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In this paper we consider a non-local anisotropic model for phase separation in two-phase
fluids at equilibrium, and show that when the thickness of the interface tends to zero in a
suitable way, the classical surface tension model is recovered. Relevant examples are given by
continuum limits of ferromagnetic Ising systems in equilibrium statistical mechanics.

1 Introduction

We consider a fluid in a container Q, and assume that every configuration of the system is
described by a function u: Q -> U which represents the (macroscopic) density of a scalar
intrinsic quantity, and the corresponding free energy is given by

E(u) :=\\ J(x' - x) 00 ' ) - u(x)f dx' dx+\ W{u(x)) dx,

where / is a positive interaction potential which vanishes at infinity and W is double-well
potential which vanishes at +1 only (see §1.2 for precise assumptions).

If we consider an energy minimizing configuration u, the second term in E forces u to take
values close to the 'pure' states +1 and —1 (phase separation), while the first term
represents an interaction energy which penalizes the spatial inhomogeneity of u (surface
tension). Examples of this model are given in equilibrium statistical mechanics by
continuum limits of Ising spin systems on lattices; in that setting, u represents a
macroscopic magnetization density and / is a ferromagnetic Kac potential (cf. [ABCP] and
references therein).

When the potential W is large in comparison with / and we minimize E subject to the
mass constraint ju = c, the second term in Eprevails: the minimizer takes values close to
— 1 or -I-1, and the transition between the two phases occurs in a thin layer. This situation
can be studied by passing to the thermodynaniic limit, that is, studying the asymptotic
behaviour as e^O of the rescaled energies

Fe(u, Q) := -J- f J£x' - x) (u(x') - u{x)f dx' dx + -\ W{u{x)) dx, (1.1)
4eJr2xn eja

where e is a positive scaling parameter, and Je(y) '•= e~N J(y/e).
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We note that this model closely resembles the Cahn-Hilliard model for phase separation
(see [CH]), which is described by the energy functional

V«|2+-f W{u). (1.2)

Indeed, Ft can be obtained from /,. by replacing the term |VM(X)| in the first integral in (1.2)
with the average of the finite differences \ \u{x + eh) — u{x)\ with respect to the measure
distribution J(h) dh. Modica and Mortola proved [MM] (see also [Mo]) that in the limit
e^O the functionals Ie converge in a suitable sense to a limit energy /which is finite only
when u = +1 almost everywhere, and in that case is given by the area of the interface
Su which separates the phases {u = +1} and {u = — 1} multiplied by a positive surface
tension a.

It follows immediately from the convergence of the energies that the minimizers of Ie with
prescribed total mass converge to minimizers of /, that is, functions U'.Q^ + l which
minimize the area of the interface Su. In this sense the classical model for phase separation
(due to van der Waals) can be derived from the Cahn-Hilliard model in the limit e -> 0. This
result was later extended to more general anisotropic functionals in [Bou], [OS], [BF].

A first result in this direction for the functionals Fe in (1.1) was proved in [ABCP] for a
particular choice of W and a radially symmetric /, that is, in the isotropic case. The limit
energy F has the same form as /, only the expression for the surface tension cr is different.
In this paper, we extend this result to the anisotropic case; more precisely we prove (see
Theorem 1.4 and following remarks) that when e-»0 the functionals Fe converge to a limit
energy F which is finite only when u = + 1 a.e., and in that case is given by the area of the
interface Su weighted by an anisotropic surface tension a (cf. (1.10)). As before, the
convergence of the energies immediately implies that the minimizers of Fe with prescribed
mass converge to minimizers of F.

Beyond the relevance of the specific model we consider, our result suggests the following
consideration: the term J|Vw|2 in (1.2) was derived in [CH] as a first order approximation
of a more general and complicated quadratic form, but our theorem suggests that the form
of the limit energy is largely independent of the choice of this quadratic form; a first result
in this direction was given in [ABS], but no general result is available so far.

In this paper, we follow a different approach from [ABCP]; for instance the existence of
the optimal profiles for transitions (cf. [AB1]) plays no role in the proof. In particular, it
is also possible to extend Theorem 1.4 to the multi-phase case (that is, when u takes values
in Um and W is a function on Um which vanishes at finitely many affinely independent
points), even though there are no existence results for the optimal profile (see §1.12). On
the other hand, the assumption / ^ 0, which in the statistical model is called the
ferromagnetic assumption, is crucial in all our proofs (cf. §1.13), and even if Theorem 1.4
holds also for some potentials / with a small negative part (see [AB2]), the problem of
understanding what happens in the general case seems still largely open; indeed, a quite
different asymptotic behaviour is expected, since in particular the ground states associated
with the unsealed energy E may be not constant.

We finally recall that the evolution model associated with the energy Fe is described, after
a suitable time scaling, by the non-local parabolic equation ut = e~2(Je*u — u—f(u)), where/
is the derivative of W and it is assumed || /1 | x = 1; the analogue for the energy Ie is the scaled
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Allen-Cahn equation ut = Au — e^f{u). The asymptotic behaviour of the solutions of this
equation has been widely studied and leads to a motion by mean curvature in the sense
of viscosity solutions (see, for instance, [DOPT1-3], [KS1-2] for the isotropic non-local
equation, and [KS3] for the anisotropic case; see [BK], [DS], [ESS], [Ilm] for the
Allen-Cahn equation).

This paper is organized as follows. In the rest of this section, we first give some
definitions, and then state the convergence result for the functional Fe (Theorem 1.4), and
briefly discuss some immediate consequences. In §1.9 we outline the idea of the proof in
the one-dimensional case; in §1.12 we consider the generalization of Theorem 1.4 to the
multi-phase case, while in §1.13 we discuss the assumptions on J and W.

In §2 we study the decay of the locality defect Ae(u,A,A'), which is defined by

AXu, A, A') := 1 f JXx'-x) (w(x') - u(x))2 dx' dx (1.3)

for every A, A' c UN and every u: A U A' -> U. The functional Fe are not local, in the sense
that the energy F£u, A U A') stored in A U A' is strictly larger than the sum of Fe(u, A) and
F£u, A') when A and A' are disjoint, and more precisely, we have

FXu, Al)A') = Flu, A) + Fe{u, A') + 2Ae(u, A, A'). (1.4)

To guarantee that AXu, A, A') vanishes as e^O whenever the distance between A and A' is
strictly positive, we must assume a proper decay of / at infinity, namely (1.6) (see, however,
§1.13).

§3, 4 and 5 are devoted to the proof of Theorem 1.4.
Before passing to precise statements, we fix some notation. In the following, Q is a

bounded open subset of UN, and it is called regular when it has a Lipschitz boundary (for
N = 1, when it is a finite union of distant open intervals). Unless otherwise stated, all sets
and functions are assumed to be Borel measurable.

