values can be determined from the available ones. Then, in order

to evaluate, for example, the rule:

(r1) : p0(X,Y) :- p1(X,Y), p2(Y ,Z), q(X,Z),

where p1 and p2 are mutually recursive with p0 and q is not recursive, the standard

Semi-Naive method evaluates the following formula (expressed in relational algebra)

at each iteration:

∆Pk
0 = ∆Pk−1

1 �� P k−1
2 �� Q ∪ (a)

Pk−1
1 �� ∆Pk−1

2 �� Q (b)

Here, a capital letter is used to indicate the database relation corresponding to the

(lower case) predicate; Pk
j indicates the values stored in relation Pi up to step k and

∆Pk
j is the set of new values determined for Pj at step k (in the following, we call

∆Pk
j the differential of Pj).

However, the standard Semi-Naive approach is characterized by inefficiencies in

evaluating non-linear recursive rules. In fact, if each Pk−1
j is expanded in its (disjoint)

components Pk−2
j and ∆Pk−1

j , the formula (a) ∪ (b) above becomes:

∆Pk
0 =

(a)

[
∆Pk−1

1 �� P k−2
2 �� Q ∪ (1)

∆Pk−1
1 �� ∆Pk−1

2 �� Q ∪ (2)

(b)

[
Pk−2

1 �� ∆Pk−1
2 �� Q ∪ (3)

∆Pk−1
1 �� ∆Pk−1

2 �� Q (4)

where (a) expands Pk−1
2 and (b) expands Pk−1

1 ; note that line (2) and (4) are identical.

The enhancement described in Balbin and Ramamohanarao (1987) and Zaniolo et al.

(1997) provides a solution to this problem rewriting the original rule in:

∆Pk
0 = ∆Pk−1

1 �� P k−1
2 �� Q ∪

Pk−2
1 �� ∆Pk−1

2 �� Q

which, indeed, avoids to re-compute joins in (2), (4) more times.

Generalizing the solution to a rule having r predicates mutually recursive with its

head, the differentiation is obtained by subdividing the original rule in r subrules

such that the i-th subrule has the form ∆pk0 : −pk−2
1 , . . . , pk−2

i−1 ,∆p
k−1
i , pk−1

i+1 , . . . , p
k−1
r , q.

Note that both relations Pk−1
j , Pk−2

j , and ∆Pk−1
j are considered.

In our approach, we follow a slightly different strategy, which both unfolds each

relation Pk−1
j in Pk−2

j and ∆Pk−1
j and avoids to produce the redundant subrules

of the standard Semi-Naive method. This is carried out as follows. Let us tag the

differential relations (∆Pk−1
j) with the symbol 1 and the standard ones (Pk−2

j) with

the symbol 0. Given a generic rule with r predicates p1, . . . , pr in its body mutually

recursive with the head, our approach follows the binary enumeration between 1

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 141

Differential Semi-Naive(Input: R1, . . . , Rl . Output: Q1, . . . , Qm, P1, . . . , Pn)
begin

for i:=1 to m do // Evaluate non recursive predicates
(1) Qi = EVAL(qi, R1, . . . , Rl , Q1, . . . , Qm);

for i:=1 to n do begin // Initialize recursive predicates

(2) Pk−2
i = EVAL(pi, R1, . . . , Rl , Q1, . . . , Qm);

(3) ∆Pk−1
i = Pk−2

i ;
end;
repeat

for i:=1 to n do begin

(4) ∆Pk
i = EVAL DIFF (pi, P

k−2
1 , . . . , P k−2

n ,∆Pk−1
1 , . . . ,∆Pk−1

n , R1, . . . , Rl ,Q1, . . . , Qm);

(5) ∆Pk
i = ∆Pk

i − Pk−2
i − ∆Pk−1

i ;
end;
for i:=1 to n do begin

(6) Pk−2
i = Pk−2

i ∪ ∆Pk−1
i ;

(7) ∆Pk−1
i = ∆Pk

i ;
end;

until ∆Pk
i = ∅, ∀i 1 � i � n;

for i:=1 to n do

(8) Pi = Pk−2
i ;

end.

Fig. 3. Algorithm differential Semi-Naive.

and 2r − 1, and, for each of these binary numbers, it generates a differential rule; in

particular, if position j on the binary number contains a 0, then Pk−2
j is put in the

corresponding rule, otherwise ∆Pk−1
j is used. As for the previous example, rule (r1)

is evaluated, in our approach, with joins (1), (2), and (3) shown above.

Note that this approach generates a higher number of auxiliary rules with respect

to Balbin and Ramamohanarao (1987) and Zaniolo et al. (1997), but, while avoiding

to execute the same set of redundant joins, it allows handling smaller relations. This

could constitute a good advantage when handling massive amounts of data, because

managing several small joins can be less resource demanding in comparison with

executing few big ones.

The algorithm implemented in our system for the differential Semi-Naive eval-

uation strategy described above is shown in Figure 3. It is executed for each

component PC of the input program P and assumes that input DLP
A rules have

been already translated to SQL statements. Here, the component PC depends on

predicates r1, . . . , rn solved in previous components and has q1, . . . , qm as non-recursive

predicates or facts and p1, . . . , pn as recursive predicates.

Function EVAL(qi, R1, . . . , Rl , Q1, . . . , Qm) performs the evaluation of the

non-recursive rules having qi as head as follows: it first runs each SQL query

corresponding to a rule having qi as head; then, the corresponding results are added

to the relation Qi.

Function EVAL DIFF (pi, P
k−2
1 , . . . , P k−2

n ,∆Pk−1
1 , . . . ,∆Pk−1

n , R1, . . . , Rl , Q1, . . . , Qm)

implements the optimization to the Semi-Naive method; it computes the new values

for the predicate pi at the current iteration k starting from the values computed until

iteration k − 2 and the new values obtained at the previous iteration k − 1. In more

detail, the SQL statements corresponding to each recursive rule having pi as head

are considered. The final result of EVAL DIFF is stored in table ∆Pk
i . Clearly, it

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

142 G. Terracina et al.

cannot be proved that EVAL DIFF does not recompute some truth values already

obtained in previous iterations. As a consequence, ∆Pk
i must be cleaned up from

these values after the computation of EVAL DIFF ; this is exactly what is done by

instruction (5) of the algorithm. Instructions (6) and (7) are needed to reuse the

same relations (∆Pk
i , ∆Pk−1

i , Pk−2
i) at each iteration.

Finally, it is worth pointing out that the last for of the algorithm (instruction (8))

is shown just for clarity of exposition; in fact, in the actual implementation, what

we indicated as Pk−2
i is exactly table Pi.

It is worth pointing out that the basic step of the evaluation is the execution of

standard SQL queries over the underlying data. In fact, one of the main objectives

in the implementation of DLVDB has been that of associating one single (non-

recursive) SQL statement with each rule of the program (either recursive or not),

without the support of main-memory data structures for the evaluation. This allows

DLVDB to minimize the “out of memory” problems caused by limited main-memory

dimensions. Moreover, the overall organization of the evaluation strategy allows

benefiting from both the optimizations on the intensional component of the program

(the program rewriting techniques outlined at the beginning of this section) and the

optimizations on the extensional component (the data) already implemented in the

DBMS configured as the working database.

The combination of such optimizations, along with a wise translation of datalog

rules in efficient SQL queries allow DLVDB to boost the evaluation process even with

respect to main-memory evaluation strategies (see Section 6).

