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We use a log-normal framework to examine the effect of preferences on the market price
for risk, that is, the Sharpe ratio. In our framework, the Sharpe ratio can be calculated
directly from the elasticity of the stochastic discount factor with respect to consumption
innovations as well as the volatility of consumption innovations. This can be understood
as an analytical shortcut to the calculation of the Hansen–Jagannathan volatility bounds,
and therefore provides a convenient tool for theorists searching for models capable of
explaining asset-pricing facts. To illustrate the usefulness of our approach, we examine
several popular preference specifications, such as CRRA, various types of habit formation,
and the recursive preferences of Epstein–Zin–Weil. Furthermore, we show how the
models with idiosyncratic consumption shocks can be studied.
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1. INTRODUCTION

The literature generated by Mehra and Prescott’s (1985) observation of the equity
premium puzzle is enormous. Kocherlakota (1996) provides an excellent summary.
He surveys a variety of plausible explanations but concludes that no satisfactory
solution has been found yet. One possible avenue proposed by many is the search
for the “right” preferences. Mehra and Prescott (1985) considered time-separable
CRRA preferences, but subsequent authors have suggested alternatives. Two lead-
ing candidates are habit formation, following Constantinides (1990), Abel (1990),
and many others, and recursive preferences, as in Epstein and Zin (1989, 1991)
and Weil (1991).

We thank Parantap Basu, Paul Söderlind, two anonymous referees, and seminar participants at Carnegie-Mellon,
Columbia, Mannheim, Montreal, NYU (Economics), NYU (Stern), and Ohio State for useful comments and Matt
Darnell for editorial assistance. The views are those of the author(s) and do not necessarily reflect those of the Federal
Reserve Bank of New York or the Federal Reserve System. Any errors and omissions are the responsibility of the
authors. Address correspondence to: Martin Lettau, Federal Reserve Bank of New York, Research Department—3E,
33 Liberty Street, New York, NY 10045, USA; e-mail: Martin.Lettau@ny.frb.org.

c© 2002 Cambridge University Press 1365-1005/02 $9.50 242

https://doi.org/10.1017/S1365100502031036 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100502031036


SHARPE RATIO AND PREFERENCES 243

Hansen and Jagannathan (1991) have provided a popular framework, linking
preferences and the process of consumption to the market price of risk (or the
Sharpe ratio). We use a lognormal framework to study this link. Here, the Sharpe
ratio can be calculated directly from the elasticity of the stochastic discount factor
with respect to consumption innovations as well as the volatility of consumption
innovations. This can be understood as an analytical shortcut to the calculation of
the Hansen–Jagannathan volatility bounds, summarizing much of the information
of these bounds in a single and easy-to-compute parameter. The paper thereby
provides a convenient tool for theorists searching for models capable of explaining
asset-pricing facts. We compute the elasticity of the stochastic discount factor to
consumption innovations for a number of popular preference specifications and
relate it to standard preference parameters such as risk aversion and the elasticity
of intertemporal substitution.

In the case of time-separable CRRA preferences, the stochastic-discount-factor
elasticity is equal to the parameter of relative risk aversion (RRA) and the inverse
of the elasticity of intertemporal substitution (EIS). These links are broken for
more general preferences. For preferences with habit formation, the stochastic-
discount-factor elasticity is still the inverse of the EIS but is decoupled from
the RRA. In other words, there is no direct link between risk aversion and risk
premia once a habit is included in preferences. Risk premia depend only on the
EIS. For recursive Epstein–Zin–Weil preferences, the picture is exactly reversed.
The stochastic-discount-factor elasticity is equal to RRA and delinked from the
EIS. These examples show that, in general, neither RRA nor EIS completely
characterizes the Sharpe ratio.

Our analysis is based on two important assumptions. First, we assume that all
relevant random variables (such as innovations in log consumption and log asset re-
turns) are conditionally lognormal. Second, we assume that the stochastic discount
factor associated with the preferences under consideration (henceforth we will call
this object PSDF, for preference-based stochastic discount factor) can be approxi-
mated in a loglinear form. Of course, neither assumption is innocuous. Lognormal-
ity has a long tradition in asset pricing, going back to at least Hansen and Singleton
(1982), but it is restrictive—as shown, for example, by Rubinstein (1976) and Fer-
son (1983). However, to obtain analytical expressions as in this paper, some para-
metric assumptions must be made. Note that the lognormal framework has proved
to be successful in empirical implementations of volatility bounds; see, for exam-
ple, Cecchetti et al. (1994) and Balduzzi and Kallal (1997). Bansal and Lehmann
(1997) compute growth-optimal bounds on the mean of the stochastic factors us-
ing lognormal asset returns. Concerning the second assumption of loglinearity,
note that the PSDF for the benchmark case of time-separable CRRA preferences
is linear in log consumption growth. However, the PSDF for some more general
preferences has to be approximated (e.g., by habit formation). The accuracy of the
approximation generally will depend on specific values of the habit parameters.

Our log-normal Sharpe ratio framework can be used as a diagnostic tool for pref-
erences in the following way: The standard deviation of consumption innovations is
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about 0.56% in quarterly postwar data. Using the S&P 500 Index as a proxy for the
true market portfolio yields an observed Sharpe ratio of about 0.27 (=2%/7.5%)

per quarter. Our model implies that the elasticity of the PSDF with respect to
innovations in consumption must be around −50 to generate a Sharpe ratio of
0.27. For time-separable CRRA preferences, this means that a coefficient of
relative risk aversion of 50 is required. This is, of course, just a restatement
of the original Mehra–Prescott observation. The interesting implication is that
the observation that PSDF elasticity must be around −50 holds for any prefer-
ence specification to which our framework applies, not only for time-separable
CRRA preferences. Hence the search for preferences that generate a high enough
Sharpe ratio can be reduced to a search for preferences with a PSDF elasticity
of −50.

