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Abstract

For 0 � ξ �ω1, we define the notion of ξ -weakly precompact and ξ -weakly compact
sets in Banach spaces and prove that a set is ξ -weakly precompact if and only if its weak
closure is ξ -weakly compact. We prove a quantified version of Grothendieck’s compactness
principle and the characterisation of Schur spaces obtained in [7] and [9]. For 0 � ξ �ω1,
we prove that a Banach space X has the ξ -Schur property if and only if every ξ -weakly
compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null)
sequence. The ξ = 0 and ξ = ω1 cases of this theorem are the theorems of Grothendieck and
[7], [9], respectively.

2020 Mathematics Subject Classification: 46B03 (Primary); 46B20 (Secondary)

1. Introduction

The following theorem is known as the Grothendieck compactness principle.

THEOREM 1·1. Any norm compact subset of any Banach space lies in the closed, convex
hull of a norm null sequence.

In [7], the authors considered the validity of the resulting statement when the norm topol-
ogy is replaced by the weak topology. We recall that a Banach space has the Schur property if
weakly compact sets coincide with norm compact sets (equivalently, weakly null sequences
coincide with norm null sequences). This, combined with Grothendieck’s theorem, gives the
easy direction of the following result.

THEOREM 1·2. Given a Banach space X, every weakly compact set in X lies in the
closed, convex hull of a weakly null sequence in X if and only if X has the Schur property.

The hard direction of Theorem 1·2 was shown in [7] by basic sequence techniques. Later,
in [9], a second proof was given using an operator theoretic approach.
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232 KEVIN BEANLAND AND RYAN M. CAUSEY

For 0 � ξ �ω1, using the notion of ξ -weak nullity defined in [2], for each Banach space
X , we will define a topology τξ on X . We will study the compact and precompact sets in
this topology, which we call ξ -weakly compact and ξ -weakly precompact sets. We give all
necessary definitions in Section 2.

The 0-weakly null sequences are precisely the norm null sequences, from which it will
follow that the 0-weakly (pre)compact sets are precisely the norm (pre)compact sets. The
ω1-weakly null sequences are precisely the weakly null sequences. Combining this fact with
the Eberlein–Šmulian theorem, the ω1-weakly (pre)compact sets are precisely the weakly
(pre)compact sets.

A Banach space is said to have the ξ -Schur property if every ξ -weakly null sequence in
X is norm null. Every Banach space is 0-Schur, and ω1-Schur spaces are precisely the Schur
spaces. If 0 � ξ � ζ �ω1, then every Banach space that is ζ -Schur is ξ -Schur, and there
exist ωξ -Schur Banach spaces that are not ωζ -Schur.

Our main result is to prove the 0 < ξ < ω1 cases of the following theorem, which
interpolates between Theorem 1·1, the ξ = 0 case, and Theorem 1·2, the ξ = ω1 case.

THEOREM 1·3. Let X be a Banach space and let ξ �ω1 be an ordinal. Then every ξ -
weakly compact subset of X lies in the closed, convex hull of a ξ -weakly null sequence in X
if and only if X is ξ -Schur.

Remark 1·4. We note that we will actually prove something stronger than what is stated in
the theorem. We will prove that for 0 < ξ < ω1 and a Banach space X , the following are
equivalent:

(i) X has the ξ -Schur property;
(ii) every ξ -weakly compact subset of X is contained in the closed, convex hull of a

0-weakly null (norm null) sequence;
(iii) every ξ -weakly compact subset of X is contained in the closed, convex hull of a

ξ -weakly null sequence;
(iv) every ξ -weakly compact subset of X is contained in the closed, convex hull of an

ω1-weakly null (weakly null) sequence.

With the aid of Theorem 1·1 and the nature of the weakly null hierarchy, it is easy to see
that (i)⇒ (ii)⇒ (iii)⇒ (iv). In Section 2, we provide the requisite definitions and background
results and prove (iv)⇒ (i), completing the proof of the equivalences.

In Section 3, we define the τξ topology and prove the following topological results.

THEOREM 1·5. For each Banach space X and 0 � ξ < ω1, there exists a topology τξ

on X such that the ξ -weakly compact subsets of X are the compact subsets of X in the τξ

topology, and the ξ -weakly precompact subsets of X are the relatively compact subsets of X
in the τξ topology.

In Section 4, we use a construction from [11] to investigate convex hulls and ξ -weak
compactness. We show that for 0 < ξ < ω, in the τξ topology, there exist Banach spaces
in which the τξ topology is not locally convex, and in which the closed, convex hull of a
compact set need not be compact.
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Section 5 concludes with several examples to show the richness of the classes of ξ -Schur
spaces.

2. Definitions

Throughout, all Banach spaces will be over the scalar field K, which is either the real or
complex numbers.

Throughout, if M is an infinite subset of N, [M]<ω (resp. [M]) denotes the set of all finite
(resp. infinite) subsets of M . We identify each subset E of N with the sequence obtained by
listing the members of E in strictly increasing order. We let E < F denote the relation that
max E < min F , with the convention that max ∅= 0 and min ∅= ∞. We let E � F denote
the relation that E (treated as a sequence) is an initial segment of F . We let E ≺ F denote
the concatenation of E with F . We say a subset F of [N]<ω is:

(i) hereditary if E ⊂ F ∈F implies E ∈F ;
(ii) spreading if (mi)

t
i=1 ∈F and mi � ni implies (ni)

t
i=1 ∈F ;

(iii) compact if {1E : E ∈F} is compact in {0, 1}N with its product topology;
(iv) regular if it is hereditary, spreading, and compact.

We say a sequence (Ei)
t
i=1 of finite subsets of N is F -admissible provided that E1 < · · · < Et

and (min Ei)
t
i=1 ∈F .