4.2 From DLP
A to SQL

In this section, we describe the general functions exploited to translate DLP
A rules

in SQL statements. Functions are presented in pseudocode and, for the sake of

presentation clarity, they omit some details. Moreover, since there is a one-to-one

correspondence between the predicates in the logic program and the relations in the

database, in the following, when this is not confusing, we use the terms predicate and

relation interchangeably. It is worth recalling that these one-to-one correspondences

are determined both from the user specifications in the auxiliary directives and from

the mappings automatically derived by the system.

To provide examples for the presented functions, we exploit the following reference

schema:

employee(Ename, Salary ,Dep,Boss) department (Code,Director)

storing information about the employees of the departments of a given company.

Specifically, each employee has associated a Boss who is, in his turn, an employee.

4.2.1 Translating non-recursive rules

Non-recursive rules are translated in a quite standard way in SQL. The only

exceptions are made for rules containing aggregate functions and rules containing

built-ins. The general format of the SQL statement generated in the translation is:

INSERT INTO head(r) (Translate SQL(r))

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 143

where head(r) returns the relation associated with the head of r; this task is

carried out by considering the mappings specified in the auxiliary directives.

Translate SQL(r) takes into account the kind of rule (e.g., if it contains negation

or built-ins) and calls the suitable transformation function. These functions are

described next.

4.2.2 Translating positive rules

Intuitively, the SQL statement for positive rules is composed as follows: the SELECT

part is determined by the variable bindings between the head and the body of the

rule. The FROM part of the statement is determined by the predicates composing

the body of the rule; variable bindings between body atoms and constants determine

the WHERE conditions of the statement. Finally, an EXCEPT part is added in order

to eliminate tuple duplications. The behavior of function TranslatePositiveRule is

well described by the following example:

Example 4.1
Consider the following rule:

q0 (Ename) :- employee(Ename, 100 .000 ,Dep,Boss), department(Dep, rossi).

which returns all the employees working at the department whose chief is rossi and

having a yearly salary of 100 .000 euros. The corresponding SQL statement is the

following:5

INSERT INTO q0 (

SELECT employee.att1 FROM employee, department

WHERE employee.att3 = department.att1 AND department.att2=’rossi’

AND employee.att2=100.000 EXCEPT (SELECT * FROM q0)) �

4.2.3 Translating rules with negated atoms

Intuitively, the construction of the SQL statement for this kind of rule is carried

out as follows: the positive part of the rule is handled in a way very similar to

what has been shown for function TranslatePositiveRule; then, each negated atom

is handled by a corresponding NOT IN part in the statement. The behavior of

function TranslateRuleWithNegation is well illustrated by the following example:

Example 4.2
The following program computes (using the goal topEmployee) the employees that

have no other boss than the director.

topEmployee(Ename) :- employee(Ename, Salary ,Dep,Boss),

department (Dep,Boss),

not otherBoss(Ename, Boss).

otherBoss(Ename, Boss) :- employee(Ename, Salary ,Dep,Boss),

employee(Boss , Salary ,Dep,Boss1).

5 Here and in the following we use the notation t.atti to indicate the i-th attribute of the table t. Actual
attribute names are determined from the auxiliary directives.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

144 G. Terracina et al.

The first rule above is translated into the following SQL statement:

INSERT INTO topEmployee (

SELECT employee.att1 FROM employee, department

WHERE (employee.att3=department.att1) AND (employee.att4=department.att2)

AND (employee.att1, employee.att4)

NOT IN (SELECT otherBoss.att1, otherBoss.att2 FROM otherBoss)

EXCEPT (SELECT * FROM topEmployee)) �

4.2.4 Translating rules with built-in predicates

As pointed out in Section 2, in addition to user-defined predicates, some comparative

and arithmetic predicates are provided by the reasoning language. When running

a program containing built-in predicates, the range of admissible values for the

corresponding variables must be fixed. We map this necessity in the working database

by adding a restriction based on the maximum value allowed for variables. Moreover,

in order to allow mathematical operations among attributes, DLVDB requires the

types of attributes to be properly defined in the auxiliary directives.

The function for translating rules containing built-in predicates is a slight variation

of the function for translating positive rules. As a matter of fact, the presence of a

built-in predicate in the rule implies just adding a corresponding condition in the

WHERE part of the statement. However, if the variables specified in the built-in are

not bound to any other variable of the atoms in the body, a #maxint value must

be exploited to bound that variable to its admissible range of values.

Example 4.3

The program:

q1(Ename) : −employee(Ename, Salary, Dep, Boss), Salary > 100.000.

is translated to the SQL statement:

INSERT INTO q1

(SELECT employee.att1 FROM employee WHERE employee.att2 > 100.000

EXCEPT (SELECT * FROM q1)) �

4.2.5 Translating rules with aggregate atoms

In Section 2, we introduced the syntax and the semantics of DLP with aggregates.

We have also shown that specific safety conditions must hold for each rule containing

aggregate atoms in order to guarantee the computability of the corresponding rule.

As an example, aggregate atoms cannot contain predicates mutually recursive with

the head of the rule they are placed in; from our point of view, this implies that the

truth values of each aggregate function can be computed once and for all before

evaluating the corresponding rule (which can be, in its turn, recursive).

Actually, the process that rewrites input programs before their execution, auto-

matically rewrites each rule containing some aggregate atom in such a way that it

follows a standard format (we call this process standardization in the following).

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 145

Function TranslateAggregateRule(VAR r: DLP
A rule): SQL statement

begin
for each a in aggr atom(r) do begin

aux:=aux atom(a);
SQL:=“CREATE VIEW ” + aux +“ supp” +

“AS (SELECT ”+ bound attr(a) + “, ” +
aggr func(a) + “(” + aggr attr(a) + “) ” +

“FROM ” + aux + “GROUP BY ” + bound attr(a) + “)”;
removeFromBody(r, a);
addToBody(r, aux atom supp(a));
addToBody(r, guards(a));

end;
return SQL;

end.

Fig. 4. Function TranslateAggregateRule.

Specifically, given a generic rule of the form:

head :- body, f({Vars : Conj}) ≺ Rg.

where Conj is a generic conjunction and Rg is a guard, the system automatically

translates this rule to a pair of rules of the form

auxAtom :- Conj, BindingAtoms.

head :- body, f({Vars : auxAtom}) ≺ Rg.

where auxAtom is a standard rule containing both Conj and the atoms (BindingAtoms)

necessary for the bindings of Conj with body and/or head. Note that auxAtom

contains only those attributes of Conj that are strictly necessary for the computation

of f and, consequently, it may have far less (and cannot have more) attributes in

comparison with those present in Conj.

In our approach, we rely on this standardization to translate this kind of rule to

SQL; clearly only the second rule, containing the aggregate function, is handled by

the function we are presenting next; in fact, the first rule is automatically translated

by one of the already presented functions.

Intuitively, the objective of our translation is to create an SQL view auxAtom supp

from auxAtom, which contains all the attributes necessary to bind auxAtom with the

other atoms of the original rule and a column storing the results of the computation

of f over auxAtom; the original aggregate atom is then replaced by this view and

guard conditions are suitably translated by logic conditions between variables. At

this point, the resulting rule is a standard rule not containing aggregate functions

and can be then translated by one of the functions we have presented previously;

clearly enough, in this process, the original input rule r must be modified to have

a proper translation of its “standard” part. The function is shown in Figure 4; it

receives a rule r with aggregates as input and returns both the SQL views for the

aggregate functions in r and the modified (standard) r, which will be handled by

standard translation functions.6

6 Here and in the following, we use the operator + to denote the “append” operator between strings.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

146 G. Terracina et al.

Here function aggr atom(r) returns the aggregate atoms present in r; aux atom(a)

returns the auxiliary atom corresponding to Conj of a and automatically generated

by the standardization. Function bound attr(a) yields in output the attributes of the

atom a bound with attributes of the other atoms in the rule, whereas aggr attr(a)

returns the attribute that the aggregation must be carried out on to (the first

variable in Vars). aggr func(a) returns the SQL aggregation statement corresponding

to the aggregate function of a. Functions removeFromBody and addToBody are

responsible of altering the original rule r to make it standard (without aggregates).