Our framework is a parametric version of Hansen and Jagannathan’s (henceforth
HJ) (1991) volatility bounds. They identify conditions of the first two moments of
the PSDF under which a set of preferences is consistent with asset returns. They
show that the HJ diagram for excess return has an isomorphic representation in
the mean–standard deviation return diagram. In particular, their PSDF conditions
(using excess asset returns) can be rephrased in terms of the Sharpe ratio. Our
lognormal Sharpe ratio framework is a parametric version of the HJ bounds for ex-
cess returns, and we thus obtain a closed-form expression for the Sharpe ratio. This
provides a convenient tool for obtaining additional insights about the connection
among preferences and the Sharpe ratio.1

Finally, we discuss a second difficulty in explaining the equity premium ob-
servation. Suppose that some preference specification generates a Sharpe ratio of
0.27. The equity premium is equal to or smaller than this ratio multiplied by the
volatility of excess returns. Dividend processes used in the theoretical literature are
often not volatile enough to match the observed excess return volatility, and fail to
explain the excess volatility observation of Shiller (1981). In summary, explaining
the equity premium observation puzzle requires explaining the Sharpe ratio puzzle
by choosing appropriate preferences, and explaining the return volatility puzzle
by choosing the appropriate dividend process.

Many of the issues raised in this paper are also mentioned in the excellent
survey article by Cochrane (1997). He also stresses the importance of the Sharpe
ratio as a general measure risk–return trade-off in a given model. His back-of-the-
envelope calculations about the required level of risk aversion in order to achieve
a reasonable Sharpe ratio are similar to those presented in this paper. Our paper
complements his work and provides additional insights into the dependence of the
Sharpe ratio on preferences.

The remainder of the paper is organized as follows: Section 2 shows the decom-
position of risk premia into the Sharpe ratio and dividends. Section 3 studies some
preference specifications that have been proposed in the literature using our decom-
position. Section 4 shows that applying volatility bounds in incomplete-markets
settings can be misleading, and Section 5 concludes.
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2. RISK PREMIA, HANSEN–JAGANNATHAN BOUNDS, AND THE
SHARPE RATIO

The starting point of our analysis is the Lucas (1978) asset-pricing equation

Et [Mt+1 Rt+1] = 1, (1)

where Et [·] is the conditional expectation at time t ; Mt+1 is a function of past,
present, and future consumption of the agent, and Rt+1 is the gross return on some
asset from period t to t + 1 given by

Rt+1 = Pt+1 + Dt+1

Pt
, (2)

where Pt denotes the price in period t after paying dividends Dt . Let Rr p denote
risk premia, that is, returns in excess of the risk-free rate R f . Mt+1 is the preference-
based stochastic discount factor, which one might think of as a generalized version
of the intertemporal marginal rate of substitution. In fact, it coincides with the
intertemporal marginal rate of substitution for the standard case of a time-separable
utility function.

The asset pricing equation (1) implies bounds on the first and second conditional
moments of returns and the PSDF:

Et
[
Rr p

t+1

]
σt

[
Rr p

t+1

] = −Corr
[
Rr p

t+1, Mt+1
] σt [Mt+1]

Et [Mt+1]

≤ σt [Mt+1]

Et [Mt+1]
≡ S Rmax

t . (3)

This inequality says that the ratio of the expected return to the expected standard
deviation of any asset is bounded from above by the ratio of the conditional standard
deviation of the PSDF and its conditional mean. In other words, the maximal
Sharpe ratio implied by a given PSDF is equal to the standard deviation of the
PSDF divided by the conditional mean. Building on Shiller (1982), Hansen and
Jagannathan (1991) provide a comprehensive analysis of this volatility bound,
allowing for many risky assets and no riskless asset and derive implications of
the restriction that the PSDF must be positive. They plot the volatility bounds in
diagrams with σt [Mt+1] and Et [Mt+1] on the axes.

In this paper, we provide a parametric version of the HJ bounds. For our purposes,
it turns out that it is more convenient to recast the volatility bounds in the familiar
mean–standard deviation diagram of returns. Since the HJ bounds contain the
same information as the mean–standard deviation frontier, these two approaches
are equivalent.2 Next, we make a parametric assumption to derive a closed-form
expression for σt [Mt+1]/Et [Mt+1] in (3). After obtaining such an expression,
we use observed data on asset returns to compute Et [Rr p

t+1]/σt [Rr p
t+1] and check

whether the maximum Sharpe ratio is consistent with actual returns.
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To proceed with our analysis, it is useful to utilize a loglinear lognormal frame-
work; see, for example, Hansen and Singleton (1982). Although this distributional
assumption is not without controversy, it represents a good starting point to obtain
more analytical insights into the mechanism of volatility bounds and risk premia.
Assume that consumption Ct is one-dimensional and let lowercase letters denote
the logarithm of a variable; for example, ct = log Ct . We can decompose log
consumption into its conditional expectations and its innovation

ct+1 = Et ct+1 + εt+1. (4)

For the rest of the paper, we make the following assumptions.

Assumption 1. All relevant random variables are lognormaly distributed. For
example, innovations in log consumption are normal: εt ∼ N (0, σ 2

ε,t ).

Note that the variance is allowed to change over time; this allows for GARCH,
stochastic volatility, or square-root processes, for example.

Assumption 2. The innovation to the log of the PSDF only depends on the
innovation to the log of consumption:

mt+1 − Et mt+1 = ηmε,t+1εt+1, (5)

where mt+1 = log Mt+1.
This assumption follows if preferences are time separable and only depend

on consumption. The assumption also follows for nonseparable preferences, if
consumption is a martingale. If preferences depend only on consumption, but are
nonseparable, and consumption is not a martingale, equation (5) generally does
not hold. Instead, one needs to calculate

mt+1 − Et [mt+1] =
∞∑
j=1

ηmε, j,t+1νt+1, j

where
νt+1, j = Et+1[ct+ j ] − Et [ct+ j ],

is the news at date t + 1 about consumption at date t + j and ηmε, j,t+1 are the
corresponding elasticities of the stochastic discount factor. Working with this ex-
pression is very cumbersome, and so , we stick to (5) above. The assumption also
rules out cases in which the PSDF depends, for example on innovations to leisure
or on a multidimensional vector of consumption innovations. Nonetheless, the as-
sumption is in line with much of the CCAPM literature. Likewise, some restriction
like the martingale assumption for consumption is also necessary for the compu-
tation of HJ bounds when preferences are not time separable; see Cochrane and
Hansen (1992). So, Assumption 2 applies broadly enough to be useful.