Every set in UN is usually endowed with the Lebesgue measure <£N, and we simply write
JB/(x) dx for the integrals over B and \B\ for Z£N{B), while we never omit explicit mention
of the measure when it differs from 3?N. As usual, #?JV"1 denotes the (N— l)-dimensional
Hausdorff measure.

1.1 B V functions and sets of finite perimeter

For every open set Q\nUN,B V(Q) denotes the space of all functions u: Q -> U with bounded
variation, that is, the functions u e L\Q) whose distributional derivative Du is represented
by a bounded IR^-valued measure on Q. We denote by BV(Q, ± 1) the class of all usBV{Q)
which take values + 1 only. For every function u on Q, Su is the set of all essential
singularities, that is, the points of Q where u has no approximate limit (in the measure
theoretic sense, cf. [EG], Chapter 5); if u eBV(Q) the set 5M is rectifiable, and this means that
it can be covered up to an ffl JV~1-negligible subset by countably many hypersurfaces of
class C1.

The essential boundary of a set E c W is the set el* E of all points in Q, where E has
density neither unity nor zero. A set E c Q has finite perimeter in Q if its characteristic
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function \E belongs to BV(Q), or equivalently, if 3#PN~1(di.Ef}£2) is finite; in this case
9* E is rectifiable, and we may endow it with a measure theoretic normal vB (defined up
to J>f'^-negligible subsets) so that the measure derivative D\E is represented as

D\E(B) = I vEd2tfN^ foreveryflcO.

A function u: Q -> ± I belongs to BV(Q, ± I) if and only if {u = +1} (or {u = -1} as well)
has a finite perimeter in Q. In this case, Su agrees with the intersection of the essential
boundary of {u = +1} with Q, and the previous formula becomes

Du(B) := 2 I vudJeN-^ foreveryB c Q, (1.5)
suns

where vu is a suitable normal field to Su. We claim that Su is the interface between the
phases {u = + 1} and {w = — 1} in the sense that it contains every point where both sets have
density different from zero. For further results and details about BV functions and finite
perimeter sets, we refer the reader to [EG], Chapter 5.

1.2 Hypotheses on / and W

Unless otherwise stated, the interaction potential J and the double-well potential W which
appear in (1.1) satisfy the following assumptions:

(i) / : RN->[0, + oo) is an even function (i.e. J(h) = J(-h)) in L 1 ^ ) , and satisfies

J(h)\h\dh <oo. (1.6)

(ii) W: U -* [0, + oo) is a continuous function which vanishes at ± 1 only, and has at least
linear growth at infinity (cf. the proof of Lemma 1,14).

1.3 The optimal profile problem and the surface tension cr

We first define the auxiliary unsealed functional J5" by

1 f f
^(u, A):=-\ J{h) (u(x + h)~ u(x)f dxdh+\ W(u(x)) dx (1.7)

4 J N J
for every sel A c UN and every M: K* -> U. Hence ^(u,A) = F,(w, A) + At{u, A, UN \ A).

We fix now a unit vector c e K'v and we denote by M the orthogonal complement of e.
Hence, every xeR* can be written as x = y + xtc, where y is the projection of x on M and
xe:=(x,e).

We denote by ^ the class of all (N— l)-dimensional cubes centred at 0 which lie on M;
for every Ce%, Tc is the strip Tc :={y + te: yeC, tsU}, while Qc is the W-dimensional
cube centred at 0 such that Qc n M = C. A function u: UN -> U is called C-periodic if
u(x + ret) = u{x) for every x and every i = 1,..., TV— 1, where r is the side length of C and
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e1,...,eN_1 are its axes. We denote by X{C) the class of all functions u: R"H*[— 1,1] which
are C-periodic, and satisfy

lim u(x) = + 1 and lim u(x) = — 1, (1.8)

and finally, we set
a-{e):=m{{\C\-1^{u,Tc): Ce%,ueX(C)}. (1.9)

The minimum problem (1.9) is called the optimal profile problem associated with the
direction e, and a solution is called an optimal profile for transition in direction e. In [AB1]
it was proved that the minimum in (1.9) is attained, and there exists at least one minimizer
u which depends only on the variable xe, and more precisely, u{x) = y(xe), where y: U ->
[—1,1] is the optimal profile associated with a certain one-dimensional functional Fe.
However, we emphasize that the proof of Theorem 1.4 does not depend upon this existence
result (see Remark 1.10).

For the rest of this section, Q is a fixed regular open subset of W; the functional Fe are
denned in (1.1), while the limit functional Fis given by

C
F(u):=\ o-irJdJ)?"-1 torueBV(Q, ±1). (1.10)

Theorem 1.4 Under the previous assumptions the following three statements hold:

(i) Compactness: let sequences (eJ and (un) <= 1^(0) be given such that en -> 0, and
Fe (un, Q) is uniformly bounded; then the sequence (un) is relatively compact in L\Q)
and each of its cluster points belongs to BV(Q, + 1).

(ii) Lower bound inequality: for every ueBV(Q, +1) and every sequence (ue) such that
ue^-u in L1^), we have

Mmird Fe{ue,Q)^ F(u);

(iii) Upper bound inequality: for every ueBV(Q, +1) there exists a sequence (ue) such
that ue^u in L^{Q) and

\imsxvpFe(ue,Q) ^ F(u).

Remark 1.5 Statements (ii) and (iii) of Theorem 1.4 can be rephrased by saying that the
functionals F£ •, Q), or in short Fe, /"-converge in the space LJ(i2) to the functional F given
by (1.10) for all functions ueBV(Q,±l) and extended to +oo in L\Q)\BV(Q, ± 1).

For the general theory of /"-convergence, we refer the reader to [DM]; for the
applications of /"-convergence to phase transition problems, we refer to the early paper of
Modica [Mo], and to [Al] for a review of some results and the related mathematical issues.

Remark 1.6 As every /"-limit is lower semicontinuous, we infer from the previous remark
that the functional F given in (1.10) is weakly* lower semicontinuous and coercive on
BV(Q, ± 1).
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The coercivity of F implies that the infimum of <r(e) over all unit vectors e e UN is strictly
positive, while the semicontinuity implies that the 1-homogeneous extension of the function
a to UN, namely the function xn>|x| cr(x/\x\), is convex (see, for instance, [AmB], Theorem
3.1). Notice that it is not immediate to recover this convexity result directly from the
definition of a in (1.9).

Remark 1.7 Statement (iii) of Theorem 1.4 can be refined by choosing the approximating
sequence (we) so that jaue = \Qu for every e (we will not prove this refinement of statement
(ii); in fact, one has to slightly modify the construction of the approximating sequence (we)
given in Theorem 5.2). In this way we can fit with a prescribed mass constraint: given c
such that \c\ < \Q\, then the functional Fe also /"-converge to F on the class Yc of all
u e L}(Q) which satisfy the mass constraint \Q u = c.

