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The motion of a viscous droplet in unbounded Poiseuille flow under the combined
influence of bulk-insoluble surfactant and linearly varying temperature field aligned
in the direction of imposed flow is studied analytically. Neglecting fluid inertia,
thermal convection and shape deformation, asymptotic analysis is performed to
obtain the velocity of a force-free surfactant-laden droplet. The droplet speed and
direction of motion are strongly influenced by the interfacial transport of surfactant,
which is governed by surface Péclet number. The present study is focused on
the following two limiting situations of surfactant transport: (i) surface-diffusion-
dominated surfactant transport considering small surface Péclet number, and (ii)
surface-convection-dominated surfactant transport considering high surface Péclet
number. Thermocapillary-induced Marangoni stress, the strength of which relative
to viscous stress is represented by the thermal Marangoni number, has a strong
influence on the distribution of surfactant on the droplet surface. The present study
shows that the motion of a surfactant-laden droplet in the combined presence of
temperature and imposed Poiseuille flow cannot be obtained by a simple superposition
of the following two independent results: migration of a surfactant-free droplet in
a temperature gradient, and the motion of a surfactant-laden droplet in a Poiseuille
flow. The temperature field not only affects the axial velocity of the droplet, but
also has a non-trivial effect on the cross-stream velocity of the droplet in spite of
the fact that the temperature gradient is aligned with the Poiseuille flow direction.
When the imposed temperature increases in the direction of the Poiseuille flow,
the droplet migrates towards the flow centreline. The magnitude of both axial and
cross-stream velocity components increases with the thermal Marangoni number.
However, when the imposed temperature decreases in the direction of the Poiseuille
flow, the magnitude of both axial and cross-stream velocity components may increase
or decrease with the thermal Marangoni number. Most interestingly, the droplet moves
either towards the flow centreline or away from it. The present study shows a critical
value of the thermal Marangoni number beyond which the droplet moves away from
the flow centreline which is in sharp contrast to the motion of a surfactant-laden
droplet in isothermal flow, for which the droplet always moves towards the flow
centreline. Interestingly, we show that the above picture may become significantly
altered in the case where the droplet is not a neutrally buoyant one. When the
droplet is less dense than the suspending medium, the presence of gravity in the
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direction of the Poiseuille flow can lead to cross-stream motion of the droplet away
from the flow centreline even when the temperature increases in the direction of
the Poiseuille flow. These results may bear far-reaching consequences in various
emulsification techniques in microfluidic devices, as well as in biomolecule synthesis,
vesicle dynamics, single-cell analysis and nanoparticle synthesis.

Key words: drops, thermocapillarity

1. Introduction
The dynamics of suspending droplets has been a recent topic of interest to the

science and engineering community, due to its wide gamut of applications in
microfluidic devices (Stone, Stroock & Ajdari 2004; Baroud, Gallaire & Dangla 2010;
Seemann et al. 2012). In such devices, droplets are used in analytic detection, reagent
mixing, drug delivery and cell encapsulation process, to name a few (Di Carlo et al.
2007; Huebner et al. 2008; Teh et al. 2008; Baroud et al. 2010; Zhu & Fang 2013).
It also has wide applications in biomolecule synthesis, vesicle dynamics, single-cell
analysis and nanoparticle synthesis (Huebner et al. 2008; Teh et al. 2008; Casadevall
i Solvas & deMello 2011; Seemann et al. 2012; Shields, Reyes & López 2015). In
addition, one may mention other relevant industrial processes such as pumping of
slurries (Karabelas 1977; Kaushal & Tomita 2002) and biological processes such as
the lateral migration and positioning of erythrocytes in the blood circulatory system
(Fåhraeus 1929; Pries, Secomb & Gaehtgens 1996). In fact, proper control as well as
understanding of the position of the dispersed phase (or particles) in a laminar fluid
flow opens up a wide variety of scopes in terms of flow cytometry (Bonner et al.
1972) or flow field fractionation (Giddings 1993; Yang et al. 1999).

In a wide gamut of microfluidic devices, suspended droplets are transported along
the flow with the aid of syringe pumps (Stan et al. 2011). The control over droplet
migration in such devices can be acquired from the knowledge of flow geometry and
fluid properties. However, this control over the lateral migration can be fine-tuned by
the application of an external temperature gradient in the flow field. This non-uniform
temperature distribution in the flow field can be utilized in microfluidic devices for the
purpose of sorting and separation of droplets (Baroud et al. 2007; Robert de Saint
Vincent, Wunenburger & Delville 2008; Miralles et al. 2013).

Surfactants (or surface-active agents) are common in different droplet-based
devices. Surfactants are used as additives in droplet-based systems to enhance droplet
generation and the stability of emulsions (Baret 2012). The presence of surfactants
at the droplet interface not only lowers the interfacial tension but also can induce a
Marangoni stress if the spatial variation of surfactants is non-uniform (Leal 2007).
So, to perform optimal functionalities of the concerned devices, a fundamental
understanding of the motion of surfactant-laden droplet is of prime importance.

Several theoretical and experimental works have been performed to study the
motion of droplets in Poiseuille flow (Leal 1980; Stan et al. 2011; Chen et al. 2014).
In the creeping-flow limit, a non-deformable, spherical, Newtonian droplet suspended
in another Newtonian fluid with a clean fluid–fluid interface moves in the direction
of flow in an unbounded Poiseuille flow (Hetsroni & Haber 1970). This can be well
explained by the symmetry-under-flow-reversal argument, which is valid for linear
governing equations and boundary conditions (Leal 2007). Interesting things happen
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in the presence of nonlinear effects such as deformation, viscoelasticity and inertia.
A deformable droplet not only moves in the direction of flow, but also moves in
the cross-stream direction (Haber & Hetsroni 1971; Wohl & Rubinow 1974; Chan
& Leal 1979; Mortazavi & Tryggvason 2000; Griggs, Zinchenko & Davis 2007;
Mandal, Bandopadhyay & Chakraborty 2015). Chan & Leal (1979) have found that
a deformable droplet moves towards the channel centreline when λ < 0.5 or λ > 10
(where λ is the droplet to medium viscosity ratio), while droplet moves away from
the centreline when 0.5 < λ < 10. Several studies have also reported cross-stream
migration of non-deformable droplets in Poiseuille flow in the presence of fluid
inertia (Karnis, Goldsmith & Mason 1966; Hur et al. 2011; Chen et al. 2014) or
fluid viscoelasticity (Chan & Leal 1979; Mukherjee & Sarkar 2013, 2014). These
deformation-, inertia- and viscoelasticity-induced cross-stream migration characteristics
are used in microfluidic devices as sorting mechanisms (Hatch et al. 2013; Amini, Lee
& Di Carlo 2014; Sajeesh & Sen 2014). Very recently, Hanna & Vlahovska (2010)
and Pak, Feng & Stone (2014) have found that surfactant-induced Marangoni stress
at the droplet interface can induce a cross-stream migration of a spherical droplet in
Poiseuille flow even in the absence of deformation, inertia and viscoelasticity.

Studies on droplet motion in the presence of external effects such as electric (Ahn
et al. 2006; Link et al. 2006; Bandopadhyay et al. 2016; Mandal, Bandopadhyay
& Chakraborty 2016), magnetic (Seemann et al. 2012), temperature (Karbalaei,
Kumar & Cho 2016) and acoustic fields (Seemann et al. 2012) are gaining much
importance nowadays due to the ease with which these fields can be applied in
respective applications. The presence of these fields induces an imbalance in stresses
at the droplet interface and modifies the net force acting on the droplet, which
in turn alters the droplet velocity and associated flow field. Out of all the effects
mentioned above, in the present study we focus on the effect of a temperature field.
The variation of the temperature field across the droplet induces Marangoni stress
at the droplet interface, which induces droplet motion even in the absence of an
imposed flow (Young, Goldstein & Block 1959). Following Young et al. (1959),
several studies have considered the thermocapillary motion of a droplet in a quiescent
medium to study the following aspects: droplet deformation (Nadim, Haj-Hariri &
Borhan 1990), fluid inertia (Haj-Hariri, Nadim & Borhan 1990), thermal convection
(Zhang, Subramanian & Balasubramaniam 2001; Balasubramaniam & Subramanian
2004; Yariv & Shusser 2006) and bounding walls (Meyyappan & Subramanian 1987;
Barton & Shankar Subramanian 1990; Barton & Subramanian 1991; Chen 1999,
2003). In recent studies, Raja Sekhar and co-workers have investigated the effect of
thermocapillary-induced Marangoni stress on the droplet velocity in the presence of
an imposed flow field (Choudhuri & Raja Sekhar 2013; Sharanya & Raja Sekhar
2015). In the absence of shape deformation, surfactants and fluid inertia, their studies
show that the effects of a temperature field and an imposed background flow can be
linearly combined to obtain the final droplet velocity.

In a recent work, we have investigated the axisymmetric motion of a surfactant-
laden droplet in the combined presence of a linearly varying temperature field
and an imposed Poiseuille flow (Das et al. 2017). However, there is no study
present in the literature which investigates the combined effect of temperature
and an imposed Poiseuille flow on the cross-stream migration characteristics of
a droplet in the presence of bulk-insoluble surfactants. In the present study, we
analytically obtain the droplet velocity in an unbounded Poiseuille flow considering
both thermocapillary-induced and surfactant-induced Marangoni stresses at the droplet
interface. We show that in the presence of a non-uniform surfactant distribution at the
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droplet interface, the effects of a temperature field and an imposed background flow
cannot be linearly combined to obtain the final droplet velocity. By neglecting fluid
inertia, thermal convection and shape deformation, we perform asymptotic analysis
for two different limits: (i) when the surface diffusion of the surfactants dominates
interfacial transport, and (ii) when the surface convection of the surfactants dominates
interfacial transport, in an effort to unveil the mechanisms of cross-stream migration
of the droplet.

Interestingly, we have pinpointed that the sole reason for the cross-stream droplet
velocity to be dependent on the axial temperature gradient is the coupled nonlinear
nature of the governing equations (the surfactant transport equation and Stokes
equations). This applied temperature gradient results in a jump in tangential stress
across the interface in addition to the jump induced by the non-uniform distribution of
surfactants. Although the consequent implications are apparently of second order, the
results due to the presence of a temperature gradient or buoyancy are non-intuitive.
The present study shows that a temperature gradient can solely influence the axial
migration of a surfactant-free droplet, regardless of whether it is placed eccentrically
or not. On the contrary, it is further intriguing that when the drop is covered with
bulk-insoluble surfactants, the thermocapillary effect is not simply ‘additive’ but also
‘multiplicative’, in a sense that it couples with the non-uniform surfactant distributions
to non-trivially influence the axial and cross-streamline droplet dynamics. As a result,
an applied temperature gradient has a non-trivial contribution towards axial and
cross-stream dynamics of a surfactant-covered droplet. To mimic physically relevant
situations, we analyse the droplet migration characteristic for both buoyant and
neutrally buoyant droplets. It is seen that a denser droplet always migrates towards
the flow centreline if a temperature gradient is applied in the direction of the imposed
flow. However, considering the special case when the carrier phase has higher density,
the droplet may migrate away from the centreline of flow although a temperature
gradient is applied in the direction of the imposed flow. For a neutrally buoyant
system or a sufficiently low density difference between either phases, the applied
temperature gradient becomes the governing factor for the direction of cross-stream
migration of the droplet.

2. Problem formulation
2.1. System description

The present system consists of a spherical, Newtonian droplet (density ρi, viscosity
µi, and thermal conductivity ki) of radius a suspended in another Newtonian medium
(density ρe, viscosity µe, and thermal conductivity ke). Bulk-insoluble surfactants are
present at the droplet interface. All the material properties are assumed to be constant,
except the interfacial tension (σ̄ ). The interfacial tension depends on the interface
temperature (T̄s) and the local surfactant concentration (Γ̄ ) along the interface of
the droplet. In a quiescent medium, the surfactants are uniformly distributed over
the droplet surface. The concentration of surfactant at equilibrium is denoted by
Γ̄eq and the corresponding interfacial tension is denoted by σ̄eq. This equilibrium is
disturbed by application of a background Poiseuille flow (V̄∞) and a linearly varying
temperature field (T̄∞). The imposed Poiseuille flow alters the interfacial tension
via the convection of surfactants at the droplet interface. On the other hand, the
effect of the temperature field on the interfacial tension is twofold: (i) it directly
alters the interfacial tension, as interfacial tension is a function of temperature at the
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Cold end Hot end

a

FIGURE 1. (Colour online) Schematic of a surfactant-laden droplet of radius a suspended
in a cylindrical Poiseuille flow (V̄∞). The imposed temperature field (T̄∞) varies linearly in
the axial direction (z̄-direction). The droplet is placed at an eccentric location of distance
ē from the channel centreline and is acted upon by a gravitational acceleration g. Both
spherical (r, θ, ϕ) and Cartesian (x̄, ȳ, z̄) coordinates are shown. It is important to note
that the x̄ axis is always directed outwards from the channel centreline.

droplet interface, and (ii) thermocapillary-induced Marangoni stress induces transport
of surfactants at the droplet interface.

