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This work aims to improve our understanding of the turbulent energy dissipation
rate in the wake of a circular cylinder. Ten of the twelve velocity derivative terms
which make up the energy dissipation rate are simultaneously obtained with a probe
composed of four X-wires. Measurements are made in the plane of mean shear at
x/d= 10, 20 and 40, where x is the streamwise distance from the cylinder axis and d
is the cylinder diameter, at a Reynolds number of 2.5×103 based on d and free-stream
velocity. Both statistical and topological features of the velocity derivatives as well
as the energy dissipation rate, approximated by a surrogate based on the assumption
of homogeneity in the transverse plane, are examined. The spectra of the velocity
derivatives indicate that local axisymmetry is first satisfied at higher wavenumbers
while the departure at lower wavenumbers is caused by the Kármán vortex street.
The spectral method proposed by Djenidi & Antonia (Exp. Fluids, vol. 53, 2012,
pp. 1005–1013) based on the universality of the dissipation range of the longitudinal
velocity spectrum normalized by the Kolmogorov scales also applies in the present
flow despite the strong perturbation from the Kármán vortex street and violation
of local isotropy at small x/d. The appropriateness of the spectral chart method is
consistent with Antonia et al.’s (Phys. Fluids, vol. 26, 2014, 45105) observation that
the two major assumptions in Kolmogorov’s first similarity hypothesis, i.e. very large
Taylor microscale Reynolds number and local isotropy, can be significantly relaxed.
The data also indicate that vorticity spectra are more sensitive, when testing the
first similarity hypothesis, than velocity spectra. They also reveal that the velocity
derivatives ∂u/∂y and ∂v/∂x play an important role in the interaction between large
and small scales in the present flow. The phase-averaged data indicate that the energy
dissipation is concentrated mostly within the coherent spanwise vortex rollers, in
contrast with the model of Hussain (J. Fluid Mech., vol. 173, 1986, pp. 303–356)
and Hussain & Hayakawa (J. Fluid Mech., vol. 180, 1987, p. 193), who conjectured
that it resides mainly in regions of strong turbulent mixing.

Key words: turbulent flows, vortex streets, wakes

† Email address for correspondence: yuzhou@hit.edu.cn

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-0976-722X
mailto:yuzhou@hit.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.765&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.765&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.765&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.765&domain=pdf
https://doi.org/10.1017/jfm.2017.765


272 J. G. Chen, Y. Zhou, R. A. Antonia and T. M. Zhou

1. Introduction
The mean turbulent kinetic energy dissipation rate, which plays a major role in

small-scale turbulence research (Sreenivasan & Antonia 1997; Vassilicos 2015) is
given by
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∂ui

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)

= ν

2
(
∂u
∂x

)2

︸ ︷︷ ︸
1

+

(
∂v

∂x

)2

︸ ︷︷ ︸
2

+

(
∂w
∂x

)2

︸ ︷︷ ︸
3

+

(
∂u
∂y

)2

︸ ︷︷ ︸
4

+ 2
(
∂v

∂y

)2

︸ ︷︷ ︸
5

+

(
∂w
∂y

)2

︸ ︷︷ ︸
6

+

(
∂u
∂z

)2

︸ ︷︷ ︸
7

+

(
∂v

∂z

)2

︸ ︷︷ ︸
8

+ 2
(
∂w
∂z

)2

︸ ︷︷ ︸
9

+ 2
∂u
∂y
∂v

∂x︸ ︷︷ ︸
10

+ 2
∂u
∂z
∂w
∂x︸ ︷︷ ︸

11

+ 2
∂v

∂z
∂w
∂y︸ ︷︷ ︸

12

 (1.1)

where an overbar indicates a time-averaged quantity; ν is the kinematic viscosity; u,
v and w are the velocity fluctuations in the streamwise (x), lateral (y) and spanwise
(z) directions, respectively. The definition of the coordinate system is shown in
figure 1(a).

It is a major challenge to measure all the velocity gradient terms in (1.1) with
adequate accuracy (see Wallace & Foss 1995; Wallace 2009). As a result, experimental
data of ε are usually incomplete in the literature (e.g. Antonia, Anselmet & Chambers
1986; Browne, Antonia & Shah 1987; Saarenrinne & Piirto 2000; Mi & Antonia
2010); a possible exception is the atmospheric surface layer data of Gulitski et al.
(2007). Consequently, various simplified surrogates are proposed for ε based on
different assumptions for the flow. The most widely used assumption is local isotropy,
which means that the statistics of the small-scale motions in the flow are invariant
with respect to rotations and reflections of the coordinate axis (Pope 2000). The local
isotropy assumption, first outlined by Taylor (1935), requires the following equations
to be satisfied (
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Using (1.2)–(1.4), the mean energy dissipation rate, namely (1.1), can be reduced to

εiso = 15ν
(
∂u
∂x

)2

. (1.5)

Because of its great simplicity and the ease with which ∂u/∂x can be obtained via
Taylor’s hypothesis, equation (1.5) is widely used in estimating the turbulent energy
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FIGURE 1. (a) Experimental arrangement, coordinate system, and definition sketch; (b)
side view of the vorticity probe; (c) front view of the vorticity probe.

dissipation rate in experiments in which the turbulence intensity is not too high (e.g.
Browne et al. 1987; Antonia, Shah & Browne 1988; Tang et al. 2015).

However, many studies have indicated that local isotropy is not an adequate
description of the small-scale quantities such as the moment of velocity fluctuation
derivatives (e.g. Antonia et al. 1986; George & Hussein 1991; Hussein 1994), except
at very large Reynolds number (Tang et al. 2015). In particular, Browne et al.
(1987) measured nine mean square terms (1–9 in (1.1)) of ε in a turbulent far wake
(x/d = 420) and found that ε calculated using isotropy may underestimate the total
dissipation rate by 45 %–80 % across the wake. In contrast, a number of previous
studies suggested that ε estimated based on the assumption of local axisymmetry
(i.e. local invariance with respect to a preferred axis, usually along the streamwise
direction) is closer to the true value than that estimated from local isotropy in various
turbulent flows, such as round (George & Hussein 1991) and plane (Hussein 1994)
jets, the two-dimensional intermediate wake (Mi & Antonia 2010), the far wake
(George & Hussein 1991), and the fully developed channel flow (Antonia, Kim &
Browne 1991). George & Hussein (1991) outlined the relations between the velocity
derivatives that must be satisfied in axisymmetric turbulence, namely,(
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The estimation of the mean energy dissipation rate based on the local axisymmetry
assumption is then given by

εa = ν
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When the flow is locally homogeneous, i.e. invariant with respect to translation of
the coordinate axes, a third simplification of the energy dissipation rate arises (Antonia
et al. 1991)

εhom = ν(ω2
x +ω

2
y +ω

2
z ), (1.11)

