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NONMEASURABLE SETS AND UNIONS WITH

RESPECT TO TREE IDEALS

MARCINMICHALSKI, ROBERT RAŁOWSKI, AND SZYMON ŻEBERSKI

Abstract. In this paper, we consider a notion of nonmeasurablity with respect to

Marczewski and Marczewski-like tree ideals s0, m0, l0, cl0, h0, and ch0. We show that there

exists a subset of the Baire space ùù , which is s-, l-, and m-nonmeasurable that forms a

dominating m.e.d. family. We investigate a notion of T-Bernstein sets—sets which intersect
but do not contain any body of any tree from a given family of trees T. We also obtain a
result on I-Luzin sets, namely, we prove that if c is a regular cardinal, then the algebraic sum

(considered on the real line R) of a generalized Luzin set and a generalized Sierpiński set
belongs to s0,m0, l0, and cl0.

§1. Introduction and preliminaries. We will use standard set-theoretic
notation following, for example, [14] . For a set X, P(X) denotes the power
set of X and |X | denotes the cardinality of X. If κ is a cardinal number, then
we denote:

• [X ]κ = {A⊆ X : |A|= κ};
• [X ]<κ = {A⊆ X : |A|< κ};
• [X ]≤κ = {A⊆ X : |A| ≤ κ}.

Let X be an uncountable Polish space and I ⊆ P(X) be a ó-ideal. Let us
recall some cardinal coefficients from Cichoń’s Diagram:

• add(I) = min{|A| : A⊆ I ∧
⋃

A /∈ I};
• non(I) = min{|A| : A⊆ X ∧A /∈ I};
• cov(I) = min{|A| : A⊆ I ∧

⋃

A= X};
• cof(I) = min{|A| : A⊆ I ∧ (∀A ∈ I)(∃B ∈ A)(A⊆ B)};
• b=min{|F| : F⊆ùù ∧ (∀x ∈ ùù)(∃f ∈ F)(∃∞n)(x(n)< f (n))};
• d=min{|F| : F⊆ùù ∧ (∀x ∈ ùù)(∃f ∈ F)(∀∞n)(x(n)< f (n))}.

We call b the bounding number and d the dominating number. A family
F⊆ùù is dominating, if F has the property described in the definition of the
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2 MARCINMICHALSKI ET AL.

dominating number (it does not have to be of minimal cardinality). We say
that T is a tree on a set A if T⊆A<ù and whenever ô ∈ T , then ô ↾ n ∈ T for
each natural n.

Definition 1. Let T be a tree on a set A. Then,

• for each ô ∈ Tsucc(ô) = {a ∈ A : ô⌢a ∈ T};
• split(T) = {ô ∈ T : |succ(ô)| ≥ 2};
• ù-split(T) = {ô ∈ T : |succ(ô)|= ℵ0};
• for ó ∈ TSuccT(ó) = {ô ∈ split(T) : ó ( ô, (∀ô′ ∈ T)(ó ( ô′ ( ô→ô′ /∈
split(T))};

• for ó ∈ Tù-SuccT(ó) = {ô ∈ ù-split(T) : ó ( ô, (∀ô′ ∈ T)(ó ( ô′ (
ô→ô′ /∈ ù-split(T))};

• stem(T) ∈ T is the node ô such that for each ó ( ô|succ(ó)| = 1 and
|succ(ô)|> 1.

Let us now recall definitions of families of trees.

Definition 2. A tree T on ù is called a

• Sacks tree or perfect tree, denoted by T ∈ S, if for each node ó ∈ T ,
there is ô ∈ T such that ó ⊆ ô and |succ(ô)| ≥ 2;

• Miller tree or superperfect tree, denoted by T ∈ M, if T ∈ S and
split(T) = ù-split(T);

• Laver tree, denoted by T ∈ L, if for each node ô ⊇ stem(T), we have
ô ∈ ù-split(T);

• complete Laver tree, denoted by T ∈CL, if T is Laver and stem(T) = ∅;
• Hechler tree, denoted by T ∈H, if for each node ô ⊇ stem(T), we have
that the set {n ∈ ù : ô⌢n /∈ T} is finite;

• complete Hechler tree, denoted by T ∈ CH, if T is Hechler and
stem(T) = ∅.

The notion of complete Laver trees was defined and investigated in [7],
although Miller in [6] defines Laver trees de facto as complete Laver trees
and Hechler trees as complete Hechler trees.
For a tree T ⊆ ù<ù, let [T] be a body of T, that is, the set of all infinite
branches of T :

[T] = {x ∈ ùù : (∀n ∈ ù) (x ↾ n ∈ T)}.

We use the same notation for basic clopen sets generated by ô ∈ ù<ù:

[ô] = {x ∈ ùù : x ↾ |ô|= ô}.

It will be clear from the context whether we mean a body of a tree or a
clopen set.