A sequence (ve) in Yc is called a minimizing sequence if ve minimizes Fe( •, Q) in Yc for every
e > 0, and is called a quasi-minimizing sequence if Fe (ve,Q) = ini {Fe(u,Q):ue Yc} + o(l).
Using the semicontinuity result given in [AB1], Theorem 4.7, and the truncation argument
given in Lemma 1.14 below, we can prove that a minimizer of Fe( •, Q) in Yc exists provided
that W is of class C2 and W{i) ^ — de for every te[— 1,1], where de is defined by

1 f
de := ess inf - Je(x' — x) dx'.

Notice that dc tends to \\\ J^ as e->0.
By a well-known property of /"-convergence and statement (i) of Theorem 1.4, we infer

the following (cf. [DM], Chapter 7):

Corollary 1.8 Let (v£) be a minimizing or a quasi-minimizing sequence for Fe on Yc. Then (ve)
is relatively compact in L}{Q), and every cluster point v minimizes F among all functions
ueBV(Q, +1) which satisfy \Qu = c. Equivalently, the set E\={v = 1} solves the minimum
problem

min I a(vE) dM>N~1:E has finite perimeter in Q and \E\ = \{c + \Q\)
lJdB

1.9 Outline of the proof of Theorem 1.4 for N = 1

To explain the idea of the proof of Theorem 1.4 and the connection with the optimal profile
problem, we now briefly sketch the proof of statement (ii) and (iii) for the one-dimensional
case (the proof of statement (i) being slightly more delicate).

In this case, u becomes the infimum of i\( •, 1R) over the class X of all u: 1R -> [ — 1,1] which
converge to + 1 at +oo and to — 1 at — oo (cf. (1.9)). We assume for simplicity that Q
is the interval ( -1 ,1) , and that u(x) = -1 for x < 0, u(x) = + 1 for x ^ 0. Then Su = {0},
and a J f °(Su) = tr; a standard localization argument can be used to prove the result in the
general case (cf. [Al], Section 3 a).

We first note that the functionals Fe satisfy the following rescaling property: given
e > 0 and u: U^ U, we set u%x) := w(ex), and then a direct computation gives

F£u,M) = F^U). (1.11)
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Let us now consider the lower bound inequality. First, we reduce to a sequence (ue) which
converges to u in L\Q) and satisfies |wj < 1; then we extend each uc to the rest of U by
setting u£x) := — 1 for x ^ — 1, ue(x) := 1 for x ^ 1. The key point of the proof is to show
that

Fe{ue,Q)~Fc{ue,U) ase^-0. (1.12)

By identity (1.4), (1.12) can be written in term of the locality defect Ae (see (1.3)), and more
precisely, it reduces to A£ue, Q, U \ Q) = o(l); notice that in general this equality may be
false, but using the decay estimates for the locality defect given in §2, we can prove that it
is true if we replace Q with another interval, which may be chosen arbitrarily close to Q.

By (1.11) and the definition of a, we get Fe(ue, U) = F£u\, U) ^ a, and then (1.2) yields

\iminfFe(ue,Q) ^ cr.

The proof of the upper bound inequality is even more simple: we take an optimal profile
y (i.e. a solution of the minimum problem which defines a), and we set ue{x) := y(x/e) for
every e > 0. Then u£x) converge to u(x) for every x #= 0, and (1.11) yields

Fe{ue, Q) «S F£ue, U) ••

Remark 1.10 It is clear from this brief sketch that the shape of the optimal profile plays
no role in the proof of Theorem 1.4, nor does the fact that the minimum in (1.9) is attained:
in case no optimal profiles were available, it would suffice to replace y with functions in X
which 'almost' minimize F^-, U). This could be indeed the case when one considers the
vectorial version of this problem (see §1.12).

Nevertheless, the existence of the optimal profile has a deeper meaning than appears
above. Indeed, if (vs) is a sequence of minimizers of F£ which converges to some
veBV(Q, +1), then we would expect that if we blow-up the functions ve at some fixed
singular point x of v by taking the functions y/x) := ve(e(x — x)), then ye more and more
resembles an optimal profile. In other words, we expect the optimal profiles to be the
asymptotic shapes of the minimizers ve about the discontinuity points of v. Yet a precise
statement in this direction is beyond the scope of this paper.

1.12 The multi-phase model

To describe a multi-phase system, one may postulate a free energy of the form (1.1) where
u is a vector density function on a domain of IR^-taking values in Um, W: [Rm^[0, oo) is a
continuous function which vanishes at k + 1 affinely independent wells {a0,..., afc} (and
therefore k ^ m), and / is the usual interaction potential.

Theorem 1.4 holds provided we make the following modifications: BV(Q, +1) is
replaced by the class BV(Q, {af}) of all functions UEBV(Q, Um) which takes values in
{a0,..., a j only, and the functional F is now defined by

(1.13)

where S(j is the interface which separates the phases {u = a j and {u = a,}, and precisely
Si} := SJw = a j n 9*{M = a.) D Q (recall that both phases have finite perimeter in Q), and vti
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is the measure theoretic normal to Sir For every unit vector e the value <rtj(e) is defined by
the following version of the optimal profile problem:

tf ^(u, Tc): Ce%,ueX\C)}, (1.14)

where we follow the notation of §1.3, and Xij(C) is the class of all functions u: UN^Um

which are C-periodic and satisfy the boundary condition

lim u{x) = a} and lim u{x) = a(.

This vectorial generalization of Theorem 1.4 can be proved by adapting the proof for the
scalar case given below, and using a suitable approximation result for the functions in
BV{Q,{tx.i}) (of. the approach in [Ba] for the vectorial version of the Modica-Mortola
theorem).

Notice that in this case it is not known whether the optimal profile problem (1.14) admits
a solution or not (cf. [AB1], Section 4b).

1.13 The optimal assumptions on ./

The ferromagnetic assumption J ̂  0 plays an essential role in the proof of statement (i) of
Theorem 1.4, and in particular, in the first step of the proof of Theorem 3.1. On the other
hand, the proofs of statements (ii) and (iii) do not require the positivity of J, and therefore
the task of extending Theorem 1.4 to potentials J which are not ferromagnetic essentially
reduces to proving the compactness result in statement (i); in fact, this seems possible under
certain restrictions on / (see [AB2]).

About the growth assumptions on / , we can replace the hypotheses in §1.3, namely Je
L\UN) and (1.6), with the following more general ones (cf. [AB1], Section 4c): / i s even,
non-negative, and satisfies

J. (1.15)

We note that the proof of Theorem 1.4 needs no modifications at all if J does not belong
to L^R^), but still satisfies (1.6), while some additional care has to be taken in the fully
general case, and more precisely, in the proof of statement (iii) (see in particular the third
step in the proof of Theorem 5.2 and the decay of the locality defect in Lemma 2.7), while
statements (i) and (ii) can always be recovered from the usual version of Theorem 1.4 by
approximating / with an increasing sequence of potentials which satisfy the assumptions
in §1.2.