In several practical situations, the droplet can have density different from that of the
suspending medium. In the presence of gravity, the buoyancy effect leads to motion
of the droplet. Gravity can act normal or parallel to the direction of the Poiseuille
flow. When the gravity acts in the direction normal to the Poiseuille flow, the cross-
stream velocity of a buoyant droplet is strongly governed by the buoyancy force, while
the effects of Poiseuille flow and temperature field are negligible. Thus, the study of
buoyant droplets in these kinds of system are of less importance. Here we explore
droplet migration when gravity is acting in the direction of the imposed Poiseuille
flow (refer to figure 1). So, the combined presence of Poiseuille flow, gravity, surface
tension and temperature field leads to the generation of Marangoni stresses which
will affect the droplet velocity (Ū). The main objective of the present study is to
investigate the effect of the Marangoni stresses on the droplet velocity. Towards this,
we consider a spherical coordinate system (r̄, θ, ϕ) which is attached at the droplet
centroid (refer to figure 1). A Cartesian coordinate system (x̄, ȳ, z̄) is also shown
attached to the droplet. The gravitational force acts in the axial direction (z̄-direction).

2.2. Assumptions
The major assumptions made in this study to simplify the governing equations
and the boundary conditions are as follows: (i) the thermal problem is governed
by the conduction of heat, which is based on the fact that the thermal Péclet
number (PeT = V̄ca/αe, where αe is the thermal diffusivity of the suspending medium
and V̄c is the centreline velocity of imposed Poiseuille flow) is small enough so
that the advective transport of thermal energy is negligible. (ii) The flow problem
is governed by the viscous and pressure forces. This is based on the fact that
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the Reynolds number (Re= ρV̄ca/µe) is small enough so that the fluid inertia is
negligible. (iii) The droplet shape is considered as a perfect sphere. This is based on
the fact that capillary number (Ca=µeV̄c/σ̄o) is small enough so that the interfacial
tension dominates over the viscous stresses. (iv) The surfactants are insoluble in the
bulk fluid (Baret 2012). (v) The surfactant distribution along the interface of the
droplet does not affect the heat transfer process (Kim & Subramanian 1989b). (vi)
The interfacial tension is linearly dependent on the temperature and the surfactant
concentration at the interface of the droplet (Homsy & Meiburg 1984; Carpenter &
Homsy 1985). (vii) We consider the imposed Poiseuille flow to be a unbounded one,
which disregards the effects of bounding walls. (viii) Any effect of natural convection
in the system under consideration is neglected. This can be said based on the fact that
the magnitude of both Grashof number (Gr= gγeρ

2
e1Ta3/µ2

e) and Rayleigh number
(Ra= gγeρe1Ta3/µeαe) are very small (Gr, Ra� 1) for the present system. Here
1T is the characteristic temperature difference, and γe is the volumetric expansion
coefficient of the carrier phase due to an increase in temperature.

2.3. Experimental perspective
The typical values of the non-dimensional numbers can be obtained from the existing
experimental data (Nallani & Subramanian 1993; Chen et al. 1997). Nallani &
Subramanian (1993) have performed experiments on the thermocapillary motion of a
methanol droplet of radius 50 µm suspended in silicone oil (with ρe = 955 kg m−3,
µe= 0.0478 Ns m−2, γe= 0.0007 ◦C−1, ke= 0.1 W mK−1 and cpe= 1800 J kg−1 K−1)
which is an example of a buoyant system. Chen et al. (1997), on the other hand,
performed experiments on the thermocapillary migration of a surfactant-laden droplet
for a neutrally buoyant system. This system is composed of water as the droplet
phase and n-butyl benzoate (with ρe = 995 kg m−3, µe = 2.49 × 10−3 Ns m−2,
γe = 0.00125 ◦C−, αe = 6.63 × 10−8 m2 s−1) as the carrier phase. All the property
values above are measured at a temperature of 32 ◦C. The density of distilled water
at 32 ◦C is 995.03 kg m−3 whereas the density of n-butyl benzoate at the same
temperature according to Hähnel, Delitzsch & Eckelmann (1989) is 995.02 kg m−3.
We consider V̄c= 10−4 m s−1 (which is common in microfluidic devices), a= 50 µm,
a characteristic temperature difference of 1T = 2 ◦C and σ̄o = 10−3 N m−1 for a
methanol–silicone oil system and σ̄o = 22.76 × 10−3 N m−1 for a water-n-butyl
benzoate system. Using the above property values as obtained from the experimental
works done by Nallani & Subramanian (1993) and Chen et al. (1997) we obtain the
following values of the different non-dimensional parameters as given in table 1. It
is apparent from table 1 that the consideration of negligible thermal convection (both
buoyancy driven and imposed flow driven), fluid inertia and shape deformation is
justified. The typical values of other non-dimensional parameters are mentioned as
they appear.

The Bond number (Bo) is the ratio of the gravitational force to the surface tension
force acting on the droplet in the flow field and is discussed in detail later. The present
problem can investigated from an experimental perspective as well. However, there is
no experimental study present in the literature that takes into account the temperature-
induced cross-stream migration of a surfactant-laden droplet. Towards this, we provide
a brief outline of a possible experimental design for this purpose. A mechanism for
droplet generation in a microfluidic channel has to be developed whose job will be
to release the droplet in a larger channel at an eccentric position with respect to the
centreline of the flow. The dispersed phase would consist of water–surfactant solution.
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Non-dimensional numbers Neutrally buoyant system Buoyant system
(droplet phase, water; carrier (droplet phase, methanol;

phase, n-butyl benzoate) carrier phase, silicone oil)

Reynolds number (Re) 0.002 9.89× 10−4

Thermal Péclet number (PeT ) 7.54× 10−2 8.6× 10−2

Capillary number (Ca) 0.109× 10−4 0.00478
Grashof number (Gr) 4.8952× 10−4 6.8526× 10−6

Rayleigh number (Ra) 0.0185 5.896× 10−4

Bond Number (Bo) 1.07× 10−8 0.004

TABLE 1. Values of non-dimensional governing parameters for both buoyant and
neutrally buoyant system.

Triton X-100 could be chosen as an appropriate candidate for surfactants. The exit of
the channel would consist of a sink at a steady temperature of T1, whereas at the
entry another sink will present at a steady temperature T2 such that T1 > T2. The
prime objective of this study will be to measure the cross-stream migration in a certain
span of time for different values of T1 with the help of a high-speed camera. The
temperature can be varied with the help of a heater that is used to keep the sink at
the exit warm. Together with this study, we can also include the effect of buoyancy by
considering a buoyant system instead of a neutrally buoyant system. By using silicone
oil of different varieties (hence different densities), the buoyancy force on the droplet
can be varied as well.

2.4. Governing equations and boundary conditions
As the thermal Péclet number is small, the thermal problem is governed by a Laplace
equation of the form

∇̄
2T̄i = 0,

∇̄
2T̄e = 0,

}
(2.1)

where T̄i and T̄e represent the temperature field inside and outside the droplet.
Subscripts ‘i’ and ‘e’ are used to represent quantities inside and outside the droplet,
respectively. The temperature field outside the droplet (T̄e) satisfies the far-field
condition

as r̄→∞, T̄e = T̄∞, (2.2)
where T̄∞ with respect to a spherical coordinate system (origin at the droplet centroid)
is represented as

T̄∞ = T̄o + Ḡz̄, (2.3)
where Ḡ is the temperature gradient along z̄ and T̄o is the reference temperature. In
the present study, we consider variation of T̄∞ along the direction of the imposed
Poiseuille flow. The imposed temperature increases (or decreases) in the direction of
the imposed Poiseuille flow for Ḡ > 0 (or Ḡ < 0). The temperature field inside the
droplet (T̄i) is bounded at the centre of the droplet (r̄= 0). In addition to these, T̄i
and T̄e satisfy temperature continuity and heat flux continuity at the droplet surface
(r̄= a):

at r̄= a, T̄i = T̄e,

at r̄= a, ki
∂T̄i

∂ r̄
= ke

∂T̄e

∂ r̄
.

 (2.4)
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As the Reynolds number is small, the flow problem is governed by the Stokes and
continuity equations in the following form:

−∇̄p̄i +µi∇̄
2ūi = 0, ∇̄ · ūi = 0,

−∇̄p̄e +µe∇̄
2ūe = 0, ∇̄ · ūe = 0,

}
(2.5)

where ū and p̄ represent the velocity and pressure fields. The velocity and pressure
fields outside the droplet satisfy the far-field condition

as r̄→∞, ūe = V̄∞ − Ū,
as r̄→∞, p̄e = p̄∞,

}
(2.6)

where p̄∞ is the pressure field associated with V̄∞. The imposed Poiseuille flow
(V̄∞) with respect to a spherical coordinate system (origin at the droplet centroid) is
represented as

V̄∞ = V̄c

[
1−

ē2

R̄2
−

r̄2

R̄2
sin2 θ −

2r̄
R̄2

ē cos ϕ sin θ
]

ez, (2.7)

where ē and R̄ are the position of the droplet centroid and the location of zero
imposed velocity, which are measured from the centreline of the flow. The velocity
and pressure fields inside the droplet (ūi, p̄i) are bounded at the centre of the droplet
(r̄= 0). In addition to these, the velocity and pressure fields satisfy the following
interfacial conditions at the droplet surface (r̄= a):

at r̄= a, ūi = ūe,

at r̄= a, ūi · er = ūe · er = 0,

at r̄= a, (τ̄e · er − τ̄i · er) · (I − erer)=−∇̄sσ̄ ,

 (2.8)

where τ̄i =−p̄iI + µi[∇̄ūi + (∇̄ūi)
T
] and τ̄e =−p̄eI + µe[∇̄ūe + (∇̄ūe)

T
] represent the

hydrodynamic stress tensors inside and outside the droplet, and ∇̄s = [∇̄− er(er · ∇̄)]
represents the surface gradient operator. The first condition represents the continuity
of velocity field, the second condition represents the kinematic condition, and the
third condition represents the balance between the tangential component of the
hydrodynamic and Marangoni stresses. The normal stress balance is not relevant to
the present study as we are considering a spherical droplet shape (Choudhuri & Raja
Sekhar 2013).

The Marangoni stress depends on the variation of interfacial tension (σ̄ ). Assuming
a linear relationship, the dependence of interfacial tension on the temperature and
surfactant concentration can be represented as (Homsy & Meiburg 1984; Carpenter
& Homsy 1985; Kim & Subramanian 1989b)

σ̄ = σ̄o − β(T̄s − T̄o)− RgT̄oΓ̄ , (2.9)

where σ̄o is the interfacial tension at the reference temperature T̄o in the absence of
any surfactant, T̄s= T̄i|r̄=a is the temperature at the droplet surface, Rg is the ideal gas
constant, and β =−dσ̄ /dT̄s. The linear dependence of interfacial tension on the local
surfactant concentration can be derived from the general relationship between σ̄ and
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Γ̄ , which is obtained from the Langmuir and the Gibbs adsorption isotherm and is
given by (Leal 2007)

σ̄ = σ̄o + RgT̄oΓ̄eq

[
ln
(

1−
Γ̄

Γ̄eq

)]
. (2.10)

The above nonlinear relationship between the interfacial tension and surfactant
concentration in the limiting case of low or dilute surfactant concentration (lim σ̄ Γ̄→0)
is given by the linear relationship: σ̄ = σ̄o−RgT̄oΓ̄ . Note that such a simplification is
commonly performed to simplify the mathematical calculations. Similar simplifications
can be found in several reported studies (Stone & Leal 1990; Vlahovska, Bławzdziewicz
& Loewenberg 2009; Pak et al. 2014). The surfactant concentration (Γ̄ ) at the droplet
surface is governed by the following convection–diffusion equation (Stone 1990; Stone
& Leal 1990):

∇̄s · (ūsΓ̄ )=Ds∇̄
2
s Γ̄ , (2.11)

where Ds denotes the surface diffusivity of the surfactants, and ūs denotes the fluid
velocity on the droplet surface.

2.5. Non-dimensional form of governing equations and boundary conditions
Now, we apply the following non-dimensional scheme to the above set of governing
equations and boundary conditions to obtain the relevant dimensionless form:
r = r̄/a, u = ū/V̄c, T = (T̄ − T̄o)/|Ḡ|a, Γ = Γ̄ /Γ̄eq, σ = σ̄ /σ̄o, p = p̄/(µeV̄ca), and
τ = τ̄/(µeV̄c/a). The various material ratios that appear are: viscosity ratio λ=µi/µe,
and conductivity ratio δ= ki/ke. On the other hand, different non-dimensional numbers
that appear are: surface Péclet number Pes = V̄ca/Ds (the ratio of the strength of
the advection of the surfactant as compared to the diffusion of the same at the
droplet interface), surfactant Marangoni number MaΓ = Γ̄eqRgT̄o/µeV̄c (the relative
strength of surfactant-induced interfacial-tension-driven Marangoni flow to that of the
imposed Poiseuille flow), and thermal Marangoni number MaT = β|Ḡ|a/µeV̄c (the
ratio of thermally induced interfacial-tension-driven Marangoni flow and the imposed
Poiseuille flow).