The PSDF elasticity ηmε,t is determined by preferences. For time-separable
CRRA preferences, we have mt+1 = −γ�ct+1, whereγ is the coefficient of relative
risk aversion. Hence ηmε,t = −γ . 3 In Section 3, we compute the decomposition (5)
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for more general preferences that have been suggested in the literature (e.g., habit
formation and Epstein–Zin–Weil nonrecursive preferences). In many of these cases
the connection between risk aversion and ηmε breaks down. In principle we allow
for time-variable elasticities; see Campbell and Cochrane (2000) for an example
in which this feature is important. For convenience of notation, we shall soon drop
the time subscripts for all elasticities and variances and simply point out when
time variation is important.

Let rt+1 = logRt+1 be the continuously compounded return of some asset. We
decompose its news into a component that is proportional to the consumption news
εt+1 and an orthogonal component ωt+1:

rt+1 − Etrt+1 = ηrεεt+1 + ωt+1, (6)

where ωt+1 is normally distributed with Et [εt+1ωt+1] = 0 and σ 2
ω = Etω

2
t+1.

Using the normality assumption, we can use the log version of the Lucas equa-
tion (1) to express the expected return of an asset as4

Etrt+1 + η2
rεσ

2
ε

/
2 = −Et mt+1 − η2

mεσ
2
ε

/
2. (7)

For the log-risk-free rate r f
t+1, we set ηrε = σ 2

ω = 0. Conditional risk premia
rr p

t+1 can be computed from (7):

Etr
r p
t+1 ≡ Etrt+1 − r f

t+1 + η2
rεσ

2
ε

/
2 = −Covt (rt+1, mt+1) (8)

= −ηmεηrεσ
2
ε , (9)

which is the consumption CAPM (CCAPM) written in logs.5

Under our lognormal assumption we find the following closed-form solution
for the maximal Sharpe ratio. Since the PSDF is assumed to be lognormal, the
volatility bound (3) implies

SRmax
t = (

eσ 2
m,t − 1

)1/2
(10)

≈ −ηmεσε, (11)

where σ 2
m,t denotes the conditional variance of the log PSDF.6 We can therefore

rewrite expected risk premia as

Etr
r p
t+1 = SRmax

t ηrεσε. (12)

This expressions shows that preferences affect risk premia only through the Sharpe
ratio. Given the Sharpe ratio, the expected risk premium of an asset only depends
on the elasticity of the asset return with respect to the consumption innovation and
the conditional standard deviation of consumption.

As explained previously, the Sharpe ratio can be used as a diagnostic test for
preferences similar to the HJ bounds. Using the S&P500 as a proxy for the true
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market portfolio, the Sharpe ratio is 0.27 (=2%/7.49%) in quarterly postwar data.7

In Appendix A.1, we report a more detailed account of the Sharpe ratio in postwar
data, including subperiods and a variety of other assets. Our benchmark value
0.27 appears to be a reasonable lower bound. It is also in line with other studies,
for example, that by MacKinlay (1995), who advocates a quarterly Sharpe ratio of
0.3.8 The standard deviation of consumption innovation σε is 0.56% (using postwar
Citibase data). This implies, according to (11), that the elasticity of the PSDF with
respect to consumption innovations −ηmε must be 48. For time-separable CRRA
preferences, this translates into γ = 48 for the coefficient of relative risk aversion.9

This is, of course, nothing more than a restatement of equity premium puzzle and
the inability of CRRA preferences to enter the HJ bounds for low risk aversion.
The advantage of this framework is that (11) holds for many different types of
preferences. In other words, for a specific preference specification to be consistent
with a Sharpe ratio of 0.27, its implied −ηmε has to be (at least) 48. The following
section shows how −ηmε can be computed for a variety of different preferences.10

For time-separable CRRA preferences, higher risk aversion is associated with a
more volatile PSDF causing an upward shift in the HJ diagram.11 The correspond-
ing picture is shown in Figure 1, which displays the capital market line (CML) for
CRRA preferences. The slope of the CML is just γ σε . Fixing the risk-free rate at
its postwar average of 0.24%, Figure 1 shows that the CML is not steep enough
for γ = 25 to include the S&P500 Index. As we increase γ , the CML becomes
steeper and the Sharpe ratio increases. For γ = 50, the CML includes the S&P
point. The increase in the slope of the CML corresponds to an upward shift in the
HJ diagram. Both approaches can be used to assess whether a certain preference
specification is consistent with asset returns. The advantage of the HJ bounds is
that, in addition to being nonparametric, they also incorporate information about
the mean of the PSDF. Our lognormal model yields instead a simple closed-form
expression for the Sharpe ratio. Instead of computing and plotting the HJ bounds

FIGURE 1. Conditional mean–standard deviation frontier implied by time-separable CRRA
preferences with γ = 25 and γ = 50; σε is set to 0.56%; the slope of the CML is given
by γ σε .
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for different preferences (and parameters), all that is needed for the Sharpe ratio
is the preference parameter ηmε .

Using the lognormal framework just laid out, we can decompose the equity
premium puzzle into two distinct pieces as follows12:

1. Explaining the Sharpe ratio of at least 0.27 [see equation (11)]. This requires finding a
preference specification that generates−ηmε = 48 when using aggregate consumption
data.

2. Explaining why the component of equity returns that is perfectly correlated with
consumption has a volatility of 7.49% [equation (12)]. This requires an ηrε of 13.4
for equity [again using aggregate consumption and (6)].

In other words, the equity premium puzzle decomposes into a purely preference-
based Sharpe ratio puzzle (part 1) and a purely asset-based volatility puzzle (part 2).
We have already seen that solving the Sharpe ratio puzzle with standard CRRA
preferences requires high levels of risk aversion. A simple calculation shows that
the volatility part of the equity premium is indeed also puzzling.

Suppose we have found preferences that produce a Sharpe ratio of 0.27 as in the
data. Consider a one-period claim with Dt = Cξ

t . In the usual Lucas tree-economy,
ξ = 1; in a more general setting, ξ can be interpreted as a leverage ratio [as in
Campbell (1986)]. To generate the same return volatility as in the data requires a
ξ of 13.4 even given a Sharpe ratio of 0.27. Alternatively, consider an infinitely
lived consumption claim. It is well known that all term premia are zero when log
consumption follows a random walk. In this case, a long-run claim to consumption
will carry the same risk premium as a one-period claim. If consumption growth
is autocorrelated, then this is no longer true. In postwar data, the autocorrelation
of quarterly consumption growth is 0.16. With this value, an infinite claim to
consumption implies that ηrε = 1.2. Hence, the risk premium will be 20% higher
than that of the one-period claim. Using the same argument as before, a ξ of about
11 is required to obtain a 2% risk premium for the infinite claim. In other words,
dividends have to be much more volatile than aggregate consumption even if the
Sharpe ratio is 0.27.