Definition 3. Let T be a family of trees. We say that A ∈ P(ùù) belongs
to the tree ideal t0, if

(∀P ∈ T)(∃Q ∈ T) (Q⊆ P∧ [Q]∩A= ∅).

https://doi.org/10.1017/bsl.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2020.28


NONMEASURABLE SETS AND UNIONS WITH RESPECT TO TREE IDEALS 3

Definition 4. Let T be a family of trees. We say that A ∈ P(ùù) is t-
measurable, if

(∀P ∈ T)(∃Q ∈ T) (Q⊆ P∧ ([Q]⊆ A∨ [Q]∩A= ∅)).

s0 tree ideal is simply the classic Marczewski ideal (see [5]).
It is well known due to Judah and coworkers (see [12]) and Repický (see
[10]) that add(s0)≤ cov(s0)≤ cof (c)≤ non(s0)= c< cof (s0)≤ 2c.Moreover,
in [16] Brendle and coworkers have also shown that c < cof (m0) and c <
cof (l0). Clearly, ù1 ≤ add(l0) ≤ cov(l0) ≤ c holds. In [13], Goldstern and
coworkers showed that it is relatively consistent with ZFC that add(l0) <
cov(l0).
Let us notice that the families s0, l0,m0 form ó-ideals. On the other hand,
cl0 is not a ó-ideal. To see this it is enough to consider sets of the form
Cn = {x ∈ùù : x(0) = n}. Then Cn ∈ cl0 for each n, but

⋃

nCn =ù
ù. Using

the fact that s0 is a ó-ideal, we may give another proof of the following well
known result.

Proposition 5. cf(c)> ℵ0.

Proof. Suppose that cf(c) = ℵ0 and let R =
⋃

n∈ùAn, |An| < c for each
n ∈ ù. Sets of cardinality less than c belong to s0, so R =

⋃

n∈ùAn ∈ s0, a
contradiction. ⊣

§2. Tree ideals and measurability. In [1] the following result was obtained.

Theorem 6 (Brendle). If i0, j0 ∈ {s0, l0,m0}, and i0 6= j0, then i0 * j0.

First, we will compare the ideal cl0 with the ideals s0,m0, l0.

Fact 7. cl0 * (l0∪m0∪ s0).

Proof. To show the assertion, let us take C0 = {x ∈ ùù : x(0) = 0}.
Clearly, C0 ∈ cl0, but C0 /∈ l0∪m0∪ s0 since C0 is a body of a Laver tree. ⊣

Let us recall the notion of some special kind of trees used in [1].

• AMiller tree T is an apple tree

(∀ó ∈ split(T))(∀ô ∈ SuccT(ó))(∀n,m ∈ ù)

(n>m∧ó⌢n,ó⌢m ∈ T ∧ó⌢m⊆ ô→(∀k < |ô|)(ô(k)< n))

and

(∀ó,ô ∈ split(T))(ó ⊆ ô→|ô| ≥ |ó|+2).

• A tree T = {ôó : ó ∈ 2
<ù} is a pear subtree of a Laver tree TL, if T is a

subtree of TL and
1. ô∅ = stem(TL);
2. for each ôó ∈ TL nodes ôó⌢0 = ôó

⌢k and ôó⌢1 = ôó
⌢l, where

l > k >max{maxrng(ôó′) : |ó
′|= |ó|} and ôó

⌢k,ôó
⌢l ∈ TL.

Each Miller tree contains an apple tree. Also, apple trees and pear trees are
related in the following way [1, Theorem 2.1, Claim].
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4 MARCINMICHALSKI ET AL.

Proposition 8 (Brendle). |[Ta]∩ [Tp]| ≤ 1whenever Ta is an apple tree and
Tp is a pear tree.

Theorem 9. The following statements are true:

(i) m0 * cl0.
(ii) s0 * cl0.

Proof. To prove that m0 \ cl0 6= ∅, we will slightly modify the proof of
Theorem 2.1 from [1]. We will use the notions of apple trees and pear trees.
Let us now enumerate all apple trees {Aα : α < c} and all complete Laver
trees {Cα : α< c}. For each complete Laver tree Cα , denote its pear subtree
by PCα .
We construct a sequence (xα)α<c such that for every α < c,

xα ∈ [PCα ]\
⋃

â<α

[Aâ ].

Thanks to Proposition 8 such a choice is possible. Finally, we set X = {xα :
α < c}. It is clear that X /∈ cl0. We will show that X ∈m0. Let T be a Miller
tree. There exists î < c for which Aî ⊆ T . We may find a family of Miller
trees {Tα : α < c} satisfying Tα ⊆ Aî for all α < c and [Tα]∩ [Tâ ] = ∅ for
distinct α,â < c. Since |X ∩ [Aî]| ≤ |î|< c, there is ç < c with [Tç]∩X = ∅.
Therefore, X /∈m0.
To prove that s0 \ cl0 6= ∅, we use slight modification of the proof of
Theorem 2.2 from [1], which fits a similar pattern from the first case. ⊣

The argument involving antichain of bodies of Miller trees in the above
proof fits the general framework outlined in [1], Section 1.4.
As a consequence, we obtain the following result.