where ωx, ωy and ωz are the vorticity fluctuations in the x, y and z directions,
respectively. Antonia et al. (1991) found that (1.11) is very well satisfied in a fully
developed turbulent channel flow except in the region where the turbulent energy
production is maximum (see also Abe, Antonia & Kawamura 2009). In addition, Zhu
& Antonia (1996a) studied the correlation between enstrophy and energy dissipation
rate in a turbulent wake with a probe consisting of four X-wires, of similar design to
the probe used in the present study, and assumed homogeneity in the transverse plane
(y–z plane) of the wake. Based on this assumption, (∂v/∂y)(∂w/∂z)≈ (∂v/∂z)(∂w/∂y).
This has been recently validated by Lefeuvre et al. (2014) using direct numerical
simulation (DNS) data in the intermediate wake (x/d= 20–100) of a square cylinder.
The sum of the unmeasured quantities (∂v/∂y)2 and (∂w/∂z)2 with the probe
can therefore be estimated approximately as (∂u/∂x)2 − 2(∂v/∂z)(∂w/∂y) using
continuity and the approximation (∂v/∂y)(∂w/∂z) ≈ (∂v/∂z)(∂w/∂y). The mean
energy dissipation rate, assuming homogeneity in the transverse plane, is then given
by
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Using DNS data, Lefeuvre et al. (2014) compared the approximations of the
mean energy dissipation rate, given by (1.5), (1.10), (1.11) and (1.12), in the
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turbulent intermediate wake (x/d = 20–100) of a square cylinder, and found that
the approximation based on the assumption of local homogeneity in the transverse
plane, i.e. equation (1.12), provides the most accurate surrogate of the mean energy
dissipation rate. A similar result may be expected for the wake of a circular cylinder
even though it may be less isotropic than a square cylinder wake (Thiesset, Danaila
& Antonia 2013). This expectation is not unreasonable since εyz contains nearly all
the terms that make up the true energy dissipation rate in (1.1). Unfortunately, the
true value of ε, as given by (1.1), cannot be obtained with the present probe. Apart
from measuring all the velocity derivatives in (1.1), ε can also be estimated indirectly
via the energy budget (or the transport equation of the turbulent kinetic energy). For
instance, in the nearly homogeneous and isotropic region of grid turbulence, the
mean energy dissipation rate can be determined with relatively good accuracy via
the turbulent energy budget (e.g. Mohamed & Larue 1990; Zhou & Antonia 2000),
viz. ε = −(U(dq2/dx))/2, where q2 is the turbulent kinetic energy and U is the
local mean velocity. However, the present flow is far from being homogeneous and
isotropic due to the effect of the strongly coherent large-scale vortices and the mean
shear. Consequently, the energy budget for the present flow is much more complicated
than that for grid turbulence. In particular, the pressure diffusion term is very difficult
to measure and is unlikely to be negligible, as has been assumed in the far wake
(Tennekes & Lumley 1972; Browne et al. 1987). This makes a reliable determination
of ε via the energy budget very difficult, if not impossible. To our knowledge, no
DNS datasets are available for estimating ε in the present flow. This is also why εyz
has been used as the reference value for the true mean energy dissipation in quite a
few studies (e.g. Zhu & Antonia 1996a; Yiu et al. 2004; Mi & Antonia 2010). In
addition, a detailed calibration of the present probe, in the context of measuring the
velocity derivatives, was conducted in Antonia, Orlandi & Zhou (2002). In light of
the above consideration, we use εyz as the reference value for ε in this study.

Djenidi & Antonia (2012) reported a simple method for estimating ε, which relies
on the validity of Kolmogorov’s first similarity hypothesis (Kolmogorov 1941), that
is, when the Taylor microscale Reynolds number Reλ(≡ (u2)1/2λ/v, where λ is the
Taylor microscale) is very large and local isotropy is satisfied, the dissipation range of
the velocity spectrum scales uniquely on ε and ν. The spectral chart method greatly
simplifies the work of determining ε by avoiding the difficulty associated with
measuring spatial velocity derivatives. Antonia, Djenidi & Danaila (2014) pointed
out that, when the large-scale term in the transport equation for the second-order
structure function (δu)2(≡ (u(x+ r1)− u(x))2, where r1 is the separation distance
in the streamwise direction) can be neglected, the collapse of the dissipation range
of the longitudinal velocity spectra, normalized by Kolmogorov scales, requires
neither of the two major assumptions, viz. very large Reλ and isotropic small-scale
structures. This fact essentially highlights the robustness of the Kolmogorov scaling
of the dissipative range. The present measurements are made in a turbulent cylinder
intermediate wake (x/d = 10–40), which is characterized by the gradual streamwise
evolution of anisotropic large-scale organized motions, namely the spanwise Kármán
vortices and the quasi-streamwise ribs; their features are dominant near the cylinder
but gradually impair before disappearing as the distance from the cylinder increases
(Zhou et al. 2003b; Chen et al. 2016). It is therefore of great interest and practical
importance to assess the spectral chart method, when estimating the mean energy
dissipation rate in a flow severely perturbed by large-scale coherent motions. This
can also provide some physical insight into the interactions between large- and
small-scale motions.
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Hussain & Hayakawa (1987) proposed a topological model (shown later in
figure 15a) for the mechanism of a turbulent plane wake, with the turbulence
production occurring mainly along the diverging separatrix and turbulent mixing
taking place in the region where the ribs and rollers are in contact with each other.
However, this model does not contain information on the spatial distribution of the
turbulent energy dissipation. To our knowledge, this information is not available in the
literature. The energy dissipation rate is considered to be a fluctuating quantity and,
like any other fluctuating quantity, can be affected by large-scale motions (Landau
& Lifschitz 1987). Thiesset, Danaila & Antonia (2014) found that the influence of
the coherent motion is perceptible even at the smallest scales in the near wake (say
x/d = 10), and the energy of small scales is enhanced where the coherent strain
is maximum. One intuitively expects a relatively strong spatial association of the
turbulent energy dissipation with the Kármán vortices. It is therefore fundamentally
useful and intriguing to understand how the turbulent energy dissipation is spatially
distributed with respect to the Kármán vortices, which prompts us to examine in
detail the topology of both the energy dissipation rate and its constituent velocity
derivatives.

The paper is organized as follows. Experimental details are given in § 2. Section 3
introduces the phase-averaging technique used to extract the coherent structure from
the flow. The statistics of the measured velocity derivatives are examined in § 4. The
estimation of using the spectral chart method is discussed in § 5. In § 6, we study
the spatial concentrations of the velocity derivatives as well as the energy dissipation
rate. We also quantify the contribution from the coherent motions to the mean energy
dissipation rate and its components. A more complete topological picture is then
proposed, which incorporates the new information for the energy dissipation into
Hussain & Hayakawa’s (1987) model. Conclusions are given in § 7.

2. Experimental details
A detailed description of the experimental configuration was given in Zhou et al.

(2003b), and here we briefly recall some experimental details that are relevant to the
present study. The experiment was conducted in an open-loop low-turbulence wind
tunnel with a 2.4 m-long working section of 0.35 m × 0.35 m. A circular cylinder
with a diameter d= 12.7 mm was used to generate the wake. The free-stream velocity
U∞= 3.0 m s−1. The Reynolds number Re(≡U∞d/ν) is 2.5× 103. A movable probe
(figure 1b,c) consisting of four X-wires was used to measure the velocity fluctuations
and their derivatives simultaneously. The separation between the two inclined wires of
each cross-wire was approximately 0.6 mm. Two of the X-wires, (b,d), were aligned
in the (x, y) plane and separated by 1z= 1.9 mm; the other two, (a,c), were separated
in the (x, z) plane by 1y= 1.9 mm. Measurements were made at x/d= 10, 20 and 40.
The cylinder wake has been shown to be statistically symmetric about the centreline
(e.g. Zhou et al. 2009). As a result, the present measurements were made mainly only
on one side of the centreline, i.e. y/d=−0.2–2.6, 2.8 and 3.9 for at x/d= 10, 20 and
40, respectively. The transverse measurement increment is approximately 0.2d for all
x/d stations, except for the region near free stream at x/d= 40, where the increment
was 0.4d. The output signal from the anemometers was passed through buck and
gain circuits and low-pass filtered at a cutoff frequency fc close to the Kolmogorov
frequency fk(=U0/(2πη)), where U0 is the mean streamwise velocity on the centreline
of the wake and η≡ (ν3/ε)1/4 is the Kolmogorov length scale. The filtered signal was
subsequently sampled at a frequency fs=2fc (3200 Hz at x/d=10 and 20; 2500 Hz at
x/d= 40) using a 12-bit A/D converter. The record duration was approximately 60 s.
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x∗ U∗0 L∗ U∗c Reλ ε (m2 s−3) η (mm) 1x/η 1y/η 1z/η

10 0.22 0.64 0.87 113 4.3 0.17 4.8 11.2 11.2
20 0.18 0.88 0.87 94 1.6 0.21 3.9 9.0 9.0
40 0.14 1.4 0.90 72 0.41 0.30 2.7 6.3 6.3

TABLE 1. Maximum velocity defect, mean velocity half-width, convection velocity, Taylor
microscale Reynolds number and spatial resolution of the probe on the wake centreline at
different streamwise locations.

