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Rayleigh–Bénard convection in a floating zone held by the surface tension between
two supporting disks at different temperatures is considered. Through direct numerical
solution of the mixed parabolic–elliptic–hyperbolic set of governing equations in
complete time-dependent and nonlinear form, we investigate the still unknown
patterns and spatio-temporal states that are produced when the fluid has viscoelastic
properties. The following conditions are examined: Prandtl number Pr = 8, aspect ratio
(A = length/diameter) in the range 0.17 ≤ A ≤ 1 and different values of the elasticity
number (0 ≤ θ ≤ 0.2). It is shown that, in addition to elastic overstability, an important
ingredient of the considered dynamics is the existence of multiple solutions i.e. ‘attractors’
coexisting in the space of phases and differing with respect to the basin of attraction. We
categorize the emerging states as modes with dominant vertical or horizontal vorticity
and analyse the related waveforms, generally consisting of standing waves with central
symmetry or oscillatory modes featuring almost parallel rolls, which periodically break
and reform in time with a new orientation in space. In order to characterize the peculiar
features of these flows, the notions of disturbance node and the topological concept
of ‘knot’ are used. Azimuthally travelling waves are also possible in certain regions
of the space of parameters, though they are generally taken over by convective modes
with dominant pulsating nature as the elasticity parameter is increased. The case of an
infinite horizontal layer is finally considered as an idealized model to study the asymptotic
fluid-dynamic behaviour of the liquid bridge in the limit as its aspect ratio tends to zero.

Key words: buoyancy-driven instability, viscoelasticity, pattern formation

1. Introduction

Viscoelastic fluids encompass a wide variety of physical systems that have as a common
feature the ability to develop both viscous and elastic properties under the same conditions.
They include different types of liquids, colloids, polymers, organic and polymer alloys
and a number of biological materials. Regardless of the considered specific chemical
composition, intriguing and original dynamics generally originates from the property of
these fluids to retain stresses even in the absence of a gradient of velocity and the ensuing
ability to produce highly nonlinear behaviour; while an initial flow can produce long-chain
molecules stretching, the deformation of the molecules (evolving with a characteristic time
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that does not match that of the main flow) can cause secondary flows which further stretch
them, thereby allowing the amplification of an initial small disturbance through an iterative
cause-and-effect coupling mechanism. Remarkably, by virtue of these peculiar feedback
loops, chaos can be excited in these liquids using more viscous solutions, which is a rather
counterintuitive concept if it is considered in the frame of existing theories for the onset of
(inertial) turbulence in conventional fluids (Larson, Shaqfeh & Muller 1990; Larson 1992;
Groisman & Steinberg 1998, 2000; Morozov & van Saarloos 2005; Lappa 2019a).

Related problems are generally challenging because of the importance of interactions
across many length and time scales, the existence of multiples solutions, the high
sensitivity to initial conditions and the often non-trivial geometry and topology of the
emerging flow.

Leaving aside for a while the inherent theoretical complexities, this category of fluids is
central to several technological applications in the chemical, cosmetic, pharmaceutical,
materials, energy and food industries. Typical applications deal with plastics joining
(Rotheiser 1999; Troughton 2008), heating of polymers required for mechanical and
tribological properties improvement (Aly 2015 and references therein), the welding of
plastics (Grewell & Benatar 2007), fibre spinning and fibre casting, film blowing and
extrusion processes (Chung 2010; Rauwendaal 2013), coating, painting, printing (Petrie
& Denn 1976), biological reactors, microfluidic devices and many other processes in
engineering (Bonito, Clément & Picasso 2011).

Given the above rationale, our article addresses a dilemma that continues to challenge
the scientific community, namely, the evolution of certain flows of natural origin (induced
by gravity) that are produced in viscoelastic fluids when they are exposed to heat. As
outlined above, in the liquid phase, elastic stresses typically develop, which contribute,
together with the classical stresses of viscous nature, to determine the response of these
fluids to the application of thermal stimuli. Here, in particular, we consider a very classical
problem, i.e. the onset of buoyancy convection in systems uniformly heated from below
and cooled from above, corresponding to the so-called Rayleigh–Bénard paradigm. This
type of convection is known to produce such a variegated set of different structures and
bifurcations that it has been considered for a long time as a universal testbed for the study
of the typical properties of dissipative systems and their related evolution (Crespo del Arco
et al. 1988; Crespo Del Arco & Bontoux 1989; Clever & Busse 1993, 1994; Gelfgat 1999;
Delgado-Buscalioni, Crespo del Arco & Bontoux 2001; Xi, Lam & Xia 2004; Sun et al.
2005; Lappa 2009; Xie et al. 2019).

Prior to expanding on the present results, we provide the reader with a brief account of
the historical perspective that produced a high level of interest in the peculiar path taken
by this type of flow in viscoelastic fluids when they evolve from an initial quiescent state.

In particular, it is convenient to start to deal with such a topic by considering
the pioneering theoretical analyses by Green (1968), Vest & Arpaci (1969) and
Sokolov & Tanner (1972), where for the first time the concept of elastic overstability
was introduced, i.e. that due to the competition between the processes of viscous
relaxation and thermal diffusion; viscoelastic effects can produce convective modes
that become unstable at a Rayleigh number that is smaller than that predicted
for the corresponding stationary convection in Newtonian fluids. The first solid
theoretical underpinnings for such a realization emerged naturally out of the
mathematics behind the so-called linear stability analysis techniques (LSA). Due to
such studies, eventually, it was recognized (see Martínez-Mardones & Pérez-Garcíıa
1990; Larson 1992) that viscoelastic forces can produce completely new mechanisms
for instability that are not possible in flows of non-polymeric Newtonian fluids.
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A masterful exposition on the state of the art about LSA can be found in
Park & Lee (1996) and Li & Khayat (2005), where this dynamics has been properly
categorized in terms of two distinct regions of the space of parameters, namely the weakly
elastic regime (WER) and the strongly elastic regime (SER).

While WER is generally assumed to be extended from θ = 0 to θ h, where θ is
the so-called elasticity parameter (directly proportional to the product of the fluid
thermal diffusivity and its relaxation time and inversely proportional to the square of a
characteristic length, see § 2) and θ h is the level of elasticity below which stationary flow
occurs as the primary mode of convection, SER (where the role of primary convective
mode is taken over by oscillatory flow) is attained for θ > θ h. As explained above, in the
latter case, the initial quiescent thermally diffusive state undergoes a Hopf bifurcation
for a value of the Rayleigh number that is smaller than that required to produce steady
convection in an equivalent Newtonian fluid.

The need to predict the effective patterning behaviour and the magnitude of convection
amplitude in the post-critical regime led many investigators to reconsider the stability
problem in the framework of weakly nonlinear analyses based, e.g. on amplitude
equations, the power-series method and other similar approaches. Relevant examples along
these lines are the works by Eltayeb (1977), Rosenblat (1986), Martínez-Mardones &
Pérez-Garcíıa (1992), Martínez-Mardones et al. (1996), Park & Lee (1996), Parmentier,
Lebon & Regnier (2000) and Li & Khayat (2005). Relying on this approach, interestingly,
Martínez-Mardones et al. (1996) determined the stability range for standing waves
potentially emerging in the SER in proximity to the instability threshold. Vice versa,
Parmentier et al. (2000) concentrated on typical dynamics relating to WER. For the
specific case of a layer limited from below by a heated wall and from above by a
thermally insulated top free surface (no surface-tension effects being considered), these
authors examined the stability of stationary patterns with different types of symmetry
(namely solutions with classical two-dimensional rolls or three-dimensional square cells
or hexagonal cells). Continuing in a similar vein (by spectrally expanding the flow field
and applying the Galerkin projection method), Li & Khayat (2005) addressed further
the stability of these patterns for the case of stress-free conditions along both horizontal
boundaries. Stationary hexagonal cells, known to be unstable for the purely Newtonian
case, were found to be possible in a certain range of elasticity number. They also assessed
the influence of the Prandtl number and the viscosity ratio on the ranges of existence of
rolls and hexagons, revealing that viscosity has a more significant impact in determining
the likelihood of these two- or three-dimensional patterns for typical polymeric solutions.

Other works of relevance to the subject include those where the finite extension of
the fluid domain in the horizontal direction was expressly taken into account (laterally
bounded systems such as two-dimensional cavities and enclosures with no-slip sidewalls).
Like the case of the infinite layer described above, the problem has initially been addressed
in the frame of LSA paying particular attention to the SER (first for a box of fixed aspect
ratio, see Park & Ryu (2001a) and then in domains with arbitrary finite size, Park & Park
(2004)). Later efforts have been devoted to take into account nonlinear effects resorting
to proper generalizations of the Chebyshev pseudospectral (Park & Ryu 2001b, 2002) or
other methods (Lyubimov, Kovalevskaya & Lyubimova 2011, 2012). Interestingly, Park &
Ryu (2002) found the oscillation frequency of SER to scale linearly with the difference
between the Rayleigh number and its critical value. Only more recently have some studies
appeared where the problem has been directly approached on the basis of finite-difference
solution techniques applied to the governing equations in their complete, time-dependent
and nonlinear form (Krapivina & Lyubimova 2000; Park, Shin & Sohn 2009; Park & Lim
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2010; Kovalevskaya & Lyubimova 2011; Park 2018). Interestingly, under the constraint of
two-dimensional flow, the typical oscillatory behaviour in boxes has been found to emerge
in the form of standing waves, namely, a periodic change in the sense of circulation of the
flow (as opposed to the typical oscillatory motion in Newtonian fluids, typically limited to
a modulation in time of the strength of the convective rolls).

As the reader will easily realize from this focused review, most of existing studies have
been produced for the case of laterally unbounded geometries (infinite horizontal layers
or finite computational domain with periodic boundary conditions). Only a handful of
them have considered fluid domain laterally delimited by solid walls and only under the
constraint of two-dimensional flow.

Though the unravelling of the linearized stability problem or weakly nonlinear analyses
can certainly be seen as an important step towards a complete understanding of the
transition process, it is clear that with such approach there are some questions that remain
open. Two-dimensional numerical simulations are also valuable. Nevertheless, the curse
of dimensionality limits effective applicability of such results.

While there is no doubt that each of the abovementioned studies on the subject should be
regarded as a new piece of the puzzle, a recognized challenge in pushing the boundaries of
current knowledge in this field relates to the investigation of effective nonlinear behaviour
in three-dimensional finite-size geometries.

Along these lines, here, we concentrate on the so-called liquid bridge, namely, a
small amount of liquid held by surface tension between two supporting disks at different
temperature (see, e.g. Frank & Schwabe 1997; Shevtsova, Melnikov & Legros 2001, 2003;
Shevtsova et al. 2011; Lappa 2013a,b). Not surprisingly, liquid bridges and the dynamics
supported by their free liquid surfaces have been an active topic of both fundamental and
applied research, especially over the last twenty or thirty years, given their relevance to
some important technological problems. They have largely been employed in the past as a
model of certain processes for the growth of crystals of metallic and oxide materials (Chen
& Saghir 1994; Gelfgat et al. 2005; Hu, Tang & Li 2008; Lappa 2019b and references
therein). Often organic liquids (polymerized siloxane with organic side chains, i.e. the
so-called ‘silicone oils’) have been used in these studies as surrogates of the real melts
owing to their transparency to visible light, the high thermal stability and the ability to be
liquid at ambient temperature (see, e.g. the experiments conducted in space by Kang et al.
2019). This configuration has attracted so much attention that it has become over the years
an inexhaustible source of inspiration for the understanding of the properties of different
types of convection at a very fundamental level (typically for the so-called thermocapillary
or ‘Marangoni’ flow since the seminal work by Schwabe & Scharmann (1983), and,
later, also for thermal buoyancy convection or mixed thermocapillary-thermogravitational
flow, see Wanschura, Kuhlmann & Rath 1996; Lappa, Savino & Monti 2000; Lappa,
Yasuhiro & Imaishi 2003; Melnikov, Shevtsova & Legros 2005; Shevtsova, Melnikov &
Nepomnyashchy 2009).

Here we focus on the liquid bridge with the multi-fold intention to: (i) enrich
the existing literature on the oscillatory states of Newtonian fluids in floating zones
driven by surface-tension effects in space (pure Marangoni convection, see, e.g. Kang
et al. 2019), with heretofore unseen information about the time-dependent solutions
that can be produced in these configurations when three-dimensional viscoelastic
fluids are considered in terrestrial conditions (pure buoyancy convection); (ii) highlight
related analogies and differences; (iii) complement the existing information on
viscoelastic Rayleigh–Bénard convection constrained by solid lateral walls (Park et al.
2009; Park & Lim 2010; Park 2018) with new findings about domains with ‘free’
boundaries; (iv) extend earlier investigations where buoyancy convection in cylindrical
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FIGURE 1. Sketch of the liquid bridge and its thermal boundary conditions.

geometries was examined for Newtonian fluids only (e.g. Wanschura et al. 1996;
Borońska & Tuckerman 2010a,b) to cases where elasticity plays a significant role;
(v) determine the structure of the emerging flow (in terms of magnitude and wavenumber)
and (vi) provide new details about the effective patterning behaviour in the nonlinear
regime, i.e. the effective waveform emerging when viscoelastic buoyancy convection
becomes oscillatory (be it a standing wave, a travelling wave or something completely
different); (vii) last but not least, yield new fundamental knowledge about the possible
convective phenomena in some technological processes, which involve at the same time
the presence of gradients of temperature, ‘free interfaces’ and viscoelastic liquids (e.g.
extrusion processes of polymers and/or the joining of plastic materials).