Corollary 10. The following statements are true:

(i) There exists a cl-nonmeasurable set which is m-measurable.
(ii) There exists a cl-nonmeasurable set which is s-measurable.

Proof. It is enough to notice that any set outside cl0 contains a cl-
nonmeasurable subset. ⊣

The proof of the following theorem is inspired by the proof of Lemma 6
from [7] by A. Miller.

Theorem 11. l0 ⊆ cl0.

Proof. Let A ∈ l0 and let T be a complete Laver tree. We will find a
complete Laver tree T0 ⊆ T such that [T0]∩A= ∅. We will define a function
ϕ : T →ORD∪{∞}, where ORD stands for the class of ordinal numbers.
We start with ϕ–1[{0}]:

ϕ(ô) = 0⇐⇒(∃T ′ ⊆ T)(T ′ ∈ L∧ stem(T ′) = ô∧ [T ′]∩A= ∅).

Then recursively for α > 0, we set

ϕ(ô)≤ α⇐⇒(∃∞n ∈ ù)(ϕ(ô⌢n)< α).
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Finally for ô ∈ T\ϕ–1[ORD], let ϕ(ô) =∞. Notice that for each ô ∈ T ,

ô ∈ ϕ–1[ORD]⇐⇒(∃T ′ ⊆ T)(T ′ ∈ L∧ stem(T ′) = ô∧ [T ′]∩A= ∅),

which is equivalent toϕ(ô) = 0.We claim thatϕ(∅) 6=∞. Suppose otherwise.
It implies that there are infinitely many (in fact—relatively cofinitely many)
nodes in T of the form ∅⌢n for which ϕ(∅⌢n) =∞. By simple induction,
we will find a complete Laver tree T ′ ⊆ T satisfying

(∀ô ∈ T ′)(ϕ(ô) =∞).

In particular, it means that

(∀T ′′ ⊆ T ′)(T ′′ ∈ L⇒ [T ′′]∩A 6= ∅),

contradicting the fact that A ∈ l0.
Hence ϕ(∅) = 0; therefore, there exists a complete Laver tree T0 ⊆ T
satisfying [T0]∩A= ∅. ⊣

Let us notice that the above reasoning provides the following result, which
one may find useful in itself.

Theorem 12. Let A ∈ l0. Then for every Laver tree T , there exists a Laver
tree T ′ ⊆ T such that stem(T ′) = stem(T) and [T ′]∩A= ∅.

Let us introduce the notion of T-Bernstein sets.

Definition 13. Let T be a family of trees. We say that a set B is a T-
Bernstein set if for every T ∈ T,B∩ [T] 6= ∅ and Bc∩ [T] 6= ∅.

Observe that each classical Bernstein set is an S-Bernstein set. IfT⊆T′ are
families of trees, then T′-Bernstein sets are T-Bernstein sets. No T-Bernstein
set is in t0 (or t-measurable), and if T ⊆ T′, then T′-Bernstein sets do not
belong to t0. Also note that if T ( T′, then a T-Bernstein set may not be
a T′-Bernstein set (e.g., one may fix a tree from T′\T whose body will be
always omitted).
The following theorem slightly generalizes Theorems 2.1 and 2.2 from [1].

Theorem 14. The following statements are true:

(i) There exists an L-Bernstein set which belongs to m0.
(ii) There exists anM-Bernstein set which belongs to s0.

Proof. As in in the proof ofTheorem9,wewill use the notions established
in [1]. To prove (i), let us enumerate all Laver trees {Lα : α< c} and all apple
trees {Aα : α< c}. Let us construct two sequences: (bα)α<c and (xα)α<c such
that for each α < c:

bα ∈ [Lα]\(
⋃

â<α

[Aâ ]∪{xî : î < α}),

xα ∈ [Lα]\({bâ : â ≤ α}∪{xâ : â < α}).

It can be done, since for each Laver treeLα, there is a pear treePLα for which
|[PLα ]∩ [A]| ≤ 1 for every apple treeA, so the set [Lα]\(

⋃

â<α[Aâ ]∪{xî : î <
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6 MARCINMICHALSKI ET AL.

α}) is nonempty at each step α. We will show that B = {bα : α < c} is the
desired set. Let T be a Laver tree. Then T = Lα for some α < c. Notice that
the bα ∈ B∩ [T] and xα ∈ [T]\B.
To prove (ii), we use a similar modification of Theorem 2.2 from [1]. ⊣

Also let us observe that Theorem 11 yields the following result.

Remark 15. No CL-Bernstein set belongs to l0.

Let us invoke the theorem by Miller from [7, Theorem 3].

Theorem 16 (Miller). Let A be an analytic subset of ùù. Then either A
contains body of some complete Laver tree or Ac contains a body of some

complete Hechler tree.

Let B denote the family of Borel subsets of ùù.

Theorem 17. Let (T, t0) ∈ {(S,s0), (M,m0), (L, l0), (CL,cl0)}. Then B∩ t0
is the family of Borel sets, which do not contain any body of any tree from T.