Figure 1 also shows that both parts of the puzzle are important. Suppose a model
produces an asset denoted as “A” in the figure. Since the asset lies on the CML, this
model passes the HJ-bounds test. However, the risk premium implied by the model
is too low because asset A is not volatile enough. In contrast, consider asset B.
This asset has the same equity premium as the S&P500 Index, but the underlying
model will fail the HJ-bounds test since the asset lies beneath the CML.

3. ALTERNATIVE PREFERENCES

In this section, we evaluate some preference specifications that have been studied in
the literature using our Sharpe ratio diagnostic tool. We consider the standard time-
separable CRRA case, various types of habit formation [Constantinides (1990)],
“catching-up-with-the-Joneses” [Abel (1990)], and nonexpected utility [Epstein
and Zin (1991) and Weil (1991)] to see whether they are capable of producing
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a realistic risk-return trade-off (i.e., a Sharpe ratio of 0.27) for realistic parame-
ter values. Recall that the only preference parameter that affects risk premia and
the Sharpe ratio is ηmε . Hence, even if different preferences look very different
at first sight, they can imply exactly the same risk premia, for a given a con-
sumption stream, if the implied ηmε coincide. Another implication is that neither
risk aversion nor intertemporal substitution determines risk premia. As we will
see, for certain preferences (e.g., CRRA and Epstein–Zin–Weil) there will be a
link between ηmε and risk aversion and hence risk aversion can be said to deter-
mine risk premia. However, for other preferences such as habit formation, ηmε is
linked to the elasticity of intertemporal substitution and not to risk aversion. For
those preferences, risk aversion does not play a direct role for risk premia. Hence
the deep parameter that controls risk premia for any general set of preferences
is ηmε .

3.1. Time-Separable CRRA

Consumers maximize the following utility function:

Ut = Et

∞∑
j=0

β j C1−γ
t+ j − 1

1 − γ
. (13)

The parameter γ measures RRA. Note that the inverse of γ equals the elasticity
of intertemporal substitution (EIS): EIS = 1/γ . The PSDF is given by

Mt+1 = β

(
Ct+1

Ct

)−γ

, (14)

or, in logs,
mt+1 = −γ�ct+1 + logβ; (15)

hence
−ηmε = γ. (16)

In this case, −ηmε is equal to the coefficient of relative risk aversion and the inverse
of the EIS. To generate a Sharpe ratio of 0.27, time-separable CRRA preferences
require high risk aversion and low EIS.

3.2. Habit Formation

A number of papers have studied the effect of habit formation on asset prices.
Prominent examples include Abel (1990), Constantinides (1990), and, more re-
cently, Campbell and Cochrane (2000). In this subsection, we analyze how differ-
ent habit formulations affect the Sharpe ratio. We stress that we do not study the
effect of habit formation on the risk-free rate. It is well known that many habit
models imply a volatile risk-free rate that is inconsistent with the data.13 Here, we
concentrate on the effect on risk premia. As an alternative to standard models of
habit formation, Abel (1990) proposes a simplified specification in which the habit
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depends not on own lagged consumption but on the other agents’ consumption, in
Abel’s words, “Catching-up-with-the-Joneses.” The implications for risk premia
can be quite different for both models, as we will see.

Let Xt be the habit stock as of period t and let Xt be some function of past
(and potentially current) consumption Ct , Ct−1, .... Two aspects are worth point-
ing out. First, we do not specify any particular functional form for the habit. Some
authors have suggested slow-moving habits [e.g., Constantinides (1990), Heaton
(1995), Boldrin et al. (1997), Campbell and Cochrane (2000)] whereas others
make habit depend only on a single lag of consumption [Dunn and Singleton
(1986), Abel (1990), Ferson and Constantinides (1991)]. Our general model in-
cludes all examples as special cases. Second, we allow consumption in the current
period to affect the current habit stock. We will see the role of this assumption
below.

Another distinguishing feature is how the habit stock affects utility. We consider
three different cases. First, Abel (1990) suggests a ratio model:

Ut = Et

∞∑
j=0

β j (Ct+ j/Xt+ j )
1−γ − 1

1 − γ
. (17)

Alternatively, utility may depend on the difference between consumption and habit,
along the lines of Constantinides (1990) model:

Ut = Et

∞∑
j=0

β j (Ct+ j − Xt+ j )
1−γ − 1

1 − γ
. (18)

Campbell and Cochrane (2000) have introduced a variant of the difference model.
Instead of writing utility in terms of the habit stock Xt , they propose to work with
the surplus ratio St = (Ct − Xt )/Ct and

Ut = Et

∞∑
j=0

β j (Ct+ j St+ j )
1−γ − 1

1 − γ
. (19)

Strictly speaking, the Campbell–Cochrane model is only a variant of the difference
model (18), but we consider it separately because it has received a lot of attention.

The three models are similar, but they display subtle differences in their impli-
cations for asset prices. We illustrate these using ηmε, the elasticity of the PSDF.

“Catching-up-with-the-Joneses.” First, consider the simplified case of
“Catching-up-with-the-Joneses.” In equilibrium, agents treat the habit as exoge-
nous and the PSDF does not reflect the effect of current consumption on future
habits. For the ratio model, we have

Mt+1 = β

(
Ct+1

Ct

)−γ (
Xt+1

Xt

)γ−1

. (20)
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Computing the PSDF elasticity is straightforward:

−ηmε = γ + (1 − γ )ηxε, (21)

where ηxε is the elasticity of the habit with respect to current consumption inno-
vation. Note that −ηmε is different from γ only if the habit depends on the current
innovation. However, if γ > 1, then a positive consumption innovation decreases
−ηmε for ηxε > 0. Consequently, a higher γ is required to generate a high Sharpe
ratio if the habit increases with current consumption.