2. Mathematical model

2.1. The physical domain
The classical liquid bridge is shown in figure 1. It consists of a fluid domain delimited from
above and below by solid circular (coaxial) walls and laterally by a free interface separating
it from the external environment (typically a non-reactive gas). A related non-dimensional
geometrical parameter is the so-called aspect ratio, defined as A = L/D (figure 1), where L
and D are the height and the diameter of the liquid bridge, respectively.

In the present study, a fixed temperature T is imposed on the bottom and top (no-slip)
walls

z = 0, T = Thot, V = 0, (2.1)

z = L, T = Tcold, V = 0, (2.2)

with the temperature and velocity V at the free surface (r = D/2, 0 ≤ z ≤ L) satisfying the
condition:

∇T · n̂ = 0 (2.3)

and
[τ d + τ̃ ] · n̂ = 0, (2.4)
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respectively, where n̂ is the unit vector perpendicular to the liquid/gas interface (directed
from liquid to gas), τ d is the so-called dissipative part of the (Newtonian) stress tensor,
τ̃ is the additional tensor accounting for the contribution brought to the physical stresses
present in the fluid by viscoelasticity.

We do not describe here the initial conditions, as this point is discussed directly in the
section of results owing to its crucial role in influencing the emerging pattern.

2.2. The governing equations
The balance equations for mass, momentum and energy, can be cast in dimensional form
as

∇ · V = 0, (2.5)

ρ
DV
Dt

= ∇ · τ + ∇ · τ̃ + ρg, (2.6)

∂T
∂t

+ ∇ · [V T] = α∇2T, (2.7)

where ρ and α are the fluid density and thermal diffusivity, respectively τ = −pI + τ d is
the so-called (Newtonian) stress tensor (where p and I are the pressure and the unit matrix,
respectively) and g is the gravity acceleration.

Many models have been elaborated over the years differing in the shape of the equations
to be used to determine the viscoelastic stresses tensor and the related underlying
physical interpretations or rationale. Among such formulations, widespread success has
been enjoyed by the so-called Oldroyd-B framework owing to its relative simplicity and
the remarkable possibility to derive it starting from the self-consistent framework of
continuum mechanics (Bird et al. 1987; Revuz & Yor 1994; Alves, Oliveira & Pinho 2003;
Bonito et al. 2011; Lappa 2019a). This archetype and related variants have been used by
several investigators to investigate the typical dynamics of both thermogravitational and
thermocapillary flows in viscoelastic fluids (Green 1968; Vest & Arpaci 1969; Sokolov &
Tanner 1972; Eltayeb 1977; Rosenblat 1986; Martínez-Mardones & Pérez-Garcíıa 1990,
1992; Larson 1992; Khayat 1994, 1995; Martínez-Mardones et al. 1996; Park & Lee 1996;
Parmentier et al. 2000; Park & Ryu 2001a,b, 2002; Li & Khayat 2005; Park et al. 2009;
Park & Lim 2010; Hu, He & Chen 2016; Lappa & Ferialdi 2018a; Park 2018).

This approach, however, is not free of bottlenecks. Indeed, it imposes severe restriction
on the maximum allowable elasticity of the considered fluid because of the singular
nature of its solution when the flow field is extensional; put simply, the absence of a
limit to the extension that a molecule can experience is typically reflected, from a purely
mathematical/numerical point of view, in the existence of singularities that can seriously
jeopardize the convergence of typical time-marching procedures used for the integration
of the equations (the reader being referred, e.g. to Hüseyin, Williams & Akyildiz 1999;
Renardy 1999; Owens & Phillips 2002; Bonito et al. 2011; Siginer 2014 for additional
insights).

For this reason, over the years alternate frameworks have been derived to explore regions
of the space of parameters not accessible with the Oldroyd-B. A relevant example is
the so-called finitely extensible nonlinear elastic (FENE) model (Armstrong 1974a,b)
employed for the present work.

In particular, the macroscopic transport equation of FENE-CR (where CR stands
for the Chilcott–Rallison variant) for the viscoelastic stress can be introduced via
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direct generalization of the equations derived for the Oldroyd-B
(Favero et al. 2010) as

λ

(
∂ τ̃

∂t
+ V · ∇τ̃

)
+ f [Tr(τ̃ )]τ̃ = η f [Tr(τ̃ )](∇V + ∇V T) + λ(τ̃ · ∇V + ∇V T · τ̃ ),

(2.8a)

where

f [Tr(τ̃ )] =
�2 + λ

η
Tr(τ̃ )

�2 − 3
(2.8b)

and λ is the relaxation time, η is the viscosity of the polymer and �2 is the so-called
extensibility parameter of the polymer molecule. In the following, the dynamic viscosity
of the corresponding solvent is indicated by μ (μ + η being therefore the so-called ‘total
viscosity’ of the fluid, Alves et al. 2003). The consistency of this model can easily be
verified noticing that it naturally tends to the Oldroyd-B constitutive equations in the limit
as �2 → ∞, i.e. when a polymer molecule with infinite extension is considered (for which
f [Tr(τ̃ )] reduces to 1, Du, Liu & Yu 2005; Bonito et al. 2011; Cherizol, Sain & Tjong
2015). Following Paulo et al. (2014) and references therein, here we set �2 to 200.

2.3 The complete set of non-dimensional equations and related boundary conditions
The dissipative part of the (Newtonian) stress tensor (also simply known as viscous stress
tensor), τ d can be expressed as 2μ(∇V )s

o where (∇V )s
o is the so-called strain rate tensor.

For an incompressible fluid (∇ · V = 0), the following identity also holds

∇ · [2(∇V )s
o] = ∇ · [∇V + ∇V T] = [∇2V + ∇(∇ · V )] = ∇2V . (2.9)

Using the Boussinesq approximation, assuming that the considered suspension is dilute
(that is, the addition of polymer to the initial Newtonian liquid has a negligible impact on
the resulting fluid density) and scaling velocity, pressure, temperature and the viscoelastic
stress by proper reference quantities, namely, α/L as reference velocity, L2/α as reference
time, ρα2/L as reference pressure, �T as reference temperature and ρνα/L2 as reference
viscoelastic stress (where L is the height of the liquid bridge, ν is the solvent kinematic
viscosity and α the fluid thermal diffusivity), the non-dimensional form of the governing
equations for the considered category of problems reads

∇ · V = 0, (2.10)

∂V
∂t

+ ∇ · [V V ] = −∇p + Pr∇2V + Pr∇ · τ̃ + PrgRaTi, (2.11)

θ

(
∂ τ̃

∂t
+ V · ∇τ̃

)
+ f [Tr(τ̃ )]τ̃ = ζ f [Tr(τ̃ )](∇V + ∇V T) + θ(τ̃ · ∇V + ∇V T · τ̃ ),

(2.12)

∂T
∂t

+ ∇ · [V T] = ∇2T, (2.13)

where a specific set of characteristic non-dimensional numbers appears, namely, the
classical Prandtl number Pr = ν/α, the viscosity ratio ζ = η/μ, the generalized Prandtl
number Prg = Pr/β, where β =μ/(μ + η), the Rayleigh number Ra = βg�T�TL3/να
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(where �T is the thermal expansion coefficient) and the aforementioned parameter
θ = αλ/L2. This ratio is an analogue of the so-called Deborah number, see, e.g. Parmentier
et al. (2000), typically referred to as the ‘elasticity number’, Li & Khayat (2005).
Moreover, i is the unit vector in the same direction of gravity. As we do not consider
surface-tension effects (this will be the subject of a future study), we deal with ‘pure’
buoyancy. Accordingly, the stress balance condition at the free surface simply reads

[2(∇V )s
o + τ̃ ] · n̂ = 0, (2.14)

where, as explained in § 2.1, n̂ is the unit vector perpendicular to the liquid/gas interface
(directed from liquid to gas).

We wish to recall at this stage that the Oldroyd-B paradigm and the strictly related
FENE-CR variant can adequately represent highly elastic solutions consisting of a
polymeric solute in a Newtonian solvent. These solutions, generally referred to as ‘Boger
fluids’ (see, e.g. Li & Khayat 2005), are known for their ability to retain an essentially
constant viscosity over a wide range of shear rates. Relevant examples are represented
by a class of water-based polymer dilute solutions at ambient or moderate temperatures,
e.g. water between 25°C and 50°C with limited amount of a polymer such a PAM, PEG,
PEO, PVP, Xanthan Gum, etc, for which the Prandtl number would be similar to that
considered in the present work (Prg

∼= 8) and β < 1 (the rheological parameters (Prg and
β) considered here are almost identical to those examined by Li & Khayat (2005), who
assumed a Boger fluid with Prg

∼= 7 (and β varying in the range between 0 and 0.79)).
Assuming λ ∼= 10−3 s (a typical realistic value for small polymer concentrations) and

α ∼= 1.5 × 10−7 m2 s−1 over this range of temperatures, these values would correspond to
θ spanning the range from ∼=1 × 10−2 to 0.1 on varying the height L of the liquid bridge
from 0.1 to 0.04 mm. For the same fluid considered by Martínez-Mardones et al. (1996),
i.e. a solution of water, syrup and polyacrylamide with λ ∼= 2 s, the corresponding range
would be 2 ≤ L ≤ 5 mm.

3. Numerical method

The set of mixed parabolic and hyperbolic equations and related boundary conditions
described in the preceding sections has been integrated numerically using a technique
pertaining to the so-called category of projection methods. These methods rely on the
intrinsic properties of two well-known differential vector operators stemming from the
so-called ‘nabla’ operator ∇ (i.e. the virtual vector having as spatial components the
derivatives along the three independent axes of the considered reference system). These
are the curl and divergence (being defined, respectively as the vector and scalar product of
the operator nabla and a generic vector field). When applied to the velocity field these two
operators formally yield, respectively, the vorticity being associated with the fluid and a
measure of its compressibility (i.e. the divergence of V ). As the application of the curl to
the momentum equation formally leads to an equation for the evolution of vorticity that
does not depend on the gradient of pressure (since ∇ ∧ (∇p) = 0), the implementation of
the projection methods typically starts from the integration of a modified version of the
momentum equation deprived of the pressure gradient

∂V ∗

∂t
= [−∇ · [V V ] + Pr∇2V + Pr∇ · τ̃ + PrgRaTi]. (3.1)

This leads to an intermediate (unphysical) velocity field V ∗ that possesses the same
vorticity the physical velocity field would have.
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At the next step, this field is corrected forcing it to satisfy the incompressibility
constraint i.e. ∇ · V = 0. The pressure is reintroduced at this stage expressing V as a
linear combination of V ∗ and ∇p.

V n+1 = V ∗ − �t∇p (3.2)

(where the superscript n indicates the time and �t is the time integration step). This stage
is purely formal as the pressure is still unknown. By substituting (3.2) into the continuity
equation, however, an additional equation is obtained by which the pressure can effectively
be determined.

∇2p = 1
�t

∇ · V ∗. (3.3)

Owing to the properties of the Laplacian operator (resulting from the combination
of the divergence and the gradient operators), this equation is elliptic. Its solution
(typically obtained by means of iterative methods, see, e.g. Lappa 1997) formally closes
the problem from a mathematical standpoint; however, it requires the consideration of
additional boundary conditions, which are generally referred to as ‘numerical’ boundary
conditions (NBC) to distinguish them from the physical boundary conditions (PBC),
i.e. the conditions which simply follow from the ‘physics’ of the considered problem
(§ 2). There are different ways to define these additional conditions (the reader being
referred, e.g. to Gresho & Sani (1987), Karniadakis, Israeli & Orszag (1991) and Petersson
(2001) for relevant considerations about the underlying rationale). OpenFoam essentially
relies on the variant originally introduced by Gresho & Sani (1987), who could show
that it is the simplest possible condition ensuring well posedness. This condition can
formally be derived by considering that if the effective PBC are used for V ∗, this
quantity needs not to be corrected on the boundary of the physical domain. Accordingly,
homogeneous Neumann boundary conditions can be imposed there for the pressure (i.e.
∂p/∂n = 0). From a purely theoretical standpoint, the logical sequence of computational
stages depicted above may be seen as a practical realization of the so-called Hodge
decomposition theorem, by which any vector field can always be decomposed into a
solenoidal part and the gradient of a scalar function. These two contributions can formally
be identified in V n+1 and ∇p appearing in (3.2), which explains why projection methods
are also known as ‘splitting’ techniques. Another relevant theorem to be invoked is the
so-called inverse theorem of calculus (see, e.g. Ladyzhenskaya 1969). It states that a vector
field is uniquely determined when its divergence, curl and component perpendicular to
the boundary are known. In the present case it is easy to verify that since ∇ · V n+1 = 0,
∇ ∧ V n+1 = ∇ ∧ V ∗ and V n+1 · n̂ = V ∗ · n̂ = 0, the solution of the alternate set of
equations represented by (3.1)–(3.3) coincides with that of (2.10) and (2.11). Additional
insights into this category of methods and related theoretical pre-requisites or implications
can be found in various works appearing in the literature (see, e.g. Brown, Cortez &
Minion 2001; Armfield & Street 2002; Guermond, Minev & Shen 2006).

