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1. Introduction

In this paper we consider embedded, complete, simply periodic minimal surfaces in
Euclidean space R

3, with horizontal planar ends and finite topology in the quotient
by the period. We call them simply periodic minimal surfaces with horizontal planar
ends.

The classical example is the family of Riemann examples. These surfaces may be
imagined as a periodic set of horizontal equidistant planes with one neck between each
plane. Wei constructed a similar family where the number of necks is alternately 1 and
2. The parameter for these families is the period T , a non-horizontal vector. When the
period T becomes horizontal, these surfaces degenerate. The degenerate surface may be
seen as horizontal planes with infinitesimally small necks between them. The goal in this
paper is to start from such a degenerate situation and recover the family of minimal
surfaces. A necessary condition for the existence of the family is that the infinitesimal
necks satisfy a balancing condition (see Theorem 1.3). This is also sufficient up to a
non-degeneracy hypothesis (see Theorem 1.4).

To state our results we need some definitions. Let {Mt}, t > 0, be a family of simply
periodic minimal surfaces with horizontal planar ends and period Tt. We may order the
ends of Mt by their height and label them ∞k, k ∈ Z. Our hypotheses are as follows.

Hypothesis 1.1 (planar domains and necks). The number N of ends of the quotient
Mt/Tt does not depend on t (N is even). There exists positive integers nk, k ∈ Z, such
that nk+N = nk, and a covering of Mt by domains Ωk,t and Uk,i,t, k ∈ Z, i = 1, . . . , nk,
such that Ωk+N,t = Ωk,t + Tt, Uk+N,i,t = Uk,i,t + Tt, and
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Figure 1. Planar domains and necks.

(a) for all k, Ωk,t is a graph over a domain in the horizontal plane, and contains the
end ∞k; and

(b) for all k, i, Uk,i,t is conformally an annulus whose two boundary components lie in
Ωk,t and Ωk+1,t. The Gauss map is one to one in Uk,i,t.

We call Ωk,t a planar domain and Uk,i,t a neck between Ωk,t and Ωk+1,t. nk is the
number of necks between Ωk,t and Ωk+1,t.

Hypothesis 1.2 (asymptotic behaviour when t → 0).

(a) For all k, the Gauss map converges on Ωk,t to a vertical vector when t → 0.

(b) For all k, i, Uk,i,t is contained in a Euclidean ball whose radius goes to zero and
whose centre converges to a point pk,i in the horizontal plane x3 = 0. This implies
that T = lim Tt exists, T is a horizontal vector and pk+N,i = pk,i + T . Moreover,
for each k, we assume that the points pk,i, pk+1,j , i = 1, . . . , nk, j = 1, . . . , nk+1,
are distinct.

(c) We may rescale Mt so that for any k, i, the necksize of Uk,i,t has a non-zero finite
limit when t → 0, where the necksize of Uk,i,t is the vertical component of the flux
of Uk,i,t.

Recall that the flux of Uk,i,t is the integral of the conormal on a circle going around the
neck (there is a matter of orientation which is clearly irrelevant for this hypothesis). For
a catenoid the necksize is the length of the waist. It is known (although we will not use
it) that under these hypotheses the necks converge (after suitable rescaling) to catenoids,
so the necksize is essentially a way to measure the length of the waist of the neck. By
Hypothesis 1.2 (b), all necksizes go to 0 when t → 0, so Hypothesis 1.2 (c) is about how
fast they go to 0 relative to each other.

1.1. Forces

As we will see, {pk,i} must satisfy a balancing condition, which is best explained
using forces. Let {pk,i}, k ∈ Z, i = 1, . . . , nk, be a periodic set of points in the plane,
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i.e. pk+N,i = pk,i + T . Consider the points pk,i as particles in the plane, with charge

Q(pk,i) =
(−1)k

nk
.

Let f(p, p′) be the two-dimensional electrostatic force exerted by p′ on p:

f(p, p′) = Q(p)Q(p′)
p − p′

‖p − p′‖2 .

The force exerted by all other particles on pk,i is defined as

Fk,i = 2
∑
j �=i

f(pk,i, pk,j) +
nk+1∑
j=1

f(pk,i, pk+1,j) +
nk−1∑
j=1

f(pk,i, pk−1,j).

So pk,i interacts repulsively with the particles pk,j—mind the factor 2—and attractively
with the particles pk−1,j and pk+1,j . We say that the configuration {pk,i} is balanced if
all forces are zero.

Theorem 1.3. Let {Mt}, t > 0 be a family of simply periodic minimal surfaces satisfying
Hypotheses 1.1 and 1.2. Then the configuration {pk,i} is balanced. Moreover, we have the
following geometric information: we may rescale Mt (by a factor going to infinity) so that
for all k, i, the necksize of Uk,i,t converges to 1/nk when t → 0. We may rescale Mt (by
another factor going to infinity) so that for all k, the distance between the asymptotic
planes of the ends ∞k and ∞k+1 converges to 1/nk.

Theorem 1.4. Let {pk,i} be a non-degenerate balanced configuration. Then for t > 0
small enough there exists a smooth family Mt of embedded simply periodic minimal
surfaces with horizontal planar ends satisfying Hypotheses 1.1 and 1.2. Moreover, this
family is unique in the following sense: if M ′

t is another family of simply periodic minimal
surfaces with the same period Tt and satisfying Hypotheses 1.1 and 1.2 (with the same
numbers nk and points pk,i), then up to a translation, M ′

t = Mt for t > 0 small enough
(this may be used to detect symmetries of Mt).

Here non-degenerate means the following. Let m = n1 + . . . nN . Let F (respectively, p)
be the vector in R

2m whose components are the Fk,i (respectively, pk,i) for k = 1, . . . , N

and i = 1, . . . , nk. We say that the balanced configuration {pk,i} is non-degenerate if the
differential of the map p �→ F : R

2m → R
2m has rank 2(m − 1). It cannot have rank 2m

because from f(p′, p) = −f(p, p′), one has

∀p,

N∑
k=1

nk∑
i=1

Fk,i = 0.

So non-degenerate means that the differential has maximal possible rank. Note that the
period T is fixed in this definition.

From the kernel point of view, the forces are clearly invariant under translation of all
particles, so the kernel of the differential has dimension at least two. So non-degenerate
means that translations are the only infinitesimal deformations of the configuration.
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148 M. Traizet

We identify R
2 with C. Then

f(p, p′) =
Q(p)Q(p′)

p̄ − p̄′ ,

so p �→ F : C
m → C

m is antiholomorphic. Non-degenerate means that the m×m complex
matrix ∂Fk,i/∂p̄�,j has complex rank m − 1.

1.2. Overview of the paper

In § 2 we give examples and classification results. We prove Theorem 1.4 in §§ 3–7. We
use the Weierstrass representation. Recall that given a Riemann surface Σ, a meromor-
phic function g : Σ → C ∪ ∞ (the Gauss map) and a holomorphic differential η on Σ

(the height differential), the Weierstrass representation formulae are

φ = (φ1, φ2, φ3) = ( 1
2 (g−1 − g)η, 1

2 i(g−1 + g)η, η), (1.1)

ψ(z) =
(

Re
∫ z

z0

φ1, Re
∫ z

z0

φ2, Re
∫ z

z0

φ3

)
, (1.2)

where z ∈ Σ and z0 ∈ Σ is a base point. The problem is that ψ(z) depends on the path
of integration; this is usually called the period problem.

We define all possible reasonable candidates for the Weierstrass data (Σ, g, η) of the
minimal surface we want to construct, depending on some parameters, and then adjust
the parameters to solve the period problem. The most important parameter for our con-
struction is a small non-zero real number r. Σ is a sum of Riemann spheres connected
by small necks whose ‘size’ is controlled by the parameter r. We write X for the col-
lection of all other parameters. We write the period problem as a finite set of equations
F(r, X) = 0.

When r = 0, Σ degenerates into a sum of disjoint Riemann spheres, so the Weierstrass
data degenerate into the Weierstrass data of disjoint minimal surfaces. The key point is
that the map F(r, X) extends smoothly to r = 0. Moreover, the limit F(0, X) can be
explicitly computed.

The equation F(0, X) = 0 boils down to the balancing condition. More specifically,
the forces come from the horizontal periods of the Weierstrass data around the necks.

Since we have an explicit formula for F(0, X), we can compute explicitly D2F(0, X).
The non-degeneracy condition gives that D2F(0, X) is invertible.

The implicit function theorem (in finite dimension) says that for r small enough, there
exists a unique X(r) such that F(r, X(r)) = 0. This proves the existence of the family
of minimal surfaces. It degenerates when r = 0.