We recall the Schreier families Sξ , ξ < ω1. We let

S0 = {∅} ∪ {(n) : n ∈N},

Sξ+1 = {∅} ∪
{ n⋃

i=1

Ei : E1 < . . . < En, n � min E1, Ei ∈ Sξ

}
,

and if ξ is a limit ordinal, there exists ξn ↑ ξ such that

Sξ = {E : (∃n ∈N)(n � E ∈ Sξn )}.
Note that Sξ is a regular family. We also recall the Schreier spaces Xξ . The space Xξ is the
completion of c00 with respect to the norm

‖x‖ = sup
{∑

n∈E

|xn| : E ∈ Sξ }.

Here, c00 is the space of all finitely supported scalar sequences and x = (xn)
∞
n=1.

For 0 < ξ < ω1, we say a sequence (xn)
∞
n=1 in a Banach space is an �

ξ

1-spreading model if

0 < inf{‖x‖ : E ∈ Sξ , x =
∑
n∈E

an xn, 1 =
∑
n∈E

|an|}.

It is easy to see that for 0 < ξ < ω1, the canonical c00 basis is an �
ξ

1-spreading model in
Xξ . We recall that a bounded sequence (xn)

∞
n=1 in a Banach space X is called convexly

unconditional if for every δ > 0, there exists C(δ) > 0 such that for any (wn)
∞
n=1 ∈ c00

with
∑∞

n=1 |wn|� 1 and ‖∑∞
n=1 wn xn‖� δ, ‖∑∞

n=1 λnwn xn‖� C(δ) for any (λn)
∞
n=1 with

|λn| = 1 for all n ∈N. It was shown in [2] that any seminormalized, weakly null sequence has
a convexly unconditional subsequence. We note that for 0 < ξ < ω1, if (xn)

∞
n=1 is bounded,

convexly unconditional and
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0 < inf{‖x‖ : E ∈ Sξ , x ∈ co(xn : n ∈ E)},

then (xn)
∞
n=1 is an �

ξ

1-spreading model.
For 0 < ξ < ω1, we say a sequence (xn)

∞
n=1 ∈ X is ξ -weakly convergent to x ∈ X if it

is weakly convergent to x and no subsequence of (xn − x)∞
n=1 is an �

ξ

1-spreading model.
We say (xn)

∞
n=1 is 0-weakly convergent (resp. ω1-weakly convergent) to x ∈ X if it is norm

(resp. weakly) convergent to x . Note that if (xn)
∞
n=1 is ξ -weakly convergent to x , it is also

ζ -weakly convergent to x for all ξ � ζ �ω1. We note that in [1], ξ -convergent was defined
(see definition III·2·7) using the repeated averages hierarchy. It follows from [1, proposition
III·3·10] that the notion of ξ -convergent defined there coincides with what we have defined
here as ξ -weakly convergent to 0.

For 0 � ξ �ω1, we say a sequence is ξ -weakly convergent if it is ξ -weakly convergent to
some x . We say a sequence is ξ -weakly null if it is ξ -weakly convergent to 0.

Definition 2·1. Given a subset K of a Banach space X , we say K is ξ -weakly precompact
(resp. ξ -weakly compact) if every sequence (xn)

∞
n=1 ⊂ K has a subsequence which is ξ -

weakly convergent to some member of X (resp. K ). Note that 0-weak (pre)compactness
coincides with norm (pre)compactness, and ω1-weak (pre)compactness coincides with weak
(pre)compactness.

We isolate the following criterion to check that a given set is not ξ -weakly precompact.

PROPOSITION 2·2. Fix 0 < ξ < ω1 and a subset K of the Banach space X. If there exist a
sequence (yn)

∞
n=1 of K and y ∈ X such that (yn)

∞
n=1 is weakly convergent to y and

0 < inf{‖y′ − y‖ : E ∈ Sξ , y′ ∈ co(yn : n ∈ E)},

then K is not ξ -weakly precompact.

Proof. Since (yn − y)∞
n=1 is seminormalized and weakly null, then by passing to a subse-

quence and relabelling, we may assume (yn − y)∞
n=1 is convexly unconditional. Then

0 < inf{‖y′ − y‖ : E ∈ Sξ , y′ ∈ co(yn : n ∈ E)}

implies that

0 < inf{‖y′ − y‖ : E ∈ Sξ , y′ =
∑
i∈E

ai yi ,
∑
i∈E

|ai | = 1}.

This implies that (yn − y)∞
n=1 is an �

ξ

1-spreading model, as are all of its subsequences. This
implies that no subsequence of (yn)

∞
n=1 is ξ -weakly convergent to any x ∈ X . This is because

the only x ∈ X to which a subsequence of (yn)
∞
n=1 could be ξ -weakly convergent is x = y.

However, for any subsequence (y′
n)

∞
n=1 of (yn)

∞
n=1, (y′

n − y)∞
n=1 is an �

ξ

1-spreading model, and
so (y′

n)
∞
n=1 is not ξ -weakly convergent to y.

PROPOSITION 2·3. For a convex subset K of the Banach space X, K is ξ -weakly

precompact if and only if K
weak

is ξ -weakly compact.
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Proof. If K
weak

is ξ -weakly compact, then any sequence (xn)
∞
n=1 ⊂ K ⊂ K

weak
has a

subsequence which is ξ -weakly convergent, and therefore weakly convergent, to some

x ∈ K
weak ⊂ X . Therefore K is ξ -weakly precompact.

For the converse, note that since K is convex, K
weak

is just the norm closure K of K
by the Mazur lemma. Assume K is not ξ -weakly compact. We will prove that K is not
ξ -weakly precompact.

If K is not weakly compact, then K is not weakly precompact, and therefore not ξ -weakly
precompact.