The velocity gradient in the y or z direction can be obtained via the ratio of
the velocity difference of wires (a,c) or wires (b,d) to 1y or 1z, respectively.
The streamwise velocity derivatives are obtained from the temporal derivatives of
the corresponding velocity fluctuation using Taylor’s hypothesis, i.e. 1ui/1x ≈
1ui/(−Uc1t) where Uc is the convection velocity (table 1) estimated from Zhou &
Antonia (1992) and 1t= 1/fs.

Table 1 gives the maximum mean velocity defect U∗0 , mean velocity half-width L∗,
convection velocity, Taylor microscale Reynolds number and spatial resolution of the
probe in terms of the Kolmogorov length scale at the wake centreline of the local x∗
position. Hereinafter, the asterisk ‘*’ denotes the normalization by d and/or U∞. The
value of ε is estimated using (1.12). Detailed descriptions of the performance of the
probe and the measurement uncertainty of the velocity fluctuations are available in
Zhou et al. (2003b).

It is important to make sure that the spatial resolution of the probe is adequate
for the present study of the velocity derivatives and the turbulent energy dissipation
rate. Previous measurements indicated that the optimum wire separation of the probe
for the velocity derivative measurement is approximately 3–5η (e.g. Antonia, Zhu
& Kim 1993; Shafi & Antonia 1997; Zhou, Pearson & Antonia 2001; Zhou et al.
2003b); a larger wire separation can cause the velocity derivatives to be attenuated,
while a smaller wire separation may overestimate the velocity derivatives because of
the electronic noise contamination. The present vorticity probe was fabricated, with a
great effort, to meet the above criterion of wire separation between the opposite two
cross-wires, although the corresponding wire separations 1y/η and 1z/η (table 1)
are still larger than the optimum value. The velocity derivatives are considered to
be underestimated by approximately 18 %–7 % at x∗ = 10–40, as estimated from
error propagations (see § 3 of Zhou et al. 2003b). Figure 2 shows the comparison
between the distribution of (∂u/∂y)2 in the present measurement at x∗ = 10 and 40
and those measured by Antonia & Mi (1998). They examined the approach towards
self-preservation of the cylinder wake for x∗ = 10–70 (Re= 3000) using two X-wires
with a better spatial resolution of approximately 8η at x∗ = 10 and 5η at x∗ = 40,
which are closer to the optimum spatial resolution of approximately 4η than ours
(11η at x∗ = 10 and 6η at x∗ = 40, see table 1). The agreement between the two
sets of data is actually pretty good, especially at x∗ = 40. The present measurement
appears to be appreciably below that of Antonia & Mi (1998) only near the wake
centreline at x∗ = 10 (y/L< 0.3).

Zhu & Antonia (1996b) investigated the influence of the probe resolution on the
spectra of vorticity measured using a probe with the same geometry used here. They
found that the vorticity spectra were attenuated mainly at large wavenumbers (say
k1η > 0.3, where k1 is the streamwise wavenumber). Figure 3 shows the spectral
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FIGURE 2. (Colour online) Comparison between the present variance of ∂u/∂y and that in
Antonia & Mi (1998) at (a) x∗= 10 and (b) 40. Error bars of the present data at x∗= 10
are shown.

density functions of the measured energy dissipation rate (εyz) on the centreline at
x∗=10, 20 and 40 in the form of k1ηFεyz(k1) versus log(k1η). For convenience, Fεyz(k1)

is normalized so that
∫
∞

0 Fεyz(k1) dk1 =
∫
∞

0 Φεyz(k1)/εyz dk1 = 1, where Φεyz(k1) is the
sum of the spectral density of the velocity derivative components on the right-hand
side of (1.12). The area under the curve is proportional to the mean energy dissipation
rate, and the wavenumber corresponding to the most pronounced peak of the spectrum
is related to the most energetic scale. At all x∗ positions the scales contributing
most to the energy dissipation occur at k1η ≈ 0.16–0.18, which is consistent with
the previous measurements (e.g. Kim & Antonia 1993; She et al. 1993; Antonia,
Shafi & Zhu 1996; Chen et al. 2017). The result suggests that the most energetic
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FIGURE 3. (Colour online) Spectral density functions, multiplied by k1η, of the turbulent
energy dissipation rate εyz on the wake centreline at x∗ = 10, 20 and 40.

dissipation process is captured reasonably well in the present measurement. Note
that the primary interest of the present study is the spatial distribution of the energy
dissipation with respect to the Kármán vortices, whose dimension is comparable to
the wake half-width (Hussain & Hayakawa 1987; Chen et al. 2016), much larger
than the Kolmogorov length scale. Therefore, the measurement attenuation of the
very small-scale dissipation will not change the topological result.

3. Phase-averaging technique
3.1. Phase averaging

A phase-averaging technique is used to extract the coherent structures from the flow
field. The technique is the same as that used in Chen et al. (2016, 2017). Briefly,
the transverse velocity fluctuation signals v from the probe are filtered using a fourth-
order Butterworth filter with the centre frequency set at the vortex shedding frequency
fshedding, as identified from the most pronounced peak in the v spectrum. A cross-
correlation between the measured signal v and the filtered signal vf is carried out to
determine the average phase shift between vf and the measured v. This shift is then
applied to vf and a new reference signal v′f is formed. Figure 4 illustrates the v signals
at three typical lateral locations at x∗ = 10 and the corresponding shifted v′f signals.

Two phases of particular interest are identified on v′f , namely,

Phase A: v′f = 0 and dv′f /dt< 0 (3.1)

and

Phase B: v′f = 0 and dv′f /dt> 0. (3.2)
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t

FIGURE 4. (Colour online) Comparison between the measured signal v (the solid line)
and the filtered and shifted signal v′f (the dashed line) at x∗ = 10.

The two phases correspond to instants tA,i and tB,i (figure 4), respectively. The origin
of time is arbitrary. The phase of the measured fluctuation signals is then determined
as

φ =π
t− tA,i

tB,i − tA,i
, tA,i < t< tB,i (3.3)

and

φ =π
t− tB,i

tA,i+1 − tB,i
+π, tB,i < t< tA,i+1. (3.4)

The interval between phases A and B is made equal to 0.5Ts = 0.5/fs by
compressing or stretching and is further divided into 10 equal intervals. Phase
averaging was then applied to the measured rather than the filtered signals. The phase
average of an instantaneous quantity Γ is given by 〈Γ 〉p = (1/N)

∑N
i=1 Γp,i, where

p represents the phase, and N is the number of detections which are approximately
1800, 1700, and 400 at x∗ = 10, 20 and 40, respectively.

Based on the triple decomposition (Hussain 1983), Γ may be viewed as the sum
of the time-averaged component Γ , and the fluctuating component β, which can be
further decomposed into a coherent fluctuation β̃ and a remainder βr, namely

β = β̃ + βr. (3.5)

The coherent component β̃ ≡ 〈β〉 reflects the effect from the large-scale coherent
motions, while βr is associated with the remaining smaller-scale motions. After
multiplying (3.5) with γ = γ̃ + γr, we obtain

βγ = β̃γ̃ + β̃γr + γ̃ βr + βrγr. (3.6)
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By phase averaging (3.6) and assuming a zero correlation between coherent and
remainder fluctuations, i.e. 〈β̃γr〉 = 0 and 〈γ̃ βr〉 = 0, we obtain

〈βγ 〉 = β̃γ̃ + 〈βrγr〉, (3.7)

where β and γ represent velocity fluctuation derivatives ∂ui/∂xj, in which ui stands
for u, v, or w, while xj stands for x, y, or z.