Proof. Case of t0 = s0 is evident since Borel sets have the perfect set
property. Let t0 =m0. Let B be a Borel set. If B contains a body of a Miller
tree, then clearly it is not in m0. On the other hand, if B does not contain
a body of any Miller tree, then Saint-Raymond Theorem (see [2, Corollary
21.23]) implies that B is ó-bounded, hence B ∈m0.
Let t0= l0. LetB be a Borel set. Similarly to the previous case, ifB contains
a body of some Laver tree, then B /∈ l0. Conversely, suppose a contrario that
B does not contain any body of any Laver tree, but there is a Laver tree L
such that [L′]∩B 6= ∅ for every Laver tree L′ ⊆ L. Let us trim B and L in the
following way:

B′ = {x ∈ ùù : stem(L)⌢x ∈ B},
L′ = {ô ∈ ù<ù : stem(L)⌢ô ∈ L}.

The function f : ùù → ùù given by the formula f (x) = stem(L)⌢x is
continuous. Clearly, B′ = f –1[B], hence B′ is Borel, and [L′] = f –1[[L]] is
a body of a complete Laver tree L′. B′ still does not contain any body of
any Laver tree, so by Theorem 16, there is a Hechler tree H body of which
is contained in B′c.H∩L′ contains (in fact—is) a Laver tree, body of which
B′ should intersect—a contradiction. The case of t0 = cl0 is almost identical
to the previous one. ⊣

Remark 18. h0 and ch0 lack such a characterization.

Proof. For the proof of the ch0 case, let T be a complete Laver tree which
is not Hechler. Then [T]∩ [TCH ] is a body of a complete Laver tree for every
complete Hechler tree TCH , hence [T] /∈ ch0. Clearly, [T] does not contain
any body of any complete Hechler tree.
For the proof of the h0 case, let us define a sequence (Cn : n∈ù) of subsets
of ùù in the following way

Cn = {x ∈ ùù : (∀k ≥ n)(x(k) ∈ 2N)}.
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NONMEASURABLE SETS AND UNIONS WITH RESPECT TO TREE IDEALS 7

For each n ∈ ù, the set Cn is a body of a complete Laver tree. Let C =
⋃

n∈ùCn. We claim that [H]* C for any Hechler tree H. Consider a set

C′ = {x ∈ ùù : x ↾ |stem(H)|= stem(H)∧ (∀k ≥ |stem(H)|)(x(k) ∈ 2N+1)}.

C′ ∩ C = ∅ and C′ ∩ [H] is a body of a Laver tree, hence [H] * C.
Furthermore, C /∈ h0. Indeed, letH be a Hechler tree satisfying [H]∩C = ∅.
Then [H]∩Cn = ∅ for every n ∈ù, which implies that for each natural n, we
have stem(H)> n, a contradiction. ⊣

There is a relation betweenT-Bernstein sets and the trace of t0 onB. Before
we discuss it, let us recall some notions. Let I ⊆ P(ùù) be a ó-ideal with
a Borel base, that is, for every set A ∈ I, there exists a Borel set B ∈ B∩I
containing A, and let ó(B∪I) = {B△A : B ∈ B∧A ∈ I} denote the ó-field
generated by Borel sets and sets from I.

Definition 19. We say that a set A is

• I-nonmeasurable if A /∈ ó(B∪I);
• completely I-nonmeasurable ifA∩B is I-nonmeasurable for eachBorel
set B /∈ I.

The equivalent (and more useful) formulation of the complete I-
nonmeasurability is this: A intersects each, but does not contain any,
I-positive Borel set B. Clearly, if A is completely I-nonmeasurable and
B ∈ B\I, then A∩B 6= ∅ and B * A. Conversely, if A is not completely I-
nonmeasurable, then there exists an I-positive Borel set B such that A∩B is
I-measurable. It implies that there is a Borel I-positive set B′ ⊆ B such that
B′ ⊆ A or B′∩A= ∅.

Corollary 20. Let (T, t0)∈ {(S,s0), (M,m0), (L, l0), (CL,cl0)}. Then a set
B is T-Bernstein if and only if it is completely t0 ↾ B-nonmeasurable, where
t0 ↾ B is a ó-ideal generated by t0∩B.

Proof. By Theorem 17, a set A is t0 ↾ B-positive Borel set if and only if
it contains a body of a tree from T. Hence, B is T-Bernstein if and only if it
intersects each, but does not contain any, t0 ↾ B-positive Borel set. ⊣

§3. I-Luzin sets and algebraic properties. Let us recall the notion of I-
Luzin sets (see [6]). Let X be a Polish space and I be an ideal.

Definition 21. We say that a setL is an I-Luzin set, if (∀A∈ I)(|A∩L|<
|L|).