Finally, we notice that if (1.15) does not hold, then the value of o-(e) as given by the
optimal profile problem (1.9) is always equal to +oo (cf. [AB1], Theorem 4.6). This
probably means that a different scaling should be considered in the definition of the
functional Ft. For instance, if N = 1 and J{h):= l//j2, the right scaling is given by

Joxf) x —x la

or equivalently by multiplying the functionals Fe defined in (1.1) by an infinitesimal factor
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of order |loge| x. In this case, we again obtain a /"-limit of the form (1.10) (see, for instance,
[ABS]). However, no general result is available when J does not satisfy (1.15).

Warning Throughout the rest of the paper, we will always restrict ourselves to functions
which take values in [— 1,1]. We are allowed to do this by the following truncation lemma:

Lemma 1.14 For every function u: £2-*-R, let Tu denote the truncated function Tu(x):=
(M(X) A 1) V — 1. Then Fe(u, Q) ^ Fe(Tu, Q) for every e > 0, and for every sequence (uc) such
that FJue,Q) is bounded in e there holds \\ue—Tuc\\1^0 as e^O.

Proof The inequality Fe(u, Q) > F£(Tu, £2) is immediate.
Let us now be given a sequence («e) such that FJue, Q) < C for every e. Since W\s strictly

positive and continuous out of + 1 , and has growth at least linear at infinity (see § 1.2), for
every S > 0, we may find a > 0, M > 0 and b > 0 so that W{f) > a when 1 + 8 ^ \t\ < M and
W{t) ^ b\t\ when \t\ ̂  M. Then we define Ae and Be as the sets of all xeQ where ue(x)
satisfies, respectively, 1 +8 ^ \u£x)\ =% M and M ^ |ME(JC)|. Hence

Since Jfl W(ue) < Ce, passing to the limit as e->0 we obtain that limsup \\ue— Tue\\1 ^ S\Q\,
and since 8 can be taken arbitrarily small, the proof is complete. •

2 Decay estimates for the locality defect

In this section we study the asymptotic behaviour as e tends to zero of the locality defect
Ae (see (1.3)). Roughly speaking, the goal is to show that the limit of Ae(u6,A,A') is
determined only by the asymptotic behaviour of the sequence ue close to the intersection of
the boundaries of A and A'. The main result of this section is Theorem 2.8.

We first need to fix some additional notation. We define the auxiliary potential / by

J(h):= J\-t % for every heUN. (2.1)

It follows immediately from the definition that / is even, non-negative, and satisfies

"= f J(h)\h\dh< +oo. (2.2)

Definition 2.1 Throughout this section, E always denotes a subset of a Lipschitz
hypersurface in UN and is endowed with the Hausdorff measure Jt N~* (we often omit any
explicit mention to this measure). Now, let us give a set A of positive measure in UN, a
sequence (un) of functions from A into [—1,1], and a sequence ( e j of positive real numbers
which tends to zero; we say that the en-traces of un (relative to A) converge on E to
v: E^[— 1,1] when

lim J(h)\un(y + enh)-v(y)\dh\dy = O. (2.3)
n^oa J yeZL J{/i:y+6nheA} J
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Remark 2.2 We make no assumption on the relative position of A and E\ in particular,
they may even be tar apart. Notice, moreover, that the notion of 'convergence of the etJ-
Lraces* is introduced without defining what the <;K-trace of a function is, and in fact, ihere
is no such notion. This is due to the fact that, for functions in the domain of FI:, the trace
on an (N— l)-dimensional manifold cannot be defined (while it is defined for functions in
the domain of the /"-limit, Lhal is, for BV functions).

In view of the definition of the locality detect, it would make more sense lo replace the term
[»,,0' + e,,/i) —i;(j>)l in (2.3) with its square. Bui since we restrict ourselves to functions which
take values in [— 1,1], the limit in (2.3) is independent of the power of \un{y + e,, It) — v{y)\,
and we chose the first power because this simplifies many of the following proofs.

Remark 2.3 We define the upper /-density of A at the point x e UN as the upper limit

limsup J(h)dh,
e^O J {h : %+eheA)

and the lower /-density as the corresponding lower limit. Notice that such densities are
local, that is, they do not depend upon the behaviour of A out of any open neighbourhood
of x.

The function v which satisfies (2.3) is uniquely determined for (Jf N~1-) almost every
point of X" where A has positive /-upper density.

If (2.3) holds for some set A, then it is satisfied by every A' included in A. Moreover, if
E has finite measure, then (2.3) is also satisfied by every A' such that A'\A has upper /-
density zero at almost every point of E. In particular, if are given sets A and A' such that
the symmetric difference A A A' has upper /-density zero at almost every point of E, then
A satisfies (2.3) if and only if A' does.

Remark 2.4 Condition (2.3) is not easy to verify. If E has finite measure then (2.3) holds
when

lim un(y + enh) = v(y) for a.e. yeE and a.e. he A. (2.4)
n->co

Condition (2.4) holds, for instance, when un converge locally uniformly on some open
neighbourhood of E to a function which, at every point of E, is continuous and agrees
with v.

Assume now that the functions un converge to u in L\A). Unfortunately, this is not
enough to deduce that the ^-traces of un converge to u on every Lipschitz hypersurface
E <=• U's. yet this holds for 'most' E. More precisely, we have the following proposition:

Proposition 2.5 Take A, (e,,) ami (un) as in Definition 2.1; le! g:A^-U be a Lipschitz
function, and denote by £' the t-levcl set ofg for every t e R. // itu -> it in L\A) then, possibly
passing to a subsequence, the au-iraces of uB {relative to A) converge to u on E' for a.e.
ten.

(Since g admits a Lipschitz extension to UN, El is a subset of an oriented closed Lipschitz
hypersurface in IR̂  for almost every teU.)
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Proof To simplify the notation we write e, ue instead of en,un, we assume that g is 1-
Lipschitz and A = UN (the general case follows in the same way). For every e > 0, xe UN

and t e U we set

•*.(*):= f Ah)\u£(x + eh)-u(X)\dh and git):=[ &e{x)dx. (2.5)

By the co-area formula for Lipschitz functions (see [EG], Section 3.3), we get

?£t)dt=f 0
J«N

eh)-u(x)\dxdh

J(h)[\u£x + eh)-u(x + eh)\ + \u(x + eh)-u(x)\]dxdh

ww-uUdh, (2.6)

where reh u{x) := u(x + eh).
Now ||tte —"llj tends to zero by assumption, and ||reftw — u\\x tends to zero as e^O for

every h, and since / is summable (cf. (2.2)), we can apply the dominated convergence
theorem to the integrals in line (2.6), and we get

lim g£t)dt = O.
tt

Hence the functions ge converge to zero in L1(IR), and passing to a subsequence we may
assume that they also converge pointwise to zero for a.e. teU. Since g6{t) is equal to the
double integral in (2.3) (with v replaced by u), the proof is complete. •

Definition 2.6 Let A, A' <= UN be given. We say that the set 27 divides A and A' when for
every xeA,x'eA' the segment [x, x'] intersects L. We say that E strongly divides A and A'
when E is the (Lipschitz) boundary of some open set Q such that A <= Q and A' c UN \ Q.