3.2. Structural averaging
Once the coherent components are extracted from the examined quantities, the
averaged coherent contribution to the product of fluctuating components within one
period can be given in terms of the structural average. The conditionally averaged
structure begins at n1 samples (corresponding to φ =−π) before φ = 0 and ends at
n2 samples (corresponding to φ = π) after φ = 0. The structural average, denoted by
a double overbar, is defined by

β̃γ̃ =
1

n1 + n2 + 1

n2∑
−n1

β̃γ̃ . (3.8)

4. Mean square velocity derivatives
Ten of twelve terms in (1.1), except terms 5 and 9, can be captured simultaneously

with the multiwire probe, which are examined in this section both in the physical and
the spectral domains.

Figure 5 shows the lateral distribution of the ten terms, including seven mean square
terms and three correlation terms at x∗ = 10, 20 and 40. For locally isotropic flow,
the distributions of the mean square terms and the correlation terms are expected
to collapse onto the curves 2(∂u/∂x)2 and −(∂u/∂x)2 (also shown in figure 5),
respectively, as indicated by (1.2) to (1.4). The distributions of the velocity derivative
variances show considerable scatter at x∗ = 10 and 20 (figure 5a,b), which essentially
reflects the effect of the strong anisotropic large-scale vortices, including the spanwise
Kármán vortices and the streamwise rib structures, at these positions (e.g. Zhou et al.
2003b; Chen et al. 2016). At x∗ = 40 (figure 5c), where the coherent structures
become quite weak, most of the variances collapse together reasonably, except
for (∂v/∂z)2 and (∂w/∂y)2, which exhibit a nearly equal departure from isotropy.
Although 2(∂v/∂y)2 and 2(∂w/∂z)2 in (1.1) have not been measured, the earlier
measurements of Mi & Antonia (2010) indicated that these two terms also deviate
nearly equally from the expected isotropic distribution 2(∂u/∂x)2 at x∗ = 40. All
the correlation terms are much smaller than the isotropic distribution −(∂u/∂x)2,
even at x∗ = 40. This departure is expected to diminish downstream as the coherent
motions, i.e. the Kármán vortices and ribs, which are predominantly responsible for
the anisotropy, vanish gradually. It should be pointed out that the velocity derivative
variances would not collapse completely even in the self-preserving far wake, as
shown by Browne et al. (1987), who measured at x∗ = 420 nine components of the
energy dissipation rate. This by no means implies the persistence of the Kármán
vortices and ribs; rather, the anisotropic coherent motions generated due to the shear
layer instability in the far wake (e.g. Zhou & Antonia 1995) may be responsible for
the observation. On the other hand, the near equalities of (∂v/∂z)2 and (∂w/∂y)2 in
figure 5(b,c) and of 2(∂v/∂y)2 and 2(∂w/∂z)2 in Mi & Antonia (2010) comply with
the local axisymmetry equations (1.6c,d), and suggest that local axisymmetry seems
to be a more appropriate assumption than local isotropy.
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FIGURE 5. (Colour online) Lateral distribution of the constituent velocity derivative
variances of the mean energy dissipation rate at (a) x∗ = 10, (b) 20, (c) 40. ζ represents
the velocity derivative terms.
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In order to quantify the extent to which both local isotropy and local axisymmetry
hold, we have calculated the ratios of the left and right sides of (1.2)–(1.4) (local
isotropy) and (1.6)–(1.9) (local axisymmetry). For local isotropy, the ratios are defined
by Ki, namely

K1 =
2(∂u/∂x)2

(∂v/∂x)2
, K2 =

2(∂u/∂x)2

(∂w/∂x)2
, K3 =

2(∂u/∂x)2

(∂u/∂y)2
, (4.1a−c)

K4 =
2(∂u/∂x)2

(∂u/∂z)2
, K5 =

2(∂u/∂x)2

(∂w/∂y)2
, K6 =

2(∂u/∂x)2

(∂v/∂z)2
, (4.1d−f )

K7 =
(∂u/∂y)(∂v/∂x)

−1/2(∂u/∂x)2
, K8 =

(∂u/∂z)(∂w/∂x)

−1/2(∂u/∂x)2
, K9 =

(∂v/∂z)(∂w/∂y)

−1/2(∂u/∂x)2
. (4.1g−i)

All these ratios should be unity. For local axisymmetry, the ratios are defined by Ri,
namely

R1 =
(∂u/∂y)2

(∂u/∂z)2
, R2 =

(∂v/∂x)2

(∂w/∂x)2
, R3 =

(∂v/∂z)2

(∂w/∂y)2
, (4.2a−c)

R4 =
(∂v/∂z)(∂w/∂y)

1/6(∂u/∂x)2 − 1/3(∂v/∂z)2
, (4.2d)

R5 =
(∂u/∂y)(∂v/∂x)

−1/2(∂u/∂x)2
, R6 =

(∂u/∂z)(∂w/∂x)

−1/2(∂u/∂x)2
. (4.2e,f )

All these ratios should be unity. Figure 6 contains the distributions of Ki and Ri across
the wake at the three x∗ positions. As shown in figure 6(a–c), as x∗ increases, K1
to K4 approach 1, while K7 to K9, which are associated with the velocity correlation
terms, are quite close to zero because of the small magnitude of the correlation
terms compared with that of −((∂u/∂x)2)/2 (figure 5a–c). The ratios associated with
(∂w/∂y)2 and (∂v/∂z)2, i.e. K5 and K6, similarly depart from unity, although the
departure decreases from x∗ = 10 to x∗ = 40. It is noted that K1 to K6, which are
associated with the mean square terms, are generally larger than 1, indicating that
the mean energy dissipation rate based on local isotropy can be overestimated in the
present flow, especially at x∗= 10 and 20, which is confirmed later in figure 9 in § 5
and is also observed by Mi & Antonia (2010) and Lefeuvre et al. (2014). On the
other hand, as x∗ increases, the ratios R1 to R3 associated with the mean square terms
gradually approach 1, while R4 to R6 associated with the correlation terms behave
similarly to K7 to K9, that is, they are nearly zero (figure 6d–f ). Figure 6 indicates
that the extent to which both local isotropy and local axisymmetry apply improves
downstream for the mean square velocity derivative terms; departures are mainly
associated with the velocity derivative correlation terms. Consistent with figure 5, the
nearly equal deviation from unity of K5 and K6 even at x∗ = 40 (figure 6c), which is
consistent with R3 being close to unity (figure 6f ), suggests that the local axisymmetry
should be a better description than local isotropy for the velocity derivative variances
in the present flow.

It should be recognized that Ki and Ri provide some qualification of the extent
to which local isotropy and local axisymmetry hold. It is also of interest to assess
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FIGURE 6. (Colour online) Lateral distributions of ratios Ki (4.1a–i) and Ri (4.2a–f ) at
(a,d) x∗= 10, (b,e) 20, (c, f ) 40. The dash-dotted line in each figure corresponds to unity,
which is the locally isotropic value for Ki in (a–c) and locally axisymmetric value for Ri
in (d–f ).

these assumptions in the spectral space in terms of different flow scales. Figure 7
shows the spectra of the seven measured velocity derivatives at the wake centreline.
For convenience of comparing spectra of different velocity derivatives, the spectra
are normalized to a unity integral with the variance of the corresponding velocity
derivative, i.e.

∫
∞

0 F∂ui/∂xj(k1) dk1=
∫
∞

0 E∂ui/∂xj(k1)/(∂ui/∂xj)2 dk1= 1, where E(k1)∂u1/∂xj ,
defined such that

∫
∞

0 E∂ui/∂xj(k1) dk1= (∂ui/∂xj)2, is the power spectral density function
of ∂ui/∂xj. Similar to the spectra of the energy dissipation rate in figure 2, the spectra
in figure 7 are presented in the form of k1ηF∂ui/∂xj versus k1η so that the area under
the curve is proportional to the variance of the corresponding velocity derivative.
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FIGURE 7. (Colour online) Spectral density functions, multiplied by k1η, of measured
velocity derivatives on the wake centreline at x∗= 10, 20 and 40. The vertical dashed line
in each figure denotes the wavenumber corresponding to the vortex shedding frequency.

