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INDESTRUCTIBILITY WHEN THE FIRST TWO MEASURABLE
CARDINALS ARE STRONGLY COMPACT

ARTHUR W. APTER

Abstract. We prove two theorems concerning indestructibility properties of the first two strongly
compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from
two supercompact cardinals κ1 < κ2, we force and construct a model in which κ1 and κ2 are both the first
two strongly compact and first two measurable cardinals, κ1’s strong compactness is fully indestructible
(i.e., κ1’s strong compactness is indestructible under arbitrary κ1-directed closed forcing), and κ2’s strong
compactness is indestructible under Add(κ2, �) for any ordinal �. This provides an answer to a strengthened
version of a question of Sargsyan found in [17, Question 5]. We also investigate indestructibility properties
that may occur when the first two strongly compact cardinals are not only the first two measurable cardinals,
but also exhibit nontrivial degrees of supercompactness.

§1. Introduction and preliminaries. The study of indestructibility properties that
non-supercompact strongly compact cardinals may possess has been carried out
in several papers, including [3, 5, 17]. In particular, [17, Question 5] asks whether
it is possible for the first two strongly compact cardinals κ1 and κ2 to be the first
two measurable cardinals, with the second strongly compact cardinal (κ2) having its
strong compactness indestructible under Add(κ2, κ

++
2 ) (where for κ ≥ ℵ0 a regular

cardinal and � an ordinal, Add(κ, �) is the standard partial ordering for adding �
many Cohen subsets of κ).

The purpose of this paper is to answer [17, Question 5] in the affirmative, and also
prove a theorem showing that the first two strongly compact cardinals κ1 and κ2

can be the first two measurable cardinals, where in addition, each κi (for i = 1, 2) is
κ+
i supercompact and also exhibits certain indestructibility properties. Specifically,

we will prove the following two theorems, where we take as terminology for the rest
of this paper that a supercompact cardinal κ has its supercompactness indestructible
under forcing with a class of partial orderings C if κ remains supercompact after
forcing with members of C.

Theorem 1.1. Suppose V � “ZFC + κ1 < κ2 are supercompact.” There is then
a partial ordering P ⊆ V such that V P � “ZFC +κ1 and κ2 are both the first two
strongly compact and first two measurable cardinals.” In V P, κ1’s strong compactness
is indestructible under arbitraryκ1-directed closed forcing, andκ2’s strong compactness
is indestructible under forcing with Add(κ2, �) for any ordinal �.
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Theorem 1.2. Suppose V � “ZFC +κ1 < κ2 are supercompact.” There is then a
partial orderingP ⊆ V such thatV P � “ZFC +κ1 and κ2 are both the first two strongly
compact and first two measurable cardinals.” Further, in V P, the following properties
hold.

1. Each κi (for i = 1, 2) is κ+
i supercompact and satisfies 2κi = 2κ

+
i = κ++

i .
2. 2� = �+ for every � ≥ κ++

2 .
3. κ1’s strong compactness is indestructible under arbitrary κ1-directed closed

forcing.
4. κ2’s strong compactness is indestructible under κ2-directed closed, (κ+

2 ,∞)-
distributive forcing.

5. Let � = (κ+
2 )V

P

. Then the � supercompactness of κ2 is indestructible under κ2-
directed closed forcing having size at most �.

We take this opportunity to make a few remarks concerning Theorems 1.1 and
1.2. We note that Theorem 1.1 provides a model witnessing a strengthened version
of [17, Question 5], in that the first strongly compact and measurable cardinal
κ1 is fully indestructible, and the second strongly compact cardinal κ2 has its
strong compactness indestructible under Add(κ2, �) for arbitrary �, rather than
being indestructible only under Add(κ2, κ

++
2 ). In addition, Theorem 1.2 provides

a generalization of both [3, Theorem 1] and [5, Theorem 2]. Also, in Theorem
1.2, it is impossible for i = 1, 2 to have that κi is 2κi = κ++

i supercompact. This
is since κ1 and κ2 are the first two measurable cardinals, and it is a well-known
fact (see [13, Lemma 20.16]) that if κ is 2κ supercompact, then κ is a limit of
measurable cardinals. Further, because for i = 1, 2, any partial ordering which is
(κ+
i ,∞)-distributive adds no new subsets of κ+

i and hence also adds no new subsets
of Pκi (κ

+
i ), each κi automatically has its κ+

i supercompactness indestructible under
every (κ+

i ,∞)-distributive forcing notion. However, unlike the situation with κ2, the
current state of forcing technology doesn’t appear to provide a way for one to force
the κ+

1 supercompactness of κ1 to be indestructible under κ1-directed closed forcing
having size at most κ+

1 . We will discuss this issue in greater detail towards the end
of the paper.

Before continuing, we mention the overall structure of this paper. Section 1
contains our introductory comments. Section 2 contains the proofs of Theorems
1.1 and 1.2. Section 3 contains our concluding remarks.

We now briefly mention some preliminary information and terminology. Essen-
tially, our notation and terminology are standard, and when this is not the case,
this will be clearly noted. When forcing, q ≥ p will mean that q is stronger than p.
If G is V -generic over P, we will abuse notation slightly and use both V [G ] and V P

to indicate the universe obtained by forcing with P. If x ∈ V [G ], then ẋ will be a
term in V for x. We may, from time to time, confuse terms with the sets they denote
and write x when we actually mean ẋ or x̌, especially when x is some variant of
the generic set G, or x is in the ground model V. The abuse of notation mentioned
above will be compounded by writing x ∈ V P instead of ẋ ∈ V P. Any term for
trivial forcing will always be taken as a term for the partial ordering {∅}. If ϕ is a
formula in the forcing language with respect to P and p ∈ P, then p ‖ ϕ means that
p decides ϕ.
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216 ARTHUR W. APTER

If P is an arbitrary partial ordering and κ is a regular cardinal, P is (κ,∞)-
distributive if for every sequence 〈Dα | α < κ〉 of dense open subsets of P,

⋂
α<κ Dα

is dense open. P is κ-directed closed if for every cardinal � < κ and every directed set
〈pα | α < �〉 of elements of P (where 〈pα | α < �〉 is directed if every two elements
p� and p� have a common upper bound of the form p	), there is an upper bound
p ∈ P. P is κ-strategically closed if in the two person game of length κ + 1 in which
the players construct an increasing sequence 〈pα | α ≤ κ〉, where Player I plays
odd stages and Player II plays even stages (choosing the trivial condition at stage
0), Player II has a strategy which ensures the game can always be continued. P is
≺κ-strategically closed if in the two person game in which the players construct
an increasing sequence 〈pα | α < κ〉, where Player I plays odd stages and Player II
plays even and limit stages (again choosing the trivial condition at stage 0), then
Player II has a strategy which ensures the game can always be continued. Note that
if P is κ+-directed closed, then P is ≺κ+-strategically closed.