Now we can state and prove the first decay estimate for the locality defect. Let disjoint
sets A and A' in W be given which are divided by E, then take positive numbers en -> 0 and
functions un: A U A'^[— 1,1] and v,v': 27^[— 1,1],

Lemma 2.7 Under the above stated hypotheses, if the en-traces of un relative to A and A'
converge on E to v and v', respectively, then

\v(y)-v'(y)\dy. (2.7)
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FIGURE 1. The set Aeh for given e > 0 and heUN.

Proof To simplify the notation we write e, ue and Ac instead of en, un, Ae . By the definition
of Ae, and recalling that |wj ̂  1, we obtain

Ae(ue, A,A')^^- \u£x + eh) — ue(x)\ dx \dh, (2.8)

where Aeh is the set of all x such that xeA and x + eheA'. Let us consider for the moment
the integral Ie{h) defined in (2.8): for every x in the integration domain Aeh, the segment
[x,x + eh] intersects E, and then we can write x as x = y — teh for some yeE and te[Q, 1]
(Fig- 1).

Since the Jacobian determinant of the map which takes (y, t) e E x [0,1] into y — teh does
not exceed e\h\, by applying the change of variable x = y — teh we get

/.(A) \u.(y + (l~t)eh)- u£y - teh) | rf/j dy,

where Shy is the set of all te[0,1] such that y-teheA and y + (l-t)eheA'. Hence (2.8)
yields

J(h)\h\ \uc(y + (l-t)eh)-ue(y-teh)\dt]dydh. (2.9)

Now by the triangle inequality we can estimate \u£y + (l — t)eh) — ue(y — teh)\ by the sum of
the following three terms:

K y ) - v'(y)\ + \u£y- teh) - v'(y)\ + \u£y + (1 - 1 ) eh) - v(y)\.

Accordingly, we estimate the double integral at the right-hand side of (2.9) by the sum of
the corresponding double integrals /*, If and If, that is,

(2.10)

We recall now that \Shy\ < 1 for every h and every y, and then

e-.-i J(h)\h\ Hy)-v'{y)\dt\dydh

Hy)~v'(y)\dy\. (2.11)
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Since the first integral in line (2.11) is equal to || / ^ (see (2.2)), inequality (2.7) will follow
from (2.10) once we have proved that If and I\ vanish as e^O. Let us consider 7e

2:

I>^ J(h)W \u6(y-teh)-v(y)\dt dydh

41
Z J flJeKN. y

h'
\u£y + eh')-v(y)\^\dydh'

'] dy
{h'ly+eh'eA} J

(the first inequality in the previous computation follows from the change of variable
h = —h'It, while the second one follows from (2.1), taking into account that \Shy\ ^ 1 for
every h,y).

Therefore, 7e
2 vanishes as e -> 0 because the e-traces of u6 relative to A converge to v on

E. In a similar way, one can prove that 76
3 vanishes as e^O. •

Now we can state the main result of this section. Let be given disjoint sets A, A' <= UN,
and Z such that one of the following holds:

(a) the sets A and A' are divided by E (cf. Definition 2.6);
(b) the sets A and A' are strongly divided by a Lipschitz boundary S with finite measure

and 17 = 8̂ 4 n 8.4';
(c) either A or A' is a bounded set with Lipschitz boundary and £ = dA ft dA'.

Then take positive numbers en^0 and functions un: A U A'^[— 1,1],

Theorem 2.8 Under the above stated hypotheses we have

. (2.12)

Moreover, if the en-traces ofun relative to A and A' converge on L, respectively, to v andv',
then

KmmvAer(un,A,A') <| | | . / | |1 ( \v(y)-v'(y)\dy. (2.13)

Proof Notice that (2.12) follows by applying (2.13) to the functions un which are equal to
1 on A and to — 1 on A' (with v := 1 and v' := — 1), and then using the obvious inequality
Aen(un,A,A')^A£n(un,A,A').

Let us prove (2.13). When (a) holds it is enough to apply Lemma 2.7, while (c) clearly
implies (b). Assume that (b) holds.

First, we notice that in this case we can always modify the boundary S so that S n dA =
S n 3v4' = E. Now we extend v and v' to zero on 5 \ E, and then the ere-traces of un relative
to A and A' converge on S to v and v', respectively (use Remark 2.3, recalling that both A
and A' have upper /-density zero at every point of 5 \ E). Now it is enough to apply Lemma
2.7 with S instead of E. •
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3 Proof of the compactness result

The following theorem implies statement (i) of Theorem 1.4, and shows that the domain
of the /"-limit of the functionals Fe is included in BV(Q, ± 1).

Theorem 3.1 Let Q be a regular open set and let sequences (en) and (un) be given such that
en -> 0, un: Q -> [ — 1,1], andFe (un, Q) is bounded. Then the sequence (un) is relatively compact
in LX(Q) and each of its cluster points belongs to BV(Q, +1).

Proof To simplify the notation, we replace as usual en, un and F6 with e, ue and Fe.
We need the following inequality, which may be proved by a direct computation: for

every non-negative geL1(RN) and every u: UN->U, we have

J (g*g)(y)Kx+y)-u(x)\dydx ^ 2 Us-lli J" giy)Hx + y)-iKx)\dydx. (3.1)

The proof of the theorem is now divided into two steps.

Step 1 We first prove the theorem under the assumption that each ue takes values + 1
only.

We extend each function ue to 1 in UN \ Q, and then we observe that

J£y) I «.(*+y) - «.(*)! dy dx = O(e). (3.2)

Indeed, the assumption ue = +1 implies \u£x') — u6(x)\ = \(ue(x') — ME(X))2, and then by the
definition of Fe we obtain

\ J RK J& - x) \ue(x') - u£x)\ dx' dx = 2Fe(ue, U
N) = 2F&£, Q) + 4A£ue, Q, U»\Q).

We apply inequality (2.12) with A = Q and A' = UN \ Q to show that Ae{ue,Q, UN\Q) is
uniformly bounded in e (recall that we are considering only a subsequence en which
converges to zero), while F£ue,Q) is uniformly bounded by assumption. Hence (3.2) is
proved.