In particular, removeFromBody(r, a) removes the aggregate atom a from the rule

r, whereas addToBody adds both aux atom supp(a) and guards(a) to r. Note that

aux atom supp(a) yields in output the name of the atom corresponding to the just

created auxiliary view, whereas guards(a) converts the guard of the aggregate atom

a in a logic statement between attributes in the rule.

Example 4.4

Consider the following rule computing the departments which spend for the salaries

of their employees, an amount greater than a certain threshold, say 100,000:

costlyDep(Dep) :- department(Dep,),

#sum{Salary ,Ename : employee(Ename, Salary ,Dep,)} > 100000.7

The standardization automatically rewrites this rule as:

aux emp(Salary ,Ename,Dep) :- department(Dep,),

employee(Ename, Salary ,Dep,).

costlyDep(Dep) :- department(Dep,),

#sum{Salary ,Ename : aux emp(Salary ,Ename,Dep)} > 100000.

The first rule is treated as a standard positive rule and is translated to:

INSERT INTO aux emp (

SELECT employee.att2, employee.att1, department.att1
FROM department, employee WHERE department.att1 = employee.att3
EXCEPT (SELECT * FROM aux emp))

The second rule is translated to:

CREATE VIEW aux emp supp AS (

SELECT aux emp.att3, SUM (aux emp.att1) FROM aux emp

GROUP BY aux emp.att3)

INSERT INTO costlyDep (

SELECT department.att1 FROM department, aux emp supp

WHERE department.att1 = aux emp supp.att1 AND aux emp supp.att2 > 100000

EXCEPT (SELECT * FROM costlyDep)) �

7 Note that Ename is needed to sum also the salaries of employees earning the same amount (see the
discussion on sets/multisets in Dell’Armi et al. 2003a).

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 147

Function TranslateRecursiveRule(r: DLP
A rule): SQL statement

begin
SQL:=””;
if(hasAggregate(r))

SQL:=TranslateAggregateRule(r);

n:=2RecursiveP redicates(r)-1
SQL:=SQL+”INSERT INTO ” + ∆head(r) + ”(”;
for i:=1 to n do begin

Let r′ be a rule;
setHead(r′, ∆head(r));
for each non recursive predicate qj in body(r) do

addToBody(r′, qj);
for each recursive predicate pj in body(r) do

if (bit(j,i)=0) then addToBody(r′, pk−2
j);

else addToBody(r′, ∆pk−1
j);

if (i 	= 1) SQL:=SQL+”UNION ”;
SQL:=SQL + TranslateNonRecursiveRule(r′);

end;
SQL:=SQL + ”)”;
return SQL;

end.

Fig. 5. Function TranslateRecursiveRule.

4.2.6 Translating recursive rules

As previously pointed out, our program evaluation strategy exploits a refined

version of the Semi-Naive method. This is based on the translation of a recursive

rule into a non-recursive SQL statement operating alternatively on standard and

differential versions of the relations associated with recursive predicates. Each time

this statement is executed by the algorithm, it must compute just the new values for

the predicate in the head that can be obtained from the values computed in the last

two iterations of the fixpoint.

Intuitively, the translation algorithm must first select the proper combinations of

standard and differential relations from the rule r under consideration; then, for

each of these combinations, it must rewrite r in a corresponding rule r′. Each r′

thus obtained is nonrecursive, and, consequently, it can be handled by Function

TranslateNonRecursiveRule. Algorithm TranslateRecursiveRule is shown in Figure 5.

Here, functions TranslateAggregateRule and TranslateNonRecursiveRule have been

introduced previously. Function hasAggregate(r) returns true if r contains aggregate

functions. Function RecursivePredicates(r) returns the number of occurrences of

recursive predicates in the body of r; ∆head(r) returns the differential version of

the relation corresponding to the head of r. Function setHead(r′, p) sets the head

of the rule r′ to the predicate p; analogously, function addToBody(r′, p) adds to the

body of r′ a conjunction with the predicate p. Function bit(j,i) returns the j-th bit

of the binary representation of i.

It is worth noticing that the execution of the queries resulting from function

TranslateRecursiveRule implement function EVAL DIFF for r (see the algorithm of

Figure 3).

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

148 G. Terracina et al.

Example 4.5

Consider the situation in which we need to know whether the employee e1 is the boss

of the employee en either directly or by means of a number of employees e2, .., en
such that e1 is the boss of e2, e2 is the boss of e3, etc. Then, we have to evaluate the

program:

r1 : q2(E1, E2) :- employee(E1 , Salary ,Dep,E2).

r2 : q2(E1, E3) :- q2(E1, E2), q2(E2, E3).

containing the recursive rule r2. This program cannot be evaluated in one single

iteration of the Semi-Naive computation. Rule r1 is not recursive; it is translated by

Function TranslatePositiveRule to the following SQL that is evaluated once:

INSERT INTO q2 (SELECT employee.att1, employee.att4 FROM employee

EXCEPT (SELECT * FROM q2))

Rule r2 is first translated by Function TranslateRecursiveRule to the temporary

set of rules:

r
′

2 : ∆qk2(E1, E3) :- qk−2
2 (E1, E2), ∆qk−1

2 (E2, E3).

∆qk2(E1, E3) :- ∆qk−1
2 (E1, E2), q

k−2
2 (E2, E3).

∆qk2(E1, E3) :- ∆qk−1
2 (E1, E2), ∆qk−1

2 (E2, E3).

which is translated to:

INSERT INTO ∆qk2 (

SELECT qk−2
2 .att1, ∆qk−1

2 .att2 FROM qk−2
2 ,∆qk−1

2 WHERE (qk−2
2 .att2=∆qk−1

2 .att1)

EXCEPT (SELECT * FROM ∆qk2)

UNION

SELECT ∆qk−1
2 .att1, q

k−2
2 .att2 FROM ∆qk−1

2 , qk−2
2 WHERE (∆qk−1

2 .att2=qk−2
2 .att1)

EXCEPT (SELECT * FROM ∆qk2)

UNION

SELECT ∆qk−1
2 .att1, ∆qk−1

2 1.att2 FROM ∆qk−1
2 , ∆qk−1

2 AS ∆qk−1
2 1

WHERE (∆qk−1
2 .att2=∆qk−1

2 1.att1)

EXCEPT (SELECT * FROM ∆qk2))

Actually, the real implementation of this function also adds, for performance reasons,

the following parts to the statement above:

EXCEPT (SELECT * FROM ∆qk−1
2)

EXCEPT (SELECT * FROM qk−2
2)

Note that, following Differential Semi-Naive algorithm (Figure 3), qk−2
2 and ∆qk−1

2 are

first initialized with the result of the evaluation of r1 (stored in q2—see instructions