Finally, we prove in § 7 that the surfaces are embedded. It is usually not easy to prove
that a minimal surface given in terms of its Weierstrass data is embedded. In our case, we
have explicit asymptotic formulae for the Weierstrass data when r → 0. Using this, we
can decompose the surfaces into pieces which are either graphs or converge to catenoids,
and prove that it is embedded.

We prove Theorem 1.3 in § 8. We prove that if a family of minimal surfaces satisfy
our hypotheses, then its Weierstrass data are some of the candidates introduced above,
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Figure 2. One of Wei’s examples. Computer image by J. Hoffman and F. Wei.

so it has to satisfy the equation F(0, X) = 0, which implies the balancing condition.
This proof does not give any geometrical interpretation of these forces. It would be very
interesting to have a more geometric proof of Theorem 1.3.

2. Examples

In this section, Fk,i is the conjugate of the force. This is more convenient for computations.

2.1. Generalization of the Riemann and Wei examples

Proposition 2.1. Let n ∈ N
∗. Let θi = (iπ/(n + 1)). The following configuration

is balanced and non-degenerate: N = 2, n1 = n, n2 = 1, ∀i = 1, . . . , n, p1,i = cot θi,
p2,1 =

√
−1 and T = 2

√
−1. We use the notation

√
−1 to avoid confusion with the index

i. n = 1 gives the Riemann example; n = 2 gives the Wei example.

Proof. The proof is an elementary computation

F1,i = − 1/n

p1,i − p2,1
− 1/n

p1,i − p2,1 + T
+

∑
j �=i

2/n2

p1,i − p1,j

=
2
n2

(
−n

cot θi

1 + cot2 θi
+

∑
j �=i

1
cot θi − cot θj

)
,
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Figure 3. (a) n = 2 (Wei example). (b) n = 5.

1
cot θi − cot θj

− cot θi

1 + cot2 θi
=

1 + cot θi cot θj

(cot θi − cot θj)(1 + cot2 θi)
= −cot(θi − θj)

1 + cot2 θi
,

F1,i =
2

n2(1 + cot2 θi)

(
− cot θi −

∑
j �=i

cot(θi − θj)
)

.

It is easy to see from this formula that F1,i = 0. By symmetry, F2,1 = 0. This proves
that the configuration is balanced. We now prove it is non-degenerate. Using that

dp1,j

dθj
= −(1 + cot2 θj),

we find that
∂F1,i

∂p1,j
=

−2
n2(1 + cot2 θi)(1 + cot2 θj)

Mi,j ,

with

Mi,i = 1 + cot2 θi +
∑
j �=i

1 + cot2(θi − θj),

Mi,j = −1 − cot2(θi − θj) if j 	= i.

Since Mi,i >
∑

j �=i |Mi,j |, the matrix M is invertible by standard linear algebra. Hence
the matrix ∂F1,i/∂p1,j is invertible, which implies that the differential of F has complex
rank at least n. Hence the configuration is non-degenerate. �

2.2. Uniqueness of the examples of §2.1

Proposition 2.2. Let n ∈ N
∗. Let pk,i be a balanced configuration such that N = 2,

n1 = n, n2 = 1 and T = 2
√

−1. Then up to translation and permutation, pk,i is the
configuration of Proposition 2.1.

We will see in Proposition 2.4 that T cannot be zero for a balanced configuration.
Hence T = 2

√
−1 can always be achieved by scaling and rotation.
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Proof of the proposition. Without loss of generality we may assume that p2,1 =
√

−1.
Write p1,i = zi. Then

F1,i =
2
n2

(∑
j �=i

1
zi − zj

− n
zi

z2
i + 1

)
.

Since the sum of all forces is zero we may discard the equation F2,1 = 0. Therefore the
configuration is balanced if and only if z1, . . . , zn satisfy the n equations F1,i = 0. Note
that if (z1, . . . , zn) is a solution then for any permutation σ, (zσ(1), . . . , zσ(n)) is also a
solution. We shall prove that z1, . . . , zn are the roots of a one variable polynomial of
degree n, which proves that (z1, . . . , zn) is unique up to permutation.

Let (z1, . . . , zn) be a solution. Given J ⊂ {1, . . . , n} let σJ
k be the kth elementary

symmetric function of the variables zi, i ∈ {1, . . . , n} \ J , namely

σJ
k =

∑
i1<···<ik

ij∈{1,...,n}\J

zi1 . . . zik
.

If J = ∅ we simply write σk. Let

Ei = F1,i × n2

2
(1 + z2

i )
∏
j �=i

(zi − zj).

The goal is to write Ei as a polynomial in the variable zi with coefficients depending only
on σ1, . . . , σn. This is quite computational, we give the main steps of the computation
below:

Ei = (1 + z2
i )

∑
j �=i

∏
k �=i,j

(zi − zk) − nzi

∏
j �=i

(zi − zj)

= (1 + z2
i )

∑
j �=i

n−2∑
k=0

σ
{i,j}
k (−1)kzn−2−k

i − nzi

n−1∑
k=0

σ
{i}
k (−1)kzn−1−k

i ,

∑
j �=i

σ
{i,j}
k = (n − 1 − k)σ{i}

k ,

σ
{i}
k =

k∑
j=0

σj(−1)k−jzk−j
i ,

Ei =
n∑

j=2

σj−2(−1)jzn−j
i

n−1∑
k=j−2

(n − 1 − k) −
n−1∑
j=0

σj(−1)jzn−j
i

n−1∑
k=j

(1 + k).

Hence zi is a root of the polynomial

P (z) =
n∑

j=2

σj−2(−1)jzn−j (n − j + 1)(n − j + 2)
2

−
n−1∑
j=0

σj(−1)jzn−j (n − j)(n + 1 + j)
2

.
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Now the key point is that z1, . . . , zn are distinct so they are all roots of P . Looking at
the highest order term we find that

P (z) = −n(n + 1)
2

n∏
j=1

(z − zj) = −n(n + 1)
2

n∑
j=0

σj(−1)jzn−j .

Comparing the two formulae for P we find that σ1 = 0 and if 2 � j � n,

σj = − (n + 2 − j)(n + 1 − j)
(j + 1)j

σj−2.

This determines P and shows that {z1, . . . , zn} is unique. Explicitly,

P (z) = −n(n + 1)
2

∑
0�k�(n/2)

(−1)kn!
(n − 2k)!(2k + 1)!

zn−2k.

The roots of this polynomial are of course cot(iπ/(n + 1)). �

2.3. Inductive construction of more complicated examples

Let F+
k,i (respectively, F−

k,i) be the sum of the forces exerted by the particles pk+1,j

(respectively, pk−1,j) on pk,i, namely,

F+
k,i =

nk+1∑
j=1

f(pk,i, pk+1,j).

Proposition 2.3. Let pk,i and p′
k,i be two balanced configurations. We use primes for

all quantities associated to the configuration p′
k,i, e.g. p′

k+N ′,i = p′
k,i + T ′. Assume that

(1) n1 = n′
1 = 1,

(2) p1,1 = p′
1,1 = 0, and

(3) F+
1,1 = F ′+

1,1 	= 0.

Define the configuration p′′
k,i as follows:

∀k ∈ {1, . . . , N}, n′′
k = nk and p′′

k,i = pk,i,

∀k ∈ {1, . . . , N ′}, n′′
k+N = n′

k and p′′
k+N,i = p′

k,i + T,

∀k ∈ Z, p′′
k+N+N ′,i = p′′

k,i + T + T ′.

The configuration p′′
k,i is periodic with N ′′ = N + N ′ and T ′′ = T + T ′. Then we have

the following conclusions.

(1) The configuration p′′
k,i is balanced.
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Figure 4. n = 2 and n′ = 3.

(2) Assume that the configurations pk,i and p′
k,i are unique up to translation. Then

p′′
k,i is also unique up to translation, in the sense that if p̃′′

k,i is another balanced
configuration, with Ñ ′′ = N ′′, ñ′′

k = n′′
k and T̃ ′′ = T ′′, then up to translation and

permutation, p̃′′
k,i = p′′

k,i.

(3) Assume that pk,i and p′
k,i are non-degenerate. Then so is p′′

k,i.

Note that condition (2) may always be achieved by translation, and condition (3) may
always be achieved by rotation and scaling, provided F+

1,1 	= 0 and F ′+
1,1 	= 0.

Before proving the proposition, let us give an example (see figure 4). Consider the
configuration of Proposition 2.1, scaled by (n + 1)/2n, and with the indices 1 and 2
exchanged so that n1 = 1 and n2 = n. An elementary computation gives F+

1,1 = −
√

−1.
Using Proposition 2.3 and induction, we can construct balanced configurations such that
nk is any periodic sequence of positive integers satisfying nk = 1 for odd k. All these
configurations are non-degenerate and unique up to translation.