For the classic ideals of Lebesgue measure zero sets N and meager sets
M, we will call M-Luzin sets generalized Luzin sets and N -Luzin sets
generalized Sierpiński sets.
We will consider I-Luzin sets in the context of algebraic properties and
tree ideals. We will work on the real line R with the standard addition. Since
R is ó-compact, it does not contain even superperfect sets. We will tweak
the definition a bit by saying that A ⊆ R belongs to t0 if h–1[A] belongs to
t0 in ùù, where h is a homeomorphism between ùù and the subspace of
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8 MARCINMICHALSKI ET AL.

irrational numbers (see [15] for the similar modification in the case of 2ù).
Having this in mind, we will usually mean by [ô], ô ∈ ù<ù, an open interval
with rational endpoints on R.
Before we proceed, let us define a nonstandard kind of fusion ofMiller and
Laver trees that we will use later. Let T be a Miller tree. Let ô∅ ∈ ù-split(T)
and let T0 be any Miller subtree of T such that ô∅ remains an infinitely
splitting node in T0. Suppose we have a Miller subtree Tn and a set of nodes
Bn = {ôó : ó ∈ n≤n} such that

(i) ôó ∈ ù-split(Tn) for every ó ∈ n
≤n;

(ii) ôó⌢k ⊇ ôó for every k < n and ó ∈ n
<n;

(iii) ôó⌢k∩ ôó⌢j = ôó for every ó ∈ n
<n and distinct k, j < n.

We extend the set of nodes Bn to Bn+1 = {ôó : ó ∈ (n+1)≤n+1} in a way that
preserves above conditions, so we will have n+1 levels of infinitely splitting
nodes with fixed n+1 splits. The only ó ∈ (n+1)0 is ∅, and ô∅ is an old node.
It is ù-splitting in Tn and Tn is a Miller tree, so we may find ôn ⊇ ô∅, which
is ù-splitting and ôn ∩ ôj = ô∅ for j < n. If we already have nodes ôó with
desired properties for ó ∈ (n+1)≤k, k< n+1, then for ôó , ó ∈ nk (old node),
we add ôó⌢n such that conditions (i)–(iii) are still met. For a new node ôó ,
ó ∈ (n+1)k\nk, we find ôó⌢j for each j < n+1 such that conditions (i)–(iii)
are satisfied too. Then let Tn+1 be any Miller subtree of Tn for which nodes
from Bn+1 are still infinitely splitting.
We will call a sequence of trees (Tn)n∈ù (or, interchangeably, their bodies
[Tn]) derived that way a Miller fusion sequence. Similarly, we define a Laver
fusion sequence. The only difference would be that if ôó ⊆ ôó⌢k, then actually
ôó⌢k = ôó⌢j for some j ∈ ù.
We have the following fact regarding fusion sequences of Miller or Laver
trees.

Proposition 22. For every Miller (resp. Laver) fusion sequence (Tn)n∈ù,
the set

⋂

n∈ùTn is a Miller (resp. Laver) tree.

Lemma 23. For every sequence of intervals (In)n∈ù and a Miller (resp.
Laver) tree T , there is a Miller (resp. Laver) fusion sequence (Tn)n∈ù such
that for all n> 0

ë([Tn]+ In)< (1+
n–1
∑

k=0

(n – 1)k)ë(In).

Proof. Let us focus on the slightly more complicated “Miller” case. Let
I0 be an interval, å0 = ë(I0), and let T be a Miller tree. We proceed by
induction on n. Let ô∅ ∈ù-split(T) such that ë([ô∅])< å0. Then ë([ô∅]+I0) =
ë([ô∅])+ë(I0)< 2å0. Let T0 be aMiller subtree of T such that ô∅ = stem(T0)
and ô∅ ∈ ù-split(T0). Clearly, we have ë([T0]+ I0)< 2å0.
Now assume that we have a treeTn that is amember of the emergingMiller
fusion sequence. Denote by Bn, associated with Tn set of nodes satisfying
conditions (i)–(iii). Let ån+1 = ë(In+1). Let us define for each ó ∈ ù<ù and
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interval I a set

Nó(I) = {ôó
⌢k ∈ Tn : [ôó

⌢k]⊆ I ∧ (∀j < n)(ôó⌢j + ôó
⌢k)}.

Observe that for eachó 6= ∅ and d > 0, there is an interval I satisfying ë(I)< d
and |Nó(I)|= ℵ0 since ôó ∈ù-split(Tn) and [ôó ] is a bounded interval which
contains [ôó⌢k] for infinitelymany k∈ù. At each level k< n for everyó ∈ nk,
let Ió be an interval with ë(Ió)<

ån+1
(n+1)n

such that the setNó(Ió) is infinite and

choose ôó⌢n ∈ù-split(Tn) such that ôó⌢n ⊇ ôó⌢l for some ôó⌢l ∈Nó(Ió). At
the level n, let us fix for every ó ∈ nn an interval Ió satisfying ë(Ió) <

ån+1
(n+1)n

such that the set Nó(Ió) is infinite and pick ôó⌢0,ôó⌢1,. . . ,ôó⌢n, which are
extensions of some nodes ôó⌢k0,ôó⌢k1,. . . ,ôó⌢kn ∈ Nó(Ió), respectively.
Finally, we pick the remaining nodes to complete the set Bn+1 according to
the definition of a Miller fusion sequence however we like. We take as Tn+1
any Miller subtree of Tn whose nodes from Bn+1 are infinitely splitting and
whose body is covered by intervals Ió , ó ∈ n≤n (which is possible since each
Nó(Ió) is infinite). Let us approximate ë([Tn+1]+ In+1):

ë([Tn+1]+ In+1)≤ ë
(

⋃

{Ió+ In+1 : ó ∈ n
≤n}

)

≤
∑

ó∈n≤n

(ë(Ió)+ë(In+1))

<
∑

ó∈n≤n

(ån+1(n+1)
n+ ån+1).