(2) and (3) in Figure 3). Then, the SQL above is iteratively executed until the fixpoint

is reached. Note that, the aforementioned process executes instructions (1)–(5) of

the algorithm in Figure 3. The update of qk−2
2 and ∆qk−1

2 from one iteration to

the subsequent one is carried out by instructions (6) and (7) in a straightforward

way. �

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 149

4.2.7 A complete example

Example 4.6

Consider the datalog program presented in Example 3.1 and the mappings shown

in Figure 2. The complete query plan derived by DLVDB for them is:

(1) INSERT INTO destinations rel

(SELECT f.FromX, f.ToY, f.Company FROM flight rel AS f)

(2) INSERT INTO destinations rel

(SELECT f.FromX, f.ToY, c.Company2 FROM flight rel AS f, codeshare rel AS c

WHERE (f.Id=c.FlightId) AND (f.Company=c.Company1)

EXCEPT (SELECT * FROM destinations rel))

(3) INSERT INTO d destinations rel

(SELECT d1.FromX, d2.ToY, d1.Company

FROM d1 destinations rel AS d1, destinations rel AS d2

WHERE (d1.ToY=d2.FromX) AND (d1.Company=d2.Company)

UNION

SELECT d1.FromX, d2.ToY, d1.Company

FROM destinations rel AS d1, d1 destinations rel AS d2

WHERE (d1.ToY=d2.FromX) AND (d1.Company=d2.Company)

UNION

SELECT d1.FromX, d2.ToY, d1.Company

FROM d1 destinations rel AS d1, d1 destinations rel AS d2

WHERE (d1.ToY=d2.FromX)AND (d1.Company=d2.Company)

EXCEPT (SELECT * FROM d1 destinations rel)

EXCEPT (SELECT * FROM destinations rel)

EXCEPT (SELECT * FROM d destinations rel))

SQL statements (1) and (2) are executed only once, since they correspond to

non-recursive rules. On the contrary, the statement (3) is executed several times,

until the least fixpoint is reached, that is, d destinations rel is empty. Note

that d destinations rel and d1 destinations rel correspond respectively to

∆head(r) and ∆pk−1 introduced in Function TranslateRecursiveRule; as shown in Sec-

tion 4.1 the evaluation algorithm suitably updates the tuples of destinations rel

from the new values derived at each iteration in d destinations rel. �

5 System architecture

In this section, we present the general architecture of our system. It has been

designed as an extension of the DLV system (Leone et al. 2006), which allows both

the evaluation of logic programs directly on databases and the handling of input

and output data distributed on several databases. It combines the expressive power

of DLV (and the optimization strategies implemented in it) with the efficient data

management features of DBMSs (Garcia-Molina et al. 2000).

As previously pointed out, the system provides two, quite distinct, functioning

modalities, namely, the direct database execution and the main-memory execution

modality. In the following, we present the two corresponding architectures separately.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

150 G. Terracina et al.

Input
Program

Auxiliary
Directives

Parser

DLV

Optimizer

DLV DG
Builder

DLV
DG DDS to SQL

Translator

... ...Input
DB

Output
DB

Output
DB

Input
DB

Working
DB

Fix Point
Checker

Input data
Handler

SQL
ProgramDB Instantiator

ODBC Handler

Fig. 6. Architecture of DLVDB .

5.1 Architecture of the direct database execution (DLVDB)

Figure 6 illustrates the architecture of the system for the direct database execution.

In the figure, the boxes marked with DLV are the ones already developed in the

DLV system. An input program P is first analyzed by the Parser, which encodes the

rules in the intensional database (IDB) in a suitable way and builds an extensional

database (EDB) in main-memory data structures from the facts specified directly

in the program (if any). As for facts already stored in database relations, no

EDB is produced in main-memory. After this, the Optimizer applies a rewriting

procedure in order to get a program P′, equivalent to P, that can be evaluated

more efficiently; some of the operations carried out by this module have been

highlighted in Section 4.1. The Dependency Graph Builder computes the DG of P′,

its connected components, and a topological ordering of these components. Finally,

the DB Instantiator module, the core of the system, is activated.

The DB Instantiator module receives (i) the IDB and the EDB (if not empty)

generated by the parser, (ii) the DG generated by the DG builder, and (iii) the

auxiliary directives specifying the needed interactions between DLVDB and the

databases. It evaluates the input program through the bottom-up fixpoint evaluation

strategy shown in Section 4. Since the input program is supposed to be normal and

stratified (see Section 2), the DB Instantiator evaluates completely the program and

no further modules must be employed after it.

All the instantiation steps are performed directly on the working database through

the execution of SQL statements and no data are loaded in main-memory from

the databases in any phase of the process. This allows DLVDB to be completely

independent of the dimension of both the input data and the number of facts

generated during the evaluation.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 151

k

f

Fig. 7. Architecture of DLVIO .

Communication with databases is performed via ODBC. This allows DLVDB both

to be independent from a particular DBMS and to handle databases distributed

over the Internet.

It is important to point out that the architecture of DLVDB has been designed

in such a way to fully exploit optimizations both from logic theory and from

database theory. In fact, the actually evaluated program is the one resulting from

the Optimizer module, which applies program rewriting techniques aiming to simplify

the evaluation process and to reduce the dimension of the involved relations (see

Section 4.1). Then, the execution of the SQL statements in the query plan exploit

data-oriented optimizations implemented in the DBMS. As far as this latter point

is concerned, we have experienced that the kind of DBMS handling the working

database for DLVDB may significantly affect system performance; in fact, when

DLVDB was coupled with highly sophisticated DBMSs, it generally showed better

performance in handling large amounts of data with respect to the same executions

when coupled with less sophisticated DBMSs.

The observation above points out both the importance of data-oriented optim-

izations and a potential advantage of DLVDB with respect to deductive systems

operating on ad hoc DBMSs. In fact, DLVDB can be easily coupled with the most

efficient DBMS available at the time being used (provided that it supports standard

SQL), whereas the improvement of an ad hoc DBMS is a more difficult task.

5.2 Architecture of the main-memory execution (DLVIO)

The architecture of DLVIO is illustrated in Figure 7. It extends the classical DLV

architecture with ODBC functionalities to import/export data from/to database

relations. The main-memory execution modality acts just as an interface (based on

ODBC connections) between the external databases and the standard DLV program.

In more detail, input data can be supplied both by regular files and by relational

tables accessed via ODBC as specified by the #import commands. Specifically, for

each #import command the system retrieves data from the corresponding table

“row by row” through the SQL query specified by the user and creates one atom

in main-memory (in the format required by DLV) for each selected tuple. The name

of each imported atom is set to predname, and is considered as a fact. Possible facts

residing in text files are fed into DLV in the standard way. All the data are fetched

in main-memory before any evaluation task is carried out.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

152 G. Terracina et al.

The DLV kernel (the shaded part in the figure) then produces answer sets one

at a time. It consists of three major components: the “Intelligent Grounding”,8

the “Model Generator”, and the “Model Checker” modules; these share a main

data structure, the “Ground Program”. It is created by the Intelligent Grounding

using differential (and other advanced) database techniques together with suitable

main-memory data structures, and used by the Model Generator and the Model

Checker. The Ground Program is guaranteed to have exactly the same answer

sets as the original program. For some syntactically restricted classes of programs

(e.g., stratified programs), the Intelligent Grounding module already computes the

corresponding answer sets.

For harder problems, most of the computation is performed by the Model

Generator and the Model Checker. Roughly, the former produces some “candidate”

answer sets (models) (Faber et al. 1999b, 2001), the stability and minimality of which

are subsequently verified by the latter.