Assume K is weakly compact. Since it is not ξ -weakly compact, there exists a sequence
(xn)

∞
n=1 ⊂ K with no ξ -weakly convergent subsequence. Since K is weakly compact, we

may pass to a subsequence and assume there exists x ∈ K such that (xn − x)∞
n=1 is weakly

null. Since (xn)
∞
n=1 has no ξ -weakly convergent subsequence, (xn − x)∞

n=1 has no ξ -weakly
null subsequence, and in particular it is weakly null and not ξ -weakly null. By the definition
of ξ -weak nullity, (xn − x)∞

n=1 has a subsequence which is an �
ξ

1-spreading model. We may
pass to a subsequence and relabel and assume (xn − x)∞

n=1 is an �
ξ

1-spreading model. This
means there exists ε > 0 such that

ε � inf

{
‖y − x‖ : E ∈ Sξ , y =

∑
i∈E

ai xi ,
∑
i∈E

|ai | = 1

}
.

We can select (yn)
∞
n=1 ⊂ K such that for all n ∈N, ‖xn − yn‖ < min{n−1, ε/2}. Then (yn −

x)∞
n=1 is also a weakly null, �

ξ

1-spreading model. Weak nullity follows from the fact that
limn ‖(yn − x) − (xn − x)‖ = 0, while the fact that (yn − x)∞

n=1 is an �
ξ

1-spreading model
follows from the fact that for any E ∈ Sξ and scalars (ai )i∈E with

∑
i∈E |ai | = 1,∥∥∥∥∥

∑
i∈E

ai (yi − x)

∥∥∥∥∥�
∥∥∥∥∥
∑
i∈E

ai (xi − x)

∥∥∥∥∥−
∑
i∈E

|ai | ‖yi − xi‖� ε − ε/2 = ε/2.

An appeal to Proposition 2·2 yields that K is not ξ -weakly precompact.

Next we prove a result regarding convexity. In Section 4, we discuss the sharpness of this
result.

PROPOSITION 2·4. For 0 < ξ < ω1 and a Banach space X, if (xn)
∞
n=1 ⊂ X is ξ -weakly null,

then (xn)
∞
n=1 admits a subsequence (xkn )

∞
n=1 such that the closed, convex hull co(xkn : n ∈N)

is ξ -weakly compact.

Proof. We recall from [4] the definition of the operator ideal Wξ such that Wξ (E, F) is the
set of all operators A : E → F such that for any (en)

∞
n=1 ⊂ BE , (Aen)

∞
n=1 has a subsequence

which is ξ -convergent in F . This is equivalent to saying that ABE is ξ -weakly precompact.
It is implicitly contained within the proofs of corollaries 3·11 and 3·13 of [6] that if

(xn)
∞
n=1 is ξ -weakly null, there exist k1 < k2 < . . . such that the operator 
 : �1 → X given

by 

∑∞

n=1 anen =∑∞
n=1 anxkn lies in Wξ . By Proposition 2·3, 
B�1 is ξ -weakly compact,

and so is the weakly closed subset co(xkn : n ∈N) of 
B�1 .

Remark 2·5. In the preceding proposition, passing to a subsequence is necessary, at least in
the cases 0 < ξ < ω. That is, for such ξ , there exists a Banach space and a ξ -weakly null
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sequence whose closed, convex hull is not ξ -weakly compact. We discuss this in the next
section. It is this obstacle which prevents one from applying the argument from [7] for the
ξ = ω1 case verbatim to the 0 < ξ < ω1 cases.

Proof of Theorem 1·3. For 0 < ξ < ω1, we prove by contraposition that item (iv) of
Remark 1·4 implies item (i) of Remark 1·4. Assume that X is not ξ -Schur and let (xn)

∞
n=1

be a normalised, ξ -weakly null sequence. Using Proposition 2·4, after passing to a subse-
quence and relabelling, we may assume that K0 = co(xn : n ∈N) is ξ -weakly compact. For
each n ∈N, let Kn = nK0 ∩ 1

n BX . Then each Kn is ξ -weakly compact, since it is a weakly
closed subset of the ξ -weakly compact set nK0. Since

{0} =
∞⋂

n=1

∞⋃
m=n

Km,

it is easy to see that

K =
∞⋃

n=1

Kn

is also ξ -weakly compact. From here, the proof of [7, theorem 1] may be followed exactly.

Remark 2·6. Let us recall that if Vξ denotes the class of ξ -Schur Banach spaces, Vωξ , ξ �
ω1, are all distinct. Therefore the preceding theorem interpolates between Theorem 1·1 and
Theorem 1·2 in a non-vacuous way.

3. Topology

In this section, for a subset H of Sξ , we let M AX (H) denote the set of members of H
which are maximal with respect to inclusion.

PROPOSITION 3·1. For ξ < ω1, there exists a partition (Hζ )ζ�ωξ of Sξ such that H0 =
M AX (Sξ ) and if Hζ � E ≺ F, F ∈ ∪μ<ζ Hμ.

Proof. Define

S0
ξ = Sξ ,

Sζ+1
ξ = Sζ

ξ \ M AX (Sζ

ξ ),

and if ζ < ω1 is a limit ordinal,

Sζ

ξ =
⋂
μ<ζ

Sμ

ξ .

Note that (Sζ

ξ )ζ�ωξ are decreasing with ζ . For each ζ �ωξ , let

Hζ = M AX (Sζ

ξ ) = Sζ

ξ \ Sζ+1
ξ .

It follows from [5, proposition 3·2] that (Hζ )ζ�ωξ is a partition of Sξ . It follows from the def-
inition that H0 = M AX (Sξ ). If E ∈ Hζ , then E is maximal in Sζ

ξ with respect to inclusion.

Therefore if E ≺ F , F /∈ Sζ

ξ . But since
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ζ�μ�ωξ

Hμ ⊂
⋃

ζ�μ�ωξ

Sμ

ξ ⊂ Sζ

ξ ,

this implies that F ∈ Hμ for some μ < ζ .

We next provide a strengthening of Proposition 2·3.