An example of a partial ordering which is ≺κ-strategically closed and which
will be used in the proof of Theorem 1.2 is the partial ordering P for adding a
nonreflecting stationary set of ordinals of cofinality � to κ, where � < κ is a regular
cardinal. Specifically, P = {p | For some α < κ, p : α → {0, 1} is a characteristic
function of Sp, a subset of α not stationary at its supremum nor having any initial
segment which is stationary at its supremum, such that 
 ∈ Sp implies 
 > � and
cof(
) = �}, ordered by q ≥ p iff q ⊇ p and Sp = Sq ∩ sup(Sp), i.e., Sq is an end
extension of Sp. It is virtually immediate that P is �-directed closed. For additional
details, readers are urged to consult [6, second paragraph of Section 1, p. 106].

We recall for the benefit of readers the definition given by Hamkins in [11,
Section 3] of the lottery sum of a collection of partial orderings. IfA is a collection of
partial orderings, then the lottery sum is the partial ordering ⊕A = {〈P, p〉 | P ∈ A

and p ∈ P} ∪ {0}, ordered with 0 below everything and 〈P, p〉 ≤ 〈P′, p′〉 iff P = P′

and p ≤ p′. Intuitively, if G is V -generic over ⊕A, then G first selects an element of
A (or as Hamkins says in [11], “holds a lottery among the posets in A”) and then
forces with it.1

A corollary of Hamkins’ work on gap forcing found in [10, 12] will be employed
in the proof of Theorems 1.1 and 1.2. We therefore state as a separate theorem what
is relevant for this paper, along with some associated terminology, quoting from
[10, 12] when appropriate. Suppose P is a partial ordering which can be written as
Q ∗ Ṙ, where |Q| < �,Q is nontrivial, and �Q “Ṙ is �+-directed closed.” In Hamkins’
terminology of [10, 12], P admits a gap at �. Also, as in the terminology of [10, 12]
and elsewhere, an embedding j : V →M is amenable to V when j � A ∈ V for any
A ∈ V . The specific corollary of Hamkins’ work from [10, 12] we will be using is
then the following.

Theorem 1.3 (Hamkins). Suppose that V [G ] is a generic extension obtained
by forcing with P that admits a gap at some regular � < κ. Suppose further
that j : V [G ] →M [j(G)] is an elementary embedding with critical point κ for

1The terminology “lottery sum” is due to Hamkins, although the concept of the lottery sum of partial
orderings has been around for quite some time and has been referred to at different junctures via the
names “disjoint sum of partial orderings,” “side-by-side forcing,” and “choosing which partial ordering
to force with generically.”
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whichM [j(G)] ⊆ V [G ] andM [j(G)]� ⊆M [j(G)] in V [G ]. ThenM ⊆ V ; indeed,
M = V ∩M [j(G)]. If the full embedding j is amenable to V [G ], then the restricted
embedding j � V : V →M is amenable to V. If j is definable from parameters (such
as a measure or extender) in V [G ], then the restricted embedding j � V is definable
from the names of those parameters in V.

Theorem 1.3 immediately implies that if κ is measurable in a generic extension by
a partial ordering admitting a gap at � < κ, then κ had to have been measurable in
the ground model V.

Finally, we mention that we are assuming familiarity with the large cardinal
notions of measurability, strong compactness, and supercompactness. Interested
readers may consult [13] for further details.

§2. The proofs of Theorems 1.1 and 1.2. We turn now to the proof of Theorem 1.1.

Proof. Suppose V � “ZFC +κ1 < κ2 are supercompact.” Without loss of
generality, by first doing a preliminary forcing and truncating the universe if
necessary, we assume in addition that V � “GCH + No cardinal � > κ2 is
measurable.”

The proof of Theorem 1.1 may now be divided into four modules, as follows:
Module 1: Let P0 ∈ V be the partial ordering used in the proof of [3, Theorem 1]

defined with respect to κ1. SetV1 = V P0
. It is then the case thatV1 � “κ1 is both the

least strongly compact and least measurable cardinal + κ1’s strong compactness is
indestructible under arbitrary κ1-directed closed forcing.” Since P0 may be defined
so that |P0| = κ1, standard arguments in conjunction with the Lévy–Solovay results
[15] yield that V1 � “GCH holds at and above κ1 + κ2 is supercompact + No
cardinal � > κ2 is measurable.”

Module 2: Let P1 ∈ V1 be the Easton support iteration of length
κ2 which adds, to every measurable cardinal � ∈ (κ1, κ2), a nonreflecting stationary
set of ordinals of cofinality κ1. Set V2 = V P1

1 . Since V1 � “No cardinal � > κ2

is measurable,” by an argument due to Magidor (unpublished by him, but given
in the proof of [1, Theorem 2]), V2 � “κ2 is both the least measurable and least
strongly compact cardinal greater than κ1.” Because V1 � “κ1 is both the least
strongly compact and least measurable cardinal + κ1’s strong compactness is
indestructible under arbitrary κ1-directed closed forcing + P1 is κ1-directed closed,”
it consequently follows that V2 � “κ1 and κ2 are both the first two strongly compact
and first two measurable cardinals + κ1’s strong compactness is indestructible under
arbitrary κ1-directed closed forcing.”

Module 3: Working in V2, let κ′1 be the least inaccessible cardinal greater than
κ1. Let P2 ∈ V2 be Add(κ1, 1) ∗ Ḟκ′1,κ2

, where Fκ′1,κ2
is Hamkins’ presentation from

[11, Section 1] of Woodin’s notion of fast function forcing defined using functions
whose domain lies in the half-open interval [κ′1, κ2). (Fκ′1,κ2

= {p | p : κ2 → κ2 is
a function such that |dom(p)| < κ2, dom(p) ⊆ [κ′1, κ2), � ∈ dom(p) implies that
� is inaccessible, and if � ∈ dom(p), then p′′� ⊆ � and |p � �| < �}, ordered by
inclusion.) Set V3 = V P2

2 . By [11, Section 1, paragraph 3], �Add(κ1,1) “Ḟκ′1,κ2
is κ′1-

directed closed.” Thus, P2 is κ1-directed closed, from which it immediately follows
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that V3 � “κ1 is both the least strongly compact and least measurable cardinal +
κ1’s strong compactness is indestructible under arbitraryκ1-directed closed forcing.”
By [11, Theorem 1.7], V3 � “κ2 is strongly compact (and hence measurable).” In
addition, since |Add(κ1, 1)| = κ1 < κ

+
1 < κ

′
1 and �Add(κ1,1) “Ḟκ′1,κ2

is κ′1-directed

closed,” P2 admits a gap at κ+
1 . Consequently, by our remarks immediately following

the statement of Theorem 1.3, any cardinal greater than κ+
1 which is measurable in

V3 had to have been measurable in V2. Because V2 � “κ2 is the second measurable
cardinal,” it therefore follows that V3 � “κ2 is the second measurable cardinal” as
well.