The Model Checker verifies whether the model at hand is an answer set. This

task is very difficult in general, because checking the stability of a model is known

to be co-NP complete. However, this module exploits the fact that minimal model

checking—the hardest part—can be efficiently performed for the relevant class of

head-cycle-free (HCF) programs (Ben-Eliyahu and Dechter 1994, 1996).

Each time an answer set M is found, “Filtering” is invoked, which performs

some post-processing, controls continuation or abortion of the computation, and

possibly stores the output data in the corresponding relational tables as specified

by the #export commands. In particular, if an #export command from predname to

tablename is present, the module generates a new tuple in tablename for each atom

in M having name predname.9

6 Experiments and benchmarks

In this section, we present our experimental framework and the results obtained

comparing the DLVDB system with several state-of-the-art systems. Benchmarks have

been designed following the guidelines, problems, and data structures proposed in

Bancilhon and Ramakrishnan (1988) and Greco (2003) to assess the performance of

DDSs. Roughly speaking, problems used in Bancilhon and Ramakrishnan (1988) and

Greco (2003) basically resort to the execution of some recursive queries on a variety

of data structures. The main goal of our experiments was to evaluate the deductive

capabilities of tested systems for both query answering time and amount of man-

ageable data, especially with respect to the direct database execution of our system.

All tests have been carried out on a Pentium 4 processor with a 1.4-GHz CPU

and 512 Mbytes of RAM.

8 It incorporates the Parser, the Optimizer, and the DG Builder depicted in Figure 6.
9 As previously pointed out, the presence of an #export command automatically limits the system to

generate the first answer set only.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 153

6.1 Overview of compared systems

To provide a comparative and comprehensive analysis with the state-of-the-art

systems in the considered research area, we have compared our system performance,

under both execution modalities (i.e, DLVDB and DLVIO), with (i) LDL++, because

it is one of the most robust implementations of DDSs; (ii) XSB, as an efficient

implementation of the top-down evaluation strategy; (iii) Smodels, one of the most

widely used Answer Set Programming systems together with DLV; and (iv) three

commercial DBMSs supporting the execution of recursive queries. Note that the

licence of use of such DBMSs does not allow us to explicitly mention them in the

article; as a consequence, in the following, we call them simply DB-A, DB-B, and

DB-C. The reader should just know they are the three top-level commercial database

systems currently available, which also support recursive queries.

Note that important DBMSs such as Postgres and MySQL could not be tested;

in fact, they do not support recursive queries, which are the basis for our testing

framework. Moreover, as we pointed out in the Introduction, other logic-based

systems such as ASSAT, Cmodels, and CLASP have not been tested since they

use the same grounding layer of Smodels (LParse) and, as it will be clear in the

following, the benchmark programs are completely solved by this layer.

In the following, we briefly overview the main characteristics of the tested systems,

focusing on their support to the language and technological capabilities addressed

in this work. Specifically, we consider, for each database system, its capability to

express recursive queries and, for each logic-based system, the expressiveness of its

language and its capability to interact with external DBMSs.

For each system, we used the latest release available at the time tests have been

carried out.

6.1.1 Database systems

As far as database systems are concerned, it is worth pointing out that none of

the considered ones fully adopt the SQL99 standard for the definition of recursive

queries, but proprietary constructs are introduced by each of them.

In particular, both DB-A and DB-B support the standard recursive functionalities

that are needed for our benchmarks, even if proprietary constructs must be added

to the standard SQL99 statement to guarantee the termination of some kinds

of queries. On the contrary, DB-C implements a large subset of SQL99 features

and supports recursion, but, as far as recursive queries are concerned, it exploits

proprietary constructs that do not follow the standard SQL99 notation, and whose

expressiveness is lower than that of SQL99; as an example, it is not possible to

express unbound queries within recursive statements (e.g., all the pairs of nodes

linked by at least one path in a graph).

6.1.2 LDL++

The LDL++ system (Arni et al. 2003) integrates rule-based programming with

efficient secondary memory access, transaction management recovery, and integrity

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

154 G. Terracina et al.

control. The underlying database engine has been developed specifically within

the LDL project and is designed as a virtual-memory record manager, which is

optimized for the situation where the pages containing frequently used data can

reside in main-memory. LDL++ can also be interfaced with external DBMSs, but

it is necessary to implement vendor-specific drivers to handle data conversion and

local SQL dialects (Arni et al. 2003). The LDL++ language supports complex terms

within facts and rules, stratified negation, and do not care non-determinism based on

stable model semantics. Moreover, LDL++ supports updates through special rules.

In our tests, we used version 5.3 of LDL++. Test data have been fed to the

system by text files storing input facts.

6.1.3 XSB

The XSB system (Rao et al. 1997) is an in-memory deductive database engine

based on a Prolog/SLD resolution strategy called SLG. It supports explicitly locally

stratified programs. The inference engine, which is called SLG-WAM, consists of an

efficient tabling engine for definite logic programs, which is extended by mechanisms

for handling cycles through negation. These mechanisms are negative loop detection,

delay, and simplification. They serve for detecting, breaking, and resolving cycles

through negation.

XSB allows the exploitation of data residing in external databases, but reasoning

on such data is carried out in main-memory. In our tests, we have used version 2.2

of XSB.

6.1.4 SModels

The SModels system (Niemelä and Simons 1997; Niemelä et al. 2000) implements

the answer set semantics for normal logic programs extended by built-in functions

as well as cardinality and weight constraints for domain-restricted programs.

The SModels system takes as input logic program rules in Prolog style syntax.

However, in order to support efficient implementation techniques and extensions,

the programs are required to be domain-restricted where the idea is the following:

the predicate symbols in the program are divided into two classes, domain predicates

and non-domain predicates. Domain predicates are predicates that are defined

nonrecursively. The main intuition of domain predicates is that they are used

to define the set of terms over which the variable range in each rule of a program

P . All rules of P have to be domain-restricted in the sense that every variable in

a rule must appear in a domain predicate that appears positively in the rule body.

In addition to normal logic program rules, SModels supports rules with cardinality

and weight constraints, which are similar to #count and #sum aggregates of DLV.

SModels does not allow to handle data residing in database relations; moreover,

all the stages of the computation are carried out in main-memory. Finally, it does

not support optimization strategies for bound queries; consequently, the time it

needs for executing the same query either with all parameters unbound or with

some parameters bound is exactly the same.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 155

In our tests, we used SModels, version 2.28 with LParse version 1.0.17. Test data

have been fed to the system by text files storing input facts.

6.1.5 DLVDB

It is the direct database execution of our system. In our tests, we used a commercial

database as DBMS for the working database. However, to guarantee fairness with

the other systems, we did not set any additional index or key information for the

involved relations. We point out again that any DBMS supporting ODBC could be

easily coupled with DLVDB .

6.1.6 DLVIO

It is the main-memory execution modality of the system presented in this article.

Recall that it basically corresponds to the execution of the standard DLV system

with data loaded from databases.

6.2 Benchmark problems

To asses the performance of the systems described above, we carried out several

tests using classical benchmark problems from the context of deductive databases

(Bancilhon and Ramakrishnan, 1988; Greco, 2003), namely, Reachability and Same

Generation. The former allows the analysis of basic recursion capabilities of the

various systems on several data structures, whereas the latter implements a more

complex problem and, consequently, allows the capability of the considered systems

to carry out more refined reasoning tasks to be tested.