Proof of Proposition 2.3. (1) From the definition, one can deduce that p′′
N+1,1 =

pN+1,1. Hence F ′′
k,i = 0 for k = 2, . . . , N . Also p′′

N+N ′+1,1 = p′
N ′+1,1 + T , so F ′′

k+N,i = 0
for k = 2, . . . , N ′. Moreover,

F ′′
N+1,1 = F ′′+

N+1,1 + F ′′−
N+1,1 = F ′+

1,1 + F−
1,1 = F ′+

1,1 − F+
1,1 = 0.

Since the sum of the forces is zero, also F ′′
1,1 = 0. This proves (1).

(2) Let p̃′′
k,i be another balanced configuration with T̃ ′′ = T ′′. Without loss of generality

we may assume that p̃′′
1,1 = p′′

1,1 = 0.
Let T̃ = p̃′′

N+1,1 − p̃′′
1,1. Consider the configuration p̃k,i defined by p̃k,i = p̃′′

k,i for k =
1, . . . , N and p̃k+N,i = p̃k,i + T̃ for k ∈ Z. Then p̃N+1,1 = p̃′′

N+1,1 so F̃k,i = 0 for k =
2, . . . , N . Since the sum of the forces is zero, F̃1,1 = 0 as well. Hence the configuration
p̃k,i is balanced. Let λ = T̃ /T . Since the configurations p̃k,i and λpk,i have the same
period, they differ by a translation. Since p̃1,1 = p1,1 = 0, we have

p̃k,i = λpk,i.
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Let T̃ ′ = p̃′′
N+N ′+1,1 − p̃′′

N+1,1. Consider the configuration p̃′
k,i defined by p̃′

k,i = p̃′′
k+N,i−T̃

for k = 1, . . . , N ′ and p̃′
k+N ′,i = p̃′

k,i + T̃ ′ for k ∈ Z. Then as above, p̃′
k,i is balanced. Let

λ′ = T̃ ′/T ′. Then

p̃′
k,i = λ′p′

k,i,

0 = F̃ ′′
N+1,1 = F̃ ′′+

N+1,1 + F̃ ′′−
N+1,1 = F̃ ′+

1,1 + F̃−
1,1 =

1
λ′ F

′+
1,1 − 1

λ
F+

1,1.

Hence λ = λ′. Also
T̃ ′′ = T̃ + T̃ ′ = λT + λT ′ = λT ′′,

which implies that λ = 1. Hence p̃′′
k,i = p′′

k,i, which proves (2).
(3) Recall that pk,i non-degenerate means that if p̃k,i(t) is a deformation of pk,i, such

that T̃ (t) = T and F̃k,i(t) = o(t), then, up to a translation, p̃k,i(t) = pk,i + o(t). So we
see that the proof of (3) is essentially the same as the proof of (2), although of course
non-degenerate and unique up to translation are not equivalent. �

2.4. Further results

Let me state the following.

• If N = 2 and n1 = n2 = 2, then there are no balanced configurations.

• If N = 2, n1 = 3 and n2 = 2, then there are at least two non-degenerated balanced
configurations. For one of them, the points p1,1, p1,2 and p1,3 are not on a line
(communicated by M. Weber at MSRI).

These examples show that given a periodic sequence of integers nk, one cannot hope for
existence nor uniqueness in general. Let me conclude this section with a simple observa-
tion.

Proposition 2.4. There is no balanced configuration with T = 0.

Proof. When T = 0, a straightforward computation gives

N∑
k=1

nk∑
i=1

pk,iFk,i = 2
N∑

k=1

nk∑
i=1

nk∑
j=i+1

1
n2

k

−
N∑

k=1

nk∑
i=1

nk+1∑
j=1

1
nknk+1

= −
N∑

k=1

1
nk

.

Hence the forces cannot all vanish. �

3. The Weierstrass data

We now begin the proof of Theorem 1.4. In this section we define all possible candidates
for the Weierstrass data of the family of minimal surfaces we want to construct, depending
on certain parameters.

It is well known [6] that a simply periodic minimal surface with finite total curvature
in the quotient may be conformally parametrized on a compact Riemann surface Σ

minus a finite number of points corresponding to the ends. Moreover, the Gauss map g
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+
+

ak,i

bk+1,i
Ck+1

_

Ck

_ ≅
Figure 5. Creating necks.

is meromorphic on Σ and in the case of horizontal planar ends, the height differential η

is holomorphic on Σ.
We define Σ and g explicitly and we define η by prescribing its periods.

3.1. The Riemann surface and the Gauss map

Consider N copies of the Riemann sphere C = C ∪ ∞, labelled C1, . . . , CN . On each
Ck, k = 1, . . . , N , consider the meromorphic function

gk(z) =
nk∑
i=1

αk,i

z − ak,i
−

nk−1∑
i=1

βk,i

z − bk,i
,

where the poles ak,i, bk,i are distinct complex numbers, and αk,i, βk,i are non-zero com-
plex numbers such that

nk∑
i=1

αk,i =
nk−1∑
i=1

βk,i = 1. (3.1)

These are parameters of the construction. The first equality in (3.1) implies that gk has
a zero of order at least 2 at infinity: this will be needed later. The second equality is
a normalization. For each k = 1, . . . , N , and i = 1, . . . , nk, we identify a small annulus
around ak,i in Ck with a small annulus around bk+1,i in Ck+1, thus creating nk small
necks between Ck and Ck+1. We do this as follows. Let vk,i = 1/gk. This function has
a simple zero at ak,i, and hence is one to one in a neighbourhood of ak,i. There exists
ε > 0 such that vk,i is biholomorphic from a neighbourhood of ak,i to the disk D(0, ε).
We think of vk,i as a complex coordinate in a neighbourhood of ak,i, and really forget
that it is defined everywhere on Ck. When there is no possible confusion, we will write
v = vk,i. In the same way, wk+1,i = 1/gk+1 is biholomorphic from a neighbourhood of
bk+1,i in Ck+1 to the disk D(0, ε).

Consider a positive number r such that 0 < r < ε2. Remove the disk |vk,i| � (r/ε) from
Ck and |wk+1,i| � (r/ε) from Ck+1. Identify the points in Ck and Ck+1 whose respective
coordinates v = vk,i and w = wk+1,i satisfy

r

ε
< |v| < ε,

r

ε
< |w| < ε, vw = r.

Doing this for all k = 1, . . . , N and i = 1, . . . , nk defines a compact Riemann surface we
call Σ (r is the same for all necks and when k = N , k + 1 should be understood as 1).
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From the topological point of view, the genus of Σ is

G(Σ) = 1 +
N∑

k=1

(nk − 1).

We define the Gauss map g : Σ → C ∪ ∞ by

g(z) =




√
rgk(z) if z ∈ Ck, k even,

1√
rgk(z)

if z ∈ Ck, k odd.

To see that g is well defined on Σ, consider the coordinates v = vk,i and w = wk+1,i. If
k is even, then g =

√
r/v on Ck and g = w/

√
r on Ck+1. Both values of g agree when

vw = r. This proves that g has the same value at the two points that are identified when
defining Σ. The case k odd is similar. This proves that g is a well-defined meromorphic
function on Σ.

Remark 3.1. A more natural way to define Σ would be to use z as a local coordinate
instead of gk. Consider N copies of the Riemann sphere, and points ak,i, i = 1, . . . , nk,
and bk,i, i = 1, . . . , nk−1, in each sphere. Let v = z − ak,i and w = z − bk+1,i. Identify
points using the rule vw = rk,i, where rk,i is a small complex number depending on
the neck. This defines a compact Riemann surface Σ. The problem is that this does not
define a meromorphic function. The natural way to define g is to prescribe its zeroes
and poles, but then we have to check the conditions of Abel’s Theorem, which means
more equations to solve. When Abel’s conditions are not satisfied, g only exists as a
multi-valued function. Since we solve all equations at the same time (using the implicit
function theorem), we have to compute the periods of the Weierstrass data when Abel’s
conditions are not yet satisfied, which means that we have to compute the integrals of
multi-valued differentials.

So instead of defining the Riemann surface and then the Gauss map, we define both at
the same time. Instead of gluing Riemann spheres, we glue couples (Ck, gk). In fact, this
construction gives all possible candidates for the Weierstrass data of a minimal surface
satisfying Hypotheses 1.1 and 1.2. We will see this in § 8 when we prove Theorem 1.3.