The PSDF for the difference model is

Mt+1 = β

(
Ct+1

Ct

)−γ
(1 − Xt+1/Ct+1)

−γ

(1 − Xt/Ct )−γ
(22)

with the following approximation in logs:

mt+1 = −γ�ct+1 + γ x̄

1 − x̄
(�xt+1 − �ct+1) , (23)

where x̄ is the steady-state ratio of habit and consumption. The elasticity ηmε is
therefore

−ηmε = γ
1 − x̄ηxε

1 − x̄
. (24)

If the elasticity of the habit with respect to the consumption innovation is unity,
then −ηmε equals γ as in the time-separable case. However, if ηxε < 1, then −ηmε

is larger than in the time-separable case and increases with the steady-state ratio
of habit and consumption.

For the Campbell–Cochrane surplus ratio model (19), we obtain

−ηmε = γ(1 + ηsε) , (25)

where ηsε is the elasticity of the surplus ratio with respect to current consumption
innovations.14 In this version of “Catching-up-with-the-Joneses,” −ηmε equals γ

as long as the current surplus ratio does not depend on the current consumption
shock. If the current surplus ratio increases in response to the current consumption
shock, then −ηmε increases, which in turn causes the Sharpe ratio to increase.

Notice that the elasticity of current habit with respect to current consumption
innovations plays another role as stressed by Campbell and Cochrane (2000). If ηxε

(or ηsε in their model) varies over time, then −ηmε and the Sharpe ratio will also
be time varying. Otherwise, −ηmε is constant and so the Sharpe ratio is constant.
Campbell and Cochrane argue strongly for a model with time variation in the
Sharpe ratio in order to explain a variety of asset-pricing puzzles.

The foregoing analysis shows that the specific functional form of the habit plays
no role whatsoever in the Sharpe ratio. We did not specify how the habit depends
on past consumption. For the Sharpe ratio, it does not matter whether the habit is
slow moving or depends on just one consumption lag. The only relevant feature
(aside from the steady-state ratio of habit and consumption) is whether the habit
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depends on current consumption. Of course, the functional form of the habit does
affect particular asset prices, such as the risk-free rate.

How is −ηmε related to more conventional preference parameters such as risk
aversion and the elasticity of intertemporal substitution in the presence of an ex-
ternal habit? It is easy to check that −ηmε is still the inverse of the EIS, as in the
time-separable case. Risk aversion is defined as the curvature of the value function
rather than simple consumption gambles. Computing risk aversion in general is
quite complicated; see, for example, the discussion by Campbell and Cochrane
(2000). Moreover, the coefficient of relative risk aversion is no longer identical to
−ηmε . However, following the bulk of the literature, we can easily compute risk
aversion along the nonstochastic steady state of the model. In this case, RRA is
again equal to −ηmε , as for time-separable preferences.

Habit. In internal habit models, consumers take the effect of current consump-
tion on future habit explicitly into account. Let u(Ct , Xt ) denote the period-utility
function. The PSDF can be written as

Mt+1 = β

∂u(Ct+1, Xt+1)

∂Ct+1
+ Et+1

∞∑
j=0

β j ∂u(Ct+1+ j , Xt+1+ j )

∂ Xt+1+ j

∂ Xt+1+ j

∂Ct+1

∂u(Ct , Xt )

∂Ct
+ Et

∞∑
j=0

β j ∂u(Ct+ j , Xt+ j )

∂ Xt+ j

∂ Xt+ j

∂Ct

. (26)

It is obvious that the PSDF is much more complicated than in the external habit case.
Although the PSDF elasticity can be written easily, the expression is too complex
to be useful for any economic insight. Hence, we focus on a concrete example.
Consider the difference model (18) combined with a linear habit Xt = θCt−1 +
ψ Xt−1 as in Constantinides (1990). We evaluate all preference parameters along
the steady state �ct = g. Messy but straightforward algebra yields the following
PSDF elasticity:

ηmε = − γ

1 − x̄

1 + βθ2e−g(1+γ )

1 − βψ2e−g(1+γ )

1 − βθe−gγ

1 − βψe−gγ

. (27)

Note that, in contrast to the external habit model, ηmε depends not only on the
curvature parameter γ and the discount factor β but also on the habit parameters
θ and ψ . Hence, the particular habit chosen does affect the Sharpe ratio and HJ
bounds. This habit model differs from the “Catching-up-with-the-Joneses” model
in another important dimension. Whereas the elasticity of intertemporal substitu-
tion is the inverse of ηmε in both cases, for internal habit models the coefficient
of relative risk aversion is no longer equal to ηmε even on the steady state path.
As shown by Constantinides (1990), the coefficient of relative risk aversion is
now
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TABLE 1. RRA versus ηmε (Habit formation parameters: β = 0.95,
g = 0.44%, γ = 1, ψ = 0)a

θ RRA −ηmε

0.1 1.005 1.238
0.3 1.011 2.159
0.5 1.046 4.667
0.7 1.106 14.27
0.8 1.182 32.36
0.9 1.410 113.99
0.95 1.863 336.56
0.99 5.427 2106.52

aThis table shows RRA using (28) and ηmε using (27) for different values of θ . Parameters β and g
are calibrated from postwar U.S. data; γ is set to unity.

RRA = γ

1 − x̄
e−γ g − βγ

e−γ g − β(θ + ψ)

. (28)

Agents with an internal habit react differently to changes in short-term consump-
tion (as measured by the EIS) and changes in wealth (as measured by risk aversion).
In general, agents with an external habit are more averse to the former than the
latter.

Table 1 shows RRA and ηmε for ψ = 0 and different values of θ . The curvature
in the period utility function γ is set to unity. Increasing θ increases ηmε much more
than RRA. The reason is that habit-formation consumers are so averse to gambles
in wealth because they can slowly adjust consumption in response to a decrease in
wealth. In contrast, they are very reluctant to suddenly adjust consumption because
this will require them to consume more in the future as well. This distinction has
been discussed in some depth by Boldrin et al. (1995). Recall that a −ηmε of around
50 is needed to obtain the point estimate of the Sharpe ratio of 0.27. Table 1 shows
that this can be achieved by setting θ equal to about 0.82 with γ = 1. However,
this implies that the proportion of the habit is around 82% of total consumption.
Alternatively, one can increase γ and select a lower θ . Note that risk aversion does
not increase to unrealistic values in either case.