Imposing the above-mentioned scales, we obtained the non-dimensional form of the
Laplace equation which governs the thermal problem as

∇
2Ti = 0,

∇
2Te = 0,

}
(2.12)

which are subject to the following boundary conditions:

as r→∞, Te = ζ r cos θ,

Ti is bounded at r= 0,

at r= 1, Ti = Te,

at r= 1, δ
∂Ti

∂r
=
∂Te

∂r
.


(2.13)

The factor ζ = Ḡ/|Ḡ| signifies the direction of the imposed temperature gradient. The
imposed temperature increases (or decreases) in the direction of the imposed Poiseuille
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flow for ζ = 1 (or ζ = −1). The flow problem is governed by the non-dimensional
equations

−∇pi + λ∇
2ui = 0, ∇ · ui = 0,

−∇pe +∇
2ue = 0, ∇ · ue = 0,

}
(2.14)

which are subject to the following boundary conditions:

at r→∞, (ue, pe)= (V∞ −U, p∞),

ui is bounded at r= 0,

at r= 1, ui · er = ue · er = 0,

at r= 1, ui = ue,

at r= 1, (τe · er − τi · er) · (I − erer)=MaΓ∇sΓ +MaT∇sTs.


(2.15)

The last boundary condition (tangential stress balance) is obtained by substituting the
dimensionless form of interfacial tension as

σ = 1−Ca(MaTT +MaΓΓ ). (2.16)

The surfactant transport equation, when non-dimensionalized, takes the form

Pes∇s · (usΓ )=∇
2
s Γ . (2.17)

In addition to this, the surfactant concentration should also satisfy the following
constraint to conserve the total mass of the surfactants on the droplet surface in the
following form: ∫ 2π

ϕ=0

∫ π

θ=0
Γ (θ, ϕ) sin θ dθ dϕ = 4π. (2.18)

A closer look into (2.17) reveals the nonlinearity in the surfactant convection
term. This makes the flow and surfactant transport coupled, due to which it is
impossible to obtain an analytical solution for arbitrary values of Pes. Depending
on the type of surfactant chosen, Pes and MaΓ can vary over a wide range. With
Ds = 10−11–10−8 m2 s−1 and Γ̄eq = 10−10–10−6 mole m−2 (Young et al. 1959; Stebe,
Lin & Maldarelli 1991), the range of variation of Pes is 0.1–100 and that for MaΓ
is 0.05–100. Towards making an analytical treatment, we focus on the following two
regimes (Hanna & Vlahovska 2010; Pak et al. 2014): (i) Pes � 1 which signifies
that the surface diffusion dominates the surfactant transport, and (ii) Pes→∞ which
signifies that the surface convection governs the surfactant transport. The first limit
represents the physical situation of large surface diffusivity of surfactants, while
the second limit represents the physical situation of negligible surface diffusivity of
surfactants (Kim & Subramanian 1989a; Vlahovska, Loewenberg & Blawzdziewicz
2005; Vlahovska et al. 2009).

3. Asymptotic solution
3.1. Representation of field variables in terms of spherical harmonics

As the temperature fields inside and outside the droplet satisfy the Laplace
equation, we can represent them in terms of spherical solid harmonics as (Choudhuri
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& Raja Sekhar 2013)

Ti =

∞∑
n=0

n∑
m=0

[an,mrn cos(mϕ)+ ân,mrn sin(mϕ)]Pn,m(cos θ),

Te = ζ rP1,0(cos θ)

+

∞∑
n=0

n∑
m=0

[b−n−1,mr−n−1 cos(mϕ)+ b̂−n−1,mr−n−1 sin(mϕ)]Pn,m(cos θ),


(3.1)

where Pn,m(cos θ) is the associated Legendre polynomial of degree n and order m.
The temperature field inside the droplet (Ti) is constructed by linearly combining
the growing spherical solid harmonics, which automatically satisfies the boundedness
of Ti at r = 0. On the other hand, the temperature field outside the droplet (Te) is
constructed by linearly combining the far-field temperature field T∞ = ζ rP1,0(cos θ)
and the decaying spherical solid harmonics, which automatically satisfies the
boundedness of Te as r → ∞. In (3.1), an,m, ân,m, b−n−1,m and b̂−n−1,m are the
unknown coefficients of the spherical solid harmonics, which will be obtained by
using the remaining boundary conditions (continuity of temperature and heat flux
across the droplet interface). The surface temperature (Ts) can be expressed as

Ts =

∞∑
n=0

n∑
m=0

[Tn,m cos(mϕ)+ T̂n,m sin(mϕ)]Pn,m(cos θ), (3.2)

where Tn,m and T̂n,m are the coefficients of the spherical surface harmonics. Similarly,
the surfactant concentration Γ can be represented in terms of spherical surface
harmonics as (Haber & Hetsroni 1972; Pak et al. 2014)

Γ =

∞∑
n=0

n∑
m=0

[Γn,m cos(mϕ)+ Γ̂n,m sin(mϕ)]Pn,m(cos θ), (3.3)

where Γn,m and Γ̂n,m will be obtained by solving the surfactant transport equation.
As the velocity and pressure fields inside the droplet satisfy the Stokes and

continuity equations, we can represent them in terms of the growing spherical solid
harmonics using Lamb’s general solution as (Haber & Hetsroni 1972)

ui =

∞∑
n=1

[
∇× (rχn)+∇Φn +

n+ 3
2(n+ 1)(2n+ 3)λ

r2
∇pn −

n
(n+ 1)(2n+ 3)λ

rpn

]
,

pi =

∞∑
n=0

pn,


(3.4)

where pn, Φn and χn are the growing spherical solid harmonics of the form

pn = λrn
n∑

m=0

[An,m cos(mϕ)+ Ân,m sin(mϕ)]Pn,m(cos θ),

Φn = rn
n∑

m=0

[Bn,m cos(mϕ)+ B̂n,m sin(mϕ)]Pn,m(cos θ),

χn = rn
n∑

m=0

[Cn,m cos(mϕ)+ Ĉn,m sin(mϕ)]Pn,m(cos θ).


(3.5)
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Similarly, the velocity and pressure fields outside the droplet can be represented in
terms of the far-field velocity field and the decaying spherical solid harmonics using
Lamb’s solution as (Haber & Hetsroni 1972)

ue = (V∞ −U)+
∞∑

n=1

[
∇× (rχ−n−1)+∇Φ−n−1

−
n− 2

2n(2n− 1)
r2
∇p−n−1 +

n+ 1
n(2n− 1)

rp−n−1

]
,

pe = p∞ +
∞∑

n=0

p−n−1,


(3.6)

where p−n−1, Φ−n−1 and χ−n−1 are the decaying spherical solid harmonics of the form

p−n−1 = r−n−1
n∑

m=0

[A−n−1,m cos(mϕ)+ Â−n−1,m sin(mϕ)]Pn,m(cos θ),

Φ−n−1 = r−n−1
n∑

m=0

[B−n−1,m cos(mϕ)+ B̂−n−1,m sin(mϕ)]Pn,m(cos θ),

χ−n−1 = r−n−1
n∑

m=0

[C−n−1,m cos(mϕ)+ Ĉ−n−1,m sin(mϕ)]Pn,m(cos θ).


(3.7)

The unknown coefficients An,m, Bn,m, Cn,m, Ân,m, B̂n,m, Ĉn,m, A−n−1,m, B−n−1,m, C−n−1,m,
Â−n−1,m, B̂−n−1,m and Ĉ−n−1,m will be obtained by using the remaining boundary
conditions (normal velocity, tangential velocity and tangential stress conditions).

3.2. Solution for Pes� 1
Irrespective of the value of Pes, the thermal problem is independent of the flow field
and surfactant concentration. So, we obtain the solution for the temperature field inside
and outside the droplet in the following form:

Ti = ζ

(
3

δ + 2

)
rP1,0(cos θ),

Te = ζ

[
r+
(

1− δ
2+ δ

)
1
r2

]
P1,0(cos θ).

 (3.8)

The surface temperature is obtained as Ts = [3ζ/(δ + 2)]P1,0(cos θ), which gives the
only one non-zero coefficient of surface harmonics in Ts as T1,0 = 3ζ/(δ + 2).

In the low-Pes limit, we use the following regular perturbation expansion for any
dependent variable ψ (Pak et al. 2014; Sekhar, Sharanya & Rohde 2016):

ψ =ψ (0)
+ Pesψ

(Pes) + Pe2
sψ

(Pe2
s ) +O(Pe3

s ), (3.9)

where ψ (0) represents the leading-order term for Pes = 0, while ψ (Pes) and ψ (Pe2
s )

represent higher-order contributions for Pes� 1. Substituting this expansion in (2.17),
we obtain the governing equation for surfactant concentration as (Pak et al. 2014)

leading-order: ∇2Γ (0)
= 0, (3.10)
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O(Pes) : ∇
2Γ (Pes) =∇ · (u(0)s Γ

(0)), (3.11)

O(Pe2
s ) : ∇

2Γ (Pe2
s ) =∇ · (u(0)s Γ

(Pes) + u(Pes)
s Γ (0)). (3.12)

A closer look into (3.10)–(3.12) reveals that at each order of perturbation the
surfactant concentration is independent of the flow field (or surface velocity) at
that order. So, we can solve for the surfactant concentration first, and then solve for
flow field and droplet velocity.

To obtain the leading-order surfactant concentration (which is governed by (3.10)),
we substitute Γ (0)(θ, ϕ) in terms of surface harmonics (3.3) in (3.10). The distribution
of Γ (0) which satisfies the mass conservation is obtained (by using the orthogonality
of the associated Legendre polynomials and (2.18)) as

Γ (0)
= 1, (3.13)

which gives the only one non-zero coefficient of surface harmonics as Γ (0)
0,0 = 1. We

can obtain the leading-order velocity and pressure fields by substituting (3.4)–(3.7) in
the boundary conditions (refer to appendix A for detailed expressions). To obtain the
droplet velocity, we use the force-free condition. The total force acting on the droplet
consists of the hydrodynamic force induced by the pressure and viscous stresses (F(0)

H )

and the buoyancy force (FB) due to the difference in density in either of the phases.
At steady state the force-free condition is given by (Happel & Brenner 1981)

F(0)
H +FB = 0 ⇒

∫ 2π

ϕ=0

∫ π

θ=0
(τ (0)e · er) sin θ dθ dϕ +

(
4πξBo

3Ca

)
ez = 0, (3.14)

where Bo= |ρi − ρe|ga2/σ̄o is the Bond number, which signifies the relative strength
of the buoyancy force as compared to the interfacial tension force. The parameter
Bo/Ca = |ρi − ρe|ga2/µeV̄c, on the other hand, indicates the relative significance of
the buoyancy forces with respect to the viscous forces. In our present analysis we
thus deal with the parameter Bo/Ca instead of Bo, as the former has a greater impact.
For the neutrally buoyant system at 32 ◦C according to the property values given by
Hähnel et al. (1989), we have Bo/Ca = 9.85 × 10−4

≈ 0. The factor ‘ξ ’ decides the
denser fluid among the droplet and the suspending phase. That is, ξ = 1 indicates
that the droplet phase is denser as compared to the carrier phase (ρi >ρe), while
ξ = −1 denotes that the suspending phase is denser (ρi <ρe). For the case of a
methanol–silicone oil system we have ξ =−1 and the magnitude of Bo/Ca is 0.8363
according to the property values for silicone oil as used in the experimental work
done by Nallani & Subramanian (1993). However, the value of Bo/Ca usually varies
between 0.1 and 3, depending on the type of silicone oil chosen. If we consider a
separate system with silicone oil as the droplet phase and methanol as the suspending
phase, keeping the property values for either of the phases intact, then the magnitude
of Bo/Ca remains the same although ξ = 1. The other dimensionless governing
parameters (Ca, Re, Pes and MaΓ ) still fall in a regime that satisfies the major
assumptions made in this study. The hydrodynamic force acting on the droplet can be
expressed in terms of spherical harmonics in the following form (Happel & Brenner
1981):

F(0)
H =

∫ 2π

ϕ=0

∫ π

θ=0
(τ (0)e · er) sin θ dθ dϕ =−4π∇(r3p(0)−2), (3.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.750


Effect of temperature gradient on migration of droplets in Poiseuille flow 183

where the spherical solid harmonics p(0)−2 is of the form

p(0)−2 = r−3
[A(0)−2,0P2,0(cos θ)+ A(0)−2,1 cos φP2,1(cos θ)+ Â(0)−2,1 sin φP2,1(cos θ)]. (3.16)

Substituting A(0)−2,0, A(0)−2,1 and Â(0)−2,1 (expressions are given in appendix A), we obtain
the components of droplet velocity in the axial (along z) and cross-stream (along x
and y) directions as

U(0)
z =

2
3

(
ξ

Bo
Ca

)(
1+ λ

3λ+ 2

)
︸ ︷︷ ︸

Effect of buoyancy

+

{
1−

( e
R

)2
−

(
5λ

3λ+ 2

)
2

5R2

}
︸ ︷︷ ︸

Effect of Poiseuille flow

+
2ζMaT

(3λ+ 2)(δ + 2)︸ ︷︷ ︸
Effect of temperature gradient

 ,
U(0)

x =U(0)
y = 0.