Several observations can be made from figure 7. Firstly, the Kármán vortices have
a profound influence on ∂u/∂y and ∂v/∂x, compared with the other derivatives. The
spectra of both ∂u/∂y and ∂v/∂x at x∗ = 10 (figure 7a) display a pronounced peak
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at the wavenumber corresponding to St= 0.21, which is significantly bigger than that
in other spectra at the same wavenumber. The pronounced peak in F∂u/∂y and F∂v/∂x

at St = 0.21 is obviously a footprint of the spanwise vorticity ωz(= ∂v/∂x − ∂u/∂y),
the most organized vorticity component associated with the Kármán vortices in this
flow. At x∗ = 20 (figure 7b), the pronounced peak in F∂u/∂y or F∂v/∂x at St = 0.21
contracts but is still much more evident than that in the other spectra. Even at x∗= 40,
where the Kármán vortices are quite weak, the peak at St = 0.21 in F∂u/∂y remains
prominent, although the peak in F∂v/∂x is just discernible. Note that a peak occurs
at the wavenumber corresponding to St = 0.42 in the spectrum of ∂w/∂y at x∗ = 10
(figure 7a), but disappears at x∗=20 and 40. This peak is likely caused by the positive
and negative spanwise velocity induced by the rib structures, which are strong and
organized even near the wake centreline at x∗ = 10 but become weak and disordered
downstream (Huang, Zhou & Zhou 2006; Djenidi & Antonia 2009; Chen et al. 2016).

Secondly, the assumption of local axisymmetry does not necessarily require a
collapse in the spectra of the corresponding velocity derivatives on either side of
(1.6a–d). However, it is interesting to see that, as x∗ increases from 10 to 40, the
high-wavenumber parts of the spectra gradually collapse into three groups, i.e. ∂u/∂y
and ∂u/∂z, ∂v/∂x and ∂w/∂x as well as ∂w/∂y and ∂v/∂z, which correspond to the
local axisymmetry assumption, namely (1.6a–c). In contrast, the agreement between
the low-wavenumber parts of the corresponding spectra is not so clear because of the
effect of the Kármán vortices (St=0.21), especially at x∗=10 and 20. Interestingly, as
the pronounced peak in F∂u/∂y and F∂v/∂x at St=0.21 gradually retreats from x∗=10 to
40, the high-wavenumber behaviours of F∂u/∂y and F∂v/∂x evolve towards those of F∂u/∂z

and F∂w/∂x, respectively, and collapse at x∗ = 40. The behaviours at the low and the
high wavenumbers of F∂u/∂y and F∂v/∂x suggest that local axisymmetry is first satisfied
in the high-wavenumber range, while the departure in the low-wavenumber range is
caused by the Kármán-vortex-related motions. It is reasonable to expect that, as the
coherent motions weaken further downstream, the agreement between the spectra of
the corresponding velocity derivatives should improve in the low-wavenumber range,
and local axisymmetry should be better satisfied, as confirmed by Mi & Antonia
(2010) with the data of Browne et al. (1987) in the self-preserving far wake.

5. Estimation of ε via the spectral chart method

Based on the universality of the dissipative range of the Kolmogorov-normalized
longitudinal velocity spectrum, Djenidi & Antonia (2012) proposed a spectral
chart method to estimate the mean energy dissipation rate in various flows where
Kolmogorov’s first similarity hypothesis applies. Specifically, the basic procedure is
to use ‘guessed’ values of the energy dissipation rate to ‘un-normalize’ a reference
universal spectrum iteratively until it collapses onto the measured velocity spectrum
over the lower-wavenumber portion of the dissipative range. The focus of this section
is to evaluate the spectral chart method to see if it can approximate εyz in the present
flow, notwithstanding the perturbation from the large-scale motions.

Kolmogorov’s first similarity hypothesis, which was enunciated in his well-known
paper (Kolmogorov 1941), essentially postulates that the statistics of the small-scale
motions (in both the dissipative and inertial ranges) are solely determined by ε

and ν, provided that the Reynolds number is very large and the small scales are
isotropic. One implication of this hypothesis is that the dissipation range of the
one-dimensional velocity spectrum, normalized by Kolmogorov scales, will collapse
onto a universal function of k‡, where ‘‡’ denotes normalization by Kolmogorov
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FIGURE 8. (Colour online) Longitudinal velocity spectra normalized by Kolmogorov
scales, in which εyz is used, for y/L= 0 and y/L= 1 at x∗ = 10 and 40, compared with
those at the centreline of the far wake (Rλ = 40), and in DNS grid turbulence (Rλ = 40)
and the centreline of the channel flow (Rλ = 147).

scales η and uK(≡ (νε)
1/4). This has been verified through several compilations (e.g.

Chapman 1979; Saddoughi & Veeravalli 1994). It should, however, be stressed that
Antonia et al. (2014) pointed out that Kolmogorov’s two main requirements, viz. very
large Reynolds number and isotropic small-scale structures, can be relaxed, provided
the effect of the large scales is negligible. This implies that the first similarity
hypothesis may be satisfied in the present flow, where the coherent vortices are
present and Reλ is relatively small (table 1). Figure 8 shows that the spectrum of
u scales on εyz and ν, both on the centreline (y/L = 0) and at the location where
the shear is large (y/L = 1). Also included are spectra in the far wake at x∗ = 240
(Djenidi & Antonia 2012), a turbulent grid flow (Djenidi 2006) and the centreline of
channel flow (Antonia & Abe 2009). It shows that the velocity spectra at x∗ = 10
and 40 in the present flow collapse reasonably well onto the other three normalized
spectra in the literature which are in conformity with the universal spectrum over
sufficiently high wavenumbers (say k‡

1 ≈ 0.25–0.65). The attenuation of the present
spectra for k‡

1 > 0.65 is due mainly to the imperfect spatial resolution of the probe
(Zhu & Antonia 1996c; Zhou et al. 2003a).

The reasonable agreement between the velocity spectra of the present flow and
those in the literature in the dissipation range bolsters the claim that the spectral
chart method is robust, and implies that the application of the method to the present
flow seems warranted. A comparison between the mean energy dissipation rate using
the spectral chart method and estimates from (1.5), (1.10), (1.11), (1.12) at the
centreline are shown in figure 9. The mean energy dissipation rate obtained with
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FIGURE 9. (Colour online) Comparison between different surrogates of ε, i.e. εiso (1.5), εa
(1.10), εhom (1.11), εscm estimated using the chart method, and the reference value εyz
(1.12), on the wake centreline at x∗ = 10, 20 and 40. Error bars for x∗ = 10 and 20 are
shown.

the spectral chart method, εscm, is closer to the reference energy dissipation rate εyz

than the other surrogates of (1.5), (1.10) and (1.11) at the same x∗. The differences
between εscm and εyz are approximately 9.3 %, 6.3 %, 2.5 %, respectively, at x∗ = 10,
20 and 40, which are satisfactorily small. The relatively larger difference at x∗ = 10
is reasonable since the anisotropic large-scale motion is stronger there and the
measurement attenuation is worse (table 1). Besides, we also have checked that εyz

are 3.9 and 0.40 at y/L= 1 of x/d = 10 and 40, respectively, and the corresponding
values based on the spectral chart method εscm are 3.4 and 0.36. The departures
between εscm and εyz at y/L= 1 are 13 % and 10 % for x/d= 10 and 40, respectively.
They are larger than the departures between εscm and εyz on the centreline (9.3 %
and 2.5 % for x/d = 10 and 40, respectively). This should be due to the effect of
the large shear at y/L = 1, which causes the flow to be locally more anisotropic
than on the centreline. It is interesting to see that the isotropic estimation εiso always
larger than εyz in the present flow, by 44 %, 25 % and 7 %, respectively, at x∗ = 10,
20 and 40, which is in contrast to the far wake, where εiso always underestimates
the total dissipation rate (e.g. Browne et al. 1987). The large difference between
εiso and εyz at x∗ = 10 and 20 is a reflection of the strong anisotropy there, as is
also indicated by the evident scatter in the velocity derivative variances at x∗ = 10
and 20 in figure 5(a,b). At x∗ = 40, the smaller difference between εiso and εyz is
consistent with the improved agreement among the velocity derivatives (figure 5c).
The difference between the axisymmetric estimate of εa and εyz (21 %, 13 %, 7 %)
is smaller than that between εiso and εyz, which is consistent with the conclusion in
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§ 4 that local axisymmetry is a better descriptor of the small-scale turbulent motions
than local isotropy. The εhom always underestimates εyz and is the smallest of all the
surrogates, which is partly due to the attenuation of the imperfect spatial resolution
of the probe. Note that the different surrogates tend to converge towards εyz as the
flow develops downstream and the influence of the coherent motions degrades.