3.2. The height differential

By standard Riemann surface theory [3, p. 228], the space of holomorphic differentials
on Σ is isomorphic to C

G (G is the genus of Σ). The isomorphism is given by integration
on the G curves A1, . . . , AG of a ‘canonical basis’ of the homology of Σ. Recall that
a canonical basis is a set of 2G closed curves A1, . . . , AG, B1, . . . , BG such that the
intersection numbers satisfy Ai · Bi = 1 and all other intersection numbers are zero.
We define a canonical basis as follows. Let Ak,i be the circle |vk,i| = ε in Ck oriented
positively (i.e. anticlockwise). Note that Ak,i is homotopic to the circle |wk+1,i| = ε in
Ck+1, oriented negatively, because v = εeiθ gives w = (r/ε)e−iθ. For i � 2, let Bk,i be
a closed curve in Σ which intersects Ak,1 with intersection number −1 and Ak,i with
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B1,2

B1,1

B3,2
B3,3

A3,2 A3,3

A1,2
A1,1

Figure 6. The Riemann surface in the case N = 4, n1 = 2, n2 = 1, n3 = 3, n4 = 1. The top and
bottom necks have to be identified. This surface has genus 4. We have represented the Riemann
spheres as planes so that the picture looks like the minimal surface we want to construct.

intersection number +1, and does not intersect any other A-curve or B-curve. Let B1,1

be a closed curve in Σ which intersects all curves Ak,1 with intersection number +1, and
does not intersect any other A-curve or B-curve. We will define these B-curves more
precisely in § 5.2 when we compute the periods of the Weierstrass data. The following
set of curves: A1,1, B1,1, Ak,i, Bk,i for k = 1, . . . , N and i = 2, . . . , nk form a basis of the
homology of Σ. Note that the number of these curves is 2 + 2

∑N
k=1(nk − 1) = 2G(Σ).

This is not a canonical basis because the intersection numbers A1,1 · B1,i are not right,
but replacing B1,i by B1,1 + B1,i gives a canonical basis.

Proposition 3.2. Consider some numbers γk,i, k = 1, . . . , N , i = 1, . . . , nk, such that
for any k,

nk∑
i=1

γk,i = 1. (3.2)

These are the remaining parameters of the construction. There exists a unique holomor-
phic differential η on Σ such that for any k = 1, . . . , N and i = 1, . . . , nk, one has∫

Ak,i

η = 2πiγk,i. (3.3)

Proof. There exists a unique holomorphic differential η on Σ such that (3.3) holds for all
curves Ak,i of the canonical basis. It remains to prove that (3.3) holds for the remaining
A-curves, namely Ak,1, k � 2. Consider the domain in Ck bounded by the curves Ak,i,
i = 1, . . . , nk, and Ak−1,i, i = 1, . . . , nk−1. Recall that Ak,i is a small circle around ak,i,
oriented positively, while Ak−1,i is a small circle around bk,i, oriented negatively. By the
Cauchy Theorem,

nk−1∑
i=1

∫
Ak−1,i

η =
nk∑
i=1

∫
Ak,i

η.
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The result follows by induction on k using that
∑

γk,i does not depend on k. The fact
that it is equal to 1 is a normalization. �

3.3. Parameters of the construction

We write αk = (αk,1, . . . , αk,nk
) and α = (α1, . . . , αN ). We define similarly β, γ, a and

b. Let X = (α, β, γ, a, b). The parameters of the construction are (r, X). We summarize
our hypotheses on the parameters: for each k, the numbers ak,i, bk,i are distinct; the
numbers αk,i, βk,i are non-zero and

nk∑
i=1

αk,i =
nk−1∑
i=1

βk,i =
nk∑
i=1

γk,i = 1. (3.4)

3.4. The equations

Let ∞k be the point z = ∞ in Ck. The points ∞1, . . . ,∞N will be the N punctures on
Σ, i.e the points corresponding to the planar ends. Note that thanks to (3.1), the Gauss
map has multiplicity at least two at ∞k, which is needed for a planar end. We recall
the conditions so that (Σ, g, η) are the Weierstrass data for a complete simply periodic
minimal surface with horizontal embedded planar ends.

(1) For any p ∈ Σ, not a puncture (i.e p 	= ∞k in our case) η has a zero at p if and
only if g has either a zero or a pole, with the same multiplicity. For each puncture
p ∈ Σ (i.e p = ∞k), g has a zero or a pole of multiplicity m � 2 at p; η has a zero
of multiplicity m − 2.

(2) For any closed curve c on Σ, Re
∫

c
φj = 0 mod Tj , j = 1, 2, 3, where T = (T1, T2, T3)

is the period of the surface.

The zeros and poles of g are the zeros of all gk. Recalling that dz has a double pole at
∞, the first condition may be written as follows.

(1′) The zeros of η are the zeros of gk dz, k = 1, . . . , N , with the same multiplicity. In
other words,

div0(η) =
N∑

k=1

div0(gk dz), (3.5)

where div0 means the formal sum of the zeros.

Remark 3.3. Note that by standard Riemann surface theory, the number of zeros of a
holomorphic differential is 2G(Σ)− 2, which is equal to the degree of the right-hand side
of (3.5). Hence an inequality in (3.5) implies equality.

Provided condition (1) is satisfied, φ1 and φ2 only have poles at the punctures ∞k.
Therefore condition (2) needs only be checked for the curves of the canonical basis and
for small circles around the punctures. Using the Residue Theorem as in the proof of
Proposition 3.2, condition (2) may be written as follows.

https://doi.org/10.1017/S147474800200004X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800200004X


Adding handles to Riemann’s minimal surfaces 159

(2′) For any j = 1, 2, 3, any k = 1, . . . , N and i = 1, . . . , nk,

Re
∫

Ak,i

φj = 0. (3.6)

For any j = 1, 2, 3, any k = 1, . . . , N and i = 2, . . . , nk,

Re
∫

Bk,i

φj = 0, (3.7)

Re
∫

B1,1

φj = Tj . (3.8)

Note that condition (2) only asks that these periods are zero modulo Tj . The above
choices are motivated by our picture a priori of the surface we want to construct. The
equations we have to solve are (3.5), (3.6) and (3.7). Equation (3.8) gives the period of
the minimal surface.

4. Holomorphic extension to r = 0

The definitions of Σ and g are very explicit, but the definition of η is not. One question
we need to answer is: where are the zeros of η? The key point to answer this question
is that when r → 0, the Riemann surface Σ degenerates. This allows us to compute the
limit of η when r → 0. When r = 0, we define Σ as the disjoint union C1 ∪ . . . CN and
η by η = ηk on Ck where ηk is the unique meromorphic differential on Ck with simple
poles at ak,i, bk,i with residues γk,i and −γk−1,i. Explicitly,

ηk =
( nk∑

i=1

γk,i

z − ak,i
−

nk−1∑
i=1

γk−1,i

z − bk,i

)
dz.

The problem is to prove that r �→ η is continuous at r = 0. This is true, but even better:
continuous may be replaced by holomorphic. For this we need to think of r as a complex
number. This does not change anything to the definition of Σ and η (this introduces
some multi-valuation in the definition of g but we will not consider g in this section). We
also fix the value of the parameter X.

Proposition 4.1. Let z ∈ Ck, z 	= ak,i, z 	= bk,i. Then r �→ η(z) is holomorphic in a
neighbourhood of 0.

It is important to realize that if z 	= ak,i and z 	= bk,i for all i, then for r small enough,
z is outside of the disks that were removed when constructing Σ, so z may be seen as a
point on Σ. Hence η(z) makes sense.

Proof of the proposition. This result is essentially proven in Fay [2, Proposition 3.7,
p. 51]. The difference is that in Fay, only one neck degenerates, whereas in our case, all
necks degenerate at the same time. To be able to use the result of Fay, we introduce
one parameter rk,i per neck. We define Σ as in § 3.1, identifying the points such that
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vk,iwk+1,i = rk,i when rk,i 	= 0. When rk,i = 0 we do not identify points. Thus we have a
compact Riemann surface Σ depending on complex parameters rk,i. We first prove that
η depends holomorphically on one rk,i (in the sense of the proposition) when all other
parameters rm,j , (m, j) 	= (k, i) have fixed value, rm,j 	= 0. We write r = rk,i, v = vk,i,
w = wk+1,i, a = ak,i, b = bk+1,i, Σr = Σ and ηr = η. Fay defines a complex analytic
2-manifold C together with a holomorphic function ρ : C → C whose fibre Cr = ρ−1({r})
is Σr if r 	= 0, and the fibre C0 is Σ0 with the points a and b identified: a degenerate
Riemann surface with a node (see the details on p. 50 of [2]). (The notation of Fay is
C = Σ0, za = v, zb = w and t = r.) He then proves (see [2, Proposition 3.7, p. 51],
quoted with our notation) that

there exists G linearly independent holomorphic 2-forms ωm,j on C whose
residues um,j,r along Cr for r in a sufficiently small disk about r = 0 are a
normalized basis for the holomorphic differentials on Σr if r 	= 0; while, for
r = 0, the G−1 differentials um,j,0, (m, j) 	= (k, i), are a normalized basis for
the holomorphic differentials on Σ0 and uk,i,0 is the normalized differential
of the third kind on Σ0 with simple poles of residue +1, −1 at a, b.