(3.17)

The first term in U(0)
z indicates the sole effect of the buoyancy force on the

leading-order axial velocity of the droplet, the second bracketed term is due to
imposed Poiseuille flow, while the third term is the droplet velocity solely due to
a linearly varying temperature field. Accordingly, the leading-order droplet velocity
is not affected by the presence of surfactants. This is due to the fact that the
leading-order surfactant-induced Marangoni stress vanishes, ∇sΓ

(0)
= 0, for a uniform

distribution of surfactants. The leading-order surface velocity is obtained as

u(0)s =

{
1
3

(
ξ

Bo
Ca

)
sin θ

3λ+ 2
+

3 sin θMaTζ

(δ + 2)(3λ+ 2)
+
(λ+ 2 sin2 θ)e cos ϕ

R2(λ+ 1)
+

5 sin3 θ

4R2(λ+ 1)

−
λ sin θ

R2(3λ+ 2)(λ+ 1)

}
eθ −

eλ sin ϕ cos θ
R2(λ+ 1)

eϕ. (3.18)

Now, we substitute Γ (0) and u(0)s in (3.11) and use the surface harmonic representation
(3.3) for the O(Pes) surfactant concentration. The O(Pes) surfactant concentration is
obtained as

Γ (Pes) = Γ
(Pes)

1,0 P1,0(cos θ)+ Γ (Pes)
2,1 cos ϕP2,1(cos θ)+ Γ (Pes)

3,0 P3,0(cos θ), (3.19)

where the coefficients of the surface harmonics are obtained as

Γ
(Pes)

1,0 =−
1

3λ+ 2

{
ξBo
3Ca
+

(
3MaTζ

δ + 2
+

2
R2

)}
, Γ

(Pes)
2,1 =−

e
3R2(λ+ 1)

,

Γ
(Pes)

3,0 =
1

6R2(λ+ 1)
.

 (3.20)

Similar to the leading-order calculation (except there is no thermocapillary-induced
Marangoni stress at the droplet interface at O(Pes)), we obtain the O(Pes) velocity
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and pressure fields (refer to appendix A for detailed expressions). The O(Pes) droplet
velocity is obtained from the force-free condition, which is now given by

F(Pes)
H =−4π∇(r3p(Pes)

−2 )= 0. (3.21)

The expression of the different components of the O(Pes) droplet migration velocity
is given by

U(Pes)
z =−

MaΓ
(3λ+ 2)2

[
2ξ
9

Bo
Ca
+

{
MaTζ

(δ + 2)
+

2
3R2

}]
,

U(Pes)
x =U(Pes)

y = 0.

 (3.22)

It is evident from the above expression that the surfactant-induced Marangoni stress
affects the axial droplet velocity at O(Pes).

The O(Pes) surface velocity is obtained as

u(Pes)
s = MaΓ

{
−
ξ

3
Bo
Ca

sin θ
(3λ+ 2)2

−
3 sin θMaTζ

(δ + 2)(3λ+ 2)2
+

e cos(2θ)
5R2(λ+ 1)2

cos ϕ

−
5 sin3 θ

28R2(λ+ 1)2
−

4(5λ2
+16λ+ 8) sin θ

28R2(3λ+ 2)2(λ+ 1)2

}
eθ −

MaΓ e sin ϕ cos θ
5R2(λ+ 1)2

eϕ. (3.23)

Now, we substitute Γ (0), u(0)s , Γ (Pes) and u(Pes)
s in (3.12) and use the surface harmonic

representation (refer to (3.3)) for the O(Pe2
s ) surfactant concentration. The O(Pe2

s )

surfactant concentration is obtained as

Γ (Pe2
s ) =


Γ
(Pe2

s )

1,0 P1,0(cos θ)+ Γ (Pe2
s )

1,1 cos ϕP1,1(cos θ)

+Γ
(Pe2

s )

2,0 P2,0(cos θ)+ Γ (Pe2
s )

2,1 cos ϕP2,1(cos θ)

+Γ
(Pe2

s )

2,2 cos(2ϕ)P2,2(cos θ)+ Γ (Pe2
s )

3,0 P3,0(cos θ)+ Γ (Pe2
s )

3,1 cos ϕP3,1(cos θ),
(3.24)

where the coefficients of surface harmonics are mentioned in appendix B. Similar
to the O(Pes) calculation, we obtain the O(Pe2

s ) velocity and pressure fields (refer
to appendix A for detail expressions), and we obtain the droplet velocity using the
force-free condition as

U(Pe2
s )

z =
2Ma2

Γ

3(3λ+ 2)3

[
ξBo
3Ca
+

2
R2
+

3MaTζ

(2+ δ)

]
,

U(Pe2
s )

x =−
MaΓ e

5(3λ+ 2)2(λ+ 1)R2

[
(5λ+ 3)

{
ξBo
9Ca
+

MaTζ

(2+ δ)

}
+

70λ2
+ 109λ+ 40

21(λ+ 1)

]
,

U(Pe2
s )

y = 0.


(3.25)

It is evident from the above expression that the surfactant-induced Marangoni stress
not only affects the axial velocity but also induces a cross-stream migration velocity
of the droplet along x. It is interesting to note that though the temperature gradient
and gravity are acting along the axial direction, both these effects induce the drop
motion in the cross-stream direction.
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3.3. Solution for Pes→∞

In the high-Pes limit, the surfactant transport equation simplifies to (Hanna &
Vlahovska 2010)

∇s · (usΓ )= 0, (3.26)

which is still a nonlinear equation. Following Hanna & Vlahovska (2010), we consider
the limiting situation of MaΓ � 1. We expand any dependent variable ψ (except the
surfactant concentration Γ ) in the following asymptotic form (Hanna & Vlahovska
2010; Schwalbe et al. 2011):

ψ =ψ (0)
+Ma−1

Γ ψ
(Ma−1

Γ )
+O(Ma−2

Γ ), (3.27)

where ψ (0) represents the leading-order term for MaΓ →∞, and ψ (Ma−1
Γ ) represents

the higher order correction for Ma−1
Γ � 1. The surfactant concentration is expanded in

the following form (Hanna & Vlahovska 2010; Schwalbe et al. 2011):

Γ = 1+Ma−1
Γ Γ

(0)
+Ma−2

Γ Γ
(Ma−1

Γ )
+O(Ma−3

Γ ). (3.28)

Substituting (3.27) and (3.28) in (3.26), we obtain the governing equation for
surfactant concentration at different orders of perturbation as

leading-order: ∇ · u(0)s = 0, (3.29)

O(Ma−1
Γ ): ∇ · (u(0)s Γ

(0)
+ u(Ma−1

Γ )
s )= 0. (3.30)

The tangential stress balance at the droplet surface (r= 1) can be obtained as

leading-order: (τ (0)e · er − τ
(0)
i · er) · (I − erer)=∇sΓ

(0)
+MaT∇sTs (3.31)

O(Ma−1
Γ ): (τ

(Ma−1
Γ )

e · er − τ
(Ma−1

Γ )

i · er) · (I − erer)=∇sΓ
(Ma−1

Γ ). (3.32)

A closer look into (3.29)–(3.32) reveals that the surfactant concentration and flow field
have to be obtained simultaneously. Similar to the low-Pes limit, the temperature field
is independent of the flow field and surfactant concentration. So, the solution for the
temperature field will be the same as given in (3.8). Now, we substitute the velocity
and pressure fields given in (3.4)–(3.7) in the boundary conditions (refer to appendix C
for detailed expressions for different spherical harmonics present in the flow field).
The leading-order surfactant concentration and surface velocity are obtained as

Γ (0)
=−

ξBo
3Ca

cos θ −
cos θ

12(δ + 2)

×

[
36MaTζ +

5(δ + 2)
R2

(9+ 12e cos ϕ sin θ − 7 cos2 θ)

]
,

u(0)s =

(e cos ϕ
R2

)
eθ −

e sin ϕ cos θ
R2

eϕ.


(3.33)

Similar to the previous limiting case, the force-free condition is given by (3.15), which
gives the leading-order droplet velocity as

U(0)
z =

2ξBo
9Ca

+ 1−
2

3R2
−

( e
R

)2
, U(0)

x =U(0)
y = 0. (3.34a,b)
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It is evident from the above expression that the surfactant-induced Marangoni stress
leads to motion of the droplet at the speed of a solid particle. Thermocapillarity has
no effect on the droplet speed at the leading-order approximation.

The O(Ma−1
Γ ) surfactant concentration is obtained as

Γ (Ma−1
Γ )
=

 Γ
(Ma−1

Γ )

1,1 cosϕP1,1(cos θ)+ Γ (Ma−1
Γ )

2,0 P2,0(cos θ)

+Γ
(Ma−1

Γ )

2,2 cos2ϕP2,2(cos θ)+ Γ (Ma−1
Γ )

3,1 cosϕP3,1(cos θ)

 , (3.35)

where the coefficients of the surface harmonics are of the form

Γ
(Ma−1

Γ )

1,1 =−
ξBo
6Ca

e(3λ+ 2)
R2

−
3
2

e(4+ 3MaTζR2
+ 2δ)(λ+ 1)

R4(δ + 2)
,

Γ
(Ma−1

Γ )

0,2 =
25
6

e2(λ+ 1)
R4

, Γ
(Ma−1

Γ )

2,2 =−
25
36

e2(λ+ 1)
R4

, Γ
(Ma−1

Γ )

3,1 =
49
72

e(λ+ 1)
R4

.


(3.36)

The force-free condition gives the O(Ma−1
Γ ) droplet velocity as

U(Ma−1
Γ )

z =U(Ma−1
Γ )

y = 0, U(Ma−1
Γ )

x =−
ξBo
9Ca

e
R2
−

e(4+ 3MaTζR2
+ 2δ)

3R4(δ + 2)
. (3.37a,b)

Equation (3.37) shows that the surfactant-induced Marangoni stress induces a non-
zero cross-stream migration of the droplet along x. Importantly, thermocapillarity and
gravity affect the cross-stream velocity of the droplet at this order of approximation.

4. Results and discussion
We analyse the results for the following two special cases: (i) neutrally buoyant

droplet (ρi = ρe) for which Bo=0, and (ii) buoyant droplet (ρi 6= ρe) for which Bo 6=0.

4.1. Neutrally buoyant droplet (Bo= 0)
4.1.1. Effect of Marangoni stress in the low-Pes limit

The main result of the present analysis is the velocity of a force-free surfactant-
laden droplet in the combined presence of Poiseuille flow and a linearly varying
temperature field. We have obtained the velocity of a neutrally buoyant droplet in the
low-Pes limit as

U =
[{

1−
( e

R

)2
−

2λ
(3λ+ 2)R2

+
2ζMaT

(3λ+ 2)(δ + 2)

}
−Pes

{
2MaΓ
(3λ+ 2)2

(
MaTζ

δ + 2
+

2
3R2

)}
+Pe2

s

{
2Ma2

Γ

3(3λ+ 2)3

(
2
R2
+

3MaTζ

2+ δ

)}]
ez

−

[
Pe2

s MaΓ e
{

MaTζ (5λ+ 3)
5R2(3λ+ 2)2(λ+ 1)(2+ δ)

+
70λ2
+ 109λ+ 40

105R4(3λ+ 2)2(λ+ 1)2

}]
ex

+O(Pe3
s ). (4.1)

Substituting MaT = 0 in (4.1), we recover the velocity of a surfactant-laden
droplet in isothermal Poiseuille flow in the low-Pes limit which was previously
obtained by Pak et al. (2014). Substituting e = 0 in (4.1), we obtain the axial
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FIGURE 2. (Colour online) The variation of the axial droplet velocity (Uz) with the
viscosity ratio (λ) for different values of MaT . Other parameters have the following values:
ζ = 1, MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

velocity of a surfactant-laden droplet in non-isothermal Poiseuille flow which was
previously obtained by Das et al. (2017). A closer look into (4.1) reveals that
the thermocapillary-induced Marangoni stress in the presence of surfactant-induced
Marangoni stress alters both the axial and cross-stream velocities of the droplet.

Now, we investigate the effects of Marangoni stresses on the axial velocity of the
droplet. Towards this, we first plot figure 2, which shows the variation of droplet
velocity in the axial direction (Uz) with the viscosity ratio (λ) for the particular case
in which the temperature increases in the direction of the Poiseuille flow (i.e. ζ = 1).
MaT = 0 represents the special case of a surfactant-laden droplet in an isothermal
Poiseuille flow. When MaT > 0 figure 2 depicts a significant increase in magnitude
of the axial droplet velocity. This is due to the fact that for ζ = 1 the thermocapillary-
induced Marangoni stress drives the droplet in the direction of the Poiseuille flow.
The effect of Marangoni stress diminishes in the limit λ→∞, due to the fact that
the droplet surface becomes more rigid and the interfacial tension plays no role in
governing the hydrodynamics.