3.3. Non-expected Utility

Building on Kreps and Porteus (1978), Epstein and Zin (1991) formulate a pref-
erence specification that allows the distinction between RRA and the elasticity of
intertemporal substitution. The objective function is defined recursively as

Ut =
[
(1 − β)C1−σ−1

t + β
(

EtU
1−γ
t+1

) 1−σ−1

1−γ

] 1
(1−σ−1)

. (29)
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The notation is from Campbell (1993); γ is the coefficient of RRA and σ is the EIS.
See Epstein and Zin (1991), Giovannini and Weil (1989), and Campbell (1993)
for a more detailed description of these preferences.

It is straightforward to calculate the preference-based stochastic discount factor
for pricing assets Mt+1 for these preferences. However, Mt+1 involves “unobserv-
ables” such as Ut+1. To make the asset-pricing equation econometrically more
useful, Epstein and Zin (1989, 1991) and essentially the entire literature following
it made three additional assumptions: that the agent is representative, that he owns
assets (the returns to which he can either consume or reinvest), and that there is
no other source of income. Using these obviously highly restrictive assumptions,
Epstein and Zin (1991) show that the PSDF can be rewritten as

Mt+1 = β
1−γ

1−σ−1

(
Ct+1

Ct

)− 1−γ

σ−1

R
σ−1−γ

1−σ−1

m,t+1 , (30)

where Rm is the gross return on invested wealth (i.e., the market portfolio). In logs,
the PSDF can then be rewritten as

mt+1 = 1 − γ

1 − σ−1
log β − 1 − γ

σ − 1

(
�ct+1 + 1 − σγ

1 − γ
rm,t+1

)
. (31)

It seems that an EIS close to unity can generate large ηmε irrespective of RRA.
However, as shown by Campbell (1993), the model implies a relationship between
unexpected consumption and unexpected return on the market portfolio:

ct+1 − Et ct+1 = rm,t+1 − Etrm,t+1 + (1 − σ)(Et+1 − Et )

∞∑
j=1

ρ j rm,t+1+ j , (32)

where ρ is a parameter that is related to the consumption/wealth ratio and is close
to unity. Substituting out the market return in (31), we obtain

mt+1 = Et mt+1 − γ εt+1 − (1 − σγ )λm,t+1, (33)

where λm,t+1 = (Et+1 − Et )
∑∞

j=1 ρ j rm,t+1+ j represents the “news” of future ex-
pected returns of the market portfolio between period t and t + 1. Hence

ηmε = −γ − (1 − σγ )
∂λm,t+1

∂εt+1
. (34)

Equation (34) tells us that an EIS close to unity does not imply a high ηmε . The
impact of the consumption innovation on the PSDF depends only on RRA, as
in the CRRA case. The EIS affects the PSDF only through changes in expected
returns of the market portfolio. If returns are i.i.d. or if γ = 1/σ , we obtain the
same PSDF as in the time-separable CRRA case [see also Campbell (1993) for
a more extensive discussion]. The effect of λm in (34) is likely to be fairly small
because returns are difficult to forecast. Therefore, the Epstein and Zin prefer-
ences require a high risk aversion to generate a high Sharpe ratio. In this regard,
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they are only a small improvement over the standard time-separable CRRA prefer-
ences. Of course, Epstein–Zin preferences do allow for high risk aversion without
simultaneously implying a low EIS.

3.4. Summary and Outlook

Table 2 summarizes the results in this section. It reports the coefficient of relative
risk aversion, the elasticity of intertemporal substitution, and the elasticity of the
PSDF with respect to consumption innovations −ηmε . Recall that −ηmε determines
the Sharpe ratio and hence the HJ bounds.

Risk aversion, intertemporal substitution, and the PSDF elasticity are closely
linked for time-separable CRRA and “Joneses” habit cases. To pass the HJ-bounds
or Sharpe ratio tests, these preferences require high risk aversion and a low EIS.
For internal habit formation and Epstein–Zin–Weil recursive preferences, the link
between RRA, EIS, and −ηmε is broken. In the habit case, −ηmε equals the in-
verse of the EIS, while −ηmε coincides with risk aversion for Epstein–Zin–Weil
preferences. Habit formation allows −ηmε to be high while keeping risk aversion
low. The converse holds in the Epstein–Zin–Weil case, −ηmε can be high without
restricting the EIS. Of course, risk aversion will be high as well.

The table also shows that none of the preferences considered here is able to
generate a high Sharpe ratio while keeping risk aversion fairly low and the EIS
fairly high, as would be desirable. Most researchers have objections against high
levels of risk aversion. It is hard to estimate risk aversion directly, but Barsky,
et al. (1995) present survey evidence. They find that most individuals are very
risk averse, with an average risk aversion across individuals of about 4. As an
illustration of the implications of an RRA of 50, consider an agent who is faced
with a 50/50 gamble of gaining or losing 10% of her total wealth. An agent whose
RRA is unity would be willing to pay 0.5% of her wealth to avoid that gamble, an
agent with RRA of 50 would be willing to pay 8.7% of her wealth.

On the other hand, an elasticity of intertemporal substitution that is close to zero
is hard to reconcile with models in which agents can smooth consumption. A low
EIS implies that agents prefer a very smooth consumption path; if they have an
opportunity to smooth income shocks, then they will do so. This can lead to coun-
terfactually smooth consumption paths. In the case of habit formation, −ηmε = 50
implies an EIS of 0.02. Consumers with such a low EIS are extremely reluc-
tant to adjust consumption in response to changes in interest rates. Lettau (2000)
and Lettau and Uhlig (2000) demonstrate these effects in the context of a real-
business-cycle model in which consumption can react endogenously in response
to technology shocks. Increasing risk aversion or introducing habit formation will
increase −ηmε but result also in smoother consumption (σε is lower). Hence, the
effect on the Sharpe ratio (and HJ bounds) is much smaller than in exchange
economies in which consumption is endogenous. The foregoing discussion uses
the observed standard deviation of consumption innovations rather than one that
is implied by a specific model.
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4. INCOMPLETE MARKETS

Recently, researchers have expanded the standard complete markets model to al-
low for idiosyncratic risk for the individual consumer. Constantinides and Duffie
(1996), Den Haan (1996), and Heaton and Lucas (1996) have studied versions of
these models as a possible avenue to explain high-risk premia. In this section, we
use the Sharpe ratio to evaluate the potential of models with idiosyncratic shocks.
We demonstrate that some care is required in computing HJ bounds and Sharpe
ratios in models with idiosyncratic risk. Here, we present only a simple example;
see Lettau (1998) for a more complete analysis. In particular, we abstract from
frictions such as borrowing constraints. The simple derivation here is in the spirit
of Constantinides and Duffie (1996). In their model, agents cannot insure against
their idiosyncratic labor risk, but the PSDF depends only on aggregate variables.