The validity of the spectral chart method in a flow perturbed by coherent
motions may seem somewhat surprising. Some additional remarks about the test of
Kolmogorov’s first similarity hypothesis seem worthwhile. Although the longitudinal
velocity spectra are widely used in the literature to test the hypothesis (see Frisch
1996; Pope 2000), presumably because of the ease with which u is measured with a
single hot wire, vorticity is more closely associated with small-scale turbulence than
velocity (e.g. Antonia et al. 1996; Chen et al. 2017). Antonia et al. (1996) found that
the shape of the high-wavenumber range of the vorticity spectrum, which appears to
be independent of Reλ, is also compatible with the first similarity hypothesis in the
sense it scales uniquely on ε and ν. They also pointed out that the vorticity spectrum
can provide a more sensitive test of the first similarity hypothesis than the velocity
spectrum, since the major contribution to the vorticity variance is located at larger
wavenumbers than for the velocity variance. The isotropic (also axisymmetric) form
of the spectra of the vorticity fluctuations are given by Kim & Antonia (1993)

Eωx(k1)=
1
2

∫
∞

k1

E(k)
k
(k2
− k2

1) dk, (5.1)
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1
2
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1

∫
∞

k1

E(k)
k

dk+
1
4

∫
∞

k1

E(k)
k
(k2
− k2

1) dk, (5.2)

where E(k) is the three-dimensional energy spectrum and k is the magnitude of
the wavenumber vector k. Figure 10 compares the normalized spectra of the three
vorticity components on the centreline at x∗ = 10 and 40 with the DNS spectra
(Kim & Antonia 1993) of ωx and ωz on the channel flow centreline. At x∗ = 10
(figure 10a), the spectrum of ωz shows a pronounced peak at the wavenumber
corresponding to St = 0.21, and deviates from the spectrum of ωy. None of the
three vorticity spectra collapse on the corresponding spectra of the channel flow
at high wavenumbers. However, as the Kármán vortex impairs from x∗ = 10 to 40
(figure 10b), the peak at St= 0.21 of Eωz(k1)

‡ degrades and its high-wavenumber part
collapses onto that of Eωy(k1)

‡, and both Eωz(k1)
‡ and Eωy(k1)

‡ are in good agreement
with the DNS spectrum of ωz of the channel flow at high wavenumbers. There is
also good agreement with the DNS spectrum of ωx for the spectrum Eωx(k1)

‡ at
high wavenumbers. Again, the departures at high wavenumbers is ascribed to the
inadequate spatial resolution of the probe, which is more evident than that of the
velocity spectra (figure 8). The comparison between measured and DNS vorticity
spectra at x∗ = 10 and 40 suggests that the small-scale similarity is likely to be
satisfied only at x∗ = 40. This is contrary to the collapse of the velocity spectra
both at x∗ = 10 and 40 shown in figure 8, and supports Antonia et al.’s (1996)
assertion that vorticity spectra provide a more sensitive test of the first similarity
hypothesis than velocity spectra. It also confirms the expectation that large-scale
coherent structures indeed have an effect on the small-scale motions at x∗ = 10,
whereas this effect is quite weak at x∗ = 40.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.765


290 J. G. Chen, Y. Zhou, R. A. Antonia and T. M. Zhou

10010–110–210–3

102

103

101

100

10–1

10–2

10–3

102

103

101

100

10–1

10–2

10–3

, DNS channel (Kim & Antonia 1993)

, DNS channel (Kim & Antonia 1993)

, DNS channel (Kim & Antonia 1993)

, DNS channel (Kim & Antonia 1993)

(a)

(b)

FIGURE 10. (Colour online) Comparison between the spectra of the three vorticity
components of the present flow on the centreline at x∗= 10 and 40, and the spectra of ωx
and ωz on the centreline of a DNS channel flow from Kim & Antonia (1993) (Rλ=53). εyz
is used in the normalization of the present vorticity spectra.

6. Phase-averaged energy dissipation rate and its components

A very distinct feature in the intermediate wake is the dominance of the Kármán
vortex street at small x∗, which is followed by its gradual weakening and eventual
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FIGURE 11. Isocontours of phase-averaged ∂u/∂y and ∂v/∂x variance at x∗ = 10: (a)
(∂̃u/∂y

∗

)2, contour interval = 0.049; (b) (∂̃v/∂x
∗

)2, contour interval = 0.030.

disappearance as x∗ increases. It is thus of great interest to investigate the spatial
distribution of the turbulent energy dissipation rate as the Kármán vortices evolve
through their various stages. Hereinafter, the phase φ in the isocontour plot
(figures 11–13) will be interpreted in terms of a longitudinal distance based on
Taylor’s hypothesis, φ = 0–2π corresponding to the vortex wavelength. The same
scale is used for the longitudinal and lateral directions in the contour plots in an
effort to minimize any possible distortion in the physical space. The positions of the
centres and saddle points, identified from the phase-averaged sectional streamlines
(not shown), are marked by ‘+’ and ‘×’, respectively. The thick dashed lines give
an approximate idea of the boundary of the spanwise vortex, which is approximately
25 % of the maximum value of |ω̃z| (not shown). The inclined dash-dotted line
passing through the saddle point represents the diverging separatrix. The flow is left
to right.

6.1. Phase-averaged ∂u/∂y and ∂v/∂x
Figure 11 shows the phase-averaged isocontours of two components of the energy
dissipation rate, (∂̃u/∂y

∗

)2 and (∂̃v/∂x
∗

)2, at x∗ = 10, which have the maximum
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FIGURE 12. Isocontours of the remainders of the velocity derivatives at x∗ =
10. (a) 〈(∂v/∂x)2r 〉

∗, contour interval: 0.11; (b) 〈(∂v/∂z)2r 〉
∗, contour interval: 0.057;

(c) 〈(∂v/∂y)2r 〉
∗, contour interval: 0.10; (d) 〈(∂w/∂x)2r 〉

∗, contour interval: 0.11; (e)
〈(∂w/∂y)2r 〉

∗, contour interval: 0.081; ( f ) 〈(∂u/∂z)2r 〉
∗, contour interval: 0.058.
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FIGURE 13. Phase-averaged turbulent energy dissipation rate (a–c) ε̃∗yz and (d–f ) the
remainder 〈εyz,r〉

∗: (a,d) x∗= 10, contour intervals: 0.080, 0.57; (b,e) 20, contour intervals:
0.015, 0.16; (c, f ): 40, contour intervals: 0.0028, 0.072.

concentrations approximately one order of magnitude larger than those of the other
measured velocity derivatives. This is mainly because (∂̃u/∂y

∗

)2 and (∂̃v/∂x
∗

)2 are
associated with the coherent spanwise vorticity ω̃∗z (= ∂̃v/∂x

∗

− ∂̃u/∂y
∗

) which is
the predominant coherent vorticity component. The larger maximum concentration
of (∂̃u/∂y

∗

)2 and (∂̃v/∂x
∗

)2 is also internally consistent with the noticeable peak in
the spectra of ∂u/∂y and ∂v/∂x at St = 0.21 shown in figure 7. The concentration
of (∂̃u/∂y

∗

)2 occurs near the vortex boundary, while that of (∂̃v/∂x
∗

)2 coincides
approximately with the vortex centre. There is a phase shift of approximately π/2
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between the maximum concentrations of (∂̃u/∂y
∗

)2 and (∂̃v/∂x
∗

)2. The different
behaviours of (∂̃u/∂y

∗

)2 and (∂̃v/∂x
∗

)2 reflect largely the distinct influence of the
anisotropic large-scale motions on the velocity derivatives. Note that the maximum
concentration of (∂̃u/∂y

∗

)2 is approximately 2 times that of (∂̃v/∂x
∗

)2, which is
ascribed to the influence of the mean shear ∂U/∂y since the large-scale strain of the
mean shear can enhance the energy of the smallest scales (Thiesset et al. 2014).