For each problem, we measured the performance of the various systems in

computing three kinds of queries, namely: unbound queries (identified by the

symbol Q0 in the following); and queries with one bound parameter (Q1); and

queries with all bound parameters (Q2). Considering these three cases is important

because DBMSs and deductive databases generally benefit from query bindings

(by “pushing down” selections through relational algebra optimizations, magic set

techniques, or, for XSB, top-down evaluation), whereas ASP systems are generally

more effective with unbound queries (since they usually compute the entire models

anyway); as a consequence, it is interesting to test all these systems in both their

favorable and unfavorable contexts. It is worth pointing out that some of the tested

systems implement optimization strategies “a la magic set” (Bancilhon et al. 1986;

Ross 1990; Beeri and Ramakrisnhan 1991; Mumick et al. 1996) (e.g., DLVDB and

LDL++), typical of deductive databases, or other program rewriting techniques. As

a consequence, the actually evaluated programs are the optimized ones automatically

derived by these systems, but the cost of these rewritings has been always considered

in the measure of systems’ performance.

In what follows, we briefly introduce the two considered problems; the interested

reader can find all details about them in Bancilhon and Ramakrishnan (1988).

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

156 G. Terracina et al.

Fig. 8. Example of a cylinder graph.

6.2.1 Reachability

Given a directed graph G = (V , E), the solution to the reachability problem reach-

able(a, b) determines whether a node b ∈ V is reachable from a node a ∈ V through

a sequence of edges in E. The input is provided by a relation edge(X,Y), where a

fact edge(a, b) states that b is directly reachable by an edge from a.

In database terms, determining all pairs of reachable nodes in G amounts to

computing the transitive closure of the relation storing the edges.

6.2.2 Same generation

Given a parent-child relationship (a tree), the Same Generation problem aims to

find pairs of persons belonging to the same generation. Two persons belong to the

same generation either if they are siblings or if they are children of two persons of

the same generation.

The input is provided by a relation parent(X,Y), where a fact parent(thomas,

moritz) means that thomas is the parent of moritz.

6.3 Benchmark data sets

For each considered problem, we exploited several sets of benchmark data structures.

For each data structure, various instances of increasing dimensions have been

constructed; the size of each instance is measured in terms of the number of input

facts describing it.

6.3.1 Reachability

As for the Reachability problem, we considered (i) full binary trees, (ii) acyclic

graphs (a-graphs in the following), (iii) cyclic graphs (c-graphs in the following), and

(iv) cylinders (Bancilhon and Ramakrishnan 1988).

The density δ of a graph can be measured as δ =
of arcs in the graph

of possible arcs
. We

generated various typologies of graph instances, characterized by values of δ equal

to 0.20, 0.50, and 0.75 respectively. Because of space constraints, in this article, we

report just the results obtained for δ = 0.20.

Cylinders are particular kinds of acyclic graphs that can be layered; each layer

has the same number of nodes. Each node of the first layer has two outgoing arcs

and no incoming arcs, whereas each node of the last layer has two incoming arcs

and no outgoing arcs; finally, each node of an internal layer has two incoming and

two outgoing arcs. An example of a cylinder is shown in Figure 8. A cylinder has

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 157

then a width and a height; as a consequence, the ratio ρ = width
height

can be exploited

to characterize a cylinder. We generated various categories of cylinders having ρ

equal to 0.5, 1.0, and 1.5, respectively. Because of space constraints, in this article,

we report just the results obtained for ρ = 1.

Graphs have been generated using the Stanford GraphBase (Knuth 1994) library,

whereas trees and cylinders have been generated using ad hoc procedures, since they

are characterized by a regular structure.

6.3.2 Same generation

As far as the Same Generation problem is concerned, we exploited full binary trees

as input data structures.

6.4 Problem encodings

We have used general encodings for the two considered problems in a way that

tests the various systems under generic conditions; specifically, we used “uniform”

queries, that is, queries whose structure must not be modified depending on the

quantity and positions of bound parameters. Several alternative encodings could

have been possible for the various problems, depending also on the underlying

data structures. However, since many other problems of practical relevance can be

brought back to the ones we considered, we preferred to exploit those encodings

applicable to the widest variety of applications.

Because of space constraints, we cannot list here the encodings exploited in our

tests. The interested reader can find them at

http://www.mat.unical.it/terracina/tplp-dlvdb/encodings.pdf .

Note that, since DB-C does not support the standard SQL99 language but only

a simplified form of recursion, we have not tested this system along with the other

ones. We discuss encodings and results obtained for DB-C in a separate section.

6.5 Results and discussion

In our tests, we measured the time required by each system to answer the various

queries. We fixed a maximum running time of 12,000 s (about 3 h) for each test. In

the following figures, the line of a system stops whenever some query was not solved

within this time limit (note that graphs have a logarithmic scale on the vertical axis).

In more detail, Figures 9–11 show results obtained for the various tests; the

headline of each graph reports the corresponding query.

From the analysis of these figures, we can observe that, in several cases, the

performance of DLVDB (the black triangle in the graphs) is better than all the

other systems with orders of magnitude and that DLVDB allows almost always

the handling of the greatest amount of data; moreover, there is no system that can

be considered the “competitor” of DLVDB in all the tests.

In particular, in some tests, XSB shows a good behavior (e.g., in Reachability

on cyclic graphs and cylinders) but, even in those positive tests, it “dies” earlier

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

158 G. Terracina et al.

Fig. 9. Results for Same Generation on trees and Reachability with acyclic graphs.

than DLVDB (with the exception of reachable(b1,Y) on cylinders), probably because

it exceeds the main-memory.

LDL++ is competitive with DLVDB only in reachable(b1,Y) on cyclic graphs and

cylinders, whereas in all the other queries, the performance difference is of more

than one order of magnitude.

DB-B performance is near to that of DLVDB only in samegen(X,Y); in all the

other cases, its line is near to the vertical axis.

DB-A showed very good performance only for reachability on trees (see also

Table 1 introduced next). This behavior could be justified by the presence of

optimization mechanisms implemented in this system that are particularly suited for

computing the transitive closure on simple data structures (such as trees), but these

are not effective for other (more complex) kinds of query/data structure.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 159

Fig. 10. Results for Reachability with cyclic graphs and with cylinders.

Surprisingly enough, DBMSs often have the worst performance (their times are

near to the vertical axis) and they can handle very limited amounts of input data.

Finally, as expected, DLVIO is capable of handling lower amounts of data with

respect to DLVDB; however, in several cases it was one of the best three performing

systems, especially on bound queries. This result is mainly due to the magic sets

optimization technique it implements.

A rather surprising result is that DLVIO has almost always higher execution times

than DLVDB even for not very high input data sizes. The motivation for this result

can be justified by the following reasoning. Both DLVDB and DLVIO benefit from

all the program rewriting optimization techniques developed in the DLV project.

Moreover, both of them implement a differential Semi-Naive approach for the

evaluation of normal stratified programs. However, while DLVIO reasons about its

underlying data in a tuple-at-a-time way, DLVDB exploits a set-at-a-time strategy

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

160 G. Terracina et al.

Fig. 11. Results for Reachability with trees.

(implemented by SQL queries); this, in conjunction with the fact that the underlying

working database implements advanced data-oriented optimization strategies, makes

DLVDB more efficient than DLVIO even when all the data fit in main-memory.

Similarly, as pointed out in Bancilhon and Ramakrishnan (1988), another import-

ant parameter to measure in this context is the system’s capability of handling large

amounts of data. To carry out this verification, we considered the time response of

each system for the largest input data set we have used in each query.