In the following we limit ourselves to highlighting that the practical implementation of
the sequence of operations implicitly defined by (3.1)–(3.3) can result in different variants
differing in the strategy used to integrate the simplified momentum equation with respect
to time (via explicit or implicit schemes). OpenFoam relies on the ‘pressure implicit with
splitting operator’, i.e. the PISO method (see e.g. Jang, Jetli & Acharya 1986; Moukalled,
Mangani & Darwish. 2016), which means that all the terms appearing in this equation
are treated in an implicit way (with the only exception of the buoyancy term). Moreover,
from a spatial point of view, the variables (pressure, velocity and temperature) occupy the
centre of the computational cells, i.e. the method relies on a collocated grid approach.
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Accordingly, in order to guarantee good coupling of velocity and pressure, OpenFoam
takes advantage of the special interpolation stencil for the velocity originally introduced
by Rhie & Chow (1983).

For the present study, standard central differences and second-order accurate
Lax–Wendroff spatial schemes have been selected for the discretization of the diffusive
and convective terms in the parabolic (momentum and energy) equations, respectively.
Relevant details and extensive descriptions about the effective discretization techniques
implemented in OpenFoam for non-rectangular and non-structured grids can be found in
the aforementioned book by Moukalled et al. (2016). A separate discussion, however, is
still required for the constitutive equation for the viscoelastic stresses (2.12). Owing to
the absence of diffusive terms (which would make it parabolic in time), this equation is
essentially hyperbolic. Although, as illustrated in § 2.2, the FENE mitigates the typical
singularity problems that affect other models such as the Oldroyd-B, maintaining it
numerically stable is not as straightforward as one would imagine. For this reason, we
have replaced the Lax–Wendroff schemes with the ‘Minmod’ scheme for what concerns
the integration of this equation. This approach led to good performances over the entire
range of considered values of the elasticity number (§ 4) and good agreement with the test
cases used for validation purposes (§ 3.1).

Special care has also been used for the momentum equation. In line with the valuable
indications provided by Favero et al. (2010), we have improved its numerical stability
by enriching it with two diffusive terms, one on the left-hand side and the other on the
right-hand side. Although these two terms are formally identical from a mathematical
point of view, they carry a different amount of residual diffusion when they are discretized
with implicit and explicit schemes, respectively:

∂V
∂t

+ ∇ · [V V ] − Pr(1 + ζ )∇2V = −∇p − Prζ∇2V + Pr∇ · τ̃ + PrgRaTi. (3.4)

As a result, they provide the solution with an amount (quantitatively negligible) of residual
diffusion, which, however, increases appreciably the ‘ellipticity’ of the momentum
equation and improve its numerical stability.

3.1. Validation
A four-stage validation hierarchy has been implemented in order to verify the ability of
the present numerical method to reproduce results obtained by other authors (for both
Newtonian and viscoelastic fluids) and to capture ‘different types’ of flow instabilities,
namely: (i) stationary and (ii) Hopf bifurcations for classical thermally driven (RB) flows
in Newtonian fluids, (iii) purely elastic instabilities in isothermal liquids and (iv) overstable
Rayleigh–Bénard convection in viscoelastic fluids.

As a first step of such verification hierarchy, we have compared with available LSA
results concerning the primary bifurcation from quiescent conditions to a stationary
convective state (i.e. RB convection in a Newtonian fluid). In particular, we have
considered the study by Wanschura et al. (1996) where the critical Rayleigh number
was reported for liquid bridges of a high-Pr liquid (Pr = 6.7) heated from below with
adiabatic interface and no surface-tension effects (conditions equivalent to those set for the
present work). Assuming a representative (intermediate) aspect ratio, we have carried out
different simulations for increasing values of Ra and then evaluated the disturbance growth
rate by plotting the maximum velocity as a function of time in logarithmic scale (the
growth rate being given by the inclination of the straight line representing the evolution of
disturbances before their amplitude is saturated). The critical Rayleigh number has finally
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Rayleigh–Bénard convection in viscoelastic liquid bridges 904 A2-11

Ra σ m

1800 1.30 × 10−3 1
1700 8.80 × 10−4 1
1650 6.35 × 10−4 1
1550 (extrapolated) σ = 0 1
LSA by Wanschura et al. (1996), Racr ∼= 1560 σ = 0 1

TABLE 1. Disturbance growth rate σ and azimuthal wavenumber m as a function of the Rayleigh
number (liquid bridge of Newtonian fluid, Pr = 6.7, A = 0.68, free-slip lateral boundary, mesh:
28 000 nodes, stationary bifurcation).

T

u u

Inflow

Inflow

Outflow

Outflow

H

Q1

Q2

Q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) (b)

FIGURE 2. Reference cases: (a) temperature distribution in the midplane z = 0.5 (Newtonian
fluid, Pr = 1, A = 0.34, Ra = 2.6 × 104, cylinder with adiabatic no-slip sidewall, present
computation with 56 000 nodes); (b) sketch of the classical cross-slot problem.

been computed through extrapolation of the growth rate to zero. Comparison of the present
Racr with the value obtained by these authors indicates that the difference lies below 1%
(see table 1).

As a second step of the validation hierarchy, classical RB convection in a cylinder heated
from below and cooled from above with adiabatic solid sidewall has been considered. In
particular, we have examined the same test case (Newtonian fluid with Pr = 1) investigated
by Boronska & Tuckerman (2006) through numerical solution of the governing nonlinear
equations. This benchmark corresponds to the transition from an initial steady and
axisymmetric flow to a three-dimensional solution as the Rayleigh number exceeds a given
threshold (Racr2). It can be seen as a specific realization of a well-known behaviour of RB
convection in cylindrical cavities with aspect ratio A < 0.55 (Touihri, Ben Hadid & Henry
1999); in particular, we have considered A = 0.34 for which the secondary flow is known to
be oscillatory and have azimuthal wavenumber m = 3 (figure 2a). As shown in table 2, our
non-dimensional oscillation frequency matches with a good approximation that found by
these authors (defined as 2πfL2/α where f is the dimensional frequency of the oscillation).
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Ra ω m

26 500 47.522 3
26 000 46.601 3
25 500 46.159 3
24 750 45.5 (extr.) 3
Boronska & Tuckerman (2006), Racr2 = 24 738 42.33 3

TABLE 2. Non-dimensional angular frequency ω and azimuthal wavenumber m as a function of
the Rayleigh number (Newtonian fluid, Pr = 1, A = 0.34, cylinder with adiabatic no-slip sidewall,
mesh: 56 000 nodes, Hopf bifurcation).

Wi Paulo et al. Rocha et al. δQ (present)

0.5 0.787 0.718 0.726
0.6 0.894 0.852 0.856

TABLE 3. Comparison with the results (cross-slot benchmark) by Rocha et al. (2009) and Paulo
et al. (2014). The present results have been obtained using a structured mesh with 52 500
cells.

In order to validate the FENE-CR solver, the classical ‘cross-slot benchmark’ has been
considered. A sketch of this geometry is shown in figure 2(b). The problem consists
of a two-dimensional cross-shaped channel having characteristic width H. It is featured
by two diametrically opposite inlet sections (where the fluid enters the channel with a
velocity u) and two outlet sections, by which the fluid leaves the system along a direction
perpendicular to that of the inflow.

For this problem, the total flow rate is typically denoted by Q = Q1 + Q2, where Q1 is
the amount that goes to the top channel and Q2 is the fraction that goes to the bottom
channel. If the fluid were Newtonian, Q1 and Q2 would have the same value. However, for
a viscoelastic fluid, as a result of an elastic instability, a flow rate imbalance appears. A
new characteristic quantity is generally defined accordingly, i.e.

δQ = Q2 − Q1

Q
. (3.5)

Additional relevant non-dimensional numbers are the classical Reynolds number defined
as Re = uH/ν and the Weissenberg number Wi = λu/H.

For validation purposes, we have set the solvent-to-total-viscosity ratio to 0.1, the finite
extensibility of the molecule �2 to 200 and the other parameters as in Rocha et al. (2009)
and Paulo et al. (2014); the reader being referred to table 3 for the quantitative details.

As evident in table 3, our results for two different values of the parameter Wi are very
close to those in the literature.

Additional validation (fourth level of verification) has finally been obtained through
comparison with the results of the linear stability analysis for RB convection in viscoelastic
fluid layers. In particular, the work by Martínez-Mardones & Pérez-Garcíıa (1990) has
been considered given the proximity of the values of the Prandtl number and β examined
by these authors to those assumed in the present study. The outcomes of such analysis are
summarized in figure 3 and table 4 where the non-dimensional frequency of oscillation
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4
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FENE-CR (l2 = 104)
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FIGURE 3. Comparison with the linear stability analysis by Martínez-Mardones &
Pérez-Garcíıa (1990) for a layer of viscoelastic fluid delimited by top and bottom solid walls with
Prg = 10, β = 1/2 and θ = 0.1. The present results have been obtained using a structured mesh
(two-dimensional simulation) with 4500 nodes and a domain having non-dimensional horizontal
extension 15 with periodic boundary conditions at the lateral boundaries.

Ra Oldroyd-B FENE-CR (�2 = 104) FENE-CR (�2 = 103)

2500 15.03 15.01 15.0
2200 12.9 12.87 12.6
2000 10.9 10.9 10.9
1900 7.48 7.46 9.63
1800 5.82 5.80 7.50
1775 5.10 5.10 5.65

TABLE 4. Non-dimensional angular frequency determined with different models as a function
of the Rayleigh number (layer with Prg = 10, β = 1/2 and θ = 0.1).

of the flow is reported as a function of the Rayleigh number for β = 1/2 and θ = 0.1. As
the reader will realize by inspecting this figure and the aforementioned table, the present
computations have been carried out using either the classical Oldroyd-B (equivalent
to the model originally employed by Martínez-Mardones & Pérez-Garcíıa 1990) or the
FENE-CR (at the root of all the results presented in § 4).

Extrapolation of the present non-dimensional angular frequency obtained using the
Oldroyd-B to Ra ∼= 1700 (the value of the critical Rayleigh number determined by
Martínez-Mardones & Pérez-Garcíıa 1990, see figure 6 in their work) gives ω ∼= 4.74; as
shown in table 5, the difference with respect to the value predicted by the linear stability
analysis can therefore be considered ∼=2%.

For additional validation of the Oldroyd-B solver through comparison with the results
by other authors for different types of convection (Lebon and co-workers), the reader
is referred to Lappa & Ferialdi (2018a). The additional computations relying on the
FENE-CR paradigm included in this section (tables 4 and 5) are used to demonstrate the
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904 A2-14 M. Lappa and A. Boaro

Approach Non-dimensional angular frequency

FENE-CR (�2 = 103) 4.93
FENE-CR (�2 = 104) 4.85
Oldroyd-B 4.74
Linear stability analysis 4.63

TABLE 5. Non-dimensional angular frequency extrapolated to the critical Ra predicted by the
linear stability analysis (layer with Prg = 10, β = 1/2, θ = 0.1, Ra ∼= 1700, Martínez-Mardones
& Pérez-Garcíıa 1990).

Block 0Block 2 Block 4

Block 3

Block 1

(a) (b)

FIGURE 4. Mesh structure (consisting of five blocks, one centrally located with other blocks
evenly distributed along the azimuthal direction).

overall consistency of the present numerical framework. In particular, two different values
of the so-called extensibility parameter of the polymer molecule �2 have been considered to
demonstrate that the results obtained with the FENE-CR naturally tend to those provided
by the Oldroyd-B as this parameter is progressively increased (tables 4 and 5).

3.2. Mesh refinement study
An example of the grids used for the present computations is shown in figure 4. A rationale
for building the grids has been based on the need to increase the number of points in the
radial (and azimuthal) direction as a result of a decrease in the aspect ratio. In particular,
the grid refinement study for buoyancy convection in the viscoelastic liquid bridge (fixing
Prg = 8 and β = 1/2, as for all cases addressed in § 4) has been conducted for A = 0.68,
A = 0.34 and A = 0.17. As control parameter to assess the response of the solution to
changes in the density of the grid, we have chosen the non-dimensional angular frequency
(ω) of the emerging oscillatory solution.

Assuming the worst case in terms of Rayleigh number (Ra = 3000) and a representative
value of θ (θ = 0.1), we have found that for A = 0.17 the percentage difference displayed by
ω falls below 1% when the number of points in the radial direction (along the diameter)
is increased from 95 to 170. Similarly, for A = 0.34 it stays within 3% when the overall
number of computational points is increased from 104 696 to 150 756. For A = 0.68

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.608


Rayleigh–Bénard convection in viscoelastic liquid bridges 904 A2-15

A Number of grid points

1.0 62 361
0.68 62 361
0.34 104 696
0.17 230 111

TABLE 6. Number of computational points versus the aspect ratio.

varying the total number of points from 62 361 to 104 696 the corresponding variation
is again smaller than 1%.