While (∂̃u/∂y
∗

)2 and (∂̃v/∂x
∗

)2 play a dominant role among the coherent velocity
derivatives, the situation is quite different for their remainders, which are associated
with the remaining smaller-scale motions. Figure 12 shows the isocontours of the
remainders of the six measured velocity derivatives at x∗ = 10 which are involved
in the axisymmetry equations (1.6a–c). In distinct contrast to the disparity in the
topologies of the coherent velocity derivatives, the distributions of the remainders
are comparable to each other, which is reasonable since the small-scale structures
of the velocity derivatives are expected to be less anisotropic compared to the
large-scale structures. Interestingly, the maximum concentrations of the remainders
of the velocity derivatives are consistent with the local axisymmetry assumption. For
instance, the maximum concentration of 〈(∂v/∂x)2r 〉

∗ (1.0, figure 12a) is equal to
that of 〈(∂w/∂x)2r 〉

∗ (1.0, figure 12d); the maximum concentration of 〈(∂v/∂z)2r 〉
∗

(0.51, figure 12b) is approximately equal to that of 〈(∂w/∂y)2r 〉
∗ (0.57, figure 12e).

Both conform to (1.6b,c). In contrast, there is a significant difference between their
coherent isocontours. The different behaviours of the large and small scales of the
velocity variances confirm our claim in § 4 that axisymmetry tends to be satisfied first
in the small scales. Note that (1.6a) does not appear to be satisfied, as the maximum
concentration of 〈(∂u/∂y)2r 〉

∗ (0.91, figure 12c) is larger than that of 〈(∂u/∂z)2r 〉
∗ (0.52,

figure 12f ). This is likely to be associated with the effect of the mean shear ∂U/∂y.
The scenario is similar for the remainders at x∗ = 20 and 40 (not shown), although
the topologies gradually become less organized as x∗ increases.

6.2. Phase-averaged energy dissipation rate
Figure 13 presents the isocontours of the phase-averaged energy dissipation rate
and the remainder at all three x∗ positions. The coherent energy dissipation rate
(figure 13a–c) exhibits a distribution similar to that of (∂̃u/∂y

∗

)2 (figure 11a), which
makes a dominant contribution to ε̃∗yz. Actually, the maximum percentage contribution

of (∂̃u/∂y
∗

)2 to ε̃∗yz can be as large as almost 80 % near the wake centreline at

x∗ = 10. On the other hand, the contribution of (∂̃v/∂x
∗

)2 to ε̃∗yz near the vortex

centre tends to be cancelled by the negative contribution from 2(∂̃u/∂y)∗(∂̃v/∂x)∗
(not shown). The concentrations of the remainder 〈εyz,r〉

∗ (figure 13d–f ) coincide
very well with the Kármán vortex, as the remainders of the velocity derivatives do
(figure 12). We have also examined the phase-averaged and remainder isocontours
(not shown) of the other three surrogates for the energy dissipation rate (1.5), (1.10)
and (1.11). Their concentrations of the remainder are very similar to those of 〈εyz,r〉

∗.
The maximum concentrations of the coherent energy dissipation rate (figure 13a–c,
0.72, 0.13, 0.025 at x∗ = 10, 20 and 40, respectively) are much smaller than those
of the remainder (figure 13d–f, 6.3, 2.3, 0.49 at x∗ = 10, 20 and 40, respectively) at
the same x∗. This is not unexpected, since the energy dissipation occurs primarily
at small scales (e.g. Pope 2000; Vassilicos 2015). It seems that the predominant
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turbulent energy dissipation takes place within the Kármán vortices, at least for
x∗ 6 20. The observation of the remainder energy dissipation rate is consistent with
Hussain & Hayakawa’s (1987) finding that the incoherent turbulence intensity occurs
largely within the Kármán vortex at x∗ = 10 to 40, and its maximum concentration
almost coincides with the Kármán vortex centre. Since the turbulent energy dissipation
rate physically reflects the rate at which the turbulent energy is dissipated into heat
at small scales, its spatial distribution is expected to be associated with that of the
remainder or the smaller-scale turbulent energy. At x∗= 40 (figure 13c, f ), the Kármán
vortices are quite weak due to vortex interactions and breakup. As a result, both the
topologies of the coherent energy dissipation rate and the remainder appear markedly
less organized. Nevertheless, the maximum concentration of the remainder remains
discernible within the Kármán vortex boundary.

6.3. Coherent contribution to the mean energy dissipation rate

The isocontours of (∂̃u/∂y
∗

)2, (∂̃v/∂x
∗

)2 (figure 11) and ε̃∗yz (figure 13) show very
well organized structures at x∗= 10 which are apparently correlated with the Kármán
vortices. Further, the maximum concentration of (∂̃u/∂y

∗

)2 and (∂̃v/∂x
∗

)2 can be
comparable to that of 〈(∂u/∂y)2r 〉

∗ and 〈(∂v/∂x)2r 〉
∗, whereas the concentration of the

coherent part of the other velocity derivatives (not shown) is quite small compared
to their remainders. The results suggest that the coherent motions make a much
larger contribution to (∂u/∂y)2 and (∂v/∂x)2 than to the other velocity derivative
terms, which intrinsically reflects the way the small scales feel the influence from
the large scales associated with the Kármán vortices. The coherent contribution
from the coherent motions at a given y∗ position can be quantified by the ratio of
the structural average of the phase-averaged coherent quantity to the corresponding
Reynolds-averaged quantity (Zhou et al. 2003b), namely

α = β̃γ̃ /βγ , (6.1)

where β and γ represent the velocity derivatives ∂ui/∂xj as those in §§ 3.1 and 3.2.
Figure 14 presents the distribution of α of (∂u/∂y)2 and (∂v/∂x)2 and εyz across
the wake at the three x∗ positions. The coherent contribution to the mean energy
dissipation rate, i.e. ε̃yz/εyz, is calculated, where ε̃yz is estimated as the sum of the
structural average of all the terms on the right-hand side of (1.12). At x∗ = 10
(figure 14a), the coherent contribution accounts for up to 35 % of (∂u/∂y)2 and
18 % of (∂v/∂x)2, respectively, near the centreline. Such large coherent contributions
are consistent with the pronounced peak at St = 0.21 in the spectra of ∂u/∂y and
∂v/∂x (figure 7a), as well as the organized structures displayed by (∂̃u/∂y

∗

)2 and
(∂̃v/∂x

∗

)2 (figure 11). The maximum coherent contribution to εyz is approximately
9 % at y∗ = 0.6 which corresponds roughly to the lateral location of the maximum
concentration of ε̃∗yz. The relatively small coherent contribution to εyz, compared with
that to (∂u/∂y)2 and (∂v/∂x)2, reflects the very small coherent contributions to the
other components of εyz. The distinct difference between the coherent contribution to
(∂u/∂y)2 and (∂v/∂x)2 and those to the other velocity derivative terms reflects that
the small scales feel the influence from the large scales associated with the Kármán
vortices mainly via ∂u/∂y and ∂v/∂x. The effect of the large-scale motions can still
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FIGURE 14. (Colour online) Coherent contributions (α) to (∂u/∂y)2, (∂v/∂x)2, and εyz
across the wake at (a) x∗ = 10; (b) 20 and (c) 40.
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A

A C

(a)

(b)

FIGURE 15. (Colour online) (a) Hussain and Hayakawa’s original topological model and
(b) the modified model of the flow in a plane wake (+, vortex centre; ×, saddle point; ⇒
engulfed non-turbulent fluid; ==> flow of produced turbulence; A: turbulence production;
B1 and B2: turbulent mixing; C: turbulent kinetic energy dissipation).

be felt at x∗= 20 (figure 14b), where the maximum coherent contributions to (∂u/∂y)2,
(∂v/∂x)2 and εyz are approximately 15 %, 6 % and 4 %, respectively. Because of the
rather weak coherent motions at x∗= 40, the coherent contribution there is negligibly
small (figure 14c).