Now we combine inequality (3.1) with g := Je and inequality (3.2), and we obtain

; = 0{e). (3.3)

Since / * / is a non-negative continuous function, we may find a non-negative smooth
function <j> (not identically zero) with compact support such that

<j> sc / * / and |V0| ^ J*J. (3.4)

We set c:= JRw<fi(y)dy, and for every yeUN and every e > 0 we define

<pe(y)'-=—x<j>(y/e) and w£y) := <fre*ue(y). (3.5)

The functions 0e are smooth and non-negative, have integral equal to unity, and converge
to the Dirac mass centred at 0 as e^O. We claim that the sequence (we) is asymptotically
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equivalent to (u£) in L\UN), and that the gradients Vwe are uniformly bounded in
L1(UN). Once this claim is proved, we could infer that the sequence (we) is relatively
compact in I}{Q) and each of its cluster points belongs to BV(Q, + 1), and that the same
holds for the sequence (ue).

Now it remains to prove the claim. We have

\we-ue\dx = \(y)(ue{x+y)-ue{x))dy dx

\<j>e(y)\\uc(x+y)-u£x)\dydx

ue{x+y) - u£x)\ dy dx = O(e)

(here the second inequality follows from (j>e^\Je*Je, cf. (3.4) and (3.5), while the last
equality follows from (3.3)). Moreover

J dx = V<f>£y)u£x+y)dy dx

-J.R" I J R-

dx

\V<?>£y)\\u£x+y)-ue(x)\dydx

-
ce

= 0(1)

(to obtain the second equality we use the fact that JRw V0e(y) dy = 0 because ^e has compact
support; the second inequality follows from |V0J ^ ^eJe*Je> cf. (3.4) and (3.5), while the
last equality follows from (3.3)).

Step 2 We now consider the general case. For every se U we set

- 1 ifs<0,
T(s) :=

+ 1 if s ^ 0,

and then we define
ve:=T(ue).

(3.6)

(3.7)

The functions ve take values + 1 only, and we claim that the sequence (ve) is asymptotically
equivalent to (ue) in L}(Q) and that F£ve, Q) is uniformly bounded. Once we have proved
this claim, the theorem will follow from Step 1.

Take S so that 0 < 8 < 1, and let Ke be the set of all xeQ such that u£x)e[-1+ S, 1-8].
Then \ue — ve\ ^S in £2\Ke, and we deduce

ue-v.\dx^S\Q\+
a J K.

ve\)dx^S\Q\+2\K( (3.8)
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Since 8 > 0 and Wis zero only at + 1, there exists a positive constant p (which depends on
8) such that W{f) ^ p for every t e [ -1 + S, 1 - 8]. Hence

- i ; ( « . , f l ) = ^ . (3.9)

The inequalities (3.8) and (3.9) imply

limsup

As 8 is arbitrary, the sequences (ue) and (ve) are asymptotically equivalent in L 1 ^ ) .
It remains to prove that Fe(ve, Q) is uniformly bounded in e. Since Jn W(ve) dy = 0, we

have only to estimate the first integral in the definition of F6. Given s±, s2e[— 1,1] we have
that

either \sx\ < 1/2 or i r ^ ) - ^ ) ! ^ 4 ^ —,s2|.

Hence, if we denote by He the set of all xeQ such that |w£(x)| ^ 1/2, we deduce

F£vc,
 Q)=^\aa

 J& - *) (r«.(*0 - r«.(*»S dx' dx

J£x' - x) (ue(x') - u£x)f dx' dx + -\ Je(x' - x) dx' dx

ie,Q)+-\\J\\1\H6\. (3.10)

By the properties of W, there exists a positive constant p such that W{t) ^ p for every t such
that |;| ^ 1/2, and, reasoning as in (3.9), we get \He\ = O(e); together with (3.10) this proves
that F£ve, i3) is uniformly bounded in e. •

4 Proof of the lower bound inequality

In this section we prove statement (ii) of Theorem 1.4.
We begin with some notation. For every e > 0, A ^ UN and u: UN -> [ — 1,1] we define the

rescaling of the functional J5" given in (1.7) by

JS(M, A) := ~ f JSh) (u(x + h) - u(x)f dxdh + -f W(u(x)) dx. (4.1)
^e JxEA,heUN e J xeA

Recalling the definitions of Fe and Ae we obtain:

Jf(«, A) = F£u, A) + ASu, A, UN \ A). (4.2)

Let us now be given a function u denned on (a subset of) UN, a point xe RN and a positive
number r. We define the blow-up of u centred at x with scaling factor r as the function
Rx r u given by

{Rx r u) (x) := u(x + rx); (4.3)
when x = 0 we write Rr u instead of Ro ru. For every set A e UN we set, as usual, x + rA :=

:: xe A}, and then we easily obtain the following scaling identities:

Fe(u,x+rA) = rN-lFe/r(Rx,ru,A), (4.4)

&SM, X + rA) = r""1 &eiS,Rx r u>A)- (4-5)
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In the proof we also make use of the following well-known results about the blow-up of
finite perimeter sets and measures.

4.1 Some blow-up results

Let S be a rectifiable set in UN with normal vector field v; let /i be the restriction of the
Hausdorff measure JfN-1 to the set 5", that is, /i := Jf N~x L S, and let A be a finite measure
on UN. Then for Jf N~1-a.e. xeS the density of A with respect to /i at x is given by the
following limit:

d\ A(x + rQ)
— (x) = hm v , (4.6)

where Q is any unit cube centred at 0 such that v{x) is one of its axes.
Let u be a fixed function in BV(Q, ± 1). For every xeSu, we denote by vx : R

w ^ + 1 the
step function

*0, (47)

-l if <,,„.(*)><<). ( 4-7 )

Then for Jf ̂ "^a.e. xeSu, and more precisely for all xeSu such that the density of the
measure Du with respect to |Z>w| exists and is equal to vu{x), we have the limit

R^u^v, in Llc(U
N) asr^O (4.8)

(if u is not defined on the whole of IR", we take an arbitrary extension).

4.2 Proof of statement (ii) of Theorem 1.4

We can now begin the proof of statement (ii) of Theorem 1.4. We assume, therefore, that
we are given a sequence (we) which converges to ueBV(Q, ± 1) in L\Q); we have to prove
that

, (4.9)
Su

In the following, ue and u are fixed. We shall often extract from all positive e a subsequence
(eJ which converges to zero; to simplify the notation, we shall keep writing e, F6 and ue

instead of e,, F ,u .
First, we notice that it is enough to prove inequality (4.9) when the lower limit at the left-

hand side is finite, and then, passing to a subsequence, we may also assume that it is a limit.
Now we follow the approach of [FM]; the main feature of this method consists of the

reduction of the lower bound inequality (4.9) to a density estimate (see (4.13)) which has
to be satisfied point-by-point. What follows, up to equation (4.18), is a straightforward
adaptation of this general method (see also [BF], [BFM]).

For every e > 0 we define the energy density associated with ue at the point xe f las

g£x) = 1 f Je(x'-x){ue{x')-ulx)fdx' + - W(ue(x)), (4.10)

and then we consider the corresponding energy distribution

Ae:=ge-^NLQ. (4.11)
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Thus the total variation ||AJ| of the measure Ae (on Q) is equal to Fc{ue,Q), and since
Fe(uc, Q) is equibounded with respect to e, possibly passing to a subsequence we can assume
that there exists a finite positive measure A on Q such that

Ae-^ A weakly* on Q ase->0.