Since the count of intervals Ió is |n≤n|=
∑n
k=0 n

k ≤ (n+1)n, we have

ë([Tn+1]+ In+1)≤
n
∑

k=0

nk(ån+1(n+1)
n+ ån+1)≤ (n+1)

nån+1(n+1)
n

+
n
∑

k=0

nkån+1 = ån+1+
n
∑

k=0

nkån+1 =

(

1+
n
∑

k=0

nk

)

ån+1. ⊣

Remark 24. In the above lemma in the case of a Laver tree, we may
demand that stem(T) = stem(

⋂

n∈ùTn), if stem(T) is nonempty.

Proof. Themajor difference is at the first step of the induction. Instead of
picking a suitable “far enough” node ô∅ ∈ T such that ë([ô∅]+ I0)< 2ë(I0),
we already restrict the choice of nodes at the stem level by picking an interval
I∅ of measure ë(I∅)< ë(I0) such that a set

Nstem(T)(I∅) = {stem(T)⌢k ∈ T : [stem(T)⌢k]⊆ I∅}

is infinite. It can be done since stem(T) 6= ∅, so all clopen sets [stem(T)⌢k],
k ∈ ù, are contained in an interval. We take a Laver subtree T0 of T for
which [T] ⊆ I∅ and stem(T) = stem(T0) (so all nodes extending stem(T0)
come from I∅). Then we continue analogously to the proof of Lemma 23. ⊣

Lemma 25. There exists a dense Gä set G such that for each Miller (resp.
Laver or complete Laver) tree T , there exists aMiller (resp. Laver or complete
Laver) subtree T ′ ⊆ T such that G+[T ′] ∈N .
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Proof. LetD= {dn : n ∈ù} be a countable dense set, G =
⋂

n∈ù

⋃

k>n Ik,

where Ik is an interval with a center dk and ë(Ik) < 1(k)k–12k. The proofs
are almost identical in the cases of Miller and Laver trees, so without loss
of generality let us focus on the “Miller” case. Let T be a Miller tree. By
Lemma 23, there is a Miller fusion sequence (Tn)n∈ù such that

ë([Tn]+ In)< (1+
n–1
∑

k=0

(n – 1)k)ë(In)≤ n
n–1 1

nn–12n
=
1

2n
.

T ′ =
⋂

n∈ùTn is a Miller tree contained in all Tn’s, so we may replace [Tn]
with [T ′] in the above formula and it still holds. Then for a fixed n ∈ ù,

ë(
⋃

k>n

Ik+[T
′]) = ë(

⋃

k>n

([T ′]+ Ik))≤
∑

k>n

ë([T ′]+ Ik)≤
∑

k>n

1

2k
=
1

2n
,

so, given that [T ′]+
⋂

n∈ù

⋃

k>n Ik ⊆
⋂

n∈ù

⋃

k>n([T
′]+ Ik), we have

ë(G+[T ′])≤ ë(
⋂

n∈ù

⋃

k>n

([T ′]+ Ik))≤ lim
n→∞

1

2n
= 0.

In the case of a complete Laver tree T , let us observe that T =
⋃

n∈ùTn,
where for each n ∈ù, the set Tn = {ó ∈ T : (n)⊆ ó∨ó ⊆ (n)} is a Laver tree
with a nonempty stem. Let us notice that [T] =

⋃

n∈ù[Tn]. By Lemma 23,
Remark 24, and the first part of the proof, we find for each (nonempty) Tn,
a Laver subtree T ′

n which shares the stem with Tn, for which we have

[T ′
n]+G ∈N .

Then T ′ =
⋃

n∈ùT
′
n is a complete Laver subtree of T and

[T ′]+G = [
⋃

n∈ù

T ′
n]+G =

⋃

n∈ù

[T ′
n]+G =

⋃

n∈ù

([T ′
n]+G) ∈ N

as a countable union of null sets. ⊣

Before we proceed to the main theorem of this section, let us recall a
generalized version of Rothberger’s theorem (see [11]).

Theorem 26 (Essentially Rothberger). Assume that L is a generalized
Luzin set, S is a generalized Sierpiński set, and κ =max{|L|, |S|} is a regular
cardinal. Then |L|= |S|= κ.