Module 4: We will now use methods from a theorem due to Usuba (specifically,
[2, Theorem 3.1] and the techniques in its proof) to force over V3 in order to create
a model V4 witnessing the conclusions of Theorem 1.1. Since Usuba’s theorem and
proof have only recently appeared in print, we will provide a detailed exposition of
his arguments, feeling free to quote verbatim when appropriate from [2].

By our work from Module 3, we can assume that there is a fast function f : κ2 →
κ2 inV3. Define P3 = 〈〈Pα, Q̇α〉 | α < κ2〉, an Easton support iteration of length κ2,
as follows. Let P0 = Add(κ1, 1). Q̇α is then a name for the trivial forcing notion,
unlessα ∈ dom(f). In this case, Q̇α is a name for the lottery sum⊕
<f(α)Add(α, 
),
as defined in V Pα

3 , where by convention, we take Add(α, 0) to be trivial forcing.
Let G ⊆ P3 be V3-generic. Set V4 = V3[G ]. The arguments of [11, Theorem 3.7]

show that κ2 remains strongly compact in V4. We wish to show that in V4, the
strong compactness of κ2 is indestructible under Add(κ2, �) for all �. Fix �, and let
g ⊆ Add(κ2, �) be V4-generic. If we letQ =

⋃
g, thenQ : κ2 × � → 2 is a function.

Let � > max(κ2, �) be a regular cardinal, and fix a cardinal � ≥ 2�
<κ2 . By [11,

Theorem 1.12], let j : V3 →M be an ultrapower embedding by a κ2-complete, fine
ultrafilterU ∈ V3 overPκ2 (�) with crit(j) = κ2 such that |[id]U |M < j(f)(κ2). Since
there is no source of confusion, we will drop the subscript from elements of M and
denote them as [h]. As usual, j′′� ⊆ [id], so |�|M ≤ |[id]|M .

Claim 2.1. There is in M a function � : [id] → � such that for all α < �,
�(j(α)) = α.

Proof. For each α < �, let gα : Pκ2(�) → V3 be a function such that [gα] = α.
Without loss of generality, we can assume that gα(p) is defined for every p ∈ Pκ2(�).
Let h : Pκ2(�) → V3 be so that for each p ∈ Pκ2(�), h(p) is the function having
domain p such that for every α ∈ p, h(α) = gα(p). It follows that [h] is a function
with domain [id], and by the fineness of U , for each α < �, on a measure 1 subset
of {p | α ∈ p}, [h](j(α)) = [gα] = α. This completes the proof, since we can easily
use [h] to define a function � with the desired properties by setting � = [h]. �

We now proceed by lifting j through P3 ∗ ˙Add(κ2, �). As usual, j(P3) can be fac-
torized asP3 ∗ Q̇ ∗ Ṗtail, where Q̇ is a name for the lottery sum⊕
<j(f)(κ2)Add(κ2, 
),
and Ṗtail is a name for the remaining stages through j(κ2). Using G as an M-
generic filter for P3, we can formM [G ]. Also, since � < � ≤ |[id]|M < j(f)(κ2), we
can choose to force above a condition in Q = intG(Q̇) that opts for Add(κ2, �).
Thus, we can use g as an M [G ]-generic filter for Q. Furthermore, note that
since j(f)(κ2) > |[id]|M , Ptail = intG∗g(Ṗtail) is at least (|[id]|+)M -directed closed
inM [G ][g].
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Force over V4[g] to add a generic filter Gtail for Ptail. Using Gtail as an
M [G ][g]-generic filter for Ptail, since j′′G ⊆ G , we can lift j in V4[g][Gtail] to
j : V4 →M [j(G)], where j(G) = G ∗ g ∗Gtail. In order to further lift j through
Add(κ2, �), we will use a master condition argument. Consider the function � given
by Claim 2.1, and note that |[id] ∩ j(�)|M ≤ |[id]|M < j(κ2). Define in M [j(G)]
a function q : κ2 × ([id] ∩ j(�)) → 2 given by q(〈
, 
〉) = Q(〈
, �(
)〉) if �(
) < �,
and 0 otherwise. Clearly, q is a condition in j(Add(κ2, �)).

Claim 2.2. q ≥ j(p) for all p ∈ g.

Proof. By elementarity and the fact that crit(j) = κ2, for each p ∈ g, j(p)
is a function with domain j′′dom(p) = {〈
, j(
)〉 | 〈
, 
〉 ∈ dom(p)}. Hence,
dom(j(p)) ⊆ dom(q). For 〈
, j(
)〉 ∈ dom(j(p)), we have j(p)(〈
, j(
)〉) =
p(〈
, 
〉) = Q(〈
, 
〉) = Q(〈
, �(j(
))〉) = q(〈
, j(
)〉). �

Force overV4[g][Gtail] to add a generic filter h∗ ⊆ j(Add(κ2, �)) containing q. By
Claim 2.2, we can lift j in V4[g][Gtail][h∗] to j : V4[g] →M [j(G)][h∗].

Let �X = 〈X� | � < 2[�]<κ2 〉 ∈ V4[g] be an enumeration of ℘(Pκ2(�))V4[g].
In M [j(G)][h∗], consider the set B = {� ∈ [id] | [id] ∩ j(�) ∈ j( �X )�}. Since
Ptail ∗ j( ˙Add(κ2, �)) is at least (|[id]|+)M -directed closed in M [G ][g], B ∈
M [G ][g] ⊆ V4[g]. Hence, W = {X� ∈ ℘(Pκ2 (�))V4[g] | j(�) ∈ B} ∈ V4[g], and
since � ≥ 2[�]<κ2 , W is easily seen to be a κ2-complete, fine ultrafilter over
Pκ2(�). Thus, κ2 is � strongly compact in V4[g]. Since � can be chosen arbitrarily
large, we have shown that κ2 remains strongly compact in V4[g], from which we
immediately infer thatV4 � “κ2’s strong compactness is indestructible under forcing
with Add(κ2, �) for any ordinal �.”