PROPOSITION 3·2. K is ξ -weakly precompact if and only if K
weak

is ξ -weakly compact.

Proof. As in the proof of Proposition 2·3, if K
weak

is ξ -weakly compact, then K is

ξ -weakly precompact, and if K
weak

is not weakly compact, then K is not ξ -weakly pre-
compact. Convexity was not used in either of those arguments. What remains to show is

that if K
weak

is weakly compact but not ξ -weakly compact, then K is not ξ -weakly pre-

compact. As in the proof of Proposition 2·3, we may assume there exist (xn)
∞
n=1 ⊂ K

weak
,

x ∈ K
weak

, and ε > 0 such that (xn − x)∞
n=1 is weakly null and

ε < inf

{
‖y − x‖ : E ∈ Sξ , y =

∑
i∈E

ai xi ,
∑
i∈E

|ai | = 1.

}
.

Let un = xn − x . Fix a free ultrafilter U on N. By the geometric Hahn–Banach theorem,
for every E ∈ M AX (Sξ ), we may find fE ∈ BX∗ such that for every n ∈ E , Re fE(un)� ε.
Let (Hζ )ζ�ωξ be the partition from Proposition 3·1. We now define gE ∈ BX∗ for all E ∈ Sξ .
We define gE for E ∈ Hζ by induction on ζ . For E ∈ H0 = M AX (Sξ ), let gE = fE . Now
suppose E ∈ Hζ for some ζ > 0 and gF has been defined for all F ∈ ∪μ<ζ Hμ. Since E is
non-maximal in Sξ , by standard properties of Sξ , E � (n) ∈ Sξ for all n > max E . By the
properties of (Hμ)μ�ωξ , for all n > max E , E � (n) ∈ ∪μ<ζ Hμ. We now define

gE = lim
n∈U

gE�(n),

where the limit is taken in the weak∗-topology. This completes the definition of gE for all
E ∈ Sξ . We observe the following facts, easily shown for E ∈ Hζ by induction on ζ . For any
E ∈ Sξ ,

gE ∈ { fF : F ∈ M AX (Sξ ) : E � F}weak∗

⊂ BX∗ .

In particular, if n ∈ E , then n ∈ F for any E � F ∈ M AX (Sξ ), so Re gE(un)� ε.
Fix a decreasing sequence of positive numbers (εn)

∞
n=0 ⊂ (0, 1) such that ε −

3
∑∞

j=0 jε j > ε0. Let us recursively define Tn ⊂ Sξ , M1 ⊃ M2 ⊃ · · · , Mn ∈U , m1 < m2 <

· · · , mn ∈ Mn , and vn ∈ K − x recursively. We perform the n = 1 and n = p + 1 > 1 cases
simultaneously. In the n = 1 case, let p = 0. If n = p + 1 > 1, assume all previous choices
have already been made. Define

Tn = {E ∈ Sξ : E ⊂ {1, . . . , m p}},
where {1, . . . , m0} =∅ in the p = 0, n = 1 case. Since for every E ∈ Tn and every
1 � j � p,

0 = lim
l∈U

(gE�(l) − gE)(vm j ) = lim
l∈U

gE(ul),
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we may select Mn+1 ∈U such that

|(gE�(l) − gE)(vm j )| < ε|E |+1

and

|gE(ul)| < εn

for all E ∈ Tn and 1 � j � p. By replacing Mn+1 with Mn+1 ∩ Mn ∈U , we may assume
Mn+1 ⊂ Mn . We choose mn ∈ Mn arbitrary if n = 1, and if n > 1, choose mn ∈ Mn such

that mn > m p. Since umn ∈ K
weak − x , Re (umn )� ε for all E ∈ Sξ with max E = mn , and

|gE(umn )| < εn for all E ∈ Tn , we may choose vn ∈ K − x such that Re gE(vn)� ε − ε0 for
all E ∈ Sξ with max E = mn and such that |gE(vn)| < εn and |gE(vn − umn )| < εn for all
E ∈ Tn . This completes the construction. Let M = (mn)

∞
n=1. Let us collect the important

features of this construction:

(i) if ml ∈ E ∈ Sξ ∩ [M]<ω and ml < max E , |(gE − gE\{max E})(vl)| < ε|E |;
(ii) if E ∈ Sξ ∩ [M]<ω, ml = max E , and l < n, then |gE(vn)| < εn;

(iii) if E ∈ Sξ ∩ [M]<ω and mn = max E , |gE(vn)|� ε − ε0.

Now fix ∅ �= E = {m p1, · · · , m pt } ∈ Sξ ∩ [M]<ω with p1 < · · · < pt . Let E0 =∅ and
Ei = {m p1, . . . , m pi }. We may write fE = g∅ +∑t

i=1(gEi − gEi−1). Note also that for 1 �
i � t , Ei \ {max Ei } = Ei−1. For 1 � j � t ,

Re fE

(
vp j

)
� Re

(
gE j − gE j−1

) (
vp j

)− ∣∣g∅

(
vp j

)∣∣
−

j−1∑
i=1

∣∣(gEi − gEi−1

) (
vp j

)∣∣− t∑
i= j+1

∣∣(gEi − gEi−1

) (
vp j

)∣∣

� Re gE j

(
vp j

)− 2
j−1∑
i=0

∣∣gEi

(
vp j

)∣∣− t∑
i= j+1

∣∣(gEi − gEi−1

) (
vp j

)∣∣
� ε − ε0 − 2 jεp j −

∞∑
i= j+1

ε j > ε0.

(3·1)

Now since vn ∈ K − x , yn = vn + x ∈ K . Since K is weakly compact, we may select p1 <

p2 < · · · and y ∈ X such that (ypn )
∞
n=1 is weakly convergent to y and let P = {m p1, m p2, . . .}.