Table 1 shows the execution times measured for those systems that have been

capable of solving the query within the fixed time limit of 12,000 s; the second

column of the table shows, for each query, both the input data size, measured in

terms of the number of input facts (tuples), and the total amount of handled data,

measured in Mbytes, given by the size of the answer set produced by DLVDB in

answering that query.10

From the analysis of this table, we may observe that (i) DLVDB has been always

capable of solving the query on the maximum data size; (ii) in 11 queries out of

15 DLVDB (in one case along with DLVIO) has been the only system capable of

completing the computation within the time limit; (iii) DLVDB allowed to handle up

to 6.7 Gbytes of data in samegen(X,Y) and 1.6 Gbytes in reachable(X,Y) on trees

within the fixed time limit of 12,000 s and never ended its computation owing to

lack of memory, as other systems did.

10 Note that all facts produced by DLVDB to answer the query are considered.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 161

Table 1. Execution times of the systems capable of solving the query for the

maximum considered size of the input data

Query / Input size (tuples) / DB-B DLVIO DLVDB LDL++ SModels DB-A XSB
Data type Output size (Mbytes) (s) (s) (s) (s) (s) (s) (s)

samegen(X,Y) 32,766 · · · · · · 5,552 · · · · · · · · · · · ·
tree 6,716 Mb
samegen(b1,Y) 4,194,302 · · · · · · 64 · · · · · · · · · · · ·
tree 78 Mb
samegen(b1,b2) 4,194,302 · · · · · · 102 · · · · · · · · · · · ·
tree 78 Mb
reachable(X,Y) 929,945 · · · · · · 11,820 · · · · · · · · · · · ·
a-graph 103 Mb
reachable(b1,Y) 929,945 · · · · · · 1,191 · · · · · · · · · · · ·
a-graph 38 Mb
reachable(b1,b2) 929,945 · · · · · · 4 · · · · · · · · · · · ·
a-graph 17 Mb
reachable(X,Y) 612,150 · · · · · · 11,936 · · · · · · · · · · · ·
c-graph 68 Mb
reachable(b1,Y) 612,150 · · · · · · 11,933 · · · · · · · · · · · ·
c-graph 68 Mb
reachable(b1,b2) 612,150 · · · 981 8 · · · · · · · · · · · ·
c-graph 11 Mb
reachable(X,Y) 23,980 · · · · · · 11,784 · · · · · · · · · · · ·
cylinder 465 Mb
reachable(b1,Y) 145,260 · · · · · · 11,654 2284 · · · · · · 157
cylinder 279 Mb
reachable(b1,b2) 582,120 · · · · · · 388 · · · · · · · · · · · ·
cylinder 13 Mb
reachable(X,Y) 4,194,302 · · · · · · 11,161 · · · · · · 7,280 · · ·
tree 1,634Mb
reachable(b1,Y) 4,194,302 · · · · · · 76 · · · · · · 6,438 · · ·
tree 79 Mb
reachable(b1,b2) 4,194,302 · · · · · · 60 · · · · · · 12 · · ·
tree 78 Mb

6.6 Comparison to DB-C

As previously pointed out, DB-C does not support the standard SQL99 encoding for

recursive queries, but it exploits a proprietary language for implementing a simplified

form of recursion. This language is less expressive than SQL99 for recursion; as an

example, unbound recursive queries cannot be implemented in DB-C; analogously,

it does not allow to write recursive views in a “uniform” way (i.e., independently

from the specific bound parameters).

As for the problems addressed in this article, it was not possible to write the

unbound query either for Reachability or for Same Generation with DB-C. The

other queries have encodings not equivalent to the general version we adopted for

the other systems.

As an example, the query Q1 = reachable(b1,Y) can be expressed in DB-C by the

following statement:

SELECT b1, edge.att2 FROM edge

START WITH att1= b1 CONNECT BY PRIOR att2 = att1

which, however, is equivalent to the datalog program:

reached (b1).

reached (X) :- reached (Y), edge(Y ,X).

reachable(b1 ,Y) :- reached (Y).

This is clearly a program that can be evaluated more easily than the general

encoding, because it involves a recursive rule with one single attribute and a unique

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

162 G. Terracina et al.

starting point for the recursion (the fact reached(b1)). However, this query (and the

equivalent program) is less general than the one introduced in Section 6.4, since its

structure must be modified if, for example, we need to have both the parameters

bound or we want to bound the second parameter instead of the first.

Clearly, testing such encodings against the other, more general, ones would have

been unfair. Anyway, we carried out some tests involving DB-C, by applying

its encodings and the corresponding datalog programs on the maximum data

instances we considered for the various queries, in order to have a rough idea

on the performance. As an example, for the query Q1 = reachable(b1,Y) mentioned

above, on a-graphs (resp., c-graphs) of size 929,945 (resp., 612150) tuples we have

measured that DB-C takes 22.5 (resp., 15.9) s, whereas DLVDB takes 6.4 (resp., 5.6) s.

Analogously, for the query Q1 = samegen(b1,Y), on trees of size 4,194,302 tuples,

DB-C requires 1,329.4 s to terminate the computation, whereas DLVDB requires

500.8 s. DB-C performed better than DLVDB only for Reachability on trees. In

addition, as we have done for DB-A, we may conjecture that this behavior is

motivated by the particular optimization techniques implemented in the system.

These results are representative of the overall performance we have measured

for DB-C in our benchmarks. On the one hand, they confirm our claim that the

encodings solvable by DB-C are very different, also from a performance point of

view, with respect to the general ones used in our benchmarks (as an example, this

is proved by the significantly lower timing measured for DLVDB in reachable(b1,Y)

with respect to the same query in the standard encoding). On the other hand, they

allow us to conclude that the same reasoning as that drawn in Section 6.5 about

DLVDB performance is still valid.

7 Conclusions

In this article, we have presented DLVDB , a new deductive system for reasoning on

massive amounts of data. It not only presents features of an efficient DDS but also

extends the capability of handling data residing in external databases to a DLP

system. A thorough experimental validation showed that DLVDB provides both im-

portant speed ups in the running time of typical deductive queries and the capability

to handle larger amounts of data with respect to existing systems. Interestingly, the

experimental results show that DLVDB significantly outperforms both commercial

DBMSs and other logic-based systems in the evaluation of recursive queries.

The key reason for the relevant performance improvement obtained by our system

is the integration of the following factors: (i) The idea to employ the efficient engine

of a commercial DBMS for rule evaluation, by translating logical rules in SQL

statements (which are then executed by a DBMS), thus allowing us to exploit

the efficient data-oriented optimization techniques of relational databases. (ii) The

exploitation of advanced optimization techniques developed in the field of deductive

databases for logical query optimization (e.g., magic sets). (iii) A proper combination

and a well-engineered implementation of the above ideas. Moreover, the usage of

a purely mass-memory evaluation strategy improves previous deductive systems,

eliminating, in practice, any limitation in the dimension of the input data.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 163

In the future, we plan to extend the language supported by the direct database

execution and to exploit the system in interesting research fields such as data

integration and data warehousing. Moreover, a mixed approach exploiting both

DLVDB and DLVIO executions to evaluate difficult problems partially in mass-

memory and partially in main-memory will be explored.

Acknowledgments

This work was partially supported by the Italian “Ministero delle Attività Produt-

tive” under project “Discovery Farm” B01/0297/P 42749-13, and by M.I.U.R.

under project “ONTO-DLV: Un ambiente basato sulla Programmazione Logica

Disgiuntiva per il trattamento di Ontologie” 2521.

References

American National Standards Institute. 1999. ANSI/ISO/IEC 9075-1999 (SQL:1999,

Parts 1–5). American National Standards Institute, New York.