We finish the proof of Theorem 1.1 by combining the work of Modules 1–4.
BecauseV3 � “P3 is κ1-directed closed,”V4 � “κ1 is both the least strongly compact
and least measurable cardinal + κ1’s strong compactness is indestructible under
arbitrary κ1-directed closed forcing.” By the arguments of Module 4, since we
have taken Add(κ2, 0) to be trivial forcing, V4 � “κ2 is strongly compact and
hence measurable.” In addition, by its definition, P3 = Add(κ1, 1) ∗ Q̇, where
|Add(κ1, 1)| = κ1 and �Add(κ1,1) “Q̇ is κ′1-directed closed.” This means that as in
Module 3, V4 � “κ2 is the second measurable cardinal.” It consequently follows
that V4 is the desired model witnessing the conclusions of Theorem 1.1. By writing
P = P0 ∗ Ṗ1 ∗ Ṗ2 ∗ Ṗ3, we have completed the proof of Theorem 1.1. �

We turn now to the proof of Theorem 1.2.

Proof. Suppose V � “ZFC +κ1 < κ2 are supercompact.” Without loss of
generality, by truncating the universe if necessary, we assume in addition that
V � “No cardinal � > κ2 is inaccessible.” We explicitly mention it will of course
be the case that in any of our generic extensions of V, there will be no inaccessible
cardinals greater than κ2.

Lemma 2.3. There is a partial ordering P∗ ⊆ V such that V P∗ � “For i = 1, 2,
2κi = 2κ

+
i = κ++

i and κi is supercompact + There are supercompact ultrafilters Ui
over Pκi (κ

+
i ) such that κi isn’t measurable in the ultrapower by Ui + 2� = �+ for every

cardinal � ≥ κ++
2 .”
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Proof. To prove Lemma 2.3, begin by forcing GCH using the partial ordering
Q0. Next, force indestructibility for κ1’s supercompactness as in [14], using a partial
ordering Q1 having cardinality κ1. Since |Q1| = κ1, 2� = �+ for every � ≥ κ1, and by
the results of [15], κ2 remains supercompact after forcing with Q1. Now, force with
the partial ordering Q2 used in the proof of [1, Lemma 2] defined with respect to κ2

and acting nontrivially only on inaccessible cardinals in the open interval (κ1, κ2).
Since this definition ensures that Q2 is κ1-directed closed, κ1 remains supercompact
after forcing with Q2. In addition, after forcing with Q2, as in [1], κ2 remains
supercompact, 2κ2 = 2κ

+
2 = κ++

2 , 2� = �+ for every cardinal � ≥ κ++
2 , and there is

a supercompact ultrafilter U2 over Pκ2(κ+
2 ) such that κ2 isn’t measurable in the

ultrapower by U2. Finally, force with the partial ordering Q3 used in the proof
of [1, Lemma 2] defined with respect to κ1 on inaccessible cardinals � < κ1 such
that 2� = �+. Let P∗ = Q0 ∗ Q̇1 ∗ Q̇2 ∗ Q̇3. Because Q3 can be defined so as to have
cardinality κ1, our previous work, [1, Lemma 2] applied to Q3, another application
of the results of [15], and standard arguments for calculating the size of power
sets in generic extensions yield that V P∗ � “For i = 1, 2, 2κi = 2κ

+
i = κ++

i and κi
is supercompact + There are supercompact ultrafilters Ui over Pκi (κ

+
i ) such that

κi isn’t measurable in the ultrapower by Ui+ 2� = �+ for every cardinal � ≥ κ++
2 .”

This completes the proof of Lemma 2.3. �
With a slight abuse of notation, we relabel V P∗ as V. Now, as in the proof of

Theorem 1.1, let P0 ∈ V be the partial ordering used in the proof of [3, Theorem 1]
defined with respect to κ1. Set V1 = V P0

. Since P0 is an Easton support iteration of
length κ1 such that |P0| = κ1, standard arguments in conjunction with the results of
[15] and Lemma 2.3 yield that V1 � “For i = 1, 2, 2κi = 2κ

+
i = κ++

i + 2� = �+ for
every cardinal � ≥ κ++

2 + κ2 is supercompact + There is a supercompact ultrafilter
U∗

2 over Pκ2(κ+
2 ) such that κ2 isn’t measurable in the ultrapower by U∗

2 .” Because
[9, Lemmas 1.2 and 1.4] require no GCH assumptions, and because the proof of [3,
Lemma 2] only requires that 2� = �+ holds for sufficiently large �, it is then the case
thatV1 � “κ1 is both the least strongly compact and least measurable cardinal + κ1’s
strong compactness is indestructible under arbitrary κ1-directed closed forcing.”

Lemma 2.4. V1 � “κ1 is κ+
1 supercompact.”

Proof. We will follow to a certain extent the proofs of [9, Lemma 1.5] and
[16, Theorem 2.5]. Let G be V -generic over P0. By Lemma 2.3, let j : V →M
be an elementary embedding (which we take to be generated by the ultrafilter
U1 over Pκ1(κ+

1 ) witnessing the κ+
1 supercompactness of κ1) such that M � “κ1

isn’t measurable.” Because we may assume that P0 does nontrivial forcing only
at V -measurable cardinals, j(P0) = P0 ∗ Q̇, where the first nontrivial stage in Q̇

is forced to be well above κ+
1 . In addition, because 2κ

+
1 = κ++

1 , we may let 〈Ȧα |
α < κ++

1 〉 ∈ V be an enumeration of all of the canonical P0-names for subsets of
(Pκ1(κ+

1 ))V [G ]. Also, as P0 is an Easton support iteration of length κ1 and is thus
κ1-c.c., M [G ] remains κ+

1 -closed with respect to V [G ]. We now use terminology
and results from [9], to which we refer readers for further details and explanations.
Specifically, since P0 is an Easton support iteration of partial orderings satisfying
the Prikry property and Q = j(P0)/G is κ++

1 -weakly closed, we may define in V [G ]
an increasing sequence of Easton extensions 〈pα | α < κ++

1 〉 of members of Q such
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that in M [G ], for every α < κ++
1 , pα+1 ‖Q “〈j(
) | 
 < κ+

1 〉 ∈ j(Ȧα).”2 Note that

becauseM [G ]κ
+
1 ⊆M [G ], 〈pα | α < κ++

1 〉 is well defined, and every initial segment
of this sequence is a member ofM [G ]. In analogy to the proof of [9, Lemma 1.5], this
now allows us to define U∗

1 ∈ V1 byA ∈ U∗
1 iff for some α < κ++

1 and some P0-name
Ȧ for A, in M [G ], pα �Q “〈j(
) | 
 < κ+

1 〉 ∈ j(Ȧ).” Because j′′G = G , as in [9,
Lemma 1.5], the definition of U∗

1 doesn’t depend on a particular name for A, and so
U∗

1 is well defined. The arguments given on [3, proof of Lemma 2, p. 1408] (suitably
modified) then allow us to infer that V1 = V [G ] � “κ1 is κ+