The number of points to be used for each aspect ratio has been selected accordingly
as indicated in table 6. It can be seen there that for A = 0.17 mesh convergence has been
obtained by using a number of points doubled with respect to that used for A = 0.34,
which indicates that mesh independency for different values of A could be attained by
maintaining constant the mesh spatial density, i.e. by roughly scaling the number of points
according to the aspect ratio. For A = 1 (even though a smaller mesh density could have
been used to ensure grid independency), we decided to use a mesh with the same radial
density of that employed for 0.68, as this grid was not particularly demanding in terms of
computational cost.

4. Results

In order to investigate the sensitivity of the system with respect to a single control
parameter, i.e. θ , we have fixed Prg = 8 and β = 1/2. For the sake of clarity, following a
logical approach, in the present section we begin our analysis from the results obtained in
the limit as the elasticity parameter goes to zero (i.e. θ = 0). As the reader will immediately
realize, these cases correspond to the canonical situation in which the fluid takes a
purely Newtonian behaviour, i.e. it displays the ability to develop viscous stresses (but
not elastic stresses). A parametric investigation is presented considering the four different
liquid-bridge aspect ratios indicated in table 6 and two different values of the Rayleigh
number (Ra = 2000 and 3000).

4.1. Newtonian fluids and related multiplicity of solutions
There is a long tradition of studies dealing with the onset of buoyancy convection
and related hierarchy of bifurcations in configurations with the cylindrical symmetry
for the case of Newtonian fluids. The amount of existing literature on such subjects is
indeed impressive and includes works by different research groups (Croquette, Mory &
Schosseler 1983; Yamaguchi, Chang & Brown 1984; Croquette, Le Gal & Pocheau 1986;
Crespo del Arco et al. 1988; Crespo Del Arco & Bontoux 1989; Croquette 1989a,b;
Neumann 1990; Hardin & Sani 1993; Wagner, Friedrich & Narayanan 1994; Hof, Lucas
& Mullin 1999; Touihri et al. 1999; Cheng, Li & Lin 2000; Leong 2002; Boronska &
Tuckerman 2006 just to cite some relatively recent contributions). Here, due to page
limits we limit ourselves to recalling the points which we think are more relevant to the
present study and may help the reader to place in a proper theoretical context some of the
inherently complex concepts that will be presented in the next pages.
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In particular, to put the present work in perspective, the most relevant or useful findings
are those by Yamaguchi et al. (1984), Hof et al. (1999), Leong (2002) and Borońska &
Tuckerman (2010a,b).

In these studies, some emphasis was put on the connection between the patterns
produced by RB convection in cylindrical geometries and the initial conditions, i.e. clear
evidence was provided that, for a fixed set of parameters (cylinder aspect ratio and value
of the Rayleigh number), specific initial temperature and velocity fields might lead to
different results in terms of symmetry and spatio-temporal behaviour of the final state.
These observations strictly relate to the concept of ‘basin of attraction’ and the associated
notion of ‘multiple attractors’ in fluid dynamics (Lappa 2019a).

Although relatively rare and sparse, these discoveries cemented the view among
scientists that RB is one of the typical dissipative systems in nature supporting the
existence of ‘multiple solutions’, i.e. independent branches of states that can be selected
by the fluid system depending on the considered initial conditions. These solutions (often
referred to as ‘attractors’ or ‘attractee’ using the typical jargon coined by mathematicians)
occupy disconnected portions of the space of phases (see, e.g. also Lappa & Ferialdi 2017,
2018b). By expressly referring to this space (a space having a number of dimensions
equal to the degrees of freedom of the examined system), mathematicians typically get
a more general (abstract) problem in which the convective patterns produced by different
initial conditions are just effective realizations (i.e. manifestation of the attractors in the
physical reality). Evidence for these possible behaviours has been confirmed with both
experiments and numerical simulations. As an example, for a fixed aspect ratio A = 0.25
and Pr = 6.7, Hof et al. (1999) experimentally obtained several different steady stable
patterns for the same final Rayleigh number Ra = 14 200. These were classified in terms of
their symmetry properties as ‘rolls with hot fluid rising along the centre’, ‘rolls with cold
fluid falling along the centre’, ‘spoke patterns with cold fluid falling along the spokes’,
‘spoke patterns with hot fluid rising along the spokes’, ‘axisymmetric pattern with hot
fluid rising in the centre’. Similarly, Leong (2002) determined computationally several
steady convective solutions (four main types of flow structure: concentric, radial, parallel
and cross-rolls) for Ra > Racr (where Racr is the critical Rayleigh number), all of which
were stable in the range 6250 ≤ Ra ≤ 37 500 (for aspect ratios A = 0.125 and A = 0.25 with
Pr = 7).

However, multiple solutions must not necessarily correspond to steady flows.
Independent branches of oscillatory RB convection coexisting in the space of parameters
have also been found (Hof et al. 1999; Borońska & Tuckerman 2010a,b). Moreover,
multiple solutions are not an exclusive prerogative of RB flow. They seem to be quite
common in viscoelastic fluids even if other types of thermal flows are considered (the
reader being referred to the arguments elaborated in § 5).

Here we do not strive to review all these results, rather, building on such knowledge,
we start our analysis from an important pre-concept or basis, i.e. that an investigation into
the behaviour of viscoelastic RB cannot be separated from a quest aimed to identify the
existence of these peculiar states. Accordingly, we rely on a procedure where attempts
are made to change systematically the initial conditions in order to identify the basin of
attraction for each emerging solution.

More precisely, two different approaches are implemented here to define such initial
states, namely, one based on a ‘synthetic’ temperature field and another trying to mimic
typical experiments conducted in the past. In the former case, initial conditions are defined
as the mathematical superposition of an initial thermally diffusive (quiescent) state and
a temperature disturbance varying sinusoidally in the azimuthal direction (initial state
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–5.0 5.0–10.0 10.0–13.7 13.7

(a) (b)

FIGURE 5. Top view: flow streamlines and related contour map of the non-dimensional
temperature field at mid-height between the supporting disks. Bottom view: three-dimensional
isosurfaces of the non-dimensional azimuthal velocity. Newtonian fluid case (ζ = θ = 0, β = 1,
Pr = 8). In the top view, streamlines have been coloured by the non-dimensional axial component
of the velocity: (a) A = 1 and Ra = 2000 (m = 1), (b) A = 0.68 and Ra = 3000 (m = 2).

featuring ‘central symmetry’ with defined wavenumber). In the latter case, the numerically
computed (final) state for a given set of parameters is used as initial condition for the
simulations relating to a different set of parameters.

The latter approach clearly displays a much higher flexibility as it becomes possible to
test the system response to initial situations in which the fluid is not in a quiescent state
and can display either dominant axial vorticity (convective mode with central symmetry)
or horizontal vorticity (parallel rolls).

For the case of Newtonian fluids, all these situations are summarized in figures 5–8.
For aspect ratio A = 1, regardless of the considered initial conditions, we have obtained

a steady mode with azimuthal wavenumber m = 1 (figure 5a). This result confirms the
predictions of the linear stability analysis by Wanschura et al. (1996) (see their figure 3).
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m = 3 ‘Mercedes’ m = 3 ‘Mercedes’

m = 4 ‘+’T: m = 1, V = 0

T: m = 2, V = 0

T: m = 4, V = 0

Three rollsThree rolls

PanAm, m = 4

PanAm, m = 4 Torus, m = 0

Ra
Initial condition 2000 3000

m = 4 symm.

FIGURE 6. Set of possible flow states (contour maps of the non-dimension temperature field in
the mid-height cross-section of the liquid bridge, A = 0.34, Newtonian fluid, ζ = θ = 0, β = 1,
Pr = 8; V = 0 indicates that the solution used as initial condition was a quiescent fluid with
non-symmetric distribution of temperature, i.e. a ‘perturbed’ thermally diffusive state).

Although our configuration is a liquid bridge (which has attracted so much attention over
the last years to study the fundamental properties of Marangoni convection in well-defined
conditions), at this stage it is worth remarking that the variety of convective modes allowed
by this system when RB convection is considered is much richer than that potentially
produced by surface-tension driven effects. A first example of such increased complexity
is witnessed by the results of A = 0.68. For this value of A, according to the linear stability
analysis, yet a stationary mode with azimuthal number m = 1 should be the most critical
one (and, indeed, this is what we obtained for Ra = 2000). For Ra = 3000, however, we
could find solutions with either m = 1 or m = 2 (for the latter see figure 5b), depending
on the considered initial conditions. This result, which clearly confirms the existence of
multiple solutions, is in line with the location predicted by LSA for the intersection point
between the branches of neutral stability for m = 1 and m = 2 (occurring approximately
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FIGURE 7. Emerging fields of non-dimensional temperature in the mid-height cross-section
for A = 0.17 and Ra = 2000 (Newtonian fluid). (a) Pattern ‘CO’, (b) pattern m = 4, (c) pattern
PanAm with m = 5, (d) pattern with two tori.

for Ra between 2500 and 3000, allowing in principle both modes m = 1 and m = 2 to be
excited above Ra = 2500).

As evident in figure 5, these modes emerging for 2000 ≤ Ra ≤ 3000 may be seen as the
superposition of sinusoidal distortions in the azimuthal direction to a vortex roll having
essentially a toroidal (axisymmetric) structure. From a mathematical point of view, this
situation can be expressed for every thermofluid-dynamic variable as

F(r, z, ϕ) = Fo(r, z) + f (r, z) sin(mϕ + G), (4.1)

where r, z and ϕ are the radial, axial and azimuthal coordinates (see figure 1), the
subscript (o) denotes the (reference) axisymmetric roll, m is the aforementioned azimuthal
wavenumber (from a physical point of view m represents the number of sinusoidal
distortions in the azimuthal direction), f is the perturbation amplitude and G is a constant
phase shift related to the azimuthal position of the steady disturbances. We will therefore
refer to this type of flow as ‘centrally symmetric modes’ or simply as ‘toroidal modes’. As
made evident by the isosurfaces of the azimuthal velocity component, these states possess
a significant component of axial vorticity.
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Unlike Marangoni flow in liquid bridges (which also tends to favour ‘axial vorticity’),
however, RB convection emerging in cylindrical domains, must not necessarily display the
morphology of toroidal rolls (given its known tendency to produce parallel rolls, especially
in relatively shallow configurations). Moreover, the liquid in the inner region can either be
colder or warmer than that located more externally (for Marangoni flow in liquid bridges
only the first condition is allowed). These arguments are indeed confirmed by our results
for A = 0.34 and A = 0.17.

In particular, the complex network of connections among the initial conditions and the
emerging solutions for A = 0.34 is shown in figure 6, which provides immediate insights
into the basin of attraction for each state. As revealed by this figure, the set of relationships
among initial and final conditions is not trivial. Initial disturbances with central (toroidal)
symmetry of the type f (r, z) sin(mϕ + G) can determine system trajectories in the space
of phases which end on ‘attractors’ featuring parallel rolls or, more generally, velocity
fields with dominant horizontal vorticity. Among them, the reader will recognize three-roll
states (with parallel rolls or central symmetry, the latter also known as ‘Mercedes’) and
the so-called PanAm structures. The Mercedes can be seen as a mode of convection where
aligned rolls terminate with their axes perpendicular to the free cylindrical surface (as
evident in figure 6, this effect leads to enhanced rolls curvature in the pattern interior). The
PanAm is an alternate mode of convection, yet featuring dominant horizontal vorticity like
the state with parallel rolls, for which, however, focus singularities are formed at the wall
(wall foci). This behaviour results in a pattern that features arches with several centres of
curvature. When two wall foci are present, the visible texture is called ‘PanAm’ because
of the similarity with the logo of the famous American airline company. Interestingly, this
specific mode of convection might also be seen as a kind of hybrid configuration displaying
at the same time some of the properties of the parallel three-roll state and of the centrally
symmetric m = 3 solution.

It is also worth noticing that, vice versa, initial states with dominant horizontal vorticity
can lead to modes with the central or toroidal symmetry (characterized by a given value
of the azimuthal wave number) or even purely axisymmetric states (m = 0, also known as
‘target patterns’ using typical jargon used by experimentalists in past studies concerned
with RB convection in shallow enclosures). As an example, an initial condition with
a PanAm structure can give rise to an m = 0 toroidal vortex; according to the present
computations this structure is stable in the same Ra range (Ra = 3000) as the m = 3
Mercedes state or the m = 4 torus or the curved rolls with wall foci.

The analysis corresponding to the shallow liquid bridges with A = 0.17 is summarized
in figures 7 and 8. In particular, the solution shown in figure 7(a) has been obtained
starting from a diffusive temperature field and a quiescent state (zero velocity). In order
to accelerate the emergence of convection, a horizontal acceleration has been used to
temporarily perturb the initial state. Using this modus operandi, we have obtained the
so-called CO pattern (named in this way by Borońska & Tuckerman (2010a,b)). The
other three solutions in figure 7 have been produced using as initial condition a quiescent
fluid, and perturbing the related diffusive temperature distribution via (4.1) with m = 4
(figure 7b), m = 5 (figure 7c) and m = 6 (figure 7d), respectively.