We next consider the special case of ζ = −1, which signifies a decreasing
temperature field in the imposed Poiseuille flow direction. Figure 3 shows the
variation of droplet velocity in the axial direction (Uz) with the viscosity ratio
(λ) for different values of MaT . In this case the thermocapillary-induced Marangoni
stress acts to drive the droplet in the direction opposite to the Poiseuille flow. For
smaller values of MaT (e.g. MaT = 0.5), the effect of the imposed Poiseuille flow
dominates and the droplet moves in the direction of the Poiseuille flow (i.e. Uz > 0).
For larger values of MaT (e.g. MaT = 5) the droplet moves in the direction of the
Poiseuille flow (i.e. Uz > 0) for a larger viscosity ratio, while a low-viscosity droplet
moves opposite to the Poiseuille flow (i.e. Uz < 0). For a given viscosity ratio (λ),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.750


188 S. Das, S. Mandal and S. Chakraborty

 0.5

 0

 –0.5

 –1.0

1.0

10010–1 101

FIGURE 3. (Colour online) The variation of the axial droplet velocity (Uz) with the
viscosity ratio (λ) for the special case of ζ = −1. Other parameters have the following
values: MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

we obtain a critical value of MaT for which Uz = 0 in the following form:

Ma∗T,z =
[3(3λ+ 2)2{(R2

− e2)(3λ+ 2)− 2λ} − 4MaΓ (3λ+ 2)Pes + 4Ma2
ΓPe2

s ](δ + 2)
6R2{(3λ+ 2)2 −MaΓ (3λ+ 2)Pes +Ma2

ΓPe2
s }

.

(4.2)
It is important to note that for MaT <Ma∗T,z the magnitude of axial droplet velocity
decreases with increasing MaT , while the magnitude of axial droplet velocity increases
with increasing MaT for MaT >Ma∗T,z.

Now, we investigate the effects of Marangoni stresses on the cross-stream velocity
of the droplet. Towards this, we first plot figure 4, which shows the variation
of droplet velocity in the cross-stream direction (Ux) with the viscosity ratio (λ)
for the case in which the temperature increases in the direction of the Poiseuille
flow (i.e. ζ = 1). For isothermal Poiseuille flow (i.e. MaT = 0), Pak et al. (2014)
obtained cross-stream motion of a surfactant-laden droplet. They have obtained
that an eccentrically positioned droplet always moves towards the channel centreline
(represented by negative values of Ux in figure 4). Figure 4 depicts that in the presence
of temperature variation (i.e. MaT > 0 with increasing temperature in the direction of
the imposed Poiseuille flow), there is a significant increase in the magnitude of the
cross-stream velocity (i.e. |Ux|). So the thermocapillary-induced Marangoni stress aids
the surfactant-induced cross-stream migration of the droplet for ζ = 1. The magnitude
of the cross-stream velocity increases with increasing MaT for low-viscosity droplets.
Similar to axial velocity, the effect of MaT (i.e. thermocapillary-induced Marangoni
stress) on the cross-stream velocity of the droplet diminishes for a larger viscosity
ratio (i.e. λ→∞).

We next consider the special case of ζ = −1, which signifies a decreasing
temperature field in the imposed Poiseuille flow direction. Figure 5 shows the variation
of droplet velocity in the cross-stream direction (Ux) with the viscosity ratio (λ) for
different values of MaT . In this case the thermocapillary-induced Marangoni stress
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FIGURE 4. (Colour online) The variation of the cross-stream droplet velocity (Ux) with
the viscosity ratio (λ) for different values of MaT . Other parameters have the following
values: ζ = 1, MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.
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FIGURE 5. (Colour online) The variation of the cross-stream droplet velocity (Ux) with
the viscosity ratio (λ) for different values of MaT . Other parameters have the following
values: ζ =−1, MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

not only alters the magnitude of the cross-stream migration velocity but also alters its
direction. For smaller values of MaT (e.g. MaT = 0.03) the droplet moves towards the
channel centreline (i.e. Ux < 0). However, for larger values of MaT (e.g. MaT = 0.5)
the droplet moves away from the channel centreline (i.e. Ux > 0). One can find a
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FIGURE 6. (Colour online) Surface plot showing the variation of the surfactant
concentration for (a) MaT = 0, (c) ζ = 1 and MaT = 0.1. Surface plot showing the variation
of the interfacial tension for (b) MaT = 0, (d) ζ = 1 and MaT = 0.1. Other parameters have
the following values: MaΓ = 5, Pes = 0.1, δ = 0.1, λ= 0.1, e= 0 and R= 5.

critical value of MaT for which Ux = 0 in the following form:

Ma∗T,x =
(δ + 2)(70λ2

+ 109λ+ 40)
21(5λ+ 3)(λ+ 1)R2

. (4.3)

It is important to note that for MaT < Ma∗T,x the magnitude of cross-stream velocity
decreases with increasing MaT , while the magnitude of cross-stream velocity increases
with increasing MaT for MaT >Ma∗T,x.

The physical reason for the change in magnitude and direction of the axial and
cross-stream velocities of a surfactant-laden droplet in non-isothermal Poiseuille flow
can be understood by looking into the distribution of surfactant concentration and
interfacial tension on the droplet surface. Towards this, we first look into the case
of a droplet located at the flow centreline (i.e. e = 0). Figure 6(a,b) depicts the
distribution of Γ (θ, ϕ) and σ(θ, ϕ) for the particular case of MaT = 0 (i.e. isothermal
Poiseuille flow). The imposed Poiseuille flow alters the surfactant distribution from
its equilibrium value Γeq = 1. The surfactant concentration is less near the east
pole as compared with the west pole, as depicted in figure 6(a). So, the altered
surfactant distribution is asymmetric about the transverse plane. This distribution is
due to the imposed Poiseuille flow, which drives the surfactants from the east pole
to the west pole. The asymmetry in Γ (θ, ϕ) leads to an asymmetric distribution of
σ(θ, ϕ) about the transverse plane, which is depicted in figure 6(b). Larger interfacial
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tension near the east pole as compared with the west pole drives a surfactant-induced
Marangoni flow from the west to the east pole, which leads to the generation of
a hydrodynamic force in the axial direction opposite to the Poiseuille flow. This
reduces the droplet speed in the axial direction as compared with the speed of a
surfactant-free droplet. The distributions of Γ (θ, ϕ) and σ(θ, ϕ) remain symmetric
about the axial plane, which results in no motion of the droplet in the cross-stream
direction. The distributions of Γ (θ, ϕ) and σ(θ, ϕ) in non-isothermal Poiseuille flow
(i.e. MaT > 0) for ζ = 1 (i.e. increasing temperature in the direction of Poiseuille flow)
are shown in figures 6(c) and 6(d), respectively. For ζ = 1 the thermocapillary-induced
Marangoni stress induces a flow at the droplet surface which runs from the east to
west pole. This flow drives surfactants away from the east pole towards the west pole
which leads to an increase in the asymmetry in Γ (θ, ϕ). Comparison of figures 6(c)
with 6(a) reflects the increase in asymmetry in terms of an increase in (Γmax − Γmin).
This surfactant distribution combined with the non-uniform temperature distribution
leads to larger σ(θ, ϕ) near the west pole as compared with the east pole (refer to
figure 6d), which is in sharp contrast to the case of MaT = 0 shown in figure 6(b).
This is due to the fact that the east pole encounters relatively hot fluid (higher
temperature means lower interfacial tension). This distribution of σ(θ, ϕ) drives a
Marangoni flow from the east to the west pole which leads to motion of the droplet
in the direction of the Poiseuille flow with an increased velocity as compared with
MaT = 0.

Now, we consider the case of ζ =−1 (i.e. decreasing temperature in the direction of
Poiseuille flow) and e= 0. For ζ =−1 the thermocapillary-induced Marangoni stress
induces a flow at the droplet surface which runs from the west to east pole. This flow
drives surfactants from the west to the east pole, while the imposed Poiseuille flow
drives the surfactants in the opposite direction (i.e. from the east to the west pole). The
final surfactant distribution is decided by the net surface velocity. For MaT = 0.5, the
distributions of Γ (θ, ϕ) and σ(θ, ϕ) are shown in figures 7(a) and 7(b), respectively.
Figure 7(a) depicts that the combined effect of thermocapillary-induced Marangoni
stress and imposed Poiseuille flow leads to a larger surfactant concentration near the
east pole as compared with the west pole. This surfactant distribution combined with
the non-uniform temperature distribution leads to larger σ(θ, ϕ) near the east pole as
compared with the west pole, as depicted in figure 7(b). This Marangoni stress induces
a hydrodynamic force in the direction opposite to the Poiseuille flow. For MaT = 0.5
the Poiseuille flow dominates and the droplet moves in the direction of the Poiseuille
flow, but with a decreased axial velocity of the droplet.

Now, we consider MaT = 5 and plot Γ (θ, ϕ) and σ(θ, ϕ) in figures 7(c) and 7(d),
respectively. With larger MaT , the strong effect of thermocapillary-induced Marangoni
stress leads to a significant increase (and decrease) in surfactant concentration near
the east (and west) pole. Comparison between figure 7(a,c) reveals that (Γmax − Γmin)

is much larger for MaT = 5. A similar increase in asymmetry is also reflected in
figure 7(d) for σ(θ, ϕ). In this case the Marangoni stress dominates over the Poiseuille
flow and the droplet moves in the direction opposite to the Poiseuille flow.

Interesting things happen for e = 1 (i.e. eccentrically located droplet). The
distributions of Γ (θ, ϕ) and σ(θ, ϕ) in isothermal Poiseuille flow (i.e. MaT = 0)
for e = 1 and ζ = 1 are shown in figures 8(a) and 8(b), respectively. Figure 8(a)
depicts that the surfactant concentration is maximum near the northwest pole and
minimum near the northeast pole. So, now the distribution of Γ (θ, ϕ) is asymmetric
about both the transverse and axial planes. The asymmetry about the axial plane
is due to the asymmetric velocity field about the axial plane encountered by the
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FIGURE 7. (Colour online) Surface plot showing the variation of the surfactant
concentration for (a) MaT = 0.5, (c) MaT = 5. Surface plot showing the variation of the
interfacial tension for (b) MaT = 0.5, (d) MaT = 5. Other parameters have the following
values: ζ =−1, MaΓ = 5, Pes = 0.1, δ = 0.1, λ= 0.1, e= 0 and R= 5.

eccentrically located droplet. An eccentrically located droplet encounters a larger
velocity at the north pole (as it is closer to channel centreline) and smaller velocity
at the south pole (as it is away from the channel centreline), as depicted in figure 1.
Asymmetry in Γ (θ, ϕ) creates asymmetry in σ(θ, ϕ) (refer to figure 8b), which leads
to the generation of hydrodynamic forces in both the axial and transverse directions
which cause the cross-stream migration of the eccentrically located droplet. The
distributions of Γ (θ, ϕ) and σ(θ, ϕ) in non-isothermal Poiseuille flow (i.e. MaT > 0)
for ζ = 1 (i.e. increasing temperature in the direction of Poiseuille flow) and e= 1 are
shown in figures 8(c) and 8(d), respectively. For ζ = 1 the thermocapillary-induced
Marangoni flow drives surfactants from the east pole to the west pole and increases
the asymmetry in Γ (θ, ϕ), which leads to maximum surfactant concentration near
the northwest pole and minimum surfactant concentration near the northeast pole.
Comparison of figures 8(c) with 8(a) reflects the increase in asymmetry in terms of an
increase in (Γmax − Γmin). This surfactant distribution combined with the non-uniform
temperature distribution leads to larger σ(θ, ϕ) near the west pole as compared with
the east pole (refer to figure 8d). Similar to Γ (θ, ϕ), an increase in asymmetry about
the axial plane is also present in σ(θ, ϕ) (i.e. (σmax − σmin)), which further leads to
an increase in magnitude of the cross-stream velocity of the droplet.
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FIGURE 8. (Colour online) Surface plot showing the variation of the surfactant
concentration for (a) MaT = 0, (c) ζ = 1 and MaT = 0.1. Surface plot showing the variation
of the interfacial tension for (b) MaT = 0, (d) ζ = 1 and MaT = 0.1. The other parameters
are MaΓ = 5, Pes = 0.1, δ = 0.1, λ= 0.1, e= 1 and R= 5.

The distributions of Γ (θ, ϕ) in non-isothermal Poiseuille flow (i.e. MaT > 0) for
ζ =−1 (i.e. decreasing temperature in the direction of Poiseuille flow) and e= 1 are
shown in figure 9. For ζ = −1 the thermocapillary-induced Marangoni flow drives
surfactants from the west to the east pole, while the imposed Poiseuille flow drives
the surfactant in the opposite direction (i.e. from the east to the west pole). The
final surfactant distribution is decided by the net surface velocity. For MaT < Ma∗T,x,
the Poiseuille flow dominates over the thermocapillary-induced Marangoni flow and
leads to a maximum surfactant concentration near the northwest pole and a minimum
surfactant concentration near the northeast pole (refer to figure 9a). This distribution
is similar to the case of ζ = 1 (refer to figure 8c), which leads to cross-stream motion
of droplets towards the channel centreline. However, when thermocapillary-induced
Marangoni stress dominates over the Poiseuille flow (for MaT >Ma∗T,x), the surfactant
concentration is maximum near the southeast pole and minimum near the southwest
pole (refer to figure 9b). This is completely opposite to that of MaT <Ma∗T,x (shown
in figure 9a). This asymmetric distribution of Γ (θ, ϕ) leads to cross-stream migration
of the droplet away from the channel centreline.
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FIGURE 9. (Colour online) Surface plot showing the variation of the surfactant
concentration for (a) MaT = 0.01 and (b) MaT = 0.1. Other parameters have the following
values: ζ =−1, MaΓ = 5, Pes = 0.1, δ = 0.1, λ= 0.1, e= 1 and R= 5.