1 strongly compact.”
To show that V1 � “κ1 is κ+

1 supercompact” (i.e., that V1 � “U∗
1 is normal”),

we modify Magidor’s argument found in the proof of [16, Theorem 2.5, pp. 47–
48]. Specifically, suppose �P0 “ḟ : Ṗκ1(κ+

1 ) → κ+
1 is such that ḟ(p) ∈ p for every

p ∈ Ṗκ1(κ+
1 ).” It is then the case that �j(P0) “j(ḟ) : Ṗj(κ1)(j(κ

+
1 )) → j(κ1) is such

that j(ḟ)(p) ∈ p for every p ∈ Ṗj(κ1)(j(κ
+
1 )).” Let Φ = 〈ϕα | α < κ+

1 〉 ∈ V [G ] be
the sequence where eachϕα is the statement “j(ḟ)(〈j(
) | 
 < κ+

1 〉) = j(α).” Since

M [G ]κ
+
1 ⊆M [G ], Φ ∈M [G ]. And, working in V, for each α < κ+

1 , let 
α be the
least ordinal such that Ȧ
α is a term for {p ∈ Pκ1(κ+

1 ) | f(p) = α}. By the regularity
of κ++

1 in V, 
 = supα<κ+
1

(
α + 1) < κ++
1 . Working for the rest of the proof of

Lemma 2.4 in M [G ], we may define the increasing sequence of Easton extensions
〈qα | α < κ+

1 〉 of members of Q such that q0 = p
 and for everyα < κ+
1 , qα+1 ‖Q ϕα .

Let q be an upper bound to 〈qα | α < κ+
1 〉. If q′ ≥ q and � < κ+

1 are such that q′ �Q

“j(ḟ)(〈j(
) | 
 < κ+
1 〉) = j(�),” then since by construction q ≥ q�+1, q′ ≥ q�+1.

Because q�+1 ‖Q ϕ� , it consequently follows that q�+1 �Q “j(ḟ)(〈j(
) | 
 < κ+
1 〉) =

j(�),” i.e., that q�+1 �Q “〈j(
) | 
 < κ+
1 〉 ∈ j(Ȧ
� ).” As again by construction,

q�+1 ≥ p
 ≥ p
�+1 andp
�+1 ‖Q “〈j(
) | 
 < κ+
1 〉 ∈ j(Ȧ
� ),”p
�+1 �Q “〈j(
) | 
 <

κ+
1 〉 ∈ j(Ȧ
� ).” Thus, A
� = {p ∈ Pκ1(κ+

1 ) | f(p) = �} ∈ U∗
1 . This completes the

proof of Lemma 2.4. �
Working now in V1, let 〈�α | α < κ2〉 enumerate the inaccessible cardinals in

the open interval (κ1, κ2). We define an Easton support iteration of length κ2,
P1 = 〈〈Pα, Q̇α〉 | α < κ2〉, as follows:

1. P0 = Add(κ+3
1 , 1).

2. IfV1 � “�α is inaccessible but not measurable,” then Q̇α is a term for the lottery
sum of all �α-directed closed partial orderings inV Pα (including trivial forcing)
having size at most �+

α .
3. IfV1 � “�α is measurable,” then Pα+1 = Pα ∗ Q̇′ ∗ Ṙ, where Q̇′ is a term for the

lottery sum of all �α-directed closed partial orderings in V Pα (again including
trivial forcing) having rank below �α+1, and Ṙ is a term for the partial ordering
which adds a nonreflecting stationary set of ordinals of cofinality κ1 to �α .

LetV2 = V P1

1 . BecauseV1 � “P1 is a κ+3
1 -directed closed, κ2-c.c . partial ordering

having size κ2,” V2 � “κ1 is both the least strongly compact and least measurable
cardinal + κ1 is κ+

1 supercompact + For i = 1, 2, 2κi = 2κ
+
i = κ++

i + Cardinals and

2Here and throughout the rest of the proof of Lemma 2.4, we slightly abuse notation and assume that
a statement which is actually in the forcing language with respect to j(P0) = P0 ∗ Q̇ has been rewritten
in the forcing language with respect to Q.
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cofinalities at and above κ2 are the same as inV1 + 2� = �+ for every � ≥ κ++
2 + κ1’s

strong compactness is indestructible under arbitrary κ1-directed closed forcing.”

Lemma 2.5. V2 � “No cardinal � ∈ (κ1, κ2) is measurable.”

Proof. Since P1 = Add(κ+3
1 , 1) ∗ Q̇, |Add(κ+3

1 , 1)| = κ+3
1 < κ

+4
1 < �0, and

�Add(κ+3
1 ,1) “Q̇ is �0-directed closed,” P1 admits a gap at κ+4

1 . As in Module 3, by our

remarks immediately following the statement of Theorem 1.3, any � ∈ (κ1, κ2) which
is measurable in V2 had to have been measurable in V1. However, by the definition
of P1, V2 � “Any � ∈ (κ1, κ2) which is measurable in V1 contains a nonreflecting
stationary set of ordinals of cofinality κ1 and hence is not measurable (or even
weakly compact).” This completes the proof of Lemma 2.5. �

Lemma 2.6. For � = (κ+
2 )V2 = (κ+

2 )V1 , V2 � “κ2 is � supercompact and has its �
supercompactness indestructible under κ2-directed closed forcing having size at most
�.”

Proof. Let Q ∈ V2 be any partial ordering (including trivial forcing) such that
V2 � “Q is a κ2-directed closed partial ordering such that |Q| ≤ �,” with Q̇ a
canonical term for Q. By our remarks in the paragraph immediately following
the proof of Lemma 2.3, let j : V1 →M be an elementary embedding (which we
take to be generated by the supercompact ultrafilter U∗

2 over Pκ2(κ+
2 )) such that

M � “κ2 isn’t measurable.” By forcing in M above a condition opting for Q in the
stage κ2 lottery held in M in the definition of j(P1), we may assume that j(P1 ∗ Q̇)
is forcing equivalent in M to P1 ∗ Q̇ ∗ Ṙ ∗ j(Q̇), where Ṙ is a term for the portion of
j(P1) acting on ordinals in the open interval (κ2, j(κ2)).