Since F£ue,Q) = ||AJ and liminf^0 ||AJ ^ ||A||, the inequality (4.9) is implied by the
following:

1. (4.12)
sunQ

In fact, we prove a stronger result: the density of A with respect to /* := Jf N~x L SU is greater
than or equal to (T(VU) at J f ^ ' - a . e . point of Su, that is

^(x)^cr(va(x)) forjf ^ - a . e .xeSw. (4.13)
a/A,

More precisely, we have the following lemma:

Lemma 4.3 With the previous notation, the inequality (4.13) holds for every xeSu which
satisfies (4.6) and (4.8).

Proof We fix such a point xe Su, and we denote by v the vector vu(x) and by v the step
function v% denned in (4.7). Following the notation of §1.3 we fix an (N— l)-dimensional
unit cube Ce%,, and we take Q = Qc and T = Tc accordingly.

As the measures Ae converge in the weak* sense to A on Q as e^O, we have that Ae(̂ 4)
-^A(A) for every set A such that A(dA) = 0. Since A(x + r(dQ)) = 0 for all positive r up to
an exceptional countable set N, we deduce that Ae(x + rQ) ̂ > A(x + rQ) for every positive
r$N. Therefore, recalling (4.6), we write

,. /.. A,(.v+rO)\ ,. Mx + rQ) rfA.,
hm hm -'v v_, '- = hm v

 jV_, = -j-(x). (4.14)

Since ue^u in L 1 ^ ) by assumption, by (4.8) we also have

\wi{\\mR^ru^ = \\mRXru = v inL1^). (4.15)

By a diagonal argument we can choose subsequences (rn) and (en) so that

(e B /O = 0, (4.16)

^ ^ ^ Q), (4.18)

and then we set en := en/rK, vn := ^ r we . To simplify the notation, in the following we write
e, e, r, ue and v instead of en, en, rn, ue and vn, respectively.

https://doi.org/10.1017/S0956792598003453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003453


A non-local anisotropic model for phase transitions 279

From the scaling identity (4.4) and the definition of Ae, we infer

Keeping in mind (4.17) and (4.19), we can try to prove (4.13) by establishing a precise
relation between F£vt, Q) and a(v) (see §1.3).

One possibility is the following: we extend ve to the strip Tby setting vt := v in T\ Q, and
then we take the C-periodic extension in the rest of UN. Now, by the scaling identity (4.5),
we know that

&$vp T) ss CT(V),

and then it would remain to prove that the difference between &£ve> ^) an<i fyvv 2)
vanishes as e^O; this difference can be written as (cf. (4.20) below)

&$vv T) -F£ve_, Q) = A£ve_, T, UN\T) + 2A£ve_, Q,T\Q);

unfortunately, we cannot use Theorem 2.8 to show that it vanishes as e^O, because we
have no information about the convergence of the e-traces of ve on the boundaries QQ and
ST.

We overcome this difficulty as follows: as vs-+v in L\Q), Proposition 2.5 shows that for
a.e. te(0,1) the e-traces of v§ converge to v on the boundary El of the cube tQ (notice that
each El is the f-level set of the Lipschitz function g(x) := 1 = dist(x, 92)).

We fix for the moment such a t, and we define ve_ on the strip tT by

[ ve(x) ifxetQ,

\v{x) UxetT\tQ,

and then we take the JC-periodic extension in the rest of UN. Hence vt belongs to X(tC) (cf.
§ 1.3), and since ve_ = ve_ in tQ

= J#5e, tT)-AXv£_, tT, UN\tT)-2 Afa, tQ, tT\ tQ) . (4.20)

Now we claim that both locality defects L* and L\ vanish as e^O; once this is proved, we
can deduce from the previous formula that

lim sup F£ve, Q) > lim sup ̂ (ve, tT). (4.21)

Let us consider first L£
2: the sets tQ and tT\ tQ are divided by the boundary El of tQ, and

by the choice of t, the e-trace of ve relative to tQ converges to v on £* (recall that v^ = vg on
tQ). On the other hand, ve = v in tT\ tQ, and then also the e-trace relative to tT\ tQ
converges to v on E'. Hence, Theorem 2.8 applies, and L\ vanishes as e^O. In a similar
way, one can prove that also L\ vanishes as e -> 0 (in fact, it is enough to verify that the e-
trace of ve relative to UN converges to v on the boundary of tT).

https://doi.org/10.1017/S0956792598003453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003453


280 G. Alberti and G. Bellettini

Eventually, we use the scaling identity (4.5) and the definition of a(v) to get

jF(i>6, tT) = e ^ 1
 AR.VJ- T) ^ t"-1 o-(v), (4.22)

e

and putting together (4.17), (4.19), (4.21) and (4.22), we obtain

the proof of inequality (4.13) is thus completed by taking t arbitrarily close to unity. •

5 Proof of the upper bound inequality

Throughout this section Q is always a regular open set.

Definition 5.1 A N-dimensional polyhedral set in UN is an open set E whose boundary is
a Lipschitz manifold contained in the union of finitely many afnne hyperplanes; the faces
of E are the intersections of the boundary of E with each one of these hyperplanes, and an
edge point of E is a point which belongs to at least two different faces (that is, a point where
dE is not smooth). We denote by vE the inner normal to dE (defined for all points in the
boundary which are not edge points).

A k-dimensional polyhedral set in UN is a polyhedral subset of a ^-dimensional affine
subspace of UN. A polyhedral set in Q is the intersection of a polyhedral set in UN with Q.

We say that ueBV(Q, ±1) is a polyhedral function if there exists an JV-dimensional
polyhedral set E in UN such that dE is transversal to dQ (that is, j^N^(dE n dQ) = 0) and
u(x) = 1 for every x e Q n E, u(x) = — 1 for every xe£2\E.

Theorem 5.2 Let ueBV(Q, +1) be a polyhedral function. Then there exists a sequence of
functions (ue) defined on Q such that |wj ^ 1 for every e, ue converge to u uniformly on every
compact set K<= Q\Su, and

\ cr(yulimsupFs(ue,Q)^ \ cr(yu)dJeN-\ (5.1)
J

Proof Let us fix some notation: E is the polyhedral set associated with u in Definition 5.1;
we denote by S the set of all edge points of E which belong to Q and by E a general face
of Su (that is, a face of E). Then 51 is a finite union of (N—2)-dimensional polyhedral sets
in Q, dE = Su, and we may choose the orientation of Su so that vE = vu (for every point
in Su \ S).