The pattern shown in figure 7(c) deserves special attention as it may be regarded as a
PanAm with five rolls. Additional insights might be gathered through figure 8, where the
flow streamlines have been reported. The presence of five main rolls can be observed in
the centre of the liquid bridge with other four smaller rolls located on the sides (two for
each side). Furthermore, a symmetry plane ideally cutting the liquid bridge into two parts
can also be clearly identified.
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FIGURE 8. Axial view of the streamlines for the PanAm structure with m = 5 (streamlines
have been coloured by the magnitude of the non-dimensional velocity): A = 0.17, Ra = 2000,
Newtonian fluid.

4.2. Viscoelastic fluids and related oscillatory states
Having completed a sketch of the situation for buoyancy convection in liquid bridges
of Newtonian fluids and having built a ‘reservoir’ of solutions to be used as initial
conditions for the simulations dealing with non-Newtonian fluids, we now turn to the fully
viscoelastic problem. In particular, we concentrate on the description of the SER regime,
i.e. on values of θ for which we found oscillatory solutions (the steady states pertaining to
the WER regime, which we could obtain for relatively small values of θ are not described
as their properties are very similar to those of the solutions already discussed in § 4.1 for
Newtonian fluids).

We wish to highlight that, for this regime, we further expanded the set of initial
conditions (to be used to explore the response of these systems) by using a ‘forward
and backward continuation’ strategy, that is, occasionally the final state provided by the
simulation for a given value of the control parameter θ has been set as the initial condition
for the next iteration (Kengne et al. 2018; Lappa & Ferialdi 2018a).

This means that the response of the system has been assessed with respect to three
different categories of possible initial states, namely, perturbed thermally diffusive
conditions, the multiple solutions corresponding to the final states of Newtonian fluids
and the final velocity and temperature fields obtained for θ /= 0.

4.2.1. High aspect ratios
Following the same strategy undertaken in § 4.1, we follow a rational approach

with situations of increasing complexity being examined as the discussion progresses.
Accordingly, we start again from the simplest case, i.e. the liquid bridge with A = 1.
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FIGURE 9. Non-dimensional angular frequency ω (a) and (time-averaged) Nusselt number (b)
as a function of the elasticity number θ for A = 1 and different values of Ra (the solid lines are
spline fittings added as a guide for the eye: black line – Ra = 2000, blue line – Ra = 3000).

As shown in figure 9 (collecting all the results for this value of the aspect ratio), the
oscillatory solutions obtained for Ra = 2000 and θ ≥ 0.1 can be represented in terms
of frequency as a non-monotonic curve (the non-dimensional angular frequency being
defined as 2πfL2/α where f is the dimensional frequency of the temperature oscillation,
and, as explained in § 2, L and α are the height of the liquid bridge and the fluid
thermal diffusivity, respectively). These states correspond to standing waves with m = 1,
as witnessed by the sequence of snapshots reported in figure 10.

As made evident by the distribution of streamlines (coloured by the magnitude of
the non-dimensional axial component of velocity), the flow field essentially consists
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(a) (b) (c) (d )
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FIGURE 10. Three-dimensional streamlines (a–d) coloured according to the magnitude of
the axial component of velocity (red and blue corresponding to rising and falling fluid,
respectively) and three-dimensional isosurfaces (e–h) of non-dimensional azimuthal velocity wϕ

(four snapshots equally spaced in time within the oscillation period): standing wave with m = 1
(SW1) emerging for A = 1, Ra = 2000 and θ = 0.1.

of a single horizontal roll that changes periodically its sense of rotation (from the
anti-clockwise to the clockwise orientation and vice versa, while the direction of its axis
remains fixed in space). In this regard, an interesting analogy could be established with the
oscillatory solutions reported by Park (2018) for rectangular cavities under the constraint
of two-dimensionality. It can be seen that the two snapshots where the axial component
of velocity displays maximum amplitude (panels a and c of the succession) are separated
by intermediate states where such amplitude becomes almost negligible (panels b and d,
respectively).

Following common practice used in earlier works dealing with Marangoni flows in
liquid bridges, the distribution of the azimuthal component of velocity can also be used
to provide useful information about this dynamics. As expected, the behaviour of this
component is synchronous with that of the axial velocity; moreover, its nodes occupy
fixed positions in space and change periodically their sign, giving the observer the illusion
of a field that ‘pulsates’ in time (this feature has often been used in the existing literature
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FIGURE 11. Three-dimensional streamlines (a–d) coloured according to the magnitude of
the axial component of velocity (red and blue corresponding to rising and falling fluid,
respectively) and three-dimensional isosurfaces (e–h) of non-dimensional azimuthal velocity wϕ

(four snapshots equally spaced in time within the oscillation period): travelling wave with m = 1
(TW1) emerging for A = 1, Ra = 3000 and θ = 0.1.

on Marangoni flow as an useful means to distinguish standing-wave states from travelling
waves, see, e.g. Lappa et al. 2003; Kang et al. 2019).

For Ra = 3000, however, the behaviour becomes more involved. The frequency curve
is still non-monotonic. Moreover, though m = 1 is still the dominant spatial mode of
convection over the entire range of considered values of θ , travelling waves emerge for
θ ≤ 0.175 (while standing waves are recovered only for larger values of the elasticity
parameter).

The classical signature of travelling waves can clearly be distinguished in figure 11. The
aforementioned nodes of the azimuthal velocity (points where this velocity component
attains a maximum or a minimum) do not occupy fixed positions. Rather they rotate
continuously along the circumferential direction. Moreover, the intensity of these minima
and maxima does not change in time (no temporal modulation of these extrema can be
seen). The same behaviour can be recognized if the streamlines are examined. The axis
of the horizontal roll undergoes a continuous rotation in the azimuthal direction while
no variation can be seen in its strength. An external observer looking at figure 11 would
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FIGURE 12. Three-dimensional isosurfaces of non-dimensional azimuthal velocity wϕ for
A = 1 and Ra = 2000: (a) θ = 0.175, (b) θ = 0.3.

get the illusion of a solid body rotating with a fixed angular velocity in the anticlockwise
circumferential direction, which leads again to a notable analogy with the typical modes
of spatio-temporal evolution revealed by earlier studies dealing with the Marangoni flow
of Newtonian fluids in liquid bridges (see, e.g. Kang et al. 2019; in the following, we will
refer to the ‘classical’ waveforms corresponding to standing and travelling waves as ‘SW’
and ‘TW’, respectively).

Interestingly, as evident in figure 9, regardless of whether the curve for Ra = 2000 or
Ra = 3000 is considered, the frequency of oscillation of these solutions first increases as a
function of the elasticity number and then it decreases when θ = 0.175 is exceeded.

This behaviour, which obviously cannot be regarded as an exclusive consequence of the
transition from the TW to the SW (as it also holds for Ra = 2000 where no change in the
prevailing waveform occurs), requires some justification.

Careful analysis of the structure of the flow field at Ra = 2000 for pre- and
post-frequency-maximum values of θ has allowed us to discern that the above-mentioned
non-monotonic trend should be regarded as the indirect outcome of the existence of
a codimension-two point, i.e. two distinct branches of solutions (existing for the same
value of Ra) which meet in proximity to the value of θ corresponding to the maximum
of the combined curve. The related flow structures (shown in figure 12) simply reveal
that the two families of solutions differ with respect to the symmetry properties of the
velocity field. Before the codimension-two point, the azimuthal velocity component wϕ is
perfectly ‘anti-symmetric’ with respect to the midplane z = 1/2, i.e. wϕ(z) =−wϕ(1 − z)
(see figure 12a), whereas after such a point the perfect antisymmetry is taken over by a
solution for which wϕ(z) /= −wϕ(1 − z) (figure 12b). The different structure of the velocity
field should be regarded as the root cause for the different properties of the two types
of solutions (the ability to transport heat in the axial direction being smaller for the less
symmetric solution, figure 9b) and the different frequency of oscillation (figure 9a).

The results relating to the next aspect ratio, that is, A = 0.68 are summarized in figure 13.
For this aspect ratio there is only one monotonic branch of solutions in the considered
range of θ for each value of the Rayleigh number. In particular, the states at Ra = 2000
correspond to the curve with smaller value of the angular frequency. For the sake of
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FIGURE 13. Non-dimensional angular frequency ω (a) and (time-averaged) Nusselt number (b)
as a function of the elasticity number θ for A = 0.68 and different values of Ra (the solid lines
are spline fittings added as a guide for the eye: black line – Ra = 2000, blue line – Ra = 3000).
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T
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FIGURE 14. Temperature distribution in the mid-height cross-section for A = 0.68, Ra = 3000
and θ = 0.175 (eight snapshots equally spaced in time within the oscillation period):
two-breaking-rolls state with single (central) knot (BR2K(S)1).

conciseness, however, we do not show the related final fields (all exhibiting the same
spatio-temporal behaviour, i.e. a standing wave with azimuthal wavenumber m = 2).

On increasing the Rayleigh number to Ra = 3000, a very interesting set of solutions
appears. Notably, we obtained this branch regardless of whether states with m = 1 and
m = 2 were used as initial conditions. It deserves attention as it seems to escape a possible
simple definition or classification in the frame of the classical models of standing or
travelling wave. The related evolution in time (over a period of oscillation) can be gathered
from figure 14.
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Starting from figure 14(a), which represents a two-roll configuration, if one observes the
evolution of this pattern (a–c), an evident pulsation can be recognized in the temperature
distribution, which might be loosely interpreted as a standing wave. Indeed, initially
(a), two hot spots and two cold spots, having comparable azimuthal extensions, can be
recognized along the free surface of the liquid bridge. In figure 14(b), however, the two
hot (east and west) spots disappear and an intermediate state is attained where the entire
surface of the liquid bridge becomes apparently cold (while a hot area survives only in the
centre). With time the size of this hot internal region decreases while two new hot spots
nucleate on the free surface (north and south positions). In figure 14(c), these two hot spots
have attained a size for which the system is in a thermal configuration with inverted colours
with respect to that shown in panel (a). From figure 14(d), however, a new phenomenon
occurs, i.e. the rolls start to break. Indeed, observing the pattern, two hot spots, each with
azimuthal extension of approximately 90° located in proximity to the free interface can be
seen. As time passes, these spots tend to grow in the radial direction. After some time (e)
they merge and newly formed rolls appear with axis aligned along direction perpendicular
to the original one. This becomes very evident by comparing panels (a) and ( f ).

The descriptions of this dynamics can be significantly simplified by introducing the
concept of the knot (which will also prove very useful later for the characterization of
phenomena much more complex than that reported in figure 14). We define it as the
intersection point between the different prevailing directions displayed by the rolls during
one cycle of oscillation. For A = 0.68 and Ra = 3000, these directions are perpendicular
and the knot is perfectly in the centre of the liquid bridge. Remarkably, as shown in
figure 14, the abovementioned hot spots formed in proximity to the interface tend to expand
with time towards the knot (coincident with the centre of the liquid bridge in this case).
In the following, we will therefore refer to this solution as a two-breaking-rolls (BR) state
with a central single (stationary) knot (BR2K(S)1).

4.2.2. Intermediate aspect ratio
In this section, we concentrate on the cases with A = 0.34, for which we could get

a number of fascinating phenomena. However, given the amount of qualitatively and
quantitatively different results obtained by changing the initial conditions and allowing
the elasticity number to span the interval from 0.1 to 0.2, the discussions reported in
the following are not intended to be an exhaustive description of all these states (due to
page limits), but rather to stimulate the interest of the reader in certain aspects, which we
believe are particularly interesting. As already evidenced in § 4.1, these aspect ratios admit
a significant number of multiple solutions.

In qualitative agreement with the results of the linear stability analysis for the infinite
layer (see, e.g. Park & Lee 1996), the Nusselt number grows with both Ra and θ

(figure 15b). As usual, we begin from the case with the smallest values of Ra and θ ,
i.e. Ra = 2000 and θ = 0.1. As sketched in figure 15, for this value of the elasticity
number three different solutions coexist in the space of parameters. The first (not shown)
is a centrally symmetric standing wave with m = 4 (in the legend of the figure 15 it
is represented by the symbol ‘+’), originating from a thermally diffusive temperature
field perturbed with an m = 4 disturbance (4.1). The second mode of convection is yet
a centrally symmetric standing wave, with m = 4, obtained initializing the flow with a
solution having m = 0, i.e. a purely axially symmetric mode. This state, can be regarded
as an ‘alternate’ solution with respect to the other m = 4 mode, owing to its remarkably
different frequency (see the symbol ‘×’ in figure 15a, the reader being also referred to
figure 16 for the related spatio-temporal evolution).
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FIGURE 15. Non-dimensional angular frequency ω (a) and (time-averaged) Nusselt number (b)
as a function of the elasticity number θ for A = 0.34 and different values of Ra (the solid lines
are spline fittings added as a guide for the eye: black line – Ra = 2000, blue line – Ra = 3000).

A completely different solution (third possible mode of convection) can be produced
if, as initial conditions, any of the following cases is considered: three rolls, a PanAm
structure with m = 4, an m = 3 Mercedes pattern or a thermally diffusive state perturbed
with an m = 2 centrally symmetric temperature disturbance (all these initial conditions
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FIGURE 16. Temperature distribution in the mid-height cross-section (four snapshots equally
spaced in time within the oscillation period): standing wave with m = 4 (A = 0.34, Ra = 2000
and θ = 0.1, simulation initialized with an m = 0 field).

leading the system to the same final state). In figure 15 this mode is represented with the
symbol ‘�’ (see figure 17 for the related behaviour).