Let G0 be V1-generic over P1 and G1 be V1[G0]-generic over Q. Because
M [G0][G1] � “|R| = j(κ2),” κ2 is inaccessible, and 2κ2 = 2κ

+
2 = 2� = κ++

2 = �+,
V1 � “|j(κ++

2 )| = |j(�+)| = |j(2κ2 )| = |{f | f : Pκ2(�) → κ++
2 }| = |{f | f : �→

κ++
2 }| = |{f | f : �→ �+}| = |[�+]�| = 2� = �+.” Consequently, V1[G0][G1] �

“There are (at most) �+ = 2� = |j(κ++
2 )| = |j(2κ2 )| many dense open subsets

of R present inM [G0][G1].” It is therefore possible to let 〈Dα | α < �+〉 enumerate
the dense open subsets of R which are members of M [G0][G1]. Since standard
arguments show that M [G0][G1] remains �-closed with respect to V1[G0][G1]
and R is ≺�+-strategically closed in both M [G0][G1] and V1[G0][G1], working in
V1[G0][G1], we may then meet all of these sets in order to build an M [G0][G1]-
generic objectG2 overR such that j′′G0 ⊆ G0 ∗G1 ∗G2. Still working inV1[G0][G1],
j lifts to j : V1[G0] →M [G0][G1][G2]. Since M [G0][G1][G2] remains �-closed
with respect to V1[G0][G1][G2] = V1[G0][G1], V1[G0] � “|Q| ≤ �,” j(κ2) > �, and
M [G0][G1][G2] � “j(Q) is j(κ2)-directed closed,” there is a master condition
q ∈ V1[G0][G1] for {j(p) | p ∈ G1}. Because V1 � “|j(�+)| = |j(2�)| = �+” and
M [G0][G1][G2] � “|j(Q)| ≤ j(�),” there are (at most) �+ many dense open
subsets of j(Q) present in V1[G0][G1]. As j(Q) is �+-directed closed and
hence ≺�+-strategically closed in both M [G0][G1][G2] and V1[G0][G1], we
may thus as was done for G2 build in V1[G0][G1] an M [G0][G1][G2]-generic
object G3 for j(Q) containing q. It is then the case that j′′(G0 ∗G1) ⊆
G0 ∗G1 ∗G2 ∗G3, so we may fully lift j in V1[G0][G1] to a � supercompactness
embedding j : V1[G0][G1] →M [G0][G1][G2][G3]. This completes the proof of
Lemma 2.6. �

https://doi.org/10.1017/jsl.2021.94 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.94


INDESTRUCTIBILITY 223

Lemma 2.7. V2 � “κ2 is a strongly compact cardinal whose strong compactness is
indestructible under κ2-directed closed forcing which is also (κ+

2 ,∞)-distributive.”

Proof. We mimic to a certain extent the proof of [5, Lemma 3], once again feeling
free to quote verbatim as appropriate. We begin as in the proof of Lemma 2.6. Let
Q ∈ V2 be any partial ordering (including trivial forcing) such that V2 � “Q is both
κ2-directed closed and (κ+

2 ,∞)-distributive,” with Q̇ a canonical term for Q. Let

 = (max(|TC(Q̇)|, κ++

2 ))+� , and let � > 
 be a regular cardinal. Take j : V1 →M
to be an elementary embedding witnessing the � supercompactness of κ2 generated
by a supercompact ultrafilter over Pκ2(�). By forcing in M above a condition opting
for Q in the stage κ2 lottery held in M in the definition of j(P1), we may assume
that j(P1 ∗ Q̇) is forcing equivalent in M to P1 ∗ Q̇ ∗ Ṙ′ ∗ Ṡ ∗ j(Q̇), where Q̇ ∗ Ṙ′ is
a term for the forcing taking place at stage κ2 in M, Ṙ′ is a term for the partial
ordering which adds a nonreflecting stationary set of ordinals of cofinality κ1 to
κ2, and Ṡ is a term for the portion of j(P1) acting on ordinals in the open interval
(κ2, j(κ2)).

Because � has been chosen large enough (so that in particular, � > 2[κ+
2 ]<κ2 =

2κ
+
2 = κ++

2 ), U∗
2 ∈M . Let k :M → N be the elementary embedding generated by

the ultrapower via U∗
2 . It is then true that N � “κ2 isn’t measurable.” It is the case

that if i : V1 → N is an elementary embedding having critical point κ2 and for any
x ⊆ N with |x| ≤ �, there is some y ∈ N such that x ⊆ y and N � “|y| < i(κ2),”
then i witnesses the � strong compactness of κ2. Using this fact, it is easily verifiable
that i = k ◦ j is an elementary embedding witnessing the � strong compactness of

κ2. We show that i lifts inV P1∗Q̇
1 to i : V P1∗Q̇

1 → Ni(P1∗Q̇). Since this lifted embedding

witnesses the � strong compactness of κ2 inV P1∗Q̇
1 and �was arbitrarily chosen, this

completes the proof of Lemma 2.7.
Let G0 be V1-generic over P1, and let H be V1[G0]-generic over Q. By forcing

in N above a condition opting for trivial forcing in the stage κ2 lottery held in N
in the definition of i(P1), we may assume that i(P1) is forcing equivalent in N to
P1 ∗ Q̇1 ∗ Q̇2 ∗ Q̇3, where Q̇1 is a term for the portion of the forcing acting on ordinals
in the open interval (κ2, k(κ2)), Q̇2 is a term for the forcing done at stage k(κ2), and
Q̇3 is a term for the remainder of the forcing, i.e., the portion acting on ordinals in
the half-open interval (k(κ2), k(j(κ2))] (inclusive of the term i(Q̇) for the forcing
done at stage k(j(κ2)) = i(κ2)). We will build in V1[G0][H ] generic objects for the
different portions of i(P1).

To do this, we use a modification of an argument initially due to Magidor,
unpublished by him but presented in, among other places, [1, Theorem 2]. The
modification is due to Sargsyan and is found in [5, Lemma 3]. In particular, we
begin by constructing an N [G0]-generic object G1 for Q1. The argument used
will be carried out in M [G0] ⊆ V1[G0] ⊆ V1[G0][H ]. Specifically, since we are
assuming that Q̇1 is forced to act nontrivially only on ordinals in the open interval
(κ2, k(κ2)), we may therefore build inM [G0] an N [G0]-generic object G1 for Q1 in
the same manner as the construction of the generic object G2 given in the proof of
Lemma 2.6.

We next analyze the exact nature of Q̇2. As we have already observed, we may
assume that j(P1 ∗ Q̇) is forcing equivalent in M to P1 ∗ Q̇ ∗ Ṙ′ ∗ Ṡ ∗ j(Q̇), where
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Q̇ ∗ Ṙ′ is a term for the forcing taking place at stage κ2 in M, Ṙ′ is a term for the
partial ordering which adds a nonreflecting stationary set of ordinals of cofinality κ1

to κ2, and Ṡ is a term for the portion of j(P1) acting on ordinals in the open interval
(κ2, j(κ2)). By elementarity, since Q̇2 is a term for the forcing which takes place at
stage k(κ2) in N, we may write Q̇2 = k(Q̇) ∗ k(Ṙ′). We will construct inM [G0][H ]
generic objects for k(Q) and k(R′).