6.4. Topological model of the flow
In his review on coherent structures in turbulence, Hussain (1986) surmised that the
ribs can induce spanwise contortions of rollers and cause mixing and dissipation,
mostly at locations where they connect with rollers. A topological model (figure 15a)
was proposed in Hussain & Hayakawa (1987) to explain the mechanism of the
turbulent plane wake. Since the energy dissipation rate was not measured by these
authors, the model did not contain any information on the spatial distribution of the
energy dissipation rate. Figure 13 shows unequivocally that the predominant turbulent
energy dissipation rate, i.e. 〈εyz,r〉

∗, is mostly concentrated within the spanwise
vortex, particularly when the Kármán vortex is strong (x∗ = 10 and 20). The spatial
distribution of the energy dissipation rate within the Kármán vortex is consistent
with the observations from DNS of homogeneous turbulence (e.g. Kerr 1985; Rogers
& Moin 1987; She, Jackson & Orszag 1990) that intense vorticity regions occur in
vortex tubes and the energy dissipation rate is strongly correlated with these tubes.
Actually, a strong correlation between large values of the enstrophy and the large
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energy dissipation rates has also been found in the turbulent far wake (e.g. Zhu &
Antonia 1996a).

Based on the present spatial distribution of the energy dissipation rate, a more
complete picture emerges for the turbulence dynamics by incorporating the information
on the energy dissipation rate into Hussain & Hayakawa’s model, as shown in
figure 15(b). In the revised model, the saddle region (denoted as A), where intense
strain is induced by the rotating motion of successive vortices, can be identified with
the turbulent energy production area. The non-turbulent fluid from the free stream is
engulfed into the rotating motion of the ribs (or quasi-streamwise vortices) and is
subjected to the strain associated with vortex stretching along the diverging separatrix,
leading to the production of turbulence. Turbulent mixing should occur mostly in the
region (denoted as B1 and B2) where the streamwise vortex and the spanwise vortex
are in contact with each other (Hussain & Hayakawa 1987). Chen et al. (2016) found
that the interaction between the ribs and von Kármán vortices takes place mostly near
the centreline at small x∗ positions (say x∗ = 10), causing the distortion of the rollers
and enhancing the turbulent mixing. The turbulence produced in the saddle region is
entrained by the rotational motion of the spanwise vortex and accumulated within the
vortex structure (denoted as C) before being finally dissipated further downstream.

It should be noted that, although the present experiment is conducted with a
moderate Reynolds number, the topological feature of the energy dissipation rate is
believed to be applicable in larger Reynolds numbers. This expectation is supported
by the fact that the flow structures in the wake of a circular cylinder are essentially
unchanged as long as Re is less than its critical value, approximately 2.5 × 105

(Zdravkovich 1997). As a matter of fact, Yiu et al. (2004) studied the Re effect
on the three-dimensional vorticity in a turbulent cylinder wake (x∗ = 10–40) with
Re = 2500, 5000 and 10 000, and demonstrated that the topology of the wake is
similar for these Reynolds numbers, although the three-dimensionality of the flow is
enhanced at higher Re.

7. Summary and conclusions

Ten of the twelve terms which make up the mean energy dissipation rate are
measured simultaneously with a four X-wire probe at three streamwise locations
in a turbulent intermediate wake. Both the statistical and the topological features
of the energy dissipation rate as well as its components are examined. Four major
conclusions can be drawn from this study.

(1) Local axisymmetry is a better descriptor of the small-scale turbulent motions
than local isotropy. The mean square velocity derivative terms satisfy local axisymme-
try better than local isotropy. Neither local isotropy nor local axisymmetry are satisfied
by the correlation terms. Spectra of velocity derivatives indicate that axisymmetry is
first satisfied at high wavenumbers; the departure at low wavenumbers is related to
the effect of the Kármán vortices. This effect gradually weakens between x∗= 10 and
x∗= 40, so that the low-wavenumber part of the spectra begins to satisfy axisymmetry.

(2) The close agreement between εyz and εscm estimated via the spectral chart
method proposed by Djenidi & Antonia (2012) indicates that this method, which
is based on the collapse, over the dissipative range, of the longitudinal velocity
spectrum normalized by Kolmogorov scales, is also applicable for the present flow.
εscm is closer to εyz than the other three surrogates (εiso, εa, εhom) at the same x∗.
It is found that despite the effect of the anisotropic large-scale coherent motions
and mean shear at x∗ = 10, the dissipative range of the u spectra collapses onto the
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reference universal spectra in previous studies (figure 8), while the high-wavenumber
part of the normalized vorticity spectra only starts to comply with isotropy at x∗= 40.
It confirms Antonia et al.’s (2014) observation that the two major assumptions in
Kolmogorov’s first similarity hypothesis can be relaxed in the context of the collapse
of the spectrum of u in the dissipative range; it also confirms that the vorticity
spectrum is a more sensitive test of this hypothesis than the velocity spectrum.

(3) Both ∂u/∂y and ∂v/∂x play a crucial role in the interaction between large- and
small-scale motions in this flow. These velocity derivatives contain mainly information
on the small-scale motion since the bulk of their variances is located at high
wavenumbers (figure 7). The maximum coherent contribution associated with Kármán
vortices to (∂u/∂y)2 and (∂v/∂x)2 can be as high as 35 % and 18 %, respectively,
near the wake centreline at x∗ = 10. This is largely because ∂u/∂y and ∂v/∂x are
associated with the most organized vorticity component ωz(= ∂v/∂x− ∂u/∂y). On the
other hand, the coherent contributions to the other velocity derivative variances are
almost one order of magnitude smaller than those to (∂u/∂y)2 and (∂v/∂x)2, leading
to a quite small coherent contribution (maximum value being approximately 9 % at
x∗ = 10) to the total mean energy dissipation rate. Thiesset et al. (2014) found that,
close to the wake generator (x∗ = 10), the influence of the coherent motions can be
felt by even the smallest scales. This study further indicates that the coherent motions
in the present flow interact with the small-scale turbulent structures mostly via ∂u/∂y
and ∂v/∂x.

(4) Isocontours of the phase-averaged energy dissipation rate ε̃yz are quite similar
to those of (∂̃u/∂y)2, which is the major contributor to ε̃yz. The concentrations of the
remainder 〈εyz,r〉, whose maximum is nearly one order of magnitude larger than that of
the coherent concentrations of ε̃yz (figure 13), occur mainly within the Kármán vortices.
The same observation applies to the remainder of the other energy dissipation rate
surrogates (〈εiso,r〉, 〈εa,r〉, 〈εhom,r〉). It is therefore concluded that the dominant energy
dissipation mainly takes place within the Kármán vortex. A more complete picture
for the flow mechanism is proposed by incorporating this information into Hussain
& Hayakawa’s (1987) model. In the new model, turbulence is produced in the saddle
region and is then transported into the vortex structures aligned with the diverging
separatrix before being finally dissipated within the Kármán vortex.
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