Proof. Assume that κ = |L|> |S| and κ is a regular cardinal. LetM be
a meager set of full measure (the Marczewski decomposition, see [4]). Then

κ = |L∩R|= |L∩ (M+S)|= |
⋃

s∈S

(L∩ (M+ s))|< κ,

by regularity of κ. In the case of κ = |S| > |L|, the proof is almost the
same. ⊣

The following theorem extends the result obtained in [6, Theorem 2.12].
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Theorem 27. Let c be a regular cardinal and t0 ∈ {s0,m0, l0,cl0}. Then
for every generalized Luzin set L and generalized Sierpiński set S, we have
L+S ∈ t0.

Proof. Let L and S be a generalized Luzin set and generalized Sierpiński
set, respectively. If |L| < c and |S| < c, then L+S ∈ t0 because every set
of cardinality less than c belongs to t0. Hence, without loss of generality
(Theorem 26), let us assume that |L|= |S|= c.
We will proceed with the proof in the case t0 = m0, the other cases are
almost identical. Let T be a Miller tree. By the virtue of Lemma 25, let G be
a dense Gä set and T

′ ⊆ T a Miller tree such that [T ′]+G ∈N . Let A= – G
andB= ([T ′]+G)c. Then [T ′]⊆ (A+B)c.We will show that there is aMiller
tree T ′′ ⊆ T ′ body of which is contained in (L+S)c. We have

L+S = ((L∩A)∪ (L∩Ac))+((S∩B)∪ (S∩Bc))

= ((L∩A)+(S∩B))∪ ((L∩A)+(S∩Bc))

∪ ((L∩Ac)+(S∩B))∪ ((L∩Ac)+(S∩Bc)).

(L∩A)+ (S∩B) ⊆ A+B and sets (L∩A)+ (S∩Bc), (L∩Ac)+ (S∩B),
and (L∩Ac)+(S∩Bc) are generalized Luzin, generalized Sierpiński and of
cardinality less than c; therefore, their intersection with [T ′] has cardinality
less than c. It follows that indeed there exists a Miller tree T ′′ ⊆ T ′ such that
(L+S)∩ [T ′′] = ∅, hence L+S belongs to m0. ⊣

Let us remark that the assumption that c is regular cannot be omitted due
to the following result [6, Theorem 2.13].

Theorem 28. It is consistent that there exist generalized Luzin set L and
generalized Sierpiński set S such that L+S = Rn, and c= ℵù1 .

§4. Eventually different families and t-measurablity. Two members f ,g ∈
ùù of the Baire space are eventually different (briefly: e.d.), if f ∩ g is a
finite subset of ù×ù. Maximal eventually different families with respect to
inclusion are called m.e.d. families.
Every e.d. family is a meager subset of the Baire space. It is natural to
ask whether the existence of m.e.d. families that are either s-measurable or
s-nonmeasurable can be proven in ZFC. It is relatively consistent with ZFC
that there is a m.e.d. family A of cardinality less than c (see [3]). In such a
case, A ∈ s0. On the other hand, there exists a perfect e.d. family; therefore,
not all m.e.d. families are in s0. The following two theorems answer this
question positively.

Theorem 29. There exists an s-nonmeasurable m.e.d. family.

Proof. Let us fix a perfect tree T ⊆ ù<ù such that [T] is e.d. in ùù. Let
{Tα : α < c} be an enumeration of the family S(T) of all perfect subtrees of
T. By the transfinite recursion, we define

{(aα,dα,xα) ∈ [T]× [T]×ù
ù : α < c}
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such that for any α < c, we have:

(1) aα ,dα ∈ [Tα];
(2) {aî : î < α}∩{dî : î < α}= ∅;
(3) {aî : î < α}∪{xî : î < α} is e.d.;
(4) ∀∞n xα(n) = dα(n) but xα 6= dα .

Assume that we are at the step α< c of the construction and we have already
defined the sequence

{(aî,dî,xî) ∈ [T]
2×ùù : î < α}.

We can choose aα,dα ∈ [Tα] ( [Tα] has cardinality c) which fulfills conditions
(1), (2). Then choose any xα ∈ùù distinct from dα but (∀∞n)dα(n) = xα(n).
Then xα ∈ ùù \ [T] and

{aî : î ≤ α}∪{xî : î ≤ α}

forms an e.d. family in ùù. This completes the construction.
Now, let us extend the set {aα : α< c}∪{xα : α< c} to m.e.d. family A. It
is easy to check that A is the desired s-nonmeasurable m.e.d. family. ⊣

In [9, Theorem 2.2] it was shown that if d = ù1, then there exists a s-
nonmeasurable m.e.d. family A with a dominating subfamily A′ ∈ [A]ù1 .
Here, s-nonmeasurability can be replaced by l-, m-, or cl-nonmeasurability.
In the same paper, it was proved that the following statement is relatively
consistent with ZFC: “ù1 < d and there exists cl-nonmeasurable m.e.d.
family A with a dominating subfamily A′ ⊆A of cardinality d.”
The next theorem generalizes the result obtained in [8, Theorem 4.2].