We now claim that gE(y) = gE(x) for all E ∈ Sξ ∩ [P]<ω. To see this, fix such an
E = {m p1, . . . , m pl } and note that, since (ypn )

∞
n=1 is weakly convergent to y and (xm pn

)∞
n=1 is

weakly convergent to x ,

|gE(y − x)| = lim sup
n

|gE(ypn − xm pn
)| = lim sup

n
|gE(vpn − um pn

)|� lim sup
n

εpn = 0.

Now fix E ∈ Sξ and y′ =∑
i∈E ai ypi ∈ co(ypi : i ∈ E). Note that y′ − x =∑

i∈E aivpi and
F = (pi )i∈E ∈ Sξ , from which it follows that

‖y′ − y‖� Re gF(y′ − y) = Re gF(y′ − x) =
∑
i∈E

ai Re gF(vpi )� ε0

∑
i∈E

ai = ε0.

Since (vpi )
∞
i=1 ⊂ K , an appeal to Proposition 2·2 yields that K is not ξ -weakly precompact.
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We now introduce for 0 < ξ < ω1 the τξ topology of a Banach space X and deduce that
the ξ -weakly compact (resp. ξ -weakly precompact) subsets of X are precisely the compact
(resp. relatively compact) sets in the τξ topology. Most of the proofs in the remainder of this
section follow from standard techniques, so we omit them.

Let us say a subset C of the Banach space is ξ -closed if whenever (xn)
∞
n=1 ⊂ C is ξ -weakly

convergent to x ∈ X , then x ∈ C . We say U ⊂ X is ξ -open if its complement is ξ -closed. We
let τξ denote the set of ξ -open subsets of X .

LEMMA 3·3. The following hold:

(i) τξ is a topology on X ;
(ii) the τξ topology is finer than the weak topology and coarser than the norm topology.

In particular, it is a Hausdorff topology on X ;
(iii) if (xn)

∞
n=1 ⊂ X has no ξ -weakly convergent subsequence, then T = {xn : n ∈N} is

ξ -closed;
(iv) a sequence (xn)

∞
n=1 is ξ -weakly convergent to x ∈ X if and only if it is convergent to

x in the τξ topology.

Proof. (i) It is clear that ∅, X are ξ -closed, as is an arbitrary intersection of ξ -closed sets.
Suppose K1, K2 are ξ -closed. We will show that K1 ∪ K2 is ξ -closed. To that end, suppose
that (xn)

∞
n=1 ⊂ K1 ∪ K2 is ξ -convergent to x . By passing to a subsequence, which is neces-

sarily also ξ -convergent to x , we may assume there exists j ∈ {1, 2} such that (xn)
∞
n=1 ⊂ K j .

By ξ -closedness of K j , x ∈ K j ⊂ K1 ∪ K2.
(ii) We must show that if K ⊂ X is weakly closed, it is ξ -closed, and if it is ξ -closed,

it is norm closed. Assume K is ξ -closed and (xn)
∞
n=1 ⊂ K is ξ -convergent to x ∈ X . Then

x ∈ K
weak = K , and K is ξ -closed. Now suppose that K is ξ -closed and (xn)

∞
n=1 ⊂ K is

norm convergent to x ∈ K . Then (xn)
∞
n=1 is ξ -convergent to x . Since K is ξ -closed, x ∈ K ,

and K is norm closed. That τξ is Hausdorff follows from the fact that the weak topology on
X is Hausdorff and τξ is finer than the weak topology.

(iii) If (yn)
∞
n=1 ⊂ T is any sequence in T , it must either have a constant subsequence

or a subsequence which is also a subsequence of (xn)
∞
n=1. Therefore if (yn)

∞
n=1 ⊂ T is

ξ -convergent to some x ∈ X , then it must have a constant subsequence, and therefore x
is a member of the sequence (xn)

∞
n=1 and a member of T . Here we have used that limits of

τξ -convergent sequences are unique because τξ is a Hausdorff topology.
(iv) Seeking a contradiction, assume that (xn)

∞
n=1 is ξ -convergent to x but not convergent

to x in the τξ topology. Then there exist a τξ -open set U containing x and subsequence
(yn)

∞
n=1 of (xn)

∞
n=1 such that (yn)

∞
n=1 ⊂ X \ U . But since any subsequence of a ξ -convergent

sequence is ξ -convergent to the same limit, (yn)
∞
n=1 ⊂ X \ U is ξ -convergent to x ∈ U . But

this is impossible, since X \ U is τξ -closed.
Now suppose that (xn)

∞
n=1 is not ξ -convergent to x . Then either (xn)

∞
n=1 is not weakly

convergent to x , or (xn − x)∞
n=1 is weakly null but not ξ -weakly null. In the first case,

there exist a weakly open U containing x and a subsequence (yn)
∞
n=1 of (xn)

∞
n=1 such that

(yn)
∞
n=1 ⊂ X \ U . Since U is weakly open, it is also τξ -open, and X \ U is τξ closed. Since

(yn)
∞
n=1 ⊂ X \ U , neither (yn)

∞
n=1 nor (xn)

∞
n=1 can be convergent to x in the τξ topology. In the

second case, there exists a subsequence (yn)
∞
n=1 of (xn)

∞
n=1 such that (yn − x)∞

n=1 is a weakly
null �

ξ

1-spreading model, as are all of its subsqeuences. Then the sequence (yn)
∞
n=1 has no
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ξ -convergent subsequence, since (yn − x)∞
n=1 has no ξ -weakly null subsequence. In this case

T = {yn : n ∈N} is τξ -closed. Then U = X \ T is τξ -open and contains the sequence (yn)
∞
n=1.

From this it follows that the original sequence (xn)
∞
n=1 is not τξ -converent to x .

The following result includes a standard fact from topology, together with a minor
variation thereof. Since the variation is not standard, we include the proof.