Decompose log consumption of consumer i, ci
t+1, as follows:

ci
t+1 = Et c

i
t+1 + εt+1 + εi

t+1, (35)

where εt+1 represents the aggregate shock common to each consumer. The term
εi

t+1 denotes the idiosyncratic shock of consumer i and is orthogonal to all aggre-
gate variables. We assume that εt+1 and εi

t+1 are independently normally distributed
with zero mean and variance σ 2

ε and σ 2
εi , respectively. The log PSDF of consumer

i is then
mi

t+1 = Et m
i
t+1 + ηmε

(
εt+1 + εi

t+1

)
. (36)

A quick calculation using (11) suggests that the Sharpe ratio becomes

SRmax
t = −ηmε

√
σ 2

ε + σ 2
εi . (37)

For ηmε = −5 and σε = 0.56%, the standard deviation of the idiosyncratic com-
ponent σεi must be 5.4% to create a Sharpe ratio of 0.27. Hence, the idiosyncratic
consumption must be about 10 times as large as the aggregate consumption risk.

However, a closer look shows that this calculation is misleading. The reason
is that the PSDF now includes a random variable, which (by definition) is not
correlated with aggregate variables, such as asset return. So, although the PSDF
becomes more variable, its correlation with asset returns decreases. In the case
of time-separable CRRA preferences, these effects exactly cancel, leaving HJ
bounds and the Sharpe ratio unchanged. To simplify the argument, we use the
approximation ρ(ex , ey) ≈ ρ(x, y) for normal x and y as well as small variances
and covariance.15 The Sharpe ratio in a model with idiosyncratic consumption risk
is

SR = −ηmε

√
σ 2

ε + σ 2
εi

[
max

all assets
−ρt (mt+1, rt+1)

]
(38)

= −ηmε

√
σ 2

ε + σ 2
εi


 max

all assets

σt (εt+1, rt+1)

σr

√
σ 2

ε + σ 2
εi


 (39)
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= −ηmεσε

[
max

all assets
ρt (εt+1, rt+1)

]
(40)

= −ηmεσε. (41)

For time-separable CRRA preferences, the Sharpe ratio is not at all affected by the
presence of idiosyncratic shocks as in (35). This argument shows that simply adding
some uninsurable income risk to the standard complete markets model will not
substantially increase risk premia. Den Haan (1996) and Heaton and Lucas (1996)
have studied models in which subsets of agents are subject to uninsurable shocks.
Heaton and Lucas (1996) report somewhat higher risk premia in their economy
with two groups of agents, each of which is subject to an idiosyncratic shock.
The reason for higher-risk premia in such a model is that half of the population is
subject to a shock. If many agents are affected by a shock, their reaction will have an
effect on the entire market. This causes a correlation between a shock and aggregate
dividends, which in turn increases the Sharpe ratio. Note that this argument depends
on the market power of those agents who are subject to a common shock. Den Haan
(1996) shows that it is much harder to increase risk premia in models in which each
individual agent is subject to a shock. Since one agent cannot affect the aggregate
market, there is no correlation with an idiosyncratic shock; hence, the Sharpe ratio
will remain low.

Constantinides and Duffie (1996) present a more elaborate model in which the
conditional variance of the cross-sectional distribution enters the pricing kernel;
this variance is varying over time and can be correlated with aggregate dividends.
This correlation can increase the Sharpe ratio. To allow for this channel to work
through second moments in our setup, we would have to relax the assumption of
constant variances of the shocks. What the argument in this section shows, however,
is that simple models including idiosyncratic shocks will not substantially increase
the risk-return trade-off. Only more complicated models working through second
moments have the potential to increase the Sharpe ratio in an economy.

5. CONCLUSION

We propose a parametric framework, based on lognormal distributions, that allows
us to express the Sharpe ratio as a function of a single preference parameter and
moments of the aggregate consumption process. The key preference parameter is
the elasticity of the stochastic discount factor associated with the preferences with
respect to innovations in consumption. This parameter, together with the volatility
of consumption innovations, suffices to calculate the Sharpe ratio. In general, this
PSDF elasticity differs from more standard preference parameters such as risk aver-
sion or the elasticity of intertemporal substitution. We compute the PSDF elasticity
for a variety of popular preference specifications: time-separable CRRA, various
types of habit formation, and recursive preferences of the Epstein–Zin–Weil type.
For each case, we show how the PSDF elasticity relates to relative risk aversion and
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the elasticity of intertemporal substitution. Computing the PSDF elasticity corre-
sponds to plotting the bounds in the original HJ diagram. Our parametric approach
complements the ability of the nonparametric HJ bounds to evaluate preferences
regarding their ability to explain risk premia. Finally, we extend the model to allow
for idiosyncratic consumption shock. Given our lognormal framework, we show
that the HJ bounds are unaffected by idiosyncratic shocks in the case of CRRA
preferences.

NOTES

1. We focus on the Sharpe ratio restriction. Additional restrictions, such as gain–loss bound impli-
cations [Bernardo and Ledoit (1996)], entropy bounds [Stutzer (1995)], growth-optimal bounds [Bansal
and Lehmann (1997)], and market frictions [Luttmer (1996)] are outside the scope of the paper.

2. It is easiest to compare the mean–standard deviation frontier to HJ bounds in the case of excess
returns. In this case, the HJ bound is just the area above a straight line instead of the area inside a
parabola. Consequently, we have this case in mind when we refer to HJ bounds in the remainder of the
paper.

3. It is easily shown that for any time-separable preferences, −ηmε = RRA = 1/EIS.
4. For normal x , E(ex ) = eE(x)+0.5Var(x).
5. The squared terms in (8) are Jensen terms that disappear when log returns are converted back

into simple returns.
6. The Sharpe ratio in the data is at least 0.27 (see Table 1). For small numbers like this, the

approximation is very precise: [e(0.2652) − 1]0.5 = 0.27.
7. The calculations are based on unconditional moments, although our framework is written in terms

of conditional moments. Allowing for conditioning information would raise interesting questions, for
example, how the Sharpe ratio might vary over time or how much returns are predictable. However, an
extensive econometric analysis of these issues is beyond the scope of this paper.