For k(Q), we use an argument containing ideas due to Woodin. First, note that
since N is given by an ultrapower,N = {k(h)(〈k(
) | 
 < κ+

2 〉) | h : Pκ2(κ+
2 ) →M

is a function in M}. Further, since by the definition of G1, k′′G0 ⊆ G0 ∗G1, k
lifts in both M [G0] and M [G0][H ] to k :M [G0] → N [G0][G1]. From these facts,
we may now show that k′′H ⊆ k(Q) generates an N [G0][G1]-generic object G2

over k(Q). Specifically, given a dense open subset D ⊆ k(Q), D ∈ N [G0][G1], D =
intG0∗G1(Ḋ) for some N-name Ḋ = k( �D)(〈k(
) | 
 < κ+

2 〉), where �D = 〈Dp | p ∈
Pκ2(κ+

2 )〉 is a function in M. We may assume that every Dp is a dense open subset
of Q. Since Q is (κ+

2 ,∞)-distributive and |Pκ2 (κ+
2 )| = κ+

2 , it follows that D′ =⋂
p∈Pκ2 (κ+

2 )Dp is also a dense open subset of Q. As k(D′) ⊆ D and H ∩D′ �= ∅,

k′′H ∩D �= ∅. Thus, G2 = {p ∈ k(Q) | ∃q ∈ k′′H [q ≥ p]}, which is definable in
M [G0][H ], is our desired N [G0][G1]-generic object over k(Q). Then, since k(R′)
is in N [G0][G1][G2] the partial ordering which adds a nonreflecting stationary set
of ordinals of cofinality k(κ1) to k(κ2), we know that N [G0][G1][G2] � “|k(R′)| =
k(κ2) and |℘(k(R′))| = 2k(κ2) = k(κ++

2 ).” Hence, sinceN [G0][G1][G2] remains κ+
2 -

closed with respect to M [G0][H ], which means k(R′) is ≺κ++
2 -strategically closed

inN [G0][G1][G2] andM [G0][H ], the same argument used in the construction ofG1

allows us to build inM [G0][H ] an N [G0][G1][G2]-generic object G3 for k(R′).
We construct now (inV1[G0][H ]) anN [G0][G1][G2][G3]-generic object for Q3. As

in the proof of [5, Lemma 3], we do this by combining the term forcing argument
found in [1, Theorem 2] with the argument for the creation of a “master condition”
found in [3, Lemma 2]. Specifically, we begin by showing the existence of a term
� ∈M for a “master condition” for j(Q̇), i.e., we show the existence of a term � ∈M
in the language of forcing with respect to j(P1) such that in M, �j(P1) “� ∈ j(Q̇)
extends every j(q̇) for q̇ ∈ Ḣ .” We first note that since P1 is κ2-c.c. in both V1

and M, as �P1 “Q̇ is κ2-directed closed and |Q̇| < �,” the usual arguments show
M [G0][H ] remains �-closed with respect to V1[G0][H ]. This means T = {j(q̇) |
∃r ∈ G0[〈r, intG0∗H (q̇)〉 ∈ G0 ∗H ]} ∈M [G0][H ], so T has a name Ṫ ∈M such
that in M, �j(P1) “|Ṫ | < � < j(κ2), any two elements of Ṫ are compatible, and Ṫ is
a subset of a partial ordering (namely j(Q̇)) which is j(κ2)-directed closed.” Thus,
in M, since j(κ2) > �, andM� ⊆M , �j(P1) “There is a condition in j(Q̇) extending
each element of Ṫ .” A term � for this common extension is as desired.

We work for the time being in M. Consider the “term forcing” partial ordering S∗

(see [8] for the first published account of term forcing or [7, Section 1.2.5, p. 8]—the
notion is originally due to Laver) associated with Ṡ ∗ j(Q̇), i.e., 	 ∈ S∗ iff 	 is a term
in the forcing language with respect to P1 ∗ Q̇ ∗ Ṙ′ and �P1∗Q̇∗Ṙ′ “	 ∈ Ṡ ∗ j(Q̇),”
ordered by 	1 ≥ 	0 iff �P1∗Q̇∗Ṙ′ “	1 ≥ 	0.” Note that �′ defined as the term in the
language of forcing with respect to P1 ∗ Q̇ ∗ Ṙ′ composed of the tuple all of whose
members are forced to be the trivial condition, with the exception of the last member,
which is �, is an element of S∗.
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Clearly, S∗ ∈M . In addition, since V1 � “No cardinal above κ2 is inaccessible,”
becauseM� ⊆M ,M � “The first stage at which Ṡ ∗ j(Q̇) is forced to do nontrivial
forcing is above �.” Thus, �P1∗Q̇∗Ṙ′ “Ṡ ∗ j(Q̇) is ≺�+-strategically closed,” which,
since M� ⊆M , immediately implies that S∗ itself is ≺�+-strategically closed in
both V1 and M. Further, since �P1 “|Q̇| < 
 < �,” in M, �P1∗Q̇∗Ṙ′ “|Ṡ ∗ j(Q̇)| <
j(
) < j(�).” We also have that 2� = �+ for � ≥ κ+

2 in V1 and � ≥ j(κ+
2 ) in

M. Consequently, as j is given via an ultrapower embedding by a normal
measure overPκ2(�), |j(�+)| = |{f | f : Pκ2(�) → �+| = |[�+]�| = �+ and �P1∗Q̇∗Ṙ′

“|℘(Ṡ ∗ j(Q̇))| < 2j(
) = j(
+) ≤ j(�) < 2j(�) = j(�+).” Therefore, since as in the
footnote given in the proof of [4, Lemma 8], we may assume that S∗ has cardinality
below j(
) in M, we may once again build in V1 an M-generic object G∗

4 for S∗

containing �′ as in the construction of the generic object G1 of this lemma.
Note now that since N is given by an ultrapower of M via a normal measure over

Pκ2(κ+
2 ), [7, Section 1.2.2, Fact 2] tells us that k′′G∗

4 generates an N-generic object
G∗∗

4 over k(S∗) containing k(�′). By elementarity, k(S∗) is the term forcing in N
defined with respect to k(j(P1)κ2+1), which is forcing equivalent to P1 ∗ Q̇1 ∗ Q̇2.
Therefore, since i(P1 ∗ Q̇) = k(j(P1 ∗ Q̇)) is forcing equivalent toP1 ∗ Q̇1 ∗ Q̇2 ∗ Q̇3,
G∗∗