An adequate characterization of this third mode of convection is relatively difficult
(requiring the introduction of new points of view and proper tools to describe the
dynamics). The definition of new topological concepts relating to the structure of the
pattern is particularly beneficial in this regard. Along these lines, we base part of our
discussions on the idealized evolution shown in figure 18, assumed to model the sequence
of events summarized in figure 17. In this figure, for simplicity, the rolls shown in
figure 17(a) are sketched as perfectly parallel geometrical entities (figure 18a). Thereafter,
we introduce three different types of characteristic ‘geometrical features’ required for a
proper characterization of the patterning behaviour. The first simply corresponds to the
main (primary) centre of pulsation for the temperature spots already introduced before as
‘knot’ and essentially located in proximity to the geometrical centre of the liquid bridge.
Secondary and tertiary centres of attraction for the spots, however, also exist. As shown
in figure 18, they are located near the lateral (circular) boundary. A symmetry plane that
divides the liquid bridge into two parts can also be clearly identified.

Starting from the situation shown in figure 17(a) (characterized by a three-roll
configuration with two internal hot and cold temperature spots and two external spots
of opposite sign, corresponding to figure 18a), as time increases, radial spokes are created
(figure 17b) by which the two initial external spots (located at the free interface, one hot,
one cold, each having an angular extension of 180°) are broken into disconnected regions
(figure 17c). By virtue of this mechanism the initially hot (cold) spot located in the inner
region of the liquid bridge is ‘transferred’ to the free surface in the form of two smaller
hot (cold) spots separated by a spot of opposite sign (situation sketched in figure 18b).

As time increases, however, the two surface spots with the same colour (temperature)
tend to move towards a common point of attraction located at the free interface (as shown
in figure 17d). When they merge following the process sketched in figure 18(c), a situation
that is mirror symmetric with respect to that shown in figure 17(a) is created (figure 17e
corresponds to the situation sketched in figure 18d). The couple of peripheral hot (cold)
spots have merged into a single region of the same temperature and the process can restart,
giving rise to a new semi-cycle of oscillation (figure 17e–h). Following the same criterion
already used to characterize the behaviour shown in figure 14, this state can therefore
be identified as a BR3K(S)2, i.e. a solution with three horizontal rolls and two primary
(stationary) knots driving the related oscillatory dynamics.
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FIGURE 17. Temperature distribution in the mid-height cross-section (a–h) and corresponding
streamlines coloured by the magnitude of the non-dimensional axial velocity (i–p). Eight
snapshots equally spaced in time within the oscillation period are shown for A = 0.34, Ra = 2000
and θ = 0.1. This state (BR3K(S)2, i.e. a solution with three horizontal rolls and two primary
stationary knots driving the related oscillatory dynamics) has been obtained assuming initial
conditions corresponding to any of the following cases: three rolls, a PanAm structure with
m = 4, an m = 3 Mercedes pattern or a thermally diffusive state perturbed with an m = 2 centrally
symmetric temperature disturbance.

Interestingly, as made evident by figure 18, an observer taking a look at the flow in
a section of the physical domain perpendicular to the symmetry plane highlighted in
figures 18(a) and 18(d) would see rolls which periodically change their sense of rotation
with a behaviour similar to that found by Park (2018) for two-dimensional flow in square
cavities.

If the value of θ is increased (yet for Ra = 2000) other interesting spatio-temporal
behaviours can be produced with alternate mechanisms of breaking and merging of the
disturbance spots and associated rolls.

For 0.125 ≤ θ ≤ 0.2, the branch represented by the symbol ‘�’ in figure 15 corresponds
to the behaviour reported in figure 19 (this is the only stable state we could find for
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FIGURE 18. Sketch of the behaviour shown in figure 17.
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FIGURE 19. Temperature distribution in the mid-height cross-section (eight snapshots equally
spaced in time within the oscillation period): evolution mechanism (three breaking rolls with
three rotating knots, i.e. BR3K(R)3) corresponding to the branch represented by the symbol ‘�’
in figure 15 (A = 0.34, Ra = 2000 and θ = 0.2).

θ = 0.125 or 0.15 regardless of the used initial conditions). A second distinct branch,
however, exists for 0.175 ≤ θ ≤ 0.2 (represented in figure 15 with the symbol ‘♦’ and
originating from the m = 4 solution obtained for the Newtonian fluid used as initial
condition).

Characterization of the patterning behaviour displayed in figure 19 on the basis of the
same topological arguments used to describe figure 17 would be too difficult; therefore,
we limit ourselves to highlighting that in this case the recognizable temperature spots
apparently rotate in the azimuthal direction (with relatively small angular frequency, which
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FIGURE 20. Temperature distribution in the mid-height cross-section (eight snapshots equally
spaced in time within the oscillation period): evolution mechanism (three breaking rolls with
three ‘pulsating’ knots, BR3K(P)3) corresponding to the second branch shown in figure 15
(A = 0.34, Ra = 2000, θ = 0.2, simulation initialized with an m = 4 solution).

increases with θ ). This rotation, which can clearly be appreciated, e.g. by comparing
figure 19(a) with figure 19(e), however, should not be confused with a classical travelling
wave. While in travelling waves the rotation of the overall pattern can be ascribed to
the continuous migration of disturbance nodes along the ring-shaped axis of a toroidal
convective structure (giving the observer the illusion of a ‘rigid-body’ that rotates in
space), in the present case the mechanism is much more complex as no underlying toroidal
roll exists. Although the dynamics still produces the illusion of a pattern undergoing
a solid-body rotation (in the counter-clockwise sense in figure 19), this effect results
from the continuous rearrangement of rolls, which are continuously broken and reformed
with orientation in space slightly shifted with respect to the earlier one. Therefore, the
topological concept of knot is still applicable in this case. In particular, three knots
exist (one for each couple of rolls). Owing to geometrical constraints (all the rolls
have horizontal axis), in the cross-section these knots are approximately aligned along
a line passing through the geometrical centre of the liquid bridge. As time increases,
this line rotates in the azimuthal direction. This means that the apparent rotation of the
pattern results from the continuous displacement in the azimuthal direction of purely
topological features (unlike pure travelling waves where the same effect is produced by the
displacement of disturbance nodes along a convective structure, which would otherwise
be axisymmetric). For this specific mode of convection, we therefore coin the definition
of ‘three breaking rolls with three rotating knots’ state (BR3K(R)3).

We can now analyse the second branch of solutions. The contours of the
non-dimensional temperature field are illustrated in figure 20. Interestingly, the
predominant pattern is the PanAm with m = 4.

The PanAm pattern in the figure 20(a) starts evolving via a merging mechanism, which
attracts two of the four hot spots originally located on the surface (figure 20a) towards
the centre (figure 20b). Once the hot disturbance is mostly concentrated in the central
region of the cross section of the liquid bridge, it starts to re-expand in the radial direction
via the formation of extended patches which protrude from the centre towards the lateral

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.608


Rayleigh–Bénard convection in viscoelastic liquid bridges 904 A2-33
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FIGURE 21. Temperature distribution in the mid-height cross-section (eight snapshots equally
spaced in time within the oscillation period): evolution mechanism corresponding to the symbol
‘◦’ in figure 15 (A = 0.34, Ra = 3000, θ = 0.1). This state has been obtained assuming initial
conditions corresponding to any of the Newtonian flow solutions shown in figure 6, with the
only exception of the m = 3 case.

boundary. This finally results in the re-emergence of four hot and four cold spots along the
free interface (figure 20 f ) with reversed sign with respect to those visible in figure 20(a).

Unlike the case treated before, no apparent rotation can be recognized in this case.
The previously discussed mechanism characterized by the continuous circumferential
propagation of the knots is taken over by an alternate process in which the knots undergo a
limited back and forth displacement along both the radial and azimuthal directions (three
breaking rolls with three ‘pulsating’ knots, BR3K(P)3).

For Ra = 3000, the situation becomes even more complex. Indeed, three independent
branches of solutions can be identified, i.e. a single branch spanning the interval
0.08 ≤ θ ≤ 0.2, an alternate mode existing for θ = 0.1 only and a third independent set
of solutions occupying the range 0.15 ≤ θ ≤ 0.2.

The single solution existing for θ = 0.1 (symbol ‘��’ in figure 15) has been found by
initializing the simulation with the Newtonian solution with mode m = 3. The pattern
spatio-temporal evolution is the same as that already shown in figure 19, which leads to
the conclusion that this type of solution, not found for Ra = 2000 and θ = 0.1 tends to be
selected by the system for relatively high values of θ and/or Ra.

The typical sequence of snapshots for the set of solutions corresponding to the symbol
‘◦’ in figure 15 is illustrated in figure 21. This may be regarded as a variant of the behaviour
already shown in figure 20 (although it is made more involved by the increased complexity
of the mechanism by which the rolls periodically break and re-organize in time). Figure 22
finally presents the dynamics corresponding to the third branch of solutions for Ra = 3000
(indicated by the symbol ‘•’ in figure 15). These states have been obtained initializing the
flow with a three-roll state.

Interestingly, pattern formation and evolution in this case are very similar to those
already presented in figure 17. A distinguishing mark, however, can be found in the visible
rotation undergone by the knots, which can easily be observed by comparing, for instance,
figure 22(a,c,e,g,i,k).
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FIGURE 22. Temperature distribution in the mid-height cross-section (12 snapshots equally
spaced in time within the oscillation period): evolution mechanism (BR3K(R)2) corresponding
to the symbol ‘•’ in figure 15 (A = 0.34, Ra = 3000, θ = 0.2, simulation initialized with a
three-roll solution).

It is worth remarking once again that this rotation is a topological feature displayed by
a pattern with dominant horizontal vorticity. Therefore, it should not be confused with a
travelling-wave mode such as that obtained for A = 1 and Ra = 3000 (figure 11).

4.2.3. Shallow liquid bridge
This final section is devoted to discussing the last of the aspect ratios examined in this

study, i.e. the shallow liquid bridge with A = 0.17. Given the extremely high computational
cost of these simulations (each requiring several weeks) such analysis has been limited to
three values of the elasticity number only (namely, θ = 0.1, 0.15 and 0.2).

As shown in figure 23, the Nusselt number still displays an increasing trend when
its dependence on the elasticity number is considered. Simulations, initialized with the
two-torus or the CO solutions shown in figure 7, however, have led to the identification of
two possible states.

The typical dynamics for θ = 0.1 is illustrated in figures 24 and 25.
The pattern features the apparent continuous creation of localized regions with

different temperatures. Unlike the classical pulsating behaviour of standing waves where
such regions occupy fixed positions in space while the related temperature switches
continuously from cold to hot (and vice versa), in the present case these differently
coloured areas show a rhythmic displacement in time, which occasionally results in
coalescence events (merging of spots with the same colour) or spot rupture (leading to
disconnected spots of the same sign).
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FIGURE 23. (Time-averaged) Nusselt number as a function of the elasticity number θ for
A = 0.17 and Ra = 2000.
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FIGURE 24. Temperature distribution in the mid-height cross-section (eight snapshots equally
spaced in time within the oscillation period, A = 0.17, Ra = 2000, θ = 0.1, simulation initialized
with the ‘CO’ or the two-torus solution).

This peculiar spatio-temporal mechanism may be regarded as a clear distinguishing
factor with respect to both classical standing and travelling waves. Spots do not shrink
and then expand as a function of time as they would do in the case of a standing wave.
They do not rotate about the axis of the liquid bridge either.

Though a first glimpse of their behaviour may give the observer the illusion of a
set of almost independent islands wandering in the sea, similar to those identified by
Lappa & Ferialdi (2018a) as the ultimate state of chaotic viscoelastic Marangoni–Bénard
convection, a more focused analysis of their peculiar dynamics reveals the hidden order
which governs their evolution. Yet a series of knots exist which determine locally the
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FIGURE 25. Three-dimensional isosurfaces of non-dimensional azimuthal velocity (eight
snapshots equally spaced in time within the oscillation period, A = 0.17, Ra = 2000, θ = 0.1,
simulation initialized with the ‘CO’ or the two-torus solution).

evolution of the thermofluid-dynamic field in a certain neighbourhood of their position. In
a given area surrounding these topological centres, temperature spots undergo apparently
complex dynamics, which reflects the rupture of rolls initially having a given direction and
flow reorganization to form new rolls with a different orientation (mainly perpendicular to
the original one). This continuous re-organization of the pattern occasionally leads to the
formation of rolls displaying a spiralling configuration (e.g. figure 24a).

Despite the occasional emergence of these textures, however, no ‘ensemble’ scheme
or simply definable spatio-temporal behaviour can be recognized in this case. No special
points exist in the pattern which could be uniquely identified through the topological order
of the radial spokes which originate from them.
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FIGURE 26. Temperature distribution in the mid-height cross-section (eight snapshots equally
spaced in time within the oscillation period, A = 0.17, Ra = 2000, θ = 0.15, simulation initialized
with the two-torus solution): (a), ( f ) and (h) correspond to a 6-rolls state while (b), (c), (g) and
(h) may be seen as a perturbation with m = 4 superimposed on a 3-torus state with the torus
closest to the free surface being almost axisymmetric.