What Fay means by the residue along Cr of a holomorphic 2-form ω, is the Poincaré
residue of ω/(ρ − r). Namely, if z1, z2 are local coordinates on C, and ω = f(z1, z2) dz1 ∧
dz2, the Poincaré residue of ω/(ρ − r) is given by (see [3, p. 147]):

f(z1, z2) dz1

∂ρ/∂z2

∣∣∣∣
ρ=r

= −f(z1, z2) dz2

∂ρ/∂z1

∣∣∣∣
ρ=r

.

When r 	= 0, we may decompose

ηr = 2πi
∑
m,j

γm,jum,j,r,

where the summation is on the indices m, j such that Am,j is a curve of the canonical
basis. So ηr is the residue on Cr of the holomorphic 2-form

ω = 2πi
∑
m,j

γm,jωm,j .

From this we see that ηr depends holomorphically on r, and η0 is the meromorphic
differential on Σ0 with simple poles of residue +γk,i, −γk,i at ak,i and bk+1,i, and whose
integral on all curves Al,j is 2πiγl,j . So we have proven that for each (k, i), η depends
holomorphically on rk,i in a neighbourhood of 0, when all other rm,j have fixed non-
zero value. By Lemma 4.2 below, η depends holomorphically on all rk,i as a function
of several complex variables. In particular when all rk,i are equal, we have proven the
proposition. �

Lemma 4.2. Let D be the unit disk in C and D∗ = D \ {0}. Let f : (D∗)n → C be a
holomorphic function of n variables z = (z1, . . . , zn) such that for each i, for any zj ∈ D∗,
j 	= i, the function zi �→ f(z1, . . . , zn) extends holomorphically to D. Then f extends
holomorphically to Dn.
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Proof. Let 0 < r < 1 and D(r) be the disk of radius r. Let C < ∞ be the supre-
mum of |f(z)| on (∂D(r))n. Let z ∈ (D∗(r))n. The function z1 �→ f(z1, . . . , zn) extends
holomorphically to D(r) so its maximum is on the boundary:

|f(z)| � sup
z1∈∂D(r)

|f(z1, . . . , zn)|.

Repeating the process for each variable we find that |f(z)| � C so f is bounded on
(D∗(r))n. By the Riemann extension theorem [3, p. 9] f extends holomorphically to
D(r)n. �

Proposition 4.1 gives the limit of η away from the necks. The following proposition
gives the behaviour of η on the necks.

Proposition 4.3. Let v = vk,i. On the domain (|r|/ε) < |v| < ε of Σ, we have the
formula

η = f

(
v,

r

v

)
dv

v
= −f

(
r

w
, w

)
dw

w
,

where f is a holomorphic function of two complex variables defined in a neighbourhood
of (0, 0).

Proof. We continue with the notation of the previous proposition. All parameters are
fixed except r = rk,i. We use (v, w) as local coordinates on C and write ω = f(v, w) dv ∧
dw. The Poincaré residue is

ηr =
f(v, w) dv

(∂/∂w)(vw − r)

∣∣∣∣
vw=r

= f

(
v,

r

v

)
dv

v
.

This proves the formula of the proposition. �

5. Estimation of the periods

We use Propositions 4.1 and 4.3 to estimate the periods of η, gη and g−1η on the curves
Ak,i, Bk,i. The following proposition gives the leading term of each period when r → 0.
We obtain formulae involving gk and ηk, for which we have explicit formulae. In this
section we think of r as a real number. The reason for this is that the B-periods are
multi-valued functions of r when r is complex. This comes from the fact that one cannot
define Bk,i in a continuous way when r is complex. This multi-valuation is clear in our
formulae: we get log r terms.

Proposition 5.1. Let r > 0. Then∫
Ak,i

g(−1)k

η =
√

r(2πi Resak,i
gkηk + r holo(r, X)),

∫
Ak,i

g(−1)k+1
η =

√
r(−2πi Resbk+1,i

gk+1ηk+1 + r holo(r, X)),
∫

Bk,i

η = (γk,i − γk,1) log r + holo(r, X),
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Bk,i

g(−1)k

η =
1√
r

(∫ bk+1,1

bk+1,i

g−1
k+1ηk+1 + r log r holo(r, X) + r holo(r, X)

)
,

∫
Bk,i

g(−1)k+1
η =

1√
r

(∫ ak,i

ak,1

g−1
k ηk + r log r holo(r, X) + r holo(r, X)

)
.

In this proposition holo(r, X) means a holomorphic function of the complex variables
(r, X) in a neighbourhood of (0, X0), where X0 is any value of the parameters satisfy-
ing the conditions of § 3.3. In general the B-periods are multi-valued functions of the
parameter X. They are only locally well defined.

We prove this proposition in the following three sections.

5.1. The A-periods of g±1η

For the first formula we see Ak,i as the circle |vk,i| = ε in Ck. By definition, g(−1)k

=√
rgk. By Proposition 4.1, η = ηk + r holo(r, X, v) dv on Ak,i. Hence the first formula fol-

lows from the residue theorem. For the second formula we see Ak,i as the circle |wk+1,i| =
ε in Ck+1, oriented negatively. The second formula comes from g(−1)k+1

=
√

rgk+1 and
η = ηk+1 + r holo(r, X, w) dw on Ak,i.

5.2. The B-periods of η

Let Bk,i be the union of the following four paths c1, c2, c3, c4.

• c1 is a curve in Ck which goes from the point vk,1 = ε to the point vk,i = ε. It does
not depend on r, and we may choose it so that it depends continuously on X (if X

is in a neighbourhood of X0).

• c2 is the curve parametrized by vk,i = r/t for t ∈ [r/ε, ε]. It goes from the point
vk,i = ε to the point wk+1,i = ε.

• c3 is a curve in Ck+1 which goes from the point wk+1,i = ε to the point wk+1,1 = ε.

• c4 is the curve parametrized by wk+1,1 = r/t for t ∈ [r/ε, ε]. It goes from the point
wk+1,1 = ε to the point vk,1 = ε.

The integrals of η on c1 and c3 are holomorphic functions of (r, X) in a neighbourhood
of r = 0 because η depends holomorphically on (r, X) on these paths. To compute the
integral of η on c2 we use Proposition 4.3. We expand the function f of this proposition

f(v, w) =
∑

n�0,m�0

an,mvnwm.

We may assume that this series converges on |v| � ε, |w| � ε. Since vw = r this gives

η =
∑

an,mvn−1−mrm dv,∫
Ak,i

η = 2πi Resv=0

∑
an,mvn−1−mrm = 2πi

∑
n

an,nrn.
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Hence ∑
n

an,nrn = γk,i,

∫
c2

η =
∫ r/ε

v=ε

∑
an,mvn−1−mrm dv

=
∑

n

an,nrn log
r

ε2 +
∑
n �=m

an,m

n − m
(rnεm−n − rmεn−m)

= γk,i log r + holo(r, X).

When i = 1 this formula gives the integral of η on c4, with a minus sign because c4 is
oriented the other way. This proves the third formula of the proposition.

5.3. The B-periods of g±1η

We start with the integral of g(−1)k

η. For the paths c1 and c3 we only need Proposi-
tion 4.1.∫

c1

g(−1)k

η =
√

r

∫
c1

gkη =
√

r holo(r, X),∫
c3

g(−1)k

η =
1√
r

∫
c3

g−1
k+1η =

1√
r

(∫ wk+1,1=ε

wk+1,i=ε

g−1
k+1ηk+1 + r holo(r, X)

)
.

For the paths c2 and c4 we use Proposition 4.3 as in the previous section.

∫
c2

g(−1)k

η =
√

r

∫
c2

gkη =
√

r

∫ r/ε

v=ε

∑
n,m

an,mvn−m−2rm dv

=
√

r

(∑
m

am+1,mrm log
r

ε2 +
∑

n �=m+1

an,m

n − m − 1

(
rn−1

εn−m−1 − rm

εm+1−n

))

=
1√
r

(
r log r holo(r, X) + r holo(r, X) +

∑
m

a0,m

−m − 1
εm+1

)
.

The leading (i.e last) term is equal to

− 1√
r

∫ ε

w=0

∑
m

a0,mwm dw = − 1√
r

∫ ε

w=0
f(0, w) dw =

1√
r

∫ ε

wk+1,i=0
g−1

k+1ηk+1.

The integral on c4 gives the same result with the leading term equal to

1√
r

∫ 0

wk+1,1=ε

g−1
k+1ηk+1.

Collecting the four terms gives the fourth formula of the proposition. The proof of the
fifth formula is entirely similar. �
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6. Implicit function theorem

In this section, we prove Theorem 1.4 assuming that for each k, the zeros of gk dz are
simple. In § 9 we will see how to adapt the proof when gk dz is allowed to have multiple
zeros.