4 is N-generic over k(S∗), andG0 ∗G1 ∗G2 ∗G3 is k(P1 ∗ Q̇ ∗ Ṙ′)-generic over N,
[7, Section 1.2.5, Fact 1] (see also [8]) tells us that forG4 = {intG0∗G1∗G2∗G3(	) | 	 ∈
G∗∗

4 }, G4 is N [G0][G1][G2][G3]-generic over Q3. In addition, since the definition of
� tells us that in M, the statement “〈p, q̇〉 ∈ j(P1 ∗ Q̇) implies that 〈p, q̇〉 �j(P1∗Q̇) ‘�
extends q̇’ ” is true, by elementarity, in N, the statement “〈p, q̇〉 ∈ k(j(P1 ∗ Q̇))
implies that 〈p, q̇〉 �k(j(P1∗Q̇)) ‘k(�) extends q̇’ ” is true. In other words, since k ◦ j =
i , in N, the statement “〈p, q̇〉 ∈ i(P1 ∗ Q̇) implies that 〈p, q̇〉 �i(P1∗Q̇) ‘k(�) extends
q̇’ ” is true. Thus, in N, k(�) functions as a term for a “master condition” for i(Q̇),
so since G∗∗

4 contains k(�′), the construction of all of the above generic objects
immediately yields that i ′′(G0 ∗H ) ⊆ G0 ∗G1 ∗G2 ∗G3 ∗G4. This means that i lifts

in V P1∗Q̇
1 to i : V P1∗Q̇

1 → Ni(P1∗Q̇). This completes the proof of Lemma 2.7. �

Let P = P∗ ∗ Ṗ0 ∗ Ṗ1. Lemmas 2.3–2.7 and the intervening remarks then complete
the proof of Theorem 1.2. �

§3. Concluding remarks. We conclude this paper with several remarks, noting
that in what we are about to say, we always assume that we begin with a model V
of ZFC in which κ1 < κ2 are both supercompact. First, we note that it is possible
to obtain a version of Theorem 1.1 where 2κ2 = κ++

2 , κ2 is strongly compact, κ2

is κ+
2 supercompact, and the indestructibility property for κ2 is that κ2’s strong

compactness is indestructible under forcing with Add(κ2, �) for any ordinal � and
for � = (κ+

2 )V
P

, the � supercompactness of κ2 is indestructible under κ2-directed
closed forcing having size at most �. We present a brief sketch of how this is done,
and leave it to interested readers to provide any missing details. Specifically, we
may assume from the proof of Theorem 1.2 that we are forcing over a ground
model V in which κ1 is both the first strongly compact and first measurable cardinal
and has its strong compactness indestructible under arbitrary κ1-directed closed
forcing, κ2 is supercompact, 2κ2 = 2κ

+
2 = κ++

2 , 2� = �+ for every � ≥ κ++
2 , and κ2
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carries a supercompact ultrafilter U2 such that κ2 isn’t measurable in the ultrapower
by U2. We then force as in Modules 2 and 3 of the proof of Theorem 1.1. By
the proofs of [1, Lemma 5], [11, Theorems 1.7 and 1.8], and Theorem 1.1, we
are now in a new ground model V in which κ1 is both the first strongly compact
and first measurable cardinal and has its strong compactness indestructible under
arbitrary κ1-directed closed forcing, κ2 is both the second strongly compact and
second measurable cardinal, κ2 is κ+

2 supercompact, and there is a fast function
f : κ2 → κ2 for κ2. We then force with the lottery preparation defined as on
[11, p. 127] using f, where the partial orderings allowed in the lottery sum at a
nontrivial stage of forcing α all must be α-directed closed. Since the proof found in
Module 4 of Theorem 1.1 requires no GCH assumptions about κ2, the arguments
of Module 4 and Lemma 2.6 now show that we have constructed our desired
model.

We next observe that with slight modifications to our proofs, it is possible to
change the assumption in the proof of Theorem 1.2 that V � “No cardinal � > κ2

is inaccessible” to, e.g., V � “No cardinal � > κ2 is Mahlo.” This is accomplished
by letting 〈�α | α < κ2〉 enumerate the Mahlo cardinals in the open interval (κ1, κ2)
and replacing “inaccessible” with “Mahlo” in clause (2) in the definition of P1.
It is in addition possible to have in Theorem 1.2 that, e.g., 2κ1 = κ+38

1 , κ1 is κ+37
1

supercompact, 2κ2 = κ+75
2 , κ2 is κ+74

2 supercompact, 2� = �+ for every � ≥ κ+75
2 , κ1’s

strong compactness is indestructible under arbitrary κ1-directed closed forcing, κ2’s
strong compactness is indestructible underκ2-directed closed, (κ+74

2 ,∞)-distributive

forcing, and for � = (κ+74
2 )V

P

, the � supercompactness of κ2 is indestructible under
κ2-directed closed forcing having size at most �. Other variations for Theorems 1.1
and 1.2 along these same lines (including versions of Theorem 1.1 where κ1 exhibits
nontrivial degrees of supercompactness) are possible as well. We leave it to readers
to fill in the details for themselves.

We also return to the issue (first raised in Section 1) of why in Theorem 1.2, the
current state of forcing technology doesn’t appear to provide a way for one to force
the κ+

1 supercompactness of κ1 to be indestructible under κ1-directed closed forcing

having size at most (κ+
1 )V

P

. This is since P0 is not an iteration of the type considered
in [10, 12], and so no analogue of Theorem 1.3 is presently known which allows us
to establish the appropriate version of Lemma 2.5.

We finally ask the very broad and general question of what other sorts of
indestructibility theorems are possible when considering the class of strongly
compact cardinals. As examples, can the first i strongly compact cardinals κi (for
i > 1 an ordinal) be the first i measurable cardinals, and also have their strong
compactness indestructible under arbitrary κi -directed closed forcing? Since the
proof of Theorem 1.1 doesn’t seem to have a generalization beyond i = 2, is it even
possible for the first i strongly compact cardinals κi (for i > 2 a natural number)
to have their strong compactness indestructible under Add(κi , �) for any ordinal �?
These are the questions with which we end this paper.
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Logic, vol. 5 (1999), pp. 264–272.

[11] ———, The lottery preparation. Annals of Pure and Applied Logic, vol. 101 (2000), pp. 103–146.
[12] ———, Gap forcing. Israel Journal of Mathematics, vol. 125 (2001), pp. 237–252.
[13] T. Jech, Set Theory, Springer, Berlin–New York, 2003.
[14] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel

Journal of Mathematics, vol. 29 (1978), pp. 385–388.
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