4.1.2. Effect of Marangoni stress in the high-Pes limit
We have obtained the velocity of a neutrally buoyant droplet in the high-Pes limit

as

U=
[

1−
2

3R2
−

( e
R

)2
]

ez −Ma−1
Γ

[
e(4+ 3MaTζR2

+ 2δ)
3R4(δ + 2)

]
ex +O(Ma−2

Γ ). (4.4)

Substituting MaT = 0 in (4.4), we recover the velocity of a surfactant-laden droplet in
isothermal Poiseuille flow in the large-Pes limit. However, this result does not match
with that obtained by Hanna & Vlahovska (2010). The reason for this mismatch lies
in the choice of imposed flow. Hanna & Vlahovska (2010) did their analysis for
the case of an imposed plane Poiseuille flow, whereas the present study involves a
circular Poiseuille flow. Had the present analysis been repeated for the case of a planar
Poiseuille flow, an exact match with the results of Hanna & Vlahovska (2010) would
have been inevitable. A closer look into (4.4) reveals that the thermocapillary-induced
Marangoni stress only affects the cross-stream velocity of the droplet.

Now, we investigate the effects of Marangoni stresses on the cross-stream velocity
of the droplet. Towards this, we first plot figure 10(a), which shows the variation
of droplet velocity in the cross-stream direction (Ux) with the conductivity ratio (δ)

for the particular case in which the temperature increases in the direction of the
Poiseuille flow (i.e. ζ = 1). Figure 10(a) depicts that in the presence of temperature
variation (i.e. MaT > 0), there is a significant increase in the magnitude of the
cross-stream velocity (i.e. |Ux|). So the thermocapillary-induced Marangoni stress aids
the surfactant-induced cross-stream migration of the droplet for ζ = 1. The magnitude
of the cross-stream velocity increases with increasing MaT for low-conductivity
droplets. With an increase in the thermal conductivity of the droplet, the cross-stream
velocity reduces. An interesting thing happens for ζ =−1 (i.e. decreasing temperature
in the direction of Poiseuille flow), which is depicted in figure 10(b). Similar to
the low-Pes limit, the thermocapillary-induced Marangoni stress not only alters the
magnitude but also the direction of cross-stream migration for ζ = −1. For smaller
values of MaT (e.g. MaT = 0.01) the droplet moves towards the channel centreline
(i.e. Ux < 0). However, for larger values of MaT (e.g. MaT = 1) the droplet moves
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FIGURE 10. (Colour online) Variation of the cross-stream velocity (Ux) with the
conductivity ratio (δ) for (a) ζ = 1 and (b) ζ =−1. Other parameters values are MaΓ = 10,
e= 1 and R= 5.

away from the channel centreline (i.e. Ux > 0). One can find a critical value of MaT

for which Ux = 0 in the following form:

Ma∗T,x =
2

3R2
(δ + 2). (4.5)

It is important to note that for MaT < Ma∗T,x the magnitude of cross-stream velocity
decreases with increasing MaT , while the magnitude of cross-stream velocity increases
with increasing MaT for MaT >Ma∗T,x. Another important thing to note from figure 10
is that the magnitude of the cross-stream velocity for the high-Pes limit is much larger
compared with the magnitude of the cross-stream velocity for the low-Pes limit (refer
to figures 4 and 5).

Similar to the low-Pes limit, to investigate the alteration in magnitude and direction
of the droplet velocity in the axial and cross-stream directions, we plot the distribution
of Γ (θ, ϕ) on the surface of an eccentrically located droplet for isothermal Poiseuille
flow (with MaT = 0) in figure 11(a) and for non-isothermal Poiseuille flow (with
MaT = 0.5 and ζ = 1) in figure 11(b). Figure 11(a) depicts that Γ (θ, ϕ) is asymmetric
about both the axial and transverse planes, which results in alteration in both the axial
and cross-stream velocities. It is important to note that the extent of asymmetry, which
can be represented by (Γmax − Γmin), is much larger for the high-Pes limit solution as
compared with the low-Pes limit solution. This is the reason for the larger magnitude
in cross-stream velocity of the droplet for the high-Pes limit. In the presence of a
non-uniform temperature distribution, this asymmetry increases (refer to figure 11b),
which leads to greater droplet velocities.

The effect of decreasing temperature in the direction of Poiseuille flow (i.e. ζ =−1)
is shown in figure 11(c) for MaT = 0.01 and in figure 11(d) for MaT = 0.5. For MaT =

0.01, Γ (θ, ϕ) is maximum near the northwest pole and minimum near the northeast
pole, which is very similar to the case of MaT =0. This kind of distribution of Γ (θ, ϕ)
leads to motion of the droplet towards the channel centreline. However, for MaT = 0.5
we obtain that Γ (θ, ϕ) is maximum near the southeast pole and minimum near the
southwest pole, which results in cross-stream motion of the droplet away from the
channel centreline.
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FIGURE 11. (Colour online) Surface plot showing the surfactant distribution for (a) MaT =

0, (b) ζ = 1 and MaT = 0.5, (c) ζ =−1 and MaT = 0.01, (d) ζ =−1 and MaT = 0.5. Other
parameters have the following values: MaΓ = 10, λ= 0.1, δ = 0.1, e= 1 and R= 5.

4.2. Buoyant droplet (Bo 6= 0)
4.2.1. Effect of buoyancy in an isothermal flow (MaT = 0)

We first consider the case of a surfactant-laden buoyant droplet suspended in an
isothermal pressure-driven flow in the limiting case of low surface Péclet number. The
droplet velocity in such a scenario is given by

U =


2
3

(
ξBo
Ca

)(
1+ λ
3λ+ 2

)
+

{
1−

( e
R

)2
−

(
5λ

3λ+ 2

)
2

5R2

}
−

MaΓ
(3λ+ 2)2

[
2ξ
9

Bo
Ca
+

2
3R2

]
Pes +

2Ma2
Γ

3(3λ+ 2)3

[
ξBo
3Ca
+

2
R2

]
Pe2

s

 ez

−

[
MaΓ e

5(3λ+ 2)2(λ+ 1)R2

[
(5λ+ 3)

ξBo
9Ca
+

70λ2
+ 109λ+ 40

21(λ+ 1)

]
Pe2

s

]
ex

+O(Pe3
s ). (4.6)

Towards discussing the effect of buoyancy force on the cross-stream migration velocity
of the surfactant-laden droplet in the low-Pes limit, we first plot the variation of the
cross-stream migration velocity with λ for different values of Bo/Ca for the special
cases of ξ = 1 and ξ =−1. We first analyse the former case where ρi>ρe, that is the
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FIGURE 12. (Colour online) Variation of the cross-stream migration velocity with λ for
different values of Bo/Ca (0.1, 0.5, 1, 2) in an isothermal flow field (MaT = 0). In (a) the
buoyancy force acts in the direction of imposed flow (ξ = 1), while in (b) the buoyancy
force acts opposite to the direction of imposed flow (ξ =−1). Other parameters have the
following values: MaΓ = 5, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

buoyancy force acts in the same direction as the imposed Poiseuille flow. It is seen
from figure 12(a) that an increase in the buoyancy force, and hence a rise in Bo/Ca,
results in an increase in the cross-stream migration velocity. This effect of buoyancy
force on the cross-stream migration of the droplet is seen to be higher for the case of
a low-viscosity droplet. The inset in figure 12(a) shows the variation of cross-stream
droplet velocity for the case of a neutrally buoyant droplet (Bo/Ca= 0). The same
result was reported by Pak et al. (2014). On comparison with the inset, it is seen
that the presence of a buoyancy force in the axial direction increases the cross-stream
migration velocity significantly.

A physical explanation for the variation of the cross-stream migration velocity of
the droplet with buoyancy force can be provided if we look closely at the surface
plot displaying the surfactant distribution along the droplet surface, as shown in
figure 13. Since asymmetry in the surfactant concentration across the axial plane
is the source for cross-stream migration of the droplet, we first study the effect of
buoyancy force on the variation of the surfactant distribution. It is to be noted that
the fluid flow along the surface of an eccentrically placed droplet is affected equally
due to the presence of buoyancy force, unlike the case of an imposed Poiseuille
flow explained before. However, the buoyancy force enhances the asymmetry in the
surfactant distribution already induced by the imposed pressure-driven flow on the
eccentrically located droplet. This is because the presence of the buoyancy force in
the direction of the imposed flow increases the net hydrodynamic force acting on the
droplet and increases the fluid flow velocity along the droplet surface. As can be seen
on comparison between figures 8(a) and 13, the presence of the buoyancy force in
the axial direction increases the gradient in the surfactant concentration, |Γmax − Γmin|,
with the highest surfactant concentration in the northwestern region and the minimum
in the northeastern region. This results in an increase in the Marangoni stress which
drives the droplet towards the centreline with a higher migration velocity.

We next consider the special case where the buoyancy force acts in a direction
opposite to the imposed flow, that is ρi < ρe or ξ = −1. Figure 12(b) shows the
variation of the cross-stream migration velocity with λ, for different values of Bo/Ca.
Similar to figure 5, any increase in the buoyancy force (or Bo/Ca) initially results in
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FIGURE 13. (Colour online) Surface plot showing the surfactant distribution over the
surface of the droplet suspended in an isothermal flow (MaT = 0). The buoyancy force
increases in the direction of the imposed flow (ξ = 1). Other important parameters
involved are Pes = 0.1, MaΓ = 5, MaT = 0, δ= 0.1, R= 5, e= 1, Bo/Ca= 1 and λ= 0.1.

a decrease in the cross-stream migration velocity. This goes on until a critical point
is reached corresponding to which there is no cross-stream migration of the droplet.
The critical value of Bo/Ca is obtained from (4.6) as(

Bo
Ca

)∗
x

=
3
7

{
70λ2
+ 109λ+ 40

(λ+ 1)(5λ+ 3)

}
, (4.7)

which signifies the critical buoyancy force acting on the droplet. From figure 12(b) it
can be seen that the droplet migrates towards the centreline for a low value of Bo/Ca
(lower than its critical value). The magnitude of the cross-stream migration velocity
of the droplet reduces with an increase in the value of Bo/Ca until its critical value
(Bo/Ca)∗ is reached. Beyond the critical value, the droplet migrates away from the
centreline and its cross-stream velocity keeps on increasing with an increase in the
buoyancy force.

Again, a proper physical explanation can be provided if we look into the surface
plots showing the surfactant distribution along the droplet surface. In the present
situation, the buoyancy force and the hydrodynamic force due to the imposed
Poiseuille flow oppose each other. Depending on which of the two dominates, the
droplet may migrate towards the centreline of flow or away from it. Initially, for
the case of low buoyancy force, the Poiseuille flow dominates. However, the net
hydrodynamic force reduces with an increase in the buoyancy force, which in turn
decreases the flow at the interface. This results in reduced asymmetry in the surfactant
distribution across the axial plane of the droplet, and hence a lower Marangoni stress
responsible for the cross-stream migration of the droplet. This explains the decrease in
the cross-stream migration velocity of the droplet. Figure 14(a) shows the surfactant
distribution along the droplet surface for the special case when Bo/Ca < (Bo/Ca)∗.
This distribution has a similar resemblance to that obtained in figure 8(a) in the
absence of any buoyancy force. This confirms that the droplet migrates towards the
centreline; however, the magnitude of |Γmax − Γmin| is lower for the present case,
which proves that the Marangoni stress is lower and hence the associated decrease
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FIGURE 14. (Colour online) Surface plot showing the surfactant distribution over the
surface of the droplet suspended in an isothermal flow (MaT = 0). The buoyancy force
increases opposite to the direction of the imposed flow (ξ = −1). (a) is plotted for
Bo/Ca = 0.1, while (b) is plotted for Bo/Ca = 1. Other important parameters involved
are Pes = 0.1, MaΓ = 5, MaΓ = 0, δ = 0.1, R= 5, e= 1 and λ= 0.1.

in cross-stream migration velocity. For the other case of Bo/Ca > (Bo/Ca)∗, the
buoyancy force dominates, and hence the fluid flow direction on the droplet surface
changes, which alters the surfactant distribution altogether, as can be seen from
figure 14(b). The surfactant is seen to have a higher concentration in the southeast
region of the droplet surface while the lowest concentration is in the southwest region
of the droplet. This distribution of surfactants results in lateral migration of the droplet
away from the centreline of flow. On comparison of figures 8(a) and 14(b), it can be
said that the presence of the buoyancy force increases the magnitude of |Γmax − Γmin|

(surfactant gradient along the surface) provided that (Bo/Ca) > (Bo/Ca)∗, which
further increases the cross-stream migration velocity of the droplet.