Surprisingly, the solution emerging for θ = 0.15 and θ = 0.2 looks more regular
(figures 26 and 27). In this specific case, the lines bounding the temperature spots organize
themselves to form a typical network that evolves in time following a recognizable
scheme. Starting from a condition with six almost-parallel rolls (figure 26a), the flow
evolves towards a 3-torus configuration (figures 26b and 26c) with the two inner tori
displaying centrally symmetric m = 4 disturbances and the external one taking an almost
unperturbed (axisymmetric) shape. The resulting pattern is similar to the so-called ‘target’
states revealed by earlier studies about steady or oscillatory RB convection in Newtonian
fluids. Despite this analogy, the present findings, however, are remarkably different. While
for classical RB convection in Newtonian fluids, oscillatory target patterns reduce to
radially propagating rings of concentric rolls (referred to as axisymmetric travelling waves;
Croquette et al. 1983; Tuckerman & Barkley 1988; Siggers 2003), in the present case this
configuration is just a temporary or intermediate state, as it is quickly taken over again
by parallel rolls as time increases. These reappear in figure 26(d) rotated by 90° with
respect to the direction visible in figure 26(a) and then undergo a new cycle of evolution
as shown in figures 26(e) to 26(h), which may be regarded as the mirror image of that
shown in figure 26(a–d) in terms of colour of the temperature spots (reversed sign of
the temperature disturbances). The most striking feature of this solution is therefore its
ability to jump continuously from situation where axial vorticity is dominant to situations
in which this role is taken over by horizontal vorticity and so on.

For the convenience of the reader, all the spatio-temporal mechanisms discussed in this
section have finally been grouped into a single figure in order to produce a meaningful
map of the observed regimes in the parameter space (Ra, θ , A) (figure 28). Although no
classification is perfect, and it is hard to distillate a precise definition from an observation,
in particular, the following acronyms have been used to capture the essential aspects of the
observed phenomena: SW (classical standing wave), TW (classical travelling wave), BRK
(states with rolls which break and reform with the time-varying topology governed by the
existence of ‘knots’). Moreover, the following information has also been included in the
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FIGURE 27. Three-dimensional isosurfaces of non-dimensional azimuthal velocity (eight
snapshots equally spaced in time within the oscillation period, A = 0.17, Ra = 2000, θ = 0.15,
simulation initialized with the two-torus solution).

related labels: for the states with prevailing axial vorticity, the integer (appearing just after
the text ‘TW’ or ‘SW’) is the classical azimuthal wavenumber m, while the integers n and
N following ‘BR’ and ‘K’, respectively, are the number of horizontal rolls and the number
of primary knots governing the dynamics of oscillatory modes with dominant horizontal
vorticity (for these cases, for the sake of completeness, additional information is reported
inside parentheses in the form of a single letter (‘S’, ‘P’ or ‘R’) to indicate the prevailing
apparent behaviour (stationary, pulsating or rotating, respectively) of the primary knots).

On the basis of this conclusive map, some interesting general trends can be recognized.
In fact, it can be seen that the classical standing and travelling waves (resembling those
observed in earlier studies dealing with the companion problem of Marangoni flow in
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FIGURE 28. Legend: standing wave, SW; travelling wave, TW; rolls that periodically break and
reform in time with a new orientation in space, BR; the integer m (appearing just after the text
‘TW’ or ‘SW’, in the areas with the blue background) is the classical azimuthal wavenumber
for the states with prevailing axial vorticity (toroidal rolls), while the integers n and N following
the labels ‘BR’ and ‘K’, respectively, are the number of horizontal rolls and the number of
primary knots governing the related oscillatory dynamics. In the case of oscillatory modes with
dominant horizontal vorticity (red background), additional information is reported inside round
parentheses in the form of a single letter (‘S’, ‘P’ or ‘R’) to indicate the prevailing apparent
behaviour (stationary, pulsating or rotating, respectively) of the primary knots.

liquid bridges, Lappa 2009; Kang et al. 2019) are favoured for higher values of the aspect
ratio and a smaller level of elasticity (low θ ); vice versa, the oscillatory mechanisms
with breaking rolls become dominant as θ grows and/or the aspect ratio is decreased.
The magnitude of the Rayleigh number has also a non-negligible impact on this scenario.
On increasing Ra from 2000 to 3000, solutions of the BR type can be found also for
relatively high values of A (0.68) (whereas for Ra = 2000 their existence is possible only
for A ≤ 0.34), which indicates that the region of existence of the states with prevailing
horizontal vorticity spreads over higher values of A as Ra grows. Moreover, for Ra = 3000,
the following sequence of changes takes place on decreasing the aspect ratio of the liquid
bridge: the SW and TW solutions existing for A = 1 are completely replaced by BR modes
of convection with stationary knots for A = 0.68; if the aspect ratio is decreased further,
knots no longer occupy fixed positions in space and start to oscillate back and forth in space
along a well-defined direction ((P) states) or apparently rotate in the azimuthal direction
((R) states).

As a very final testbed, in order to assess the asymptotic behaviour of these systems in
the limit as the aspect ratio of the liquid bridge tends to zero, we have considered the case
of a horizontally extended layer of viscoelastic fluid delimited from above and from below
by solid walls. In particular, the numerical simulations have been conducted assuming
a physical domain with horizontal extension 15 times the depth and periodic boundary
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FIGURE 29. Rayleigh–Bénard convection in a layer of viscoelastic fluid delimited by horizontal
solid walls, heated from below and cooled from above (snapshots of the isosurfaces of the vertical
component of velocity evenly distributed over the oscillation period, 15 × 15 × 1 domain with top
and bottom solid walls and periodic lateral boundary conditions, β = 1/2, Prg = 8, Ra = 2000,
θ = 0.1, elasticity number defined as θ = αλ/d2 where d is the depth of the layer, non-dimensional
angular frequency of oscillation ω ∼= 7.9, Nu ∼= 1.11; 675 000 grid points).

conditions at the lateral boundaries (in order to mimic the behaviour of a fluid domain
with infinite extent). The simulations for Ra = 2000 and θ = 0.1 are shown in figure 29.

It can be seen that in the limit as the horizontal extension of the domain becomes
infinite, the mechanism with rolls that break and reform with a direction that is rotated
with respect to the original one becomes the norm. States with rolls extending along the
x or y direction (panels (a), (e) or (c), (g) in figure 29, respectively) are interspersed with
‘checkerboard’ patterns where no clear direction can be identified (panels (b), (d), ( f ) and
(h)). Cross-comparison of panels (a) and (e) (or in an equivalent way of panels (c) and (g))
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also leads to the conclusion that rolls periodically oriented along a given direction also
change regularly their sense of rotation (from the clockwise to counter-clockwise sense
and vice versa). From these figures, it can also be inferred, that the rotation angle becomes
exactly 90° in the asymptotic condition as the aspect ratio of the system tends to zero
(compare e.g. figure 29a and c).

This observation is particularly meaningful as it also leads to natural conclusion that
the aforementioned transient ‘target’ states revealed by the simulations for A = 0.17 and
θ = 0.15 and θ = 0.2 should be regarded as the consequence of rolls (emerging with
direction rotated by 90° with respect to their previous orientation) to bend in order to
fit into the cylindrical physical domain delimited externally the free surfaced of the liquid
bridge.

5. Discussion

Additional insights into all these behaviours can be gathered from the iso-surfaces of
the azimuthal velocity component shown in figures 25 and 27. Besides the details being
provided about the three-dimensional structure of the flow itself, these figures are also
instrumental in clarifying what sets these convective modes apart with respect to other
typical oscillatory instabilities of the RB in Newtonian fluids in shallow domains.

The latter have been largely investigated resorting to the assumption of infinite layer
for various liquids and circumstances. In the present section, it is worth recalling that a
summary of the related stability behaviour can be represented using the so-called Busse
balloon (Busse 1967; Busse & Whitehead 1971, 1974; Busse & Clever 1979; Clever &
Busse 1989, 1993, 1994; Lappa 2009), which also provides useful indications on the nature
of the emerging flows. These instabilities have been classified according to the prevailing
spatio-temporal behaviour as skewed–varicose, travelling wave, cross-roll, bimodal,
zig-zag, etc. In the following, however, we will content ourselves with highlighting the
differences with respect to the present dynamics (the reader interested in a more thorough
discussion of these classical instabilities should consult the relevant references cited
hereafter).

The simplest way to begin this discussion, perhaps, is to start from the realization that
the formation of new rolls with a direction perpendicular to the original set of rolls is not
an exclusive prerogative of viscoelastic RB convection.

As an example, the classical cross-roll instability of RB in Newtonian fluids manifests
itself as a modulation of the pattern parallel to the axes of the initial rolls. This
instability typically causes a perturbation responsible for the emergence of rolls growing
perpendicularly to the original pattern of rolls (Busse & Whitehead 1971). In some
circumstances, this mode of convection can produce localized defects in the form of
‘totem’ structures, relatively similar in appearance to some of the features visible in
figures 24 or 26. In general, however, for Rayleigh numbers not too far above the critical
value, the growth of the perpendicular rolls and the concurrent decay of the original
rolls proceeds until the original rolls are completely taken over by the perpendicular or
cross-rolls (Busse & Whitehead 1971). Moreover, the new formed pattern is essentially a
steady one.

For higher values of the Rayleigh number (of the order 2 × 104), the cross-roll flow
in Newtonian fluids naturally evolves into another form of stationary flow known as
‘Bimodal’ convection (Busse & Whitehead 1974) where steady boundary-layer-type
structures appear (Clever & Busse 1994 studied this form of convection for 10 ≤ Pr ≤ 100).
As originally shown by Busse (1967), this instability originates from the thermal boundary
layers at the rigid upper and lower boundaries of the fluid layer; in fact, the additional
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small-wavelength convection rolls that develop at right angle to the basic roll are
particularly suited to take advantage of the buoyancy stored in these areas. In this case
the original rolls and the secondary set of perpendicular rolls induced by the instability
clearly coexist in the same physical space. A typical feature of this type of convection is
the striking similarity between its patterns and a two-dimensional crystal lattice (although
this similarity includes various kinds of irregularities found in the lattice such as edge
dislocations, these patterns, however, do not look like the structures shown in figures 24
and 26).

Another instability mechanism known for RB in Newtonian fluids is the so-called knot
instability. According to the classical Busse balloon, the predominant modes at high Ra are
bimodal convection at large Prandtl numbers (Pr ≥ O(10)), knot convection at moderate
Prandtl numbers (O(1) < Pr < O(10)) and travelling (or standing) waves in low-Pr fluids
(Pr ≤ O(1)). The knot instability (yet a stationary bifurcation) breaks the same symmetries
as the cross-roll one, but with a much smaller value of the wavenumber along the axis
of the rolls. For Ra > 3 × 104 strong plumes are typically created as thermal features
embedded into the currents of rising and descending liquid. At the same time, ‘streamers’
evolve in the thermal boundary layers feeding the plumes. These features look like knots in
the shadowgraph observations of convection (Busse & Clever 1979; Clever & Busse 1989),
which provides a justification for the name used for this instability (which, however, has
nothing to do with the concept of knot as it has been used in § 4 of the present study).
These nearly axisymmetric plumes display an increased efficiency in transporting heat
with respect to rolls for intermediate values of the Prandtl number (Pr ≤ 7). While bimodal
convection is the preferred state of convection at high Prandtl numbers, knot convection
assumes this role in the range 2 ≤ Pr ≤ Pr*, where Pr* increases from approximately 10
at a Rayleigh number of the order 3 × 104 to much higher values as Ra grows (Busse &
Clever 1979).

As the reader might have realized at this stage, all these secondary states of RB
convection display some interesting analogies or similarities with the states described
in the preceding pages. Nevertheless, it should be pointed out that all these convective
modes are essentially stationary (with the exception of travelling waves, which will be
discussed at the end of this section). Moreover, they typically exist in regions of the space
of parameters characterized by much higher values of the Rayleigh number with respect to
those considered here (they are indeed, secondary modes of convection, i.e. states attained
when a second threshold is exceeded after the first one leading the fluid from quiescent
conditions to steady parallel rolls). A similar concept applies to the so-called ‘spoke’
pattern convection. This name was coined by Busse & Whitehead (1974) to describe
the time-dependent (tertiary) form of convection emerging in layers of Newtonian fluids
heated from below when the Rayleigh number exceeds a value of the order 3 × 104 for
Pr ≥ O(1). For such conditions, the thermal boundary layers located in proximity to the
top and bottom walls become unstable and erupt sheets of hot and cold fluid moving
radially inward toward central plumes which carry fluid to the opposite boundary. This
results in the appearance of radial ‘spokes’, which can be visualized experimentally with
the shadowgraph method.