6.1. The map F
Let ζk,i be the zeros of gk dz in Ck, i = 1, . . . , nk + nk−1 − 2. We define:

F1,k,i = η(ζk,i).

As usual we write F1,k = (F1,k,1, . . . ,F1,k,nk+nk−1−2) and F1 = (F1,1, . . . ,F1,N ). Since
the simple zeros of a polynomial depend analytically on its coefficients, F1 depends
analytically on (r, X) by Proposition 4.1. Note that F1 = 0 only says that η has at least
a zero at each zero of gk. By Remark 3.3, each zero is simple and η has no other zero.

We now look at the period problem. By definition of η, the equation Re
∫

Ak,i
η = 0 is

equivalent to γk,i ∈ R, which we assume from now on. A straightforward computation
gives

Re
∫

φ1 + i Re
∫

φ2 =
1
2

(∫
g−1η −

∫
gη

)
.

In view of Proposition 5.1 we define:

F2,k,i =
1

log r
Re

∫
Bk,i

η, i = 2, . . . , nk,

F3,k,i =
√

r

(∫
Bk,i

g−1η −
∫

Bk,i

gη

)
, i = 2, . . . , nk,

F4,k,i =
(−1)k

√
r

(∫
Ak,i

g−1η −
∫

Ak,i

gη

)
, i = 1, . . . , nk.

The reason for the (−1)k in the definition of F4,k,i will be seen in Proposition 6.4. We
define the vectors F2, F3 and F4 in the obvious way and F = (F1,F2,F3,F4). The
equations of § 3.4 are equivalent to F = 0. What we have done is rescale the periods by a
suitable function of r so that by Proposition 5.1, F has a limit when r → 0. The problem
is that F2 and F3 are not differentiable with respect to r at r = 0. The problem comes
from the log r terms. We solve this problem by writing

r = r(t) = e−1/t2 , r(0) = 0, t ∈ R.

By Proposition 5.1, (t, X) �→ F is smooth in a neighbourhood of t = 0. Moreover, F(0, X)
is given explicitly by

F1,k,i = ηk(ζk,i),

F2,k,i = γk,i − γk,1,

F3,k,i = (−1)k conjk+1
(∫ ak,i

ak,1

g−1
k ηk

)
+ (−1)k conjk

(∫ bk+1,i

bk+1,1

g−1
k+1ηk+1

)
,

F4,k,i = 2πi(−1)k(conjk+1(Resbk+1,i
gk+1ηk+1) − conjk(Resak,i

gkηk)),
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where conj is the conjugation in C, i.e conjk(z) = z if k is even and conjk(z) = z̄ if k is
odd.

Proposition 6.1. Let {pk,i} be a balanced configuration. Define X0 by

αk,i = γk,i = βk+1,i = 1/nk,

ak,i = (−1)k conjk+1(pk,i),

bk,i = (−1)k conjk+1(pk−1,i).

Then F(0, X0) = 0. Conversely, if X is a solution to F(0, X) = 0, then X = X0 for some
balanced configuration {pk,i} (up to some identifications to be explained in the proof).
Moreover, if {pk,i} is a non-degenerate balanced configuration, then D2F(0, X0) is an
isomorphism (again, up to some identifications). By the implicit function theorem, for t

in a neighbourhood of 0, there exists a unique X(t) in a neighbourhood of X0 such that
F(t, X(t)) = 0.

The corresponding Weierstrass data give an immersed simply periodic minimal sur-
face with embedded planar ends. We will see in § 7 that it is embedded. We prove the
proposition in the next four sections.

Remark 6.2. Since r(−t) = r(t) we have F(t, X(−t)) = F(−t, X(−t)) = 0. By unique-
ness in the implicit function theorem, X(−t) = X(t). Hence t and −t give the same
minimal surface. Moreover, (dX/dt)(0) = 0 so X(t) = X0 + O(t2) = X0 + O(1/ log r).
This will be useful in § 7.

6.2. The equation F1 = 0 (zeros of η)

In the following sections we assume that r = 0. F1,k = 0 is equivalent to: gk dz and ηk

have the same zeros on Ck. Since they already have the same poles, they are proportional.
By normalization (3.4), they are equal. Thus F1 = 0 is equivalent to αk,i = γk,i and
βk,i = γk−1,i.

Proposition 6.3. Let

E =
{

(αk, βk) ∈ C
nk+nk−1

∣∣∣∣ ∑
αk,i =

∑
βk,i = 0

}
.

The partial differential of F1,k with respect to (αk, βk) is an isomorphism:

E → C
nk+nk−1−2.

Proof. Since F1,k is zero when αk = γk and βk = γk−1,

∂

∂αk,i
F1,k,j = − ∂

∂γk,i
F1,k,j =

−1
ζk,j − ak,i

,

∂

∂βk,i
F1,k,j = − ∂

∂γk−1,i
F1,k,j =

1
ζk,j − bk,i

.
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Let L be the partial differential of F1,k at the point (αk, βk). We prove L is one to one.
Assume that there exists (α̇k, β̇k) ∈ E such that L(α̇k, β̇k) = 0. We use dots to distinguish
between the point (αk, βk) where we compute the differential and the tangent vector
(α̇k, β̇k). Let

f(z) =
nk∑
i=1

α̇k,i

z − ak,i
−

nk−1∑
i=1

β̇k,i

z − bk,i
.

Then L(α̇k, β̇k) = 0 gives f(ζk,j) = 0. Since
∑

α̇k,i =
∑

β̇k,i, f has at least a double
zero at ∞. Hence f and gk have the same zeros and poles so we may write f = λgk. This
gives α̇k,i = λαk,i and β̇k,i = λβk,i. Since

∑
α̇k,i = 0 and

∑
αk,i = 1, we get λ = 0. �

6.3. The equation F2 = 0 (B-periods of η)

From the normalization
∑

γk,i = 1, we see that F2,k = 0 is equivalent to

γk,i = 1/nk.

6.4. The equation F3 = 0 (B-periods of φ1, φ2)

In this section we assume that F1 = 0 so ηk = gk dz. This gives

F3,k,i = (−1)k conjk+1(ak,i − ak,1) + (−1)k conjk(bk+1,i − bk+1,1).

So F3 = 0 is equivalent to

bk+1,i − bk+1,1 = − conj(ak,i − ak,1). (6.1)

6.5. The equation F4 = 0 (A-periods of φ1, φ2)

In this section we assume that F1 = 0. Then ηk = gk dz gives

F4,k,i = 2πi(−1)k+1 conjk(Resak,i
g2

k) + 2πi(−1)k conjk+1(Resbk+1,i
g2

k+1).

Expanding the squares and taking residues gives

F4,k,i = 4πi(−1)k+1 conjk
(∑

j �=i

αk,iαk,j

ak,i − ak,j
−

∑
j

αk,iβk,j

ak,i − bk,j

)

+ 4πi(−1)k conjk+1
(∑

j �=i

βk+1,iβk+1,j

bk+1,i − bk+1,j
−

∑
j

βk+1,iαk+1,j

bk+1,i − ak+1,j

)
.

The balancing condition of the introduction is hiding in this formula. To see it we need
to introduce the parameters pk,i. Let m = n1 + . . . nN . Given some complex numbers
pk,i, k = 1, . . . , N , i = 1, . . . , nk, let p ∈ C

m be the vector whose components are pk,i.
Given (T, p, q) ∈ C × C

m × C
m, define (a, b) by

ak,i = (−1)k conjk+1(pk,i + qk,1),

bk,i = (−1)k conjk+1(pk−1,i + qk,i),
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where pk+N,i = pk,i + T and qk+N,i = qk,i + T . Then

F3,k,i = −qk+1,i + qk+1,1.

Assuming that F3 = 0, we get

F4,k,i = −4πi
(

2
∑
j �=i

γk,iγk,j

p̄k,i − p̄k,j
−

∑
j

γk,iγk−1,j

p̄k,i − p̄k−1,j
−

∑
j

γk,iγk+1,j

p̄k,i − p̄k+1,j

)
.

Assuming that F2 = 0, we get
F4,k,i = −4πiFk,i,

where Fk,i is the force introduced in § 1.1. This proves the first statement of Proposi-
tion 6.1.

To prove the converse we need to do some identifications because F3 = 0 does not
imply q = 0. We first remark that F3 and F4 are not changed if we translate all ak,i, bk,i

(k fixed, i varying) by the same amount. In fact, the Weierstrass data themselves are not
affected by such a translation. Indeed, given some numbers λk, let ãk,i = ak,i + λk and
b̃k,i = bk,i + λk. Let (Σ̃, g̃, η̃) be the corresponding Weierstrass data. Then it is straight-
forward to check that the map ϕ : Σ → Σ̃, z ∈ Ck �→ z + λk is an isomorphism. Moreover,
ϕ∗g̃ = g and ϕ∗η̃ = η. Hence the two Weierstrass data are isomorphic, so define the same
minimal surface. So we make the following identification:

(a, b) ∼ (a′, b′) ⇐⇒ ∀k, ∃λk, ∀i, a′
k,i = ak,i + λk, b′

k,i = bk,i + λk.