Now, we consider the high-Pes limit. This limiting case considers surface-convection-
dominated surfactant transport along the droplet surface. The droplet migration
velocity in this limit is given by

U=
[{

2ξBo
9Ca

+ 1−
2

3R2
−

( e
R

)2
}

ez −Ma−1
Γ

e
R2

{
ξBo
9Ca
+

2
3R2

}
ex

]
+O(Ma−2

Γ ). (4.8)

As can be seen from the above expression, both the axial as well as the cross-stream
migration velocities of the droplet under this limit are independent of the viscosity
ratio. The axial velocity is directly proportional to the buoyancy force and any
increase in Bo/Ca results in an increase of the same. For the case of ξ = 1, the
droplet migrates in the direction of the imposed flow. Similar to the low-Pes limit,
the direction of axial migration changes depending on the magnitude of Bo/Ca for
the special case of ξ =−1. The critical value of Bo/Ca for this limit is given by(

Bo
Ca

)∗
z

=
9
2

{
1−

2
3R2
−

( e
R

)2
}
. (4.9)

The expression for the cross-stream migration, as seen from (4.8), is dependent
solely on the buoyancy force. For the case of ξ = 1, the increase in buoyancy force
increases the cross-stream migration velocity of the droplet while it migrates towards
the centreline of flow. For the other case, ξ =−1, depending on the value of Bo/Ca
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the droplet may migrate towards or away from the centreline. The corresponding
critical value of Bo/Ca is given by(

Bo
Ca

)∗
x

=
6
R2
. (4.10)

4.2.2. Effect of buoyancy force in non-isothermal flow (MaT 6= 0): low-Pes limit
The velocity of a buoyant droplet (gravity acting in the direction of Poiseuille flow)

for the low-Pes limit under the combined presence of imposed Poiseuille flow and a
linearly varying temperature field is given by

U =



2
3

(
ξBo
Ca

)(
1+ λ
3λ+ 2

)
+

{
1−

( e
R

)2
−

(
5λ

3λ+ 2

)
2

5R2

}
+

2ζMaT

(3λ+ 2) (δ + 2)

−
MaΓ

(3λ+ 2)2

[
2ξ
9

Bo
Ca
+

{
MaTζ

(δ + 2)
+

2
3R2

}]
Pes

+
2Ma2

Γ

3(3λ+ 2)3

[
ξBo
3Ca
+

2
R2
+

3MaTζ

(2+ δ)

]
Pe2

s


ez

+

[
−

MaΓ e
5(3λ+ 2)2(λ+ 1)R2

[
(5λ+ 3)

{
ξBo
9Ca
+

MaTζ

(2+ δ)

}
+

70λ2
+ 109λ+ 40

21(λ+ 1)

]
Pe2

s

]
ex +O(Pe3

s ). (4.11)

In contrast to the neutrally buoyant droplet, an interesting point to note from (4.11)
is that the cross-stream migration velocity is dependent on the buoyancy force even
though gravity acts in the axial direction. In the absence of any imposed flow, the
migration velocity for a clean buoyant droplet in a linearly varying temperature field
is simply given by substituting MaΓ = 0 in (4.11). The resulting expression for the
droplet velocity in its dimensional form is given by

ŪYGB =

[
−

2
3
(λ+ 1)(ρe − ρi)ga2

µe(3λ+ 2)
+

2β|G|a
µe(δ + 2)(3λ+ 2)

]
ez, (4.12)

which is the same as that obtained by Young et al. (1959).
We now analyse the effect of thermal Marangoni stress on droplet migration in

the presence of a buoyancy force. As our primary objective is the analysis of the
cross-stream migration velocity of the droplet, we do not show any variation of the
axial migration velocity. Since the buoyancy force is independent of the thermal
Marangoni stress, the droplet migration velocity is additive for the following two
cases: (1) migration of a neutrally buoyant surfactant-laden droplet in a non-isothermal
Poiseuille flow and (2) migration of a surfactant-laden buoyant droplet in an
isothermal Poiseuille flow. Both of these cases have been discussed in detail. So
in this section we investigate the contribution of both the buoyancy force as well as
the thermal Marangoni stress on the cross-stream migration of the droplet. Towards
this, we analyse four possible cases, namely (i) ξ = 1, ζ = 1: this signifies the case
where both the buoyancy force as well as thermally induced Marangoni stresses act
in the direction of the imposed flow. That is, we have a denser droplet phase and
the applied temperature field linearly increases in the direction of the bulk fluid flow.
(ii) ξ = 1, ζ = −1: this indicates the situation where the buoyancy force remains
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FIGURE 15. (Colour online) Variation of the cross-stream migration velocity with λ for
different values of Bo/Ca (0.5, 1, 2) when the applied temperature gradient is along
the positive z-direction. In (a) we have MaT = 0.1, while in (b) the applied temperature
gradient is increased such that MaT = 0.5. Other parameters have the following values:
MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

unchanged while the applied temperature field decreases linearly in the direction of
the imposed flow. (iii) ξ = −1, ζ = 1: compared to the first case, this involves a
denser carrier phase, and hence the buoyancy force acts opposite to the direction
of the imposed flow. The applied temperature field is kept the same. (iv) ξ = −1,
ζ =−1: this is the situation which is completely opposite to that of the first case.

We first look into case (i). The variation of the cross-stream migration velocity with
λ for different values of Bo/Ca is shown in figure 15(a). The same plot is repeated
for a higher value of MaT(= 0.5) to show the effect of the thermal Marangoni stress.
For the present case, it can be seen from figure 15(a,b) that as Bo/Ca increases, the
magnitude of the cross-stream migration velocity of the droplet also increases. The
parameter Bo/Ca can be varied between 0.1 and 2 by choosing different varieties of
silicone oil, resulting in different density differences, and hence different values of Bo.
On comparison of figures 15(a) and 4, it can be seen that presence of buoyancy force
in the system increases the cross-stream velocity of the droplet. This is because the
buoyancy force acts in the direction of the applied temperature gradient and hence
induces a hydrodynamic flow with an additive effect to the thermal Marangoni stress,
which propels the droplet towards the centreline of flow. Comparison of figures 15(a)
and 15(b) indicates that an increase in MaT in the presence of the buoyancy effect
further enhances the cross-stream migration velocity of the droplet.

We next investigate the case (ii) where we have a negative temperature gradient
(ζ =−1). It can be seen from figure 16 that buoyancy, although acting in the axial
direction, plays a significant role in altering the magnitude as well as the direction
of the cross-stream migration velocity. Similar to the case of the neutrally buoyant
droplet, a critical thermal Marangoni number can be defined for the present scenario
which depends on Bo and is given by

Ma∗T,x = (δ + 2)
{

Bo
9Ca
+
(70λ2

+ 109λ+ 40)
21(5λ+ 3)(λ+ 1)R2

}
. (4.13)

From the above equation it is obvious that an increase in Bo results in an increase
in the critical Marangoni number. In figure 16 we consider a constant value for
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FIGURE 16. (Colour online) Variation of the cross-stream migration velocity with λ for
different values of Bo/Ca (0.1, 0.5, 1, 2) when ξ = 1, ζ =−1. Other parameters have the
following values: MaΓ = 1, MaT = 0.2, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

the applied temperature gradient (e.g. MaT = 0.2) and gradually increase Bo/Ca
by choosing different varieties of silicone oil resulting in larger density differences.
Initially for a low value of Bo/Ca, the thermal Marangoni stress dominates over the
combined effect of imposed flow and the buoyancy force, which forces the droplet
to migrate away from the centreline of flow. With an increase in the buoyancy
force on the droplet relative to the pressure and viscous forces (Bo/Ca) and a
corresponding rise in Ma∗T,x, the magnitude of the cross-stream migration of the droplet
gradually reduces until the relation MaT > Ma∗T,x holds. Finally, when MaT = Ma∗T,x,
the cross-stream motion of the droplet stops. A further increase in the buoyancy
force beyond this critical point results in MaT <Ma∗T,x. This indicates the fact that the
buoyancy force along with the hydrodynamic force overcome the effect of the thermal
Marangoni stress. Any further increase in Bo/Ca increases the net force acting on the
droplet, and hence the asymmetry in the surfactant distribution. Thus, the cross-stream
migration velocity of the droplet goes on increasing, which now migrates towards
the flow centreline. It can be seen from both figures 15 and 16 that buoyancy
does not have a sufficient effect on the cross-stream velocity for a highly viscous
droplet (λ> 10). This is due to the fact that at high values of λ, the droplet behaves
as a particle, which renders any non-uniform distribution of surfactants ineffective
on variation of the surface tension. Hence the coupling that existed between the
buoyancy and Marangoni stress breaks, resulting in no cross-stream motion of the
droplet, irrespective of the magnitude of the buoyancy force. Thus, buoyancy at this
regime of high λ only results in a higher axial migration velocity.

We next analyse the special case (iii) where ξ =−1 and ζ = 1. For this particular
scenario, the buoyancy force opposes the hydrodynamic force due to the combined
effect of the temperature gradient and the imposed flow. The critical thermal
Marangoni number is thus given by

Ma∗T,x = (2+ δ)
{

Bo
9Ca
−

70λ2
+ 109λ+ 40

21(λ+ 1)(5λ+ 3)

}
. (4.14)
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FIGURE 17. (Colour online) Variation of cross-stream migration velocity with λ for
different values of Bo/Ca (0.1, 0.5, 1, 2) when the buoyancy force acts along the negative
z-direction (ξ =−1). In (a) MaT = 0.2, ζ = 1, while in (b) MaT = 0.01, ζ = −1. Other
parameters have the following values: MaΓ = 1, Pes = 0.1, δ = 0.1, e= 1 and R= 5.

As can be seen from the above expression, a larger buoyancy force results in an
increase in the critical Marangoni number. To understand the role of Ma∗T,x, we plot
the cross-stream migration velocity with λ for different values of Bo/Ca, which is
displayed in figure 17(a). It can be seen from the figure that for a low value of
Bo/Ca, the droplet migrates towards the centreline of flow until MaT > Ma∗T,x. This
is due to the nature of the surfactant distribution, which is similar to figure 8(c).
On increasing Bo/Ca, the value of Ma∗T,x also increases, and at the same time the
magnitude of the cross-stream migration velocity reduces due to a decrease in the
surfactant concentration gradient |Γmax − Γmin|. On further increasing Bo/Ca, the
critical point is finally attained where MaT = Ma∗T,x and there is no cross-stream
migration. Increasing the buoyancy force beyond this point (MaT <Ma∗T,x) results in
an increase in the cross-stream migration velocity of the droplet, which now migrates
away from the flow centreline. Such a variation of the cross-stream migration velocity
is shown in figure 17(a).

We now discuss the final situation where both the buoyancy as well as the thermal
Marangoni stress acts in the opposite direction to that of the imposed flow (case (iv)).
Thus, depending on whether the hydrodynamic force due to imposed flow dominates
over the other effects or not, the fluid flow, and hence the surfactant, redistributes itself
along the surface of the droplet. The asymmetry of the surfactant distribution about
the axial plane decides the magnitude as well as the direction of migration of the
droplet in the cross-stream direction. In figure 17(b) we have shown the variation of
the cross-stream migration velocity of the droplet with λ for different values of Bo/Ca.
It is seen from the figure that for low values of both MaT (= 0.01) and Bo/Ca (= 0.1),
the hydrodynamics force due to the imposed flow dominates, and hence the droplet
migrates towards the centreline of flow. Increasing Bo/Ca results in a further decrease
in the cross-stream migration velocity until MaT <Ma∗T,x, where the critical Marangoni
number for the present case is defined by

Ma∗T,x = (2+ δ)
{
−

Bo
9Ca
+

70λ2
+ 109λ+ 40

21(λ+ 1)(5λ+ 3)

}
. (4.15)

As seen from the above equation, the magnitude of Ma∗T,x decreases with an increase
in the buoyancy force. This critical point of no lateral migration decides the direction
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of migration of the droplet. For the case when MaT > Ma∗T,x, the droplet starts
migrating away from the centreline of flow and the magnitude of the cross-stream
migration velocity increases with increasing Bo/Ca. This variation of the cross-stream
migration velocity can be seen in figure 17(b).

4.2.3. Effect of buoyancy force in non-isothermal flow (MaT 6= 0): high-Pes limit
In this limiting case of surface-convection-dominated surfactant transport, we have

the velocity of a buoyant droplet as

U =
[{

2ξBo
9Ca

+ 1−
2

3R2
−

( e
R

)2
}

ez +Ma−1
Γ

e
R2

{
−
ξBo
9Ca
−

(
2

3R2
+

MaTζ

δ + 2

)}
ex

]
+O(Ma−2

Γ ). (4.16)

It can be seen from the above equation that both the axial as well as the cross-stream
migration velocity are dependent on the buoyancy force acting on the droplet. The
axial velocity, which is independent of any Marangoni stress (surfactant or thermally
induced), is seen to increase with a higher droplet phase density relative to the carrier
phase. To analyse the variation of the cross-stream migration velocity, we first analyse
case (i) and case (ii), as was discussed in the previous section. We thus plot the
cross-stream migration velocity against the thermal conductivity ratio of either of the
phases for different values of Bo/Ca (figure 18) for ξ = 1. Figure 18(a) considers the
case in which the temperature increases in the direction of the imposed pressure-driven
flow (ζ = 1), while figure 18(b) shows the variation for the particular case of ζ =−1.
For the case of ζ = 1, the droplet migrates towards the centreline of flow. The cross-
stream migration velocity increases with an increase in the buoyancy force (Bo/Ca).
The presence of the buoyancy force enhances the net Marangoni stress propelling
the droplet in the transverse direction by increasing the asymmetry in the distribution
of the interfacial tension across the axial plane of the droplet. Due to the enhanced
surface convection, the magnitude of the migration velocity is seen to be significantly
higher in comparison to the case of low Péclet number. The cross-stream migration
velocity is seen to be uniformly affected by the buoyancy force over all ranges of δ.