LEMMA 3·4. Let K be a topological space which is either compact or sequentially com-
pact. Let Y be a Hausdorff topological space such that a subset of Y is compact if and
only if it is sequentially compact. Suppose f : K → Y is a continuous injection. Then f
is a homeomorphism of K with f (K ). In either case, K is both sequentially compact and
compact.

Proof. Note that if K is compact, so is f (K ), and if K is sequentially compact, so is f (K ).
Since compactness and sequential compactness are equivalent in Y , in either case, f (K ) is
both compact and sequentially compact. Since Y is Hausdorff, f (K ) is closed. From this it
follows that a subset of f (K ) is compact if and only if it is sequentially compact. Therefore
by relabelling, we may assume Y = f (K ) and assume f is a bijection. In the case K is
compact and the case that K is sequentially compact, it is sufficient to show that if C ⊂ K
is closed, f (C) is closed.

We first provide the proof in the case that K is compact. This is standard, but we provide
the proof to help illustrate the case in which X is sequentially compact. Fix C ⊂ K closed.
Since C is a closed subset of a compact set, C is compact, and so is f (C). Since Y is
Hausdorff, f (C) is closed.

Now assume K is sequentially compact and fix C ⊂ K closed. Then C is also sequentially
compact, as is f (C). In this case, f (C) is also compact, and therefore closed. This completes
the proof that f is a homeomorphism.

Since K is homeomorphic to f (K ), which is both compact and sequentially compact, K
is both compact and sequentially compact.

COROLLARY 3·5. Fix 0 < ξ < ω1.

(i) A subset K of X is ξ -weakly compact if and only if it is sequentially compact in the
τξ topology if and only if it is compact in the τξ topology. In this case, the τξ and
weak topologies on K coincide.

(ii) A subset K of X is ξ -weakly precompact if and only if it is relatively compact in the

τξ topology, and in this case K
weak = K

τξ , and these two sets are homeomorphic
with their weak and τξ topologies.

Proof. (i) Recall that a sequence (xn)
∞
n=1 ⊂ X is ξ -weakly convergent to x ∈ X if and only if

is it convergent to x in the τξ topology. With this fact, it is immediate from the definition of
ξ -weakly compact that K ⊂ X is ξ -weakly compact if and only if it is sequentially compact
in the τξ topology.

Now assume that K ⊂ X is either compact or sequentially compact in the τξ topology.
Let Y = K endowed with its weak topology. Since the τξ topology is finer than the weak
topology, f : K → Y is a continuous bijection. By Lemma 3·4, K is both compact and
sequentially compact, and the τξ and weak topologies coincide on K . This concludes (i).
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We note that in order to apply Lemma 3·4, we use the Eberlein–Šmulian Theorem to deduce
that a subset of Y is compact if and only if it is sequentially compact.

(ii) For any K ⊂ X , since the τξ topology is finer than the weak topology, K
τξ ⊂ K

weak
.

If K is ξ -weakly precompact, then K
weak

is ξ -weakly compact by Proposition 2·3, and
the weak and τξ topologies are the same on K by (i). This means the τξ and weak topologies

are the same on K , K
τξ , and K

weak
. In particular, these last two sets are equal.

Now if K is relatively compact in the τξ topology, then K
τξ is compact in the τξ topology.

It is therefore weakly compact, and weakly closed, so K
weak ⊂ K

τξ . This shows that K
τξ =

K
weak

. Since the τξ and weak topologies coincide on K
τξ , they coincide on K

weak
.

4. Convexity

In this section, we discuss the interplay between the τξ topology and convexity. For finite,
non-zero values of ξ , the τξ topology need not be locally convex. We modify an example
from [11] to give an example of a Banach space Yk with normalised, 1-unconditional, k + 1-
weakly null basis such that the closed, convex hull of the basis is not k + 1-weakly compact.

In what follows, for y ∈ c00 and I ⊂N, I y is the projection of y onto span{en : n ∈ I }. For
the proof, we recall the definition for m, n ∈N

Sm[Sn] = {∅} ∪
{

t⋃
i=1

Ei :∅ �= Ei , E1 < . . . < Et , Ei ∈ Sn, (min Ei)
t
i=1 ∈ Sm

}
.

It is a standard fact concerning Sn , n < ω, that Sm[Sn] = Sm+n = Sn[Sm] for all non-negative
integers m, n.

LEMMA 4·1. Let Y be a Banach space such that the canonical c00 basis is a normalized,
unconditional Schauder basis for Y . For k ∈N, let us define the norm

‖y‖k = sup

{
t∑

i=1

‖Ii y‖Y : I1 < . . . < It , (min Ii)
t
i=1 ∈ Sk

}

and let Yk be the completion of c00 with respect to this norm.

(i) If (yn)
∞
n=1 is a convex block sequence of the c00 basis which is an �1

1-spreading model
in Y , then (yn)

∞
n=1 is an �k+1

1 -spreading model in Yk.
(ii) If the canonical c00 basis is 1-weakly null in Y , then it is k + 1-weakly null in Yk.

Proof. For both parts, note that the canonical c00 basis is also normalized and uncondi-
tional in Yk .

(i) Assume (yn)
∞
n=1 is a convex block sequence of the canonical c00 basis which is an

�1
1-spreading model in Y . Let

ε = inf

{
‖y‖ : E ∈ S1, y =

∑
n∈E

an yn,
∑
n∈E

|an| = 1

}
> 0.
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Since the canonical c00 basis is normalised in Yk , ‖yn‖k � 1 for all n ∈N, and (yn)
∞
n=1 is

bounded. Fix E ∈ Sk+1 and scalars (ai)i∈E . Since Sk+1 = Sk[S1], we may write

E =
t⋃

i=1

Ei

for some non-empty E1 < · · · < Et , Ei ∈ S1, (min Ei)
t
i=1 ∈ Sk . For each 1 � i � t , let

Ii = [min supp(ymin Ei ), max supp(ymax Ei )].
Then min Ii � min Ei , so (min Ii )

t
i=1 ∈ Sk . Furthermore, I1 < . . . < It . Therefore∥∥∥∥∥

∑
n∈E

an yn

∥∥∥∥∥
k

�
t∑

i=1

∥∥∥∥∥Ii

∑
n∈E

an yn

∥∥∥∥∥
Y

=
t∑

i=1

∥∥∥∥∥
∑
n∈Ei

an yn

∥∥∥∥∥
Y

� ε

t∑
i=1

∑
n∈Ei

|an|

= ε
∑
n∈E

|an|.