8. Note that using the S&P as a market portfolio proxy yields a lower bound of the Sharpe ratio.
9. Cochrane (1997) presents a similar calculation.
10. In the remainder of the paper, we use quarterly data; however, the results are not sensitive to

the frequency of the data. For example, in annual data the ratio of the mean S&P return to its standard
deviation is 0.5, close to two times the corresponding quarterly number. The standard deviation of
annual consumption growth is about 0.6%.

These calculations assume that innovations in consumption ε and returns on the market portfolio
are perfectly correlated. In the data, this is far from true. Assuming a random walk for consumption, the
correlation between consumption innovations and S&P500 returns is only 0.14. If we take this value
as given, the true Sharpe ratio must be at least 0.27/0.14 = 1.92, which implies that −ηmε ≥ 344. For
time-separable CRRA, this implies a relative risk aversion coefficient of 344.

11. Again, we refer to the HJ bounds using excess returns.
12. This separation refers to a partial equilibrium setting, that is, given σε . Of course, in general

equilibrium, asset volatilities and correlations depend on preferences as well. See the end of Section 3
for a discussion on how a general equilibrium setup would affect our framework.

13. A notable exception is the model of Campbell and Cochrane (2000), which has a constant
risk-free rate.

14. The elasticity ηsε is related to ηxε according to ηsε = x̄/(1 − x̄)(1 − ηxε).
15. The exact expression is

ρ(ex , ey) = eσxy − 1(
eσ 2

x − 1
)1/2(

eσ 2
y − 1

)1/2
.
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APPENDIX

A.1. THE SHARPE RATIO IN POSTWAR DATA

Table A.1 summarizes some important and well-known facts about asset markets. The data
are sampled at quarterly frequency and range from 48Q1 to 95Q4. Returns are real and
reported in percent. We consider four different assets: the 30-day T-bill, long-term govern-
ment bonds, a portfolio of small stocks, and the S&P 500 portfolio of larger companies.
Table A.1 reports the mean and the standard deviation of the four assets for the entire sam-
ple as well as for three subsamples. The subsamples are chosen somewhat arbitrarily to
demonstrate three distinct postwar episodes for asset prices. The pattern of asset returns is
well known. Equities have, on average, a much higher return than short-term and long-term
bonds. Their standard deviation is also substantially higher. The exception are the 1980’s,
when returns of large stocks were low (however, small stocks did much better). Small stocks
in general have a higher standard deviation, which is partially compensated by a somewhat
higher average return.

We also compute the Sharpe ratio defined as the slope of the capital market line (CML).
Since the true market portfolio is not observable, as a proxy we use the portfolio with the
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TABLE A.1. Asset-market facts, U.S. data, 1948–1995a

Real returns, % per quarter

Asset 1948–1995 1948–1972 1973–1982 1983–1995

T-bills
Mean 0.24 0.13 −0.01 0.64
Std. dev. 0.72 0.71 0.96 0.59

Long gov’t bond premium
Mean 0.21 −0.19 −0.47 1.40
Std. dev. 4.80 2.83 7.07 5.47

S&P500 premium
Mean 2.00 2.49 0.12 2.49
Std. dev. 7.49 6.75 9.53 6.96

Small stocks premium
Mean 2.70 2.64 3.63 2.01
Std. dev. 11.13 10.26 14.69 9.93

Sharpe ratio
Mean 0.27 0.39 0.33 0.41
95th percentiles (0.12, 0.44) (0.19, 0.64) (0.04, 0.70) (0.14, 0.75)

aReturns are measured at quarterly frequency. Risk premia are computed as the difference between the asset return
and the T-bill rate. The Sharpe ratio is computed as the maximal ratio of mean excess return to standard deviation of
the excess return of portfolios formed by the three risky assets. The 95th percentiles of the Sharpe ratio are calculated
using a bootstrap with 10,000 replications. Source: Ibbotson Associates.

highest ratio of average return to standard deviation formed by the three risky assets. For
the whole sample, this portfolio is basically the S&P500 Index itself; adding long bonds or
small stocks does not add much. In the subperiods, however, the Sharpe ratio is substantially
higher than that of the deviation of the S&P500 Index. The effect is especially pronounced in
the 1970’s when large stocks did very poorly. The Sharpe ratio for the entire sample is 0.27
on a quarterly basis though it is higher in each of the three subperiods. For the remainder of
this paper, we use 0.27, which is in line with other studies, for example, MacKinlay (1995)
who advocates a quarterly Sharpe ratio of 0.3.

To get a rough idea about the precision of this estimate, we perform a bootstrap with
10,000 replications. The 95th percentiles for the 1948–1995 sample are 0.12 and 0.44,
indicating that there is quite a bit of uncertainty about the estimate. The quantiles are even
wider than for the whole sample, which is not surprising because the subsamples are shorter.

Figure A.1 shows the return data for the sample from 1948–1996 in the standard textbook
mean–standard deviation frontier.

A.2. APPROXIMATION ERROR

In this section, we briefly address how accurate some linear approximations are. First,
consider the loglinear approximation of the PSDF in the Catching-up-with-the-Joneses
model (23). Figure A.2 shows the nonlinear log of the PSDF and the linearized log PSDF for
two values of the steady-state ratio of habit and consumption. Habit and consumption at time
t are assumed to be at their steady-state values. Shocks to the ratio of habit and consumption
in t + 1 are on the y axis (e.g., 0.02 means that Xt+1/Ct+1 is 2% above the steady-state
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FIGURE A.1. Mean–standard deviation frontier: CML with postwar quarterly data from
Table A.1.

FIGURE A.2. Approximation error for steady-state ratio of habit and consumption.

level); γ is set to unity. The figure shows that the loglinear approximation works fairly well.
The difference between the true nonlinear PSDF and the linearized version is large only if
the habit is, on average, very close to consumption and shocks to the ratio are very large.

Next, consider the linearization of the maximum Sharpe ratio in (11). Figure A.3 plots
(10) and (11) as functions of σm and confirms that the linearization is very close to the
nonlinear function for reasonable values of σm .
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FIGURE A.3. Approximation error for Sharpe ratio.
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