Theorem 30. There exists a m.e.d. familyA⊆ùù such thatA is not s-, l-,
and m-measurable, with a dominating subfamily D ∈ [A]≤d.

Proof. LetD0 be a dominating family of cardinality d. We will show that
there is an e.d. dominating family D of the same cardinality. Let P = {Am ∈
[ù]ù : m ∈ ù} be a partition of ù into infinite subsets with

Am = {km,i : i ∈ ù}, km,0 < km,1 < · · ·

Let us construct a tree T in the following way. Set

T0 = {∅},

T1 = {(0,n) : n ∈ ù}.

Fix n ∈ù and assume that we have defined Tn ⊆ùn. Let Tn = {ónm :m ∈ù}.
Define

Tn+1,m = {ónm∪{(n,km,i)} : i ∈ ù}

and Tn+1 =
⋃

m∈ùTn+1,m. Finally, set T =
⋃

n∈ùTn. Clearly, [T] is an e.d.
family.
Now let us define an embedding f :D0→ [T] as follows. Fix d ∈D0. Define

f (d)(0) = d(0),
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f (d)(n) = km,d(n), where f (d) ↾ n= ó
n
m.

Clearly, f is well defined. Indeed, f (d) ↾ 1∈T1 and if f (d) ↾ n= ónm ∈Tn then
f (d) ↾ n+1 = f (d) ↾ n⌢f (d)(n) = ónm∪{(n,km,d(n))} ∈ Tn+1,m ⊆ Tn+1.
Notice that f is injective and d ≤ f (d) for every d ∈ D0. Now set

D = {4f (d) : d ∈ D0} ⊆ (4N)
ù.

It is a dominating family in ùù of cardinality |D0|= d.
Now let us choose e.d. trees S ⊆ (4N+1)<ù, M ⊆ (4N+2)<ù, and L ⊆
(4N+3)<ù, where S is a perfect tree,M is Miller, and L is Laver.
Let {Sα :α< c}be an enumerationof the familyS(S) of all perfect subtrees
of S. Analogously, let M(M) = {Mα : α < c} and L(L) = {Lα : α < c}. By
the transfinite recursion, let us define

{wα ∈ [[S]]
2×ùù× [[M]]2×ùù× [[L]]2×ùù : α < c},

where wα = (asα,d
s
α,x

s
α,a

m
α ,d

m
α ,x

m
α ,a

l
α,d

l
α,x

l
α) and for every α < c:

1. asα ,d
s
α ∈ [Sα];

2. {as
î
: î < α}∩{ds

î
: î < α}= ∅;

3. {as
î
: î < α}∪{xs

î
: î < α} is e.d.;

4. ∀∞n xsα(n) = d
s
α(n) but x

s
α 6= d

s
α ;

5. amα ,d
m
α ∈ [Mα];

6. {am
î
: î < α}∩{dm

î
: î < α}= ∅;

7. {am
î
: î < α}∪{xm

î
: î < α} is e.d.;

8. ∀∞n xmα (n) = d
m
α (n) but x

m
α 6= dmα ;

9. alα ,d
l
α ∈ [Lα];

10. {al
î
: î < α}∩{d l

î
: î < α}= ∅;

11. {al
î
: î < α}∪{xl

î
: î < α} is e.d.;

12. ∀∞n xlα(n) = d
l
α(n) but x

l
α 6= d

l
α .

Now assume that we are at the step α < c of the construction and we have a
partial sequence

(wî : î < α),

which has a length at most ù · |α| < c. The construction of wα is similar to
the construction of (aα,dα,xα) in Theorem 29.
Now let us set:

As = {asα : α < c}∪{xsα : α < c},

Am = {amα : α < c}∪{xmα : α < c},

Al = {alα : α < c}∪{xlα : α < c}.

Notice thatD∪As∪Am∪Al forms an e.d. family. LetA be anym.e.d. family
containing D∪As∪Am∪Al.
Clearly, A contains D, which is a dominating family of cardinality d.
Notice thatA is s-nonmeasurable. Indeed, every perfect subset of [S] is of
the form [Sα] for some α< c. By condition (1) of construction asα ∈A∩ [Sα].
On the other hand (by conditions (2) and (4)), dsα ∈ [Sα]\A.
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Similarly, we prove that A is m- and l-nonmeasurable, which completes
the proof. ⊣
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of the American Mathematical Society, vol. 123 (1995), pp. 1573–1581.
[14] T. Jech, Set Theory, millennium ed , Springer-Verlag, Berlin, 2003.
[15] T.Weiss andM.Kysiak,Small subsets of the reals and tree forcing notions.Proceedings

of the American Mathematical Society, vol. 132 (2003), pp. 251–259.
[16] W. Wohofsky, J. Brendle, and Y. Khomskii, Cofinalities of Marczewski-like ideals.

Colloquium Mathematicum, vol. 150 (2017), pp. 1–10.

DEPARTMENT OF FUNDAMENTALS OF COMPUTER SCIENCE

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY

WROCŁAWUNIVERSITY OF SCIENCE AND TECHNOLOGY
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