Concerning p and q, we make the following identifications:

p ∼ p′ ⇐⇒ ∃λ, ∀k, ∀i, p′
k,i = pk,i + λ,

q ∼ q′ ⇐⇒ ∀k, ∃λk, ∀i, q′
k,i = qk,i + λk.

Then the map
(T, p, q) �→ (a, b)

is well defined and it is easy to see that it is an isomorphism, both spaces having the
same dimension

∑
(2nk −1). With these identifications, F3 = 0 gives q ∼ 0, which proves

the second statement of Proposition 6.1.
I claim that the partial differential of F with respect to the variables (α, β), γ, q, p

has the form 


I1 · 0 0
0 I2 0 0
· · I3 0
· · · I4


 ,

where I1, . . . , I4 are invertible linear operators, so it is invertible.
Let me first explain the zeros in this matrix. If αk = γk and βk = γk−1, then ηk = gk dz

whatever the values of a and b, hence F1 = 0. This explains the zeros in the first line.
The other zeros are clear.
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The fact that I1 is invertible is Proposition 6.3. I2 is clearly invertible, and so is I3

thanks to our identification on q. Up to a constant, I4 is the differential of F with respect
to p. The problem is that it is not onto because the sum of the forces is always zero. We
are saved by the following proposition which says that the same is true for F4.

Proposition 6.4.

∀(t, X),
N∑

k=1

nk∑
i=1

F4,k,i(t, X) = 0.

Proof. Consider the domain in Ck bounded by the curves Ak,i, i = 1, . . . , nk, and
Ak−1,i, i = 1, . . . , nk−1. If k is even, gη is holomorphic in this domain so by the Cauchy
Theorem

nk−1∑
i=1

∫
Ak−1,i

gη =
nk∑
i=1

∫
Ak,i

gη.

Hence
N∑

k=1

nk∑
i=1

(−1)k

∫
Ak,i

gη = 0.

In the same way, when k is odd, g−1η is holomorphic in this domain, which gives

N∑
k=1

nk∑
i=1

(−1)k

∫
Ak,i

g−1η = 0.

�

Hence we may see F4 as taking values in the subspace
∑

F4,k,i = 0. The non-
degeneracy condition gives that I4 is onto. Our identification on p gives that it is invert-
ible. This proves the claim and Proposition 6.1. �

Remark 6.5. At this point we have two free parameters t and T . So the implicit function
theorem gives a family of solutions depending on (t, T ). I claim, however, that varying T

does not give any new solution. To see this, let (Σ, g, η) be the Weierstrass data associated
to some value of the parameters r, α, β, γ, T , p and q. Let λ be a positive real number.
Let (Σ̃, g̃, η̃) be the Weierstrass data associated to the parameters r̃ = λ2r, T̃ = λT ,
p̃ = λp, q̃ = λq, all other parameters having the same value. It is easy to check that
ϕ : Σ → Σ̃, z �→ λz is an isomorphism. Moreover, ϕ∗g̃ = g and ϕ∗η̃ = η, so the two
Weierstrass data are isomorphic.

In the same way, let λ ∈ C such that |λ| = 1. Let T̃ = λT , p̃ = λp, q̃ = λq, r̃ = r. Then
ϕ : Σ → Σ̃, z ∈ Ck �→ conjk+1(λ)z is an isomorphism, ϕ∗g̃ = λg and ϕ∗η̃ = η. So up to a
rotation of angle arg λ, the two minimal surfaces are the same. As a conclusion we may
as well fix the value of T (equal to the period of the given balanced configuration).
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7. Embeddedness

In this section, we prove that the minimal surface we obtained in the previous section
is embedded. This will conclude the proof of Theorem 1.4. Given t > 0, let (Σ, g, η) be
the Weierstrass data given by Proposition 6.1 and ψ : Σ → R

3 be the corresponding
immersion. Recall that r = e−1/t2 . We write

ψ(z) = (horiz(z), height(z)) ∈ C × R ∼ R
3.

Proposition 7.1. There exists a constant C, not depending on t, such that the following
statements are true.

(1) For any point z in Ck such that ∀i, |vk,i| > ε, |wk,i| > ε,

| height(z) − height(∞k)| � C.

(2) For any point z in Ck such that (r/ε) < |vk,i(z)| < ε,∣∣∣∣height(z) − height(∞k) − 1
nk

log |vk,i(z)|
∣∣∣∣ � C.

(3) ∣∣∣∣height(∞k+1) − height(∞k) − 1
nk

log r

∣∣∣∣ � C.

(4) Let Pk,i ∈ Σ be the point such that vk,i =
√

r. (This is the point on the neck where
g = 1.) Then

2
√

r(horiz(Pk,j) − horiz(Pk,i)) → (−1)k conjk+1(ak,j − ak,i) = pk,j − pk,i,

2
√

r(horiz(Pk,j) − horiz(Pk−1,i)) → (−1)k conjk+1(ak,j − bk,i) = pk,j − pk−1,i.

Hence we may translate the surface so that,

∀k, ∀i, 2
√

r horiz(Pk,i) → pk,i.

(5) Let 0 < σ < 1
2 . The image of the domain r1−σ < |vk,i| < rσ converges (up

to translation) to a catenoid with necksize 2π/nk. Moreover, it is included in a
vertical cylinder with radius rσ−(1/2)/nk.

(6) The period of ψ is

T = Re
∫

B1,1

φ �
(

T

2
√

r
,

( N∑
k=1

1
nk

)
log r

)
.

Proof. The proof of this proposition is straightforward computations similar to those
of § 5. We omit the details. �
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End of proof of Theorem 1.4. It is now easy to prove embeddedness. Let σ > 0 be
a small number. Consider the horizontal slab of R

3:

height(∞k+1) +
σ

nk
| log r| � x3 � height(∞k) − σ

nk
| log r|.

By point (3) these slabs (for varying k) are disjoint. Let z ∈ Σ such that ψ(z) is in this
slab. If r is small enough, z has to be in the domain of point (2) for some i. Moreover
(up to some bounded terms that we can safely neglect),

height(∞k) +
1 − σ

nk
log r � height(∞k) +

1
nk

log |vk,i| � height(∞k) +
σ

nk
log r,

r1−σ < |vk,i(z)| < rσ.

So z is in the domain of point (5). The images of these domains (for varying i) are
contained in disjoint vertical cylinders by point (4). Hence the intersection of the surface
with the slab under consideration has nk disjoint components, each converging to a
catenoid. So it is embedded. Consider the horizontal slab

height(∞k) − σ

nk
| log r| � x3 � height(∞k) +

σ

nk
| log r|.

Let z ∈ Σ such that ψ(z) is in this slab. Then z ∈ Ck and satisfies |vk,i| � rσ, |wk,i| � rσ

for all i. Hence |g(z)| 	= 1 so the Gauss map is never horizontal on this domain. On the
boundary, the surface is a graph since it converges to a catenoid. In a neighbourhood of
infinity, the surface is also a graph since we have an embedded planar end. This implies
that the intersection of the surface with the slab under consideration is a graph above the
horizontal plane, hence embedded. Since these slabs cover all of R

3, this proves that the
surface is embedded. Proposition 7.1 implies that the surface, scaled by 2

√
r, satisfy the

Hypotheses 1.1 and 1.2. In particular point (4) says that pk,i is the asymptotic position
of the neck. The uniqueness statement in Theorem 1.4 comes from the uniqueness in the
implicit function theorem, and the fact that the Weierstrass data of a family of minimal
surface satisfying our hypotheses may be written as in § 3. We will see this in the next
section. This concludes the proof of Theorem 1.4.

8. Proof of Theorem 1.3

Our strategy is to prove that if Mt satisfies the hypotheses of the introduction, we may
write its Weierstrass representation as in § 3, and then use Proposition 6.1.