Spoke pattern convection is typically produced as a tertiary mode of convection via
the instability of bimodal or knot convection. From a physical point of view, the related
mechanisms of transition are rather similar in that the emergence of hot and cold blobs
from the hot and cold boundary layers is the main reason for the transition from steady to
time-dependent convection (Clever & Busse 1993, 1994).
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Given these premises, we can now come back to the results presented in figures 25 and
27 and use them to highlight the differences between the kind of spoke pattern convection
shown in figures 24 and 26 and the classical spoke pattern RB convection originally
investigated by Busse and co-workers.

By inspecting the isosurfaces in figures 25, 27 and 29, indeed, it becomes evident
that no boundary layers exist near the top and bottom disks (which, among other things
is consistent with the relatively small values of the Rayleigh number assumed in our
study; indeed, let us briefly recall that the thickness of thermal boundary layers in RB
convection is expected to scale as Ra−1/4, see, e.g. Lappa (2011) and references therein).
The oscillatory states found in the viscoelastic fluid, therefore, cannot be ascribed to
boundary-layer-driven phenomena.

Some room should finally be devoted to examining the relationship between the present
dynamics and the travelling-wave states predicted by the Busse balloon as secondary
modes of convection for Pr = O(1). Some relevant information along these lines for the
case of enclosures with the cylindrical symmetry can be found in the study by Boronska &
Tuckerman (2006), who considered Rayleigh–Bénard convection in the parameter region
of 0.318 ≤ A ≤ 0.345 for Pr = 1 and adiabatic lateral (solid) wall. According to their
numerical investigation, the primary axisymmetric convective state loses stability to an
m = 3 perturbation via a Hopf bifurcation. In particular, these authors found long-lasting
standing waves which were eventually taken over by travelling waves (on increasing the
time or the applied Rayleigh number).

In the light of all these arguments, it can be concluded that none of the classical
secondary or higher-order modes of RB convection known for the case of Newtonian fluids
can directly be applied to interpret the dynamics of viscoelastic RB convection in liquid
bridges.

Having completed a sketch of the differences between the primary and secondary
states of RB convection for Newtonian fluids and the corresponding modes obtained
for a viscoelastic liquid bridge heated from below, in the second part of this section,
we change direction completely and turn to identifying possible ‘similarities’ with other
types of viscoelastic flow, i.e. aspects that are shared among the different areas of
thermogravitational, thermocapillary and rotating fluids and, therefore, can be said to
‘unify’ the study of these subjects (the reader being also referred to the interesting point
of view elaborated by Larson 1992).

Along these lines, we start from the simple and meaningful remark that overstability
seems to be a common property of different kinds of flow, including those where no
thermal effects are involved such as Taylor–Couette systems (TCS). Taylor–Couette flow
is a classical subject in fluid dynamics. It corresponds to the motion of a fluid encapsulated
in the annular gap between two concentric cylindrical walls rotating at different velocities
(typically, the outer wall is held fixed while the inner cylinder rotates at a constant angular
velocity). If Newtonian fluids are considered, it is known that by increasing the Reynolds
number (Re), at a certain stage, the initial purely azimuthal flow is taken over by a more
complex (still stationary) flow structure featuring toroidal vortices with unit aspect ratio
(i.e. radial extension comparable to the extension along the axis of the cylinder). This
instability is of centrifugal nature (owing to the rotating inner cylinder introducing a large
negative radial gradient of angular momentum into the flow, the flow tends to redistribute
the angular momentum via viscous diffusion if the flow inertia is sufficiently small, or by
nonlinear advection for larger flow inertia). For a further increase in Re, various types of
waves can be excited (the reader being referred to Lappa (2012) for an extensive review
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of studies produced over the years on this subject and a map of the related possible
spatio-temporal states).

Notably, the existing work on this type of flow in viscoelastic fluids has concentrated
on two extremes, which may be regarded as the analogues of the WER and SER regimes
coined by Li & Khayat (2005) to classify the possible states of RB convection. For TCS a
first branch of solutions exists for high values of the Reynolds number and weak levels
of elasticity (displaying a bifurcation picture very similar to those already known for
Newtonian fluids). It is followed by a second branch obtained for high levels of elasticity
and vanishing Reynolds number. In the latter case, purely elastic oscillating vortices have
been observed in typical experiments (see, e.g. Muller, Shaqfeh & Larson 1993) to emerge
directly from the initial purely azimuthal flow. As elasticity exceeds a critical level, the
flow field undergoes transition from the purely azimuthal (steady) flow to a time-dependent
(oscillatory) state via a subcritical bifurcation similar to that affecting viscoelastic RB
convection (see, e.g. Rosenblat 1986). As already discussed in the introduction, the two
above-mentioned WER and SER regimes of RB convection correspond to weakly elastic
and strongly elastic fluids, respectively. A weakly (strongly) elastic fluid is identified as
a fluid with elasticity number θ < θ h (θ > θ h), where θ h is the critical elasticity number
for the onset of oscillatory convection (Hopf bifurcation) and the transition to oscillatory
convection occurs in the post-critical (pre-critical) range of the Rayleigh number (Li &
Khayat 2005). As argued by several authors, such a similarity in the phenomenology
displayed by RB convection and TCS suggests ‘that the mechanism for overstability may
be common to both flow contexts’ (Li & Khayat 2005).

Along these lines, in the present work, additional computations (besides those illustrated
in § 4) have been conducted for θ ≥ 0.1 and increasing values of Ra located under the
threshold value needed for the onset of RB convection in liquid bridges of Newtonian
fluid (sub-critical range). These simulations (not shown for the sake of brevity) have
confirmed that for all the considered cases, the system evolves directly from a quiescent
thermally diffusive state to an oscillatory solution, which clearly indicates that the
considered bifurcation should be considered a classical example of overstability, i.e.
a Hopf bifurcation of the same nature of that reported by Martínez-Mardones &
Pérez-Garcíıa (1990) for the rigid-rigid case and parameters (and a viscoelastic model)
similar to those considered in the present work (a subcritical Hopf bifurcation).

In the present section, towards the end to put the results discussed in § 4 under a more
general perspective, we pursue the analogy between RB and TCS even further by expressly
pointing out that the latter has been the first type of flow for which the role played by
elasticity in increasing the number of multiple solutions has somehow been recognized
experimentally. The ability of this type of flow to give rise to multiple possible states in
the space of phases for a fixed value of the Reynolds number had already been identified
for Newtonian fluids since the original work by Coles (1965). Remarkably, other authors
(Muller et al. 1993) have shown experimentally that this ability is even enhanced when
elasticity enters the dynamics and the interaction among multiple solutions can produce
quick progression to chaos. For related numerical results based on LSA, the reader may
consider Northey, Armstrong & Brown (1992) where the flatness of the neutral stability
curve with respect to changes in axial wavenumber was discussed as a possible source
of nonlinear interactions between families of time-periodic states that are closely spaced
with respect to the value of the elasticity parameter. Northey et al. (1992) also showed by
means of nonlinear (finite element method) simulations that standing waves tend to be the
preferred mode of convection for TCS (see also by Larson 1992), which may be regarded
as another analogy with some of the dynamics described in the present study (figure 10).
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The literature about viscoelastic RB has been already discussed in the introduction and
is not reported here to avoid duplications (relevant examples of nonlinear studies about the
emerging planforms or waveforms being Martínez-Mardones et al. 1996; Parmentier et al.
2000; Li & Khayat 2005).

Subcritical instabilities and overstability are also a property of Marangoni–Bénard (MB)
convection (Lebon et al. 1994). Unfortunately, only a few analyses have been devoted
to the investigation of viscoelastic MB flow taking into account nonlinear effects. Here,
we limit ourselves to discussing briefly the main outcomes of the studies by Parmentier
et al. (2000) and Lappa & Ferialdi (2018a), as relevant exemplars for the WER and SER,
respectively. Most interestingly, the former authors could show that the so-called inverted
‘hexagonal cells’ (convection with fluid motion downward at the centre of the cells),
which for Newtonian fluids are known to be possible only in liquid metals (or other fluids
with small value of the Prandtl number) can become a stable mode of convection in the
WER regime of MB flow. Lappa & Ferialdi (2018a) concentrated on the SER illustrating
that on increasing the level of elasticity of the considered fluid for a fixed value of the
Marangoni number (Ma), classical MB convection characterized by polygonal cells all
rigidly embedded in a crystalline texture (side-by-side arrangement) is taken over by
an unsteady mode of convection where cells lose their original well-defined boundary
and acquire a rounded shape. In such a new regime cells are separated by intermediate
regions of more or less motionless fluid (referred to as ‘buffer’ areas in Lappa & Ferialdi
2018a), which allow them to move back and forth along uncorrelated horizontal directions.
As a result, ‘like islands wandering in the sea’ cells undergo occasional coalescence or
splitting phenomena (thereby resembling a behaviour qualitatively similar to that shown
in figures 24 and 25). This specific behaviour led these authors to refer to these cells
with the name of ‘oscillons’, loosely used to indicate a kind of excitations emerging
as localized time-dependent convective structures in an otherwise uniform background.
Multiple solutions were found to be a typical feature of MB convection as well (their
ultimate manifestation being the existence of such oscillons).

In the light of the above considerations for these different forms of convection, it
becomes evident that the common ability of all these flows to give rise to unsteady
patterns of increasing complexity as the level of elasticity increases reflects some common
‘physics’. While for classical Newtonian fluids, transition from steady to time-dependent
states generally requires an increase in the magnitude of the driving force and/or a decrease
in the intensity of viscous forces (namely, an increase in Re, Ra or Ma for TCS, RB and
MB convection, respectively), for viscoelastic fluids time dependence can be obtained by
increasing the level of elasticity while Re, Ra or Ma are kept constant (which is exactly
what has been observed in the present work). From a practical standpoint, the most relevant
way to elucidate the significance of this observation and understand the related physical
implications is to consider the dichotomy introduced by Groisman & Steinberg (1998,
2000) to distinguish inertial and elastic instabilities in fluid flow.

This simple concept can be used to build an interesting unifying interpretation for this
dynamics based on the ability of these fluids to retain stresses even when no gradient of
velocity is present.

It can be argued that if stretching of the polymer molecules present in the liquid is
produced by an initial flow, these molecules will relax with a characteristic time that
does not match that of the flow that has produced their deformation. Accordingly, these
molecules will be able to perturb the flow producing secondary flows able to stretch them
even further. It is in this way that initially small disturbances can be amplified. Remarkably,
since this internal feedback loop does not need inertia, centrifugal forces or other types
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of disturbances produced by thermal buoyancy or surface-tension effects, it is universal
and can occur even in the limit as the aforementioned characteristic numbers tend to
zero (Groisman & Steinberg 1998, 2000). This might be seen as a still relevant physical
interpretation supporting the very complex regimes of RB convection identified in the
present work for relatively small values of the Rayleigh number.

As a concluding remark for this section, we wish to highlight that a future direction of
research might be represented by the need to clarify if some universality classes can also
be identified with respect to the route towards chaos. Indeed, some existing studies have
provided some evidence that for viscoelastic flows characterized by multiple solutions (the
reader being referred to Muller et al. 1993; Li & Khayat 2005; Lappa & Ferialdi 2018a,
for TCS, RB and MB systems, respectively) a possible common path of evolution might
be represented by the so-called Curry–Yorke scenario (originally introduced by Curry &
Yorke (1977) to indicate direct transition from quasi-periodic solutions, i.e. a T2 torus to
fully turbulent states). Addition investigations will be required to verify the validity and
generality of this statement, which might also be considered as a possible hint for the
continuation (extension) of the present study.

6. Conclusion

At present there are no published papers examining numerically the dynamics of
viscoelastic RB convection in three-dimensional geometries with cylindrical symmetry;
hence, this is the first time that detailed data on the flow phenomenology and its
relationship with typical parameters have been presented.

As revealed by the present analysis, RB convection in viscoelastic liquid bridges inherits
peculiar features, which, on the one hand, are typical of RB convection in Newtonian
fluids (namely, its tendency to produce multiple states of convection) and, on the other
hand, reflect ‘typical’ properties of viscoelastic fluids (the so-called ‘overstability’).
The combination of these two peculiar features results in a kaleidoscope of possible
states, some of which exist in parallel in the space of parameters while others are
‘unique’. Typical solutions include (but they are not limited to) classical standing
waves and travelling waves (for relatively high values of the aspect ratio), and alternate
(heretofore unseen) modes of convection (for relatively shallow liquid bridges) that
seem to escape a relatively simple definition in the frame of existing criteria or earlier
studies about the dynamics of oscillatory RB convection in Newtonian fluids. A general
property of these alternate states is the unusual ability to break an existing set of
rolls into smaller convective structures that subsequently merge causing a variation in
the prevailing direction of the axis of rolls with respect to the preceding state. This
property can manifest itself globally (affecting the entire pattern with an abrupt change
in the dominant direction of parallel rolls) or locally (in the neighbourhood of special
points that we have called knots). In the latter case different types of behaviours can
be produced depending on whether these knots are fixed in space, travel continuously
in the azimuthal direction or undergo back and forth motion along certain directions.
Both states with dominant axial vorticity or horizontal vorticity are possible, though a
net distinction between these two categories of flow is not possible since solutions also
exist where the flow continuously jumps from modes with central symmetry to parallel
rolls.

Future studies shall be devoted to examining the case of hybrid buoyancy–Marangoni
convection in viscoelastic liquid bridges for which no information has been produced till
date.
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