To investigate the situation for ζ = −1, we first evaluate the critical thermal
Marangoni number, which is given by

Ma∗T,x =
[

Bo
9Ca
+

2
3R2

]
(δ + 2). (4.17)

It can be seen from the above expression that the buoyancy has a positive effect on the
critical Marangoni number. Hence a similar behaviour for variation of the cross-stream
migration velocity as that for the limiting case of low Pes for case (i) is expected.
As seen from figure 18(b), the cross-stream velocity of the droplet decreases with an
increase in Bo/Ca. Increasing Bo/Ca at the same time increases the value of Ma∗T,x.
Thus, as long as MaT >Ma∗T,x, the droplet migrates away from the centreline of the
flow. However, for MaT < Ma∗T,x, the droplet starts migrating towards the centreline
with a cross-stream velocity that increases with an increase in the buoyancy force
(Bo/Ca). The nature of variation of the cross-stream migration velocity as compared
to that of the limiting case of low Pes is the same, with the only difference in the
magnitude of the velocity, which seems to be much higher for the high-Pes limit.

Considering the case when the buoyancy force acts in the direction opposite to
that of the imposed flow (ξ =−1), a similar variation of the cross-stream migration
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FIGURE 18. (Colour online) Variation of the cross-stream migration velocity with δ for
different values of Bo/Ca (0.5, 1, 1.5) and ξ = 1. The plot is shown for two cases: (a)
the temperature increases in the direction of imposed flow with MaT = 0.1, (b) the applied
temperature gradient is in a direction opposite to that of the imposed flow with MaT = 0.3.
Other parameters have the following values: MaΓ = 10, e= 1 and R= 5.
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FIGURE 19. (Colour online) Variation of the cross-stream migration velocity with δ for
different values of Bo/Ca and ξ =−1 for two different cases: (a) the temperature increases
in the direction of imposed flow with MaT = 0.2, (b) the applied temperature gradient is
in a direction opposite to that of the imposed flow with MaT = 0.01. Other parameters
have the following values: MaΓ = 10, e= 1 and R= 5.

velocity as in the low-Pes limit is seen. Figure 19(a,b) show the variation of Ux with
respect to δ for different values of Bo/Ca. The general expression for Ma∗T,x is given
by

Ma∗T,x =−
(δ + 2)
ζ

(
ξBo
9Ca
+

2
3R2

)
. (4.18)

With respect to the above expression of Ma∗T,x, the direction as well as change in the
magnitude of the cross-stream migration velocity of the droplet for both the cases (ζ =
1, ζ =−1) follow a similar trend as in the case of low-Pes limit. The magnitude of
the migration velocity, however, is higher for the present case due to convection-driven
surfactant transport that causes a higher non-uniformity in the surfactant distribution.
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5. Remarks
The combined effect of temperature and surfactant cannot be obtained by a simple

superposition of two existing results (which consider the effects of temperature and
surfactant separately). We have derived mathematical relations and shown that the
profound effect of temperature field on the cross-stream velocity of the droplet cannot
be obtained by simple superposition. The main reason why the linear combination
does not work is the nonlinear couplings between the flow field (generated due
to imposed Poiseuille flow and thermocapillary-induced Marangoni stress) and the
surfactant transport. As per our assumption, the temperature field does not affect
the surfactant distribution. This one-way coupling between temperature field and
surfactant concentration gives rise to the dominating effect of the temperature field
on the cross-stream velocity of the droplet. A simple change in the direction of
the applied temperature field results in a change of direction of lateral migration of
the droplet. Considering the case of a droplet with a higher density in comparison
to the suspending fluid, the droplet always migrates towards the flow centreline if
a temperature gradient is applied in the direction of the imposed flow. However,
considering the case when the droplet phase is less dense in comparison to the
carrier phase, the former may migrate away from the centreline of flow even though a
temperature gradient is applied in the direction of the imposed flow. For a sufficiently
low density difference between either phases, the droplet moves either towards or
away from the flow centreline, depending on the direction of temperature gradient.

6. Conclusions
In the present paper, we have analysed droplet motion in an unbounded Poiseuille

flow under the combined influence of thermocapillary-induced and surfactant-induced
Marangoni stresses. However, it has to be noted that this does not mean a linear
superposition of the two effects (that is surfactant-induced and thermocapillary-
induced), as the temperature gradient, although applied axially, is found to have a
significant effect on the cross-stream migration of the drop. In the absence of fluid
inertia, thermal convection and shape deformation, we have obtained asymptotic
solutions for the temperature field, surfactant concentration and flow field in
the following two limiting conditions: (i) diffusion-dominated surfactant transport
considering Pes � 1, and (ii) convection-dominated surfactant transport considering
Pes→∞. Analytical expressions for the velocity of a force-free droplet are obtained
for both the limits. After studying the effects of different parameters, the following
conclusions can be made.

(i) For the case of a neutrally buoyant droplet, low-Pes analysis shows that when the
imposed temperature field increases in the direction of the Poiseuille flow, a surfactant-
laden droplet has both axial (along the direction of the Poiseuille flow) and cross-
stream (towards the flow centreline) velocity components. The magnitude of both the
components increases with increasing MaT .

(ii) For a neutrally buoyant droplet, low-Pes analysis shows that when the imposed
temperature field decreases in the direction of th Poiseuille flow, a surfactant-laden
droplet has both axial (in the direction of the Poiseuille flow or opposite to it) and
cross-stream (towards or away from the flow centreline) velocity components. There
is a critical value of the thermal Marangoni number Ma∗T,z (and Ma∗T,x) for which the
axial (and cross-stream) velocity vanishes. In sharp contrast to the case of isothermal
flow, in which a surfactant-laden droplet always moves towards the flow centreline, a
surfactant-laden droplet moves away from the flow centreline for MaT > Ma∗T,x in a
non-isothermal flow.
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(iii) For a neutrally buoyant droplet, high-Pes analysis shows that the axial velocity
of the droplet is independent of thermal effects. The axial velocity is the same
as the velocity of a spherical solid particle. However, the cross-stream motion is
strongly dominated by the thermal conductivity ratio (δ) and MaT . When the imposed
temperature field increases in the direction of the Poiseuille flow, the magnitude of
the cross-stream velocity (towards the flow centreline) increases with MaT .

(iv) For a neutrally buoyant droplet, high-Pes analysis also shows that when the
imposed temperature field decreases in the direction of the Poiseuille flow, a surfactant-
laden droplet either moves towards the flow centreline (for MaT < Ma∗T,x) or moves
away from the flow centreline (for MaT >Ma∗T,x).

(v) Gravity, in the direction of imposed Poiseuille flow, significantly affects the
magnitude and direction of the cross-stream migration velocity. For a buoyant droplet
having a larger density than the suspending medium, the cross-stream migration
characteristics are very similar to those of a neutrally buoyant droplet. Interestingly,
when the droplet is less dense than the suspending medium, the droplet can move
away from the flow centreline even when the temperature field is increasing in the
direction of the Poiseuille flow. For the case of a buoyant droplet, the direction of
lateral migration of the droplet can be predicted in a similar manner with respect to
the value of Ma∗T,x for both the low- and high-Pes limits.
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Appendix A. Velocity and pressure fields in the low Pes limit
The leading-order velocity and pressure fields are obtained as

u(0)i =

 ∇× (rχ (0)1 )+∇(Φ
(0)
1 +Φ

(0)
2 +Φ

(0)
3 )

+
r2

λ
∇

(
1
5

p(0)1 +
5

42
p(0)2 +

1
12

p(0)3

)
−

r
λ

(
1
10

p(0)1 +
2

21
p(0)2 +

1
12

p(0)3

) ,
p(0)i = p(0)1 + p(0)2 + p(0)3 ,

u(0)e = (V∞ −U(0))+

 ∇(Φ
(0)
−2 +Φ

(0)
−3 +Φ

(0)
−4)

−r2∇

(
−

1
2

p(0)−2 +
1
30

p(0)−4

)
+ r
(

2p(0)−2 +
1
2

p(0)−3 +
4

15
p(0)−4

) ,
p(0)e = p∞ + (p

(0)
−2 + p(0)−3 + p(0)−4).


(A 1)

The growing spherical solid harmonics present in (A 1) are obtained as

p(0)1 = λr{A
(0)
1,0P1,0(cos θ)+ A(0)1,1 cos ϕP1,1(cos θ)+ Â(0)1,1 sin ϕP1,1(cos θ)},

p(0)2 = λr2A(0)2,1 cos ϕP2,1(cos θ), p(0)3 = λr3A(0)3,0P3,0(cos θ),

Φ
(0)
1 = r{B(0)1,0P1,0(cos θ)+ B(0)1,1 cos ϕP1,1(cos θ)+ B̂(0)1,1 sin ϕP1,1(cos θ)},

Φ
(0)
2 = r2B(0)2,1 cos ϕP2,1(cos θ), Φ

(0)
3 = r3B(0)3,0P3,0(cos θ),

χ
(0)
1 = rĈ(0)

1,1 sin ϕP1,1(cos θ),


(A 2)
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where the unknown coefficients are obtained as

A(0)1,0 =−
5(2MaTT (0)1,0 − 15α(0)1,0 − 3β(0)1,0)

3λ+ 3
, B(0)1,0 =

2MaTT (0)1,0 − 15α(0)1,0 − 3β(0)1,0

2(3λ+ 3)
,

A(0)2,1 =
105β(0)2,1

2(5λ+ 5)
, B(0)2,1 =−

15β(0)2,1

4(5λ+ 5)
, A(0)3,0 =

15β(0)3,0

7(λ+ 1)
, B(0)3,0 =−

5β(0)3,0

6(λ+ 1)
,

A(0)1,1 =
5β(0)1,1

(λ+ 1)
, B(0)1,1 =−

β
(0)
1,1

2(λ+ 1)
, Â(0)1,1 =

5
(λ+ 1)

β̂
(0)
1,1,

B̂(0)1,1 =−
β̂
(0)
1,1

2(λ+ 1)
, Ĉ(0)

1,1 =
1
2
γ̂
(0)
1,1 ,


(A 3)

with

T (0)1,0 =
3ζ

(δ + 2)
, α

(0)
1,0 =−

2
5R2

, β
(0)
1,0 = 1−

( e
R

)2
−U(0)

z ,

β
(0)
1,1 =−U(0)

x , β̂
(0)
1,1 =−U(0)

y , β
(0)
2,1 =−

2
3

e
R2
,

β
(0)
3,0 =

2
5R2

, γ̂
(0)
1,1 =

2e
R2
.


(A 4)

The decaying spherical solid harmonics present in (A 1) are obtained as

p(0)−2 = r−2
{A(0)−2,0P1,0(cos θ)+ A(0)−2,1 cos ϕP1,1(cos θ)+ Â(0)−2,1 sin ϕP1,1(cos θ)},

p(0)−3 = r−3A(0)−3,1 cos ϕP2,1(cos θ), p(0)−4 = r−4A(0)−4,0P3,0(cos θ),

Φ
(0)
−2 = r−2

{B(0)−2,0P1,0(cos θ)+ B(0)−2,1 cos ϕP1,1(cos θ)+ B̂(0)−2,1 sin ϕP1,1(cos θ)},

Φ
(0)
−3 = r−3B(0)−3,1 cos ϕP2,1(cos θ), Φ

(0)
−4 = r−4B(0)−4,0P3,0(cos θ),


(A 5)

where the unknown coefficients are obtained as

A(0)−2,0 =−
2MaTT (0)1,0 + 15λα(0)1,0 + 9λβ(0)1,0 + 6β(0)1,0

6(λ+ 1)
, A(0)−2,1 =−

(2+ 3λ)
2(1+ λ)

β
(0)
1,1,

Â(0)−2,1 =−
(2+ 3λ)
2(1+ λ)

β̂
(0)
1,1, B(0)−2,0 =−

2MaTT (0)1,0 + 9λα(0)1,0 − 6α(0)1,0 + 3λβ(0)1,0

12(λ+ 1)
,

B̂(0)−2,1 =−
λ

4(λ+ 1)
β̂
(0)
1,1, B(0)−2,1 =−

λ

4(λ+ 1)
β
(0)
1,1,

A(0)−3,1 =−
5λβ(0)2,1 + 2β(0)2,1

(λ+ 1)
, B(0)−3,1 =

−3λβ(0)2,1

6(λ+ 1)
,

A(0)−4,0 =−
35λβ(0)3,0 + 10β(0)3,0

4(λ+ 1)
, B(0)−4,0 =

−5λβ(0)3,0

8(λ+ 1)
.



(A 6)

The far-field pressure field is of the form

p∞ = 10rα(0)1,0P1,0(cos θ)+ 7r2α
(0)
2,1 cos ϕP2,1(cos θ)+ 6r3α

(0)
3,0P3,0(cos θ). (A 7)