This shows that (yn)
∞
n=1 is an �k+1

1 -spreading model in Yk .
(ii) Since the canonical c00 basis (en)

∞
n=1 is bounded and unconditional in Yk , it is either

weakly null or it has a subsequence equivalent to the canonical �1 basis. Thus if we can show
that (en)

∞
n=1 ⊂ Yk has no subsequence which is an �k+1

1 -spreading model, we will know that
it has no subsequence equivalent to the canonical �1 basis, and must be weakly null. In this
case, we will have shown that (en)

∞
n=1 ⊂ Yk is weakly null with no subsequence that is an

�k+1
1 spreading model, and is therefore k + 1-weakly null.

Let Y0 = Y . By the preceding paragraph, for k ∈N∪ {0}, the condition that (en)
∞
n=1 is

k + 1-weakly null in Yk is equivalent to the condition that it has no subsequence which is
an �k+1

1 -spreading model, which is equivalent to the condition that for any m1 < m2 < · · ·
and ε > 0, there exist E ∈ Sk+1 and (ai )i∈E such that

∑
i∈E |ai | = 1 and ‖∑i∈E ai emi ‖k < ε.

We prove this by induction on k ∈N∪ {0}, where the base case k = 0 is true by hypothesis.
Now assume that for k ∈N, (en)

∞
n=1 is k-weakly null in Yk−1. Fix m1 < m2 < · · · and ε > 0.

We may assume ε < 1. By recursively applying our assumption, and with p0 = 1 and pn =
max{mi : i ∈ En} for n ∈N, we may find E1 < E2 < · · · and En ∈ Sk , and scalars (ai)i∈En

such that
∑

i∈En
|ai | = 1 and ∥∥∥∥∥

∑
i∈En

ai emi

∥∥∥∥∥
k−1

<
ε/2

pn−1
.

Note that 1 = p1 < p2 < · · · . Now fix m ∈N such that 1/m < ε/2. We will show that∥∥∥∥∥∥
2m∑

i=m+1

1

m

∑
j∈Ei

a j em j

∥∥∥∥∥∥
k

< ε.

Since ∪2m
i=m+1 Ei ∈ Sk+1 and

∑2m
i=m+1

1
m

∑
j∈Ei

|a j | = 1, this will finish the proof. Fix intervals
I1 < · · · < It such that J = (min Ii )

t
i=1 ∈ Sk+1 and∥∥∥∥∥∥

2m∑
i=m+1

1

m

∑
j∈Ei

a j em j

∥∥∥∥∥∥
k

=
t∑

r=1

∥∥∥∥∥∥Ir

⎛
⎝ 2m∑

i=m+1

1

m

∑
j∈Ei

a j em j

⎞
⎠
∥∥∥∥∥∥

Y

.
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Since Sk+1 = S1[Sk], we may write J = ∪s
i=1 Ji with J1 < . . . < Js , ∅ �= Ji ∈ Sk , and

(min Ji )
s
i=1 ∈ S1. By omitting any superfluous Ji set and relabelling, we may assume that

J1

2m∑
i=m+1

1

m

∑
j∈Ei

a j em j �= 0.

The membership (min Ji )
s
i=1 ∈ S1 means that s � J1. Now let l be the minimum i such that

m + 1 � i � 2m and J1
∑

j∈Ei
a j em j �= 0. Then

s � min J1 � pl .

Note also that for each l < i � 2m,

s∑
r=1

∥∥∥∥∥∥Jr

∑
j∈Ei

a j em j

∥∥∥∥∥∥
Y

� s

∥∥∥∥∥∥
∑
j∈Ei

a j em j

∥∥∥∥∥∥
k−1

� s · ε/2

pi−1
� ε/2.

Then ∥∥∥∥∥∥
2m∑

i=m+1

1

m

∑
j∈Ei

a j em j

∥∥∥∥∥∥
k

=
s∑

r=1

∥∥∥∥∥∥Ir

⎛
⎝ 2m∑

i=l

1

m

∑
j∈Ei

a j em j

⎞
⎠
∥∥∥∥∥∥

Y

� 1

m

∥∥∥∥∥∥
∑
j∈El

a j em j

∥∥∥∥∥∥
�1

+ 1

m

2m∑
i=l+1

ε/2 < ε/2 + ε/2 = ε.

This is the desired result.

We next recall a construction from [11] which gives the requisite Y for the preceding
lemma.

THEOREM 4·2. There exists a hereditary set F of finite subsets of N which contains all
singletons such that, if Y is the completion of c00 with respect to the norm∥∥∥∥∥

∞∑
i=1

ai ei

∥∥∥∥∥
Y

= sup

{∑
i∈E

|ai | : E ∈F
}

,

then the canonical c00 basis is 1-weakly null in Y , but the basis of Y admits a convex block
sequence which is an �1

1-spreading model.

THEOREM 4·3. For every k ∈N, there exists a hereditary set Fk containing all singletons
such that the Banach space Yk which is the completion of c00 with respect to the norm∥∥∥∥∥

∞∑
i=1

ai ei

∥∥∥∥∥
Yk

= sup

{∑
i∈E

|ai | : E ∈Fk

}

has the property that its canonical basis is k + 1-weakly null, but admits a convex block
sequence (yn)

∞
n=1 of the basis which is an �k+1

1 -spreading model. Furthermore, we may
choose the sequence (yn)

∞
n=1 to be independent of k.
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Proof. For the k = 0 case, we let F0 =F and Y0 = Y , the space from Theorem 4·2. For
k > 0, we let

Fk =
{

t⋃
i=1

Ei : (min Ei )
t
i=1 ∈ Sk, E1 < · · · < Et , Ei ∈F

}
.