Without loss of generality we may assume that Ωk,t, Uk,i,t are closed domains with
disjoint interiors. Let gt be the Gauss map of Mt. We may assume that gt(∞k) is equal to
0 if k is even and ∞ otherwise. First assume that k is odd and consider the planar domain
Ωk,t. By Hypothesis 1.2 (a), gt converges to ∞ on this domain. Consider the domain Uk,i,t

and the circle (∂Uk,i,t) ∩ Ωk,t. The Gauss map sends this circle to a small circle near ∞
in C ∪ ∞. Let Dk,i,t be the disk bounded by this circle, containing 0. Glue this disk to
Ωk,t by identifying the point p ∈ ∂Uk,i,t with gt(p) ∈ ∂Dk,i,t. Do the same for the circles
(∂Uk−1,i,t) ∩ Ωk,t. Let Ω̃k,t be the resulting genus zero compact Riemann surface. Let
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λt be the scaling factor of Hypothesis 1.2 (c), i.e such that the necksizes of λtMt have
non-zero limits. We define a meromorphic function gk,t on Ω̃k,t by gk,t = 2λt/gt in Ωk,t

and gk,t = 2λt/z in each disk. So gk,t has one simple pole in each disk. Now we would
like to write gk,t as in § 3.1 but for this we need to identify Ω̃k,t with C ∪ ∞. In other
words, we need to define a global coordinate z : Ω̃k,t → C ∪ ∞ (not to be confused with
the z coordinate on the disks above).

We choose z as follows. Let πt : Ωk,t → R
2 be the projection to the horizontal plane.

Since gt � ∞ on Ωk,t, πt is close to be an orientation preserving isometry. We choose
z such that πt � −z on Ωk,t. (The minus sign is here so that the notation agrees with
the rest of the paper.) To prove that this is possible, we use quasiconformal mappings as
follows. It is well known that we may prescribe the value of z at three points. Let ζ1, ζ2

be two points in πt(Ωk,t). We define z = −z′, where z′ is uniquely defined by{
z′(π−1

t (ζi)) = ζi, i = 1, 2,

z′(∞k) = ∞.

By the analytic definition of quasiconformal mappings (see [4, p. 168]) πt is Kt-quasi-
conformal on Ωk,t with Kt → 1. Hence z′◦π−1

t is also Kt-quasiconformal. Let ζ ∈ πt(Ωk,t).
Consider the quadrilateral Q = (ζ1, ζ2, ζ,∞). By the geometric definition of quasicon-
formal mappings (see [4, p. 16]), the conformal modulus of z′◦π−1

t (Q) converges to the
modulus of Q. Since these quadrilaterals already agree at three points, this means that
z′◦π−1

t (ζ) → ζ. This proves that πt � −z on Ωk,t. We may write

gk,t =
nk∑
i=1

αk,i,t

z − ak,i,t
−

nk−1∑
i=1

βk,i,t

z − bk,i,t
.

Here z = ak,i,t is the pole in the disk Dk,i,t. By Hypothesis 1.2 (b), πt(∂Dk,i,t) is contained
in a disk whose radius goes to 0 and whose centre converges to pk,i. Hence ak,i,t → −pk,i

and in a similar way, bk,i,t → −pk−1,i. To see that αk,i,t and βk,i,t have non-zero limits,
let ηt be the height differential of λtMt. The necksize of λtUk,i,t is the imaginary part of∫

Ak,i
ηt. Since the real part is zero, we may write∫

Ak,i

ηt = 2πiγk,i,t,

where γk,i,t is real and has a non-zero limit γk,i by Hypothesis 1.2 (c).
Since gt � ∞ on Ωk,t we have dπt � − 1

2gtηt � −dz,

ηt = 2g−1
t (1 + εt(z)) dz =

1
λt

gk,t(1 + εt(z)) dz,

where εt(z) converges uniformly to 0. Integrating on a representative of Ak,i contained
in Ωk,t, we find

2πiγk,i,t = 2πiαk,i,t +
∫

Ak,i

εt(z)
(∑

j �=i

αk,j,t

z − ak,j,t
−

∑
j

βk,j,t

z − bk,j,t

)
dz.
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It is easy to see from this formula that αk,i,t → γk,i and similarly, βk,i,t → γk−1,i. It
remains to see that αk,i,t, βk,i,t and γk,i,t satisfy the normalization (3.4). Since the flux is
homology invariant,

∑nk

i=1 γk,i,t does not depend on k. Hence we may assume it is equal
to 1 by choosing suitably λt. Since gt has at least a double pole at ∞k, we also have∑

αk,i,t =
∑

βk,i,t. Since αk,i,t → γk,i, this sum converges to 1. Note that αk,i,t is the
residue at ak,i,t of gk,t dz, so depends on the choice of the coordinate z. By multiplying
z by a suitable constant (converging to 1), we can assume that

∑
αk,i,t = 1. When k is

even, the above definitions have to be changed as follows. gk,t = (gt/2λt) and πt � z̄ (πt

reverses orientation when g � 0). The construction of § 3 with
√

r = (1/2λt) gives back
the Weierstrass data of λtMt (the notation is the same up to the indices t). Note that
λt → ∞ implies that r → 0. Since the period problem is solved for Mt, Proposition 6.1
implies that γk,i = 1/nk and pk,i is a balanced configuration. �

9. The case of multiple zeros

In this section we remove the restriction that gk dz has simple zeros (see the beginning
of § 6). We only have to change the definition of the map F1. The problem is that gk dz

might have a multiple zero for some value of the parameter X, and simple zeros for
nearby values of X, so we have to define F1 without knowing a priori the multiplicity of
the zeros. The following lemma is useful:

Lemma 9.1. Let P be a polynomial of degree n in C. Let Ω be a bounded domain in
C containing all the zeros of P . Let f be a holomorphic function on Ω. Let

Fk =
∫

∂Ω

P (k)f

P
, k = 1, . . . , n.

Then Fk = 0, k = 1, . . . , n, if and only if P divides f in the ring of holomorphic functions
on Ω, i.e f/P is holomorphic in Ω.

Proof. It is well known (see [3, p. 11]) that we may write f = Ph + Q, where h is
holomorphic on Ω and Q is a polynomial with deg(Q) < deg(P ). In fact, h and Q are
given by contour integration

h(z) =
1

2πi

∫
∂Ω

f(w) dw

P (w)(w − z)
,

Q(z) =
1

2πi

∫
∂Ω

f(w)(P (w) − P (z)) dw

P (w)(w − z)
.

We want to prove that Q = 0. Using the Cauchy Theorem we get

Fk =
∫

∂Ω

P (k)Q

P
.

By the residue theorem on the complementary of Ω,

Fk = −2πi Res∞
P (k)Q

P
dz.
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Let w = 1/z. The fraction P (k)/P has a zero of multiplicity k at ∞ so we may write

P (k)

P
=

∞∑
ν=k

ak,νwν with ak,k 	= 0,

Q =
n∑

µ=1

bµzµ−1,

Fk = 2πi Resw=0

∞∑
ν=k

n∑
µ=1

ak,νbµwν−µ−1 = 2πi
n∑

µ=k

ak,µbµ.

The system of n equation Fk = 0 in the unknowns bµ is triangular with non-zero coeffi-
cients ak,k on the diagonal, so bµ = 0 and Q = 0. �

First assume that gk only has a double zero at infinity, for X in a neighbourhood of
X0. We define F1,k as follows. Let Ω be a bounded domain in C which contains the zeros
of gk dz and none of its poles. Let

P (z) = gk(z) ×
nk∏
i=1

(z − ak,i) ×
nk−1∏
i=1

(z − bk,i).

P is clearly a polynomial and since gk has a double zero at infinity, P has degree nk +
nk−1 − 2. Also P and gk dz have the same zeros. Define F1,k by

F1,k,i =
∫

∂Ω

P (i)η

P
, i = 1, . . . , nk + nk−1 − 2.

By Lemma 9.1, F1,k = 0 if and only if η/gk is holomorphic in Ω which is what we want.
When gk has more than a double zero at infinity, we first do an inversion so that the
zeros of gk dz are in a bounded domain and we define F1,k in a similar way.

Proof of Proposition 6.3 in the general case. It remains to prove Proposition 6.3
with this new definition of F1,k. We write D for the partial differential with respect to
the variables (αk, βk). Let (α̇k, β̇k) ∈ E such that DF1,k(α̇k, β̇k) = 0. We compute

DF1,k,i(α̇k, β̇k) =
∫

∂Ω

DP (i)(α̇k, β̇k)η
P

−
∫

∂Ω

P (i)DP (α̇k, β̇k)η
P 2 .

Since we compute the differential at a point where F1 = 0, η/P is holomorphic so the first
integral vanishes by the Cauchy Theorem. By Lemma 9.1, the vanishing of the second
integral for all i implies that P divides ηDP (α̇k, β̇k)/P as holomorphic functions in Ω.
Since η/P has no zero in Ω, this means that P divides DP (α̇k, β̇k) as polynomials, and
since they have the same degree, we may write DP (α̇k, β̇k) = λP . Since (αk, βk) �→ P is
linear, this implies that α̇k,i = λαk,i and β̇k,i = λβk,i. From

∑
α̇k,i = 0 and

∑
αk,i = 1,

we get λ = 0. Hence α̇k = β̇k = 0. This proves Proposition 6.3. �
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