Given two open sets Ar,A2,we denote by A1LJ A^ the interior of Ax U A2. We define ^ as
the class of all sets A such that

(i) A is an TV-dimensional polyhedral set in Q, and dA and Su are transversal (that is,

(ii) there exists a sequence of functions (ue) defined on A such that |wj ^ 1 and

ue->u uniformly on every compact set Kc A\Su, (5.2)

a(yu)d^N-\ (5.3)
A fl Su
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The proof of Theorem 5.2 is achieved by showing that Q e t?; this is a consequence of the
following three statements:

(a) if A is an N-dimensional polyhedral set in Q such that JfN~1(A n Su) = 0, then A e ?§;
(b) let E be a face of Su and let n be the projection map on the affine hyperplane which

contains E: if A is an N-dimensional polyhedral set in Q such that Suf]A=E and
n(A) = E, then Ae^;

(c) if A^ A2 belong to <$ and are disjoint, then A1 UA2e^.

Step 1: proof of statement (a).
In this case, Jf N~\dA n 5M) = 0 and A[] Su =0; then u is constant (—1 or 1) in A, and
it is enough to take ue := u for every e > 0.

Step 2: proof of statement (b).
Property (i) is immediate; let us prove (ii). We denote by e the constant inner normal to E;
therefore, E lies on some afHne hyperplane which is parallel to the orthogonal component
to e, M; we may assume that E lies exactly on M. Following the notation of §2 1.3, for every
fixed 7) > 0, we can find Ce% and weX(C) such that

(5.4)

and then we define
ue(x) := w(x/e) for every xeUN. (5.5)

Property (5.2) holds because w(x)^±l as x c ^ + o o (see §1.3). We claim that

lim sup F£(ue, A) < ^N~\E) • (rr(e) + v). (5.6)

For the sake of simplicity, we assume that C is a unit cube.
Since E is a polyhedral set in the (N— l)-dimensional space M, for every e > 0 we can

cover it by a finite number h = h(e) of copies of the closed cube eC (denoted by xt + eC, with
xfeM for / = l,...,/z) so that

helf-1 = 'ZJelf-1(x( + eC) + jrN-1(Z) ase^O. (5.7)
i

Notice that A is included in the union of the strips xt + eTc because E is the projection of
A on M, and then by (4.1) we have

F£ue, A) ^ F£u6, U ,(*, + eTc)) ^ ^e{ue, U ,(*« + eTc)) ^ £ &e{ue, eTc), (5.8)
i-l

where the last inequality follows from the fact that J^(M£, •) is translation invariant
and subadditive. Applying now the scaling identity (4.5) with x = 0 and e = r, we get
^e{ue,eTc) = eN-1^r{w, Tc), so that by (5.8) and (5.4) we deduce

Taking into account (5.7) we get (5.6).
Since e coincides with vu in E = Su fl A, (5.3) follows from inequality (5.6) by a simple

diagonal argument, and the proof of statement (b) is complete.
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Step 3: proof of statement (c).
Given disjoint A1,A2e'^, we set A := A1 U A2 and we take sequences {u\), (wf) which satisfy
property (ii) for A1 and A2, respectively. Then we set

uix) := \
\ u!(x)

One can check that properties (i) and (5.2) are satisfied, and that (5.3) reduces to

\vmAe{ue,A1,A2) = Q.

Notice that by (5.2), the e-traces of u\ relative to A{ converge to u on every Lipschitz
hypersurface E a At such that J^N-\E(] Su) = 0 for i=\, 2 (cf. Remark 2.4); in
particular, this holds true for E = dA. Hence the previous identity follows from Theorem
2.8.

Step 4: proof of Theorem 5.2.
It is clear that Q can be written as Q = U At with finitely many sets Ai which are pairwise
disjoint and satisfy either the assumptions of statement (a) or of statement (b) above.
Therefore, Q belongs to ^ by statement (c), and Theorem 5.2 follows from property
(ii). •

To complete the proof of Theorem 1.4, we need the following lemma:

Lemma 5.3 The function cr defined in 1.3 is upper semicontinuous on the unit sphere ofUN.

Proof Fix a unit vector v in UN, and for every linear isometry / of UN set

&(I):=M{\C\~l&(uoI,Tc): Cs%,ueX{C)} (5.9)

(here we follow the notation of § 1.3). One easily verifies that for every ueX(C) the map
/>->• !F{u o /, Tc) is continuous on the space £ of all linear isometries of UN, and therefore &
is upper semicontinuous on J because it is denned in (5.9) as an innmum of continuous
functions. We deduce the thesis by remarking that o-(e) = &{I) whenever e = Iv. •

5.4 Proof of statement (iii) of Theorem 1.4

For every IR^-valued Borel measure /i on Q we set

JQ

G(fi):= f aifi/l^d]^, (5.10)

where /t/|/*| stands for the density of/* with respect to its total variation. Now statement
(iii) of Theorem 1.4 reads as follows: for every function ueBV(Q, + 1) there exists a
sequence (ue) such that ue^u in LJ(fi) and limsupF£ue,Q) ^ G(Du).

By Theorem 5.2 this is true when u is a polyhedral function, and then the general
case follows by a simple diagonal argument once we have proved that every function
usBV(Q, ± 1) can be approximated (in L1^)) by a sequence of polyhedral functions (un)
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so that \imsupG(Dun) ^ G(Du). Now, every ueBV{Q, +1) can be approximated by
polyhedral functions («„) in variation, that is, un^um LX{Q) and \\Dun\\ -> \\Du\\ (in fact,
when Q is regular, every set of finite perimeter can be approximated in variation by smooth
sets, and hence also by polyhedral sets — see, for instance, [Gi], Theorem 1.24), and then it
is enough to. prove that G is upper semicontinuous with respect to convergence in
variation of measures. Since <r is a non-negative upper semicontinuous function on the unit
sphere of UN (Lemma 5.3), this follows by a well-known result due to Reshetnyak (see, for
instance, the appendix of [LM]). •

6 Conclusions

In this paper we have proved that the variational limit F(u) of the rescaled functionals
Fe(u) defined in (1.1) is finite only when u is equal to +1 a.e., and in this case is equal to the
area of the (measure theoretic) interface which separates the sets {u = + 1} and {u = — 1}
weighted by a positive anisotropic function a, which depends only on the normal to the
interface (see formula (1.10) and Theorem 1.4).

The functionals Fe can be viewed as rescalings of the free energy of a continuum Ising
system with two stable phases u = + 1, and our result shows that n the thermodynamic limit
the classical surface tension model for phase separation is recovered. The extension to the
multi-phase case is also briefly sketched (see §1.12).

A key role in the proof is played by the ferromagnetic assumption, namely that the
interactions potential Jin (1.1) is positive (cf. §1.13). Even if our result holds for potentials
/with a small negative part (see [AB2]), the problem of understanding what happens in the
general case seems still wide open; indeed, a quite different asymptotic behaviour is
expected, since in particular the ground states associated with the unsealed energy may be
not constant.
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