It is easily verified that Yk as defined in the theorem is isometrically the same as Yk as defined
in Lemma 4·1, and therefore (en)

∞
n=1 and (yn)

∞
n=1 have the requisite properties.

This raises the following question.

Question 4·4. For ξ < ω1, does there exist ζ = ζ(ξ) < ω1 such that for any Banach space X
and any ξ -weakly compact subset K of X, the closed, convex hull of K is ζ -weakly compact?

COROLLARY 4·5. For each k ∈N, C(2N) contains a k-weakly compact subset whose
closed, convex hull is not k-weakly compact. Furthermore, the topology τk on C(2N) is not
locally convex.

Proof. Fix k ∈N and let ( fn)
∞
n=1 be a sequence in C(2N) equivalent to the basis of Yk−1.

Let C = { fn : n ∈N}. Then C is k-weakly compact, while its closed, convex hull is not.
This is because co(C) contains a weakly null �k

1-spreading model, so co(C) is not k-weakly
precompact by Proposition 2·2. The second statement of the corollary follows from the fact
that ( fn)

∞
n=1 ⊂ C(2N) is convergent to 0 in the τk topology but it admits a convex block

sequence which is not convergent to 0 in the τk topology.

5. Examples of ξ -Schur Banach spaces

The canonical bases of c0 and �p for 1 < p < ∞ are normalized and 1-weakly null.
Therefore these spaces fail to be 1-Schur. Furthermore, any space which contains an isomor-
phic copy of one of these spaces also fails to be 1-Schur. On the other hand, �1 is a Schur
space. Therefore all classical Banach spaces lie on one extreme of the Schur hierarchy or
the other.

It is wellknown that any Schur Banach space must be �1 saturated. In [3], the authors gave
an example of an �1 saturated Banach space which does not have the Schur property. Fix
1 = α1 > α2 > . . . such that limn αn = 0 and

∑∞
n=1 αn = ∞. The authors of [3] showed that

the space U which is the completion of c00 under the norm

‖x‖ = sup

⎧⎨
⎩
∣∣∣∣∣∣

n∑
i=1

αi

∑
j∈Ii

x j

∣∣∣∣∣∣ : n ∈N, I1 < · · · < In, Ii an interval

⎫⎬
⎭

is �1 saturated, the canonical basis (ei)
∞
i=1 of U is weakly Cauchy, and∥∥∥∥∥

∑
i∈E

e2i − e2i−1

∥∥∥∥∥=
2|E |∑
i=1

αi

for any finite E ⊂N. Since limn
1
n

∑2n
i=1 αi = 0, it follows that (e2i − e2i−1)

∞
i=1 is weakly

null with no �1
1-spreading model subsequence. Therefore the Azimi–Hagler space U is �1

saturated while not being 1-Schur.
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The Tsirelson space Tξ,ϑ , defined for 0 < ξ < ω1 and 0 < ϑ < 1, is the completion of c00

with respect to the implicitly defined norm

‖x‖ = max

{
‖x‖c0, sup

{
ϑ

n∑
i=1

‖Ii x‖ : I1 < · · · < In, (min Ii )
n
i=1 ∈ Sξ

}}
.

It is easy to see that Tξ,ϑ is ξ -Schur. Indeed, if (xn)
∞
n=1 is a block sequence with a = inf ‖xn‖

and if I1 < I2 < . . . are such that min Ii = min supp(xi) and max Ii = max supp(xi),∥∥∥∥∥
∑
i∈E

ai xi

∥∥∥∥∥� ϑ
∑
j∈E

∥∥∥∥∥I j

∑
i∈E

ai xi

∥∥∥∥∥� ϑa
∑
i∈E

|ai |

for any E ∈ Sξ . From iterating this observation and using deeper combinatorial properties of
the Schreier spaces, Tξ,ϑ is ξn-Schur for every natural number n ∈N. It is a consequence of
[10, theorem 5·19] that Tξ,ϑ cannot have an �

ξω

1 -spreading model. Since Tξ,ϑ is reflexive, Tξ,ϑ

fails to be ξω-Schur. By standard properties of ordinals, if γ is the maximum ordinal such
that ωγ � ξ , ξω = ωγ+1. Thus for every γ < ω1, we have found an example of a Banach
space, namely Tωγ ,1/2, which is ζ -Schur for all ζ < ωγ+1, but which fails to be ωγ+1-Schur.

For 0 < ξ < ω1, fix a sequence ξn ↑ ωξ and a sequence ϑ1 > ϑ2 > · · · such that
∑∞

n=1

ϑn < 1. Let Zξ be the completion of c00 with respect to the norm

‖x‖ = max

⎧⎨
⎩‖x‖c0,

( ∞∑
n=1

‖x‖2
n

)1/2
⎫⎬
⎭ ,

where

‖x‖n = sup

{
ϑn

t∑
i=1

‖Ii x‖ : I1 < . . . < It , (min Ii )
t
i=1 ∈ Sξn

}
.

It was shown in [6] that Zξ is ζ -Schur for each ζ < ωξ , but Zξ is not ωξ -Schur. Thus for
every ξ < ω1, we have found a Banach space which is ζ -Schur for every ζ < ωξ and which
fails to be ωξ -Schur. As remarked previously, for ξ < ω1 and ωξ < ζ < ωξ+1, the ζ -Schur
spaces coincide with the ωξ -Schur spaces, these examples represent the sharpest possible
control over such examples of spaces which are ξ -Schur for specified ξ .
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