Abiteboul, S., Abrams, Z., Haar, S. and Milo, T. 2005. Diagnosis of asynchronous discrete

event systems: Datalog to the rescue! In Proceedings of the Twenty-fourth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS, 2005), Baltimore,

MD, ACM, New York, NY, USA. 358–367.

Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a Theory of Declarative Knowledge.

In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan

Kaufmann, Washington, DC, 89–148.

Arni, F., Ong, K., Tsur, S., Wang, H. and Zaniolo, C. 2003. The Deductive Database System

LDL++. Journal of the Theory and Practice of Logic Programming 3, 1, 61–94.

Balbin, I. and Ramamohanarao, K. 1987. A generalization of the differential approach to

recursive query evaluation. Journal of Logic Programing 4, 3, 259–262.

Bancilhon, F., Maier, F., Sagiv, Y. and Ullman, J. 1986. Magic sets and other strange ways

to implement logic programs. In Proc. of the ACM Symposium on Principles of Database

Systems (PODS’86). ACM Press, Cambridge, MA, 1–16.

Bancilhon, F. and Ramakrishnan, R. 1988. Performance evaluation of data intensive

logic programs. In Foundations of Deductive Databases and Logic Programming. Morgan

Kaufmann, Washington, DC, 439–517.

Baral, C. 2002. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, New York.

Beeri, C. and Ramakrisnhan, R. 1991. On the power of magic. Journal of Logic

Programming 10, 1–4, 255–259.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic

programs. Annals of Mathematics and Artificial Intelligence 12, 53–87.

Ben-Eliyahu, R. and Dechter, R. 1996. On computing minimal models. Annals of

Mathematics and Artificial Intelligence 18, 1, 3–27.

Ceri, S., Gottlob, G. and Tanca., L. 1990. Logic Programming and Databases. Springer

Verlag, New York.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. 2003a. Aggregate functions

in disjunctive logic programming: Semantics, complexity, and implementation in DLV.

In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI)

2003, Acapulco, Mexico. Morgan Kaufmann, Washington, DC, 847–852.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

164 G. Terracina et al.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. 2003b. Aggregate

Functions in DLV. In Proceedings ASP03—Answer Set Programming: Advances in Theory

and Implementation, Messina, Italy, M. de Vos and A. Provetti, Eds. 274–288. URL:

http://CEUR-WS.org/Vol-78/. Access date: 30/10/2006.

Faber, W., Leone, N., Mateis, C. and Pfeifer, G. 1999a. Using database optimization

techniques for nonmonotonic reasoning. In Proceedings of the 7th International Workshop

on Deductive Databases and Logic Programming (DDLP’99), I. O. Committee, Ed. Prolog

Association of Japan, 135–139.

Faber, W., Leone, N. and Pfeifer, G. 1999b. Pushing goal derivation in DLP computations.

In Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR’99), El Paso, TX, M. Gelfond, N Leone, and G. Pfeifer, Eds. Number

1730 in Lecture Notes in AI (LNAI). Springer Verlag, New York, 177–191.

Faber, W., Leone, N. and Pfeifer, G. 2001. Experimenting with heuristics for answer set

programming. In Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (IJCAI) 2001, Seattle, WA, Morgan Kaufmann, Washington, DC, 635–640.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic

programs: Semantics and complexity. In Proc. of JELIA 2004. 200–212.

Faber, W. and Pfeifer, G. 1996. DLV homepage. URL: http://www.dlvsystem.com/. Access

date: 30/10/2006.

Gallaire, H., Minker, J. and Nicolas, J. 1984. Logic and databases: A deductive approach.

ACM Computing Surveys 16,2, 153–186.

Garcia-Molina, H., Ullman, J. D. and Widom, J. 2000. Database System Implementation.

Prentice Hall, Upper Soddle River, NJ.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. Conflict-driven answer set solving.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI)

2007, Hyderabad, India. AAAI Press, Menlo Park CA, 386–392.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 365–385.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2006. Answer Set Programming based on

Propositional Satisfiability. Journal of Automated Reasoning (JAR) 36, 4, 345–377.

Giunchiglia, E., Maratea, M. and Lierler, Y. 2004. SAT-based answer set programming.

In American Association for Artificial Intelligence. AAAI Press, Menlo Park, CA, 61–66.

Grant, J. and Minker, J. 1992. The impact of logic programming on databases.

Communications of the ACM 35, 3, 66–81.

Greco, S. 2003. Binding propagation techniques for the optimization of bound disjunctive

queries. IEEE Transactions on Knowledge and Data Engineering 15, 2, 368–385.

Knuth, D. E. 1994. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM

Press, New York.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV System for Knowledge Representation and Reasoning. ACM Transactions

on Computational Logic, ACM Press, New York. URL: http://www.arxiv.org/ps/cs.

AI/0211004. Access date: 30/10/2006.

Lin, F. and Zhao, Y. 2002. ASSAT: Computing answer sets of a logic program by SAT

solvers. In American Association for Artificial Intelligence. AAAI Press, Menlo Park, CA,

112–118.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157, 1–2, 115–137.

Loo, B., Hellerstein, J., Stoica, I. and Ramakrishnan, R. 2005. Declarative routing:

extensible routing with declarative queries. In Proceedings of the ACM SIGCOMM

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

Recursive queries in database and logic programming systems 165

2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, Philadelphia, PA, ACM press, New York, NY, USA, 289–300.

Lu, J., Nerode, A. and Subrahmanian, V. 1996. Hybrid knowledge bases. IEEE Transactions

on Knowledge and Data Engineering 8, 5, 773–785.

Mumick, I., Finkelstein, S., Pirahesh, H. and Ramakrishnan, R. 1996. Magic conditions.

ACM Transactions on Database Systems 21, 1, 107–155.

Niemelä, I. and Simons, P. 1997. Smodels—An Implementation of the stable model and

well-founded semantics for normal logic programs. In Proceedings of the 4th International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), Dagstuhl,

Germany. J. Dix, U. Furbach and A. Nerode, Eds. Lecture Notes in AI (LNAI), vol. 1265.

Springer Verlag, New York, 420–429.

Niemelä, I., Simons, P. and Syrjänen, T. 2000. Smodels: A system for answer set pro-

gramming. In Proceedings of the 8th International Workshop on Non-Monotonic Reasoning

(NMR’2000), Breckenridge, CO, C. Baral and M. Truszczyński, Eds. Electronic proceedings;

available at: http://xxx.lanl.gov/abs/cs.AI/0003033. Access date: 30/10/2006.

Przymusinski, T. C. 1988. On the declarative semantics of deductive databases and logic

programs. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed.

Morgan Kaufmann, Washington, DC, 193–216.

Rao, P., Sagonas, K., Swift, T., Warren, D. and Friere, J. 1997. XSB: A system for

efficiently computing well-founded semantics. In Proc. of 4th International Conference on

Logic Programming and Non Monotonic Reasoning (LPNMR’97). Springer, LNAI, New

York, 430–440.

Ross, K. 1990. Modular stratification and magic sets for datalog programs with negation.

In Proc. of the ACM Symposium on Principles of Database Systems. Nashville, Tennessee.

ACM Press, New York, 161–171.

Ullman, J. 1989. Principles of Database and Knowledge Base Systems. Computer Science

Press. New York, NY, USA.

Winslett, M. 2006. Raghu Ramakrishnan speaks out. SIGMOD Record 35, 2, 77–85.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T., Subrahmanian, V. S. and Zicari, R.

1997. Advanced Database Systems. Morgan Kaufmann, Washington, DC.

https://doi.org/10.1017/S1471068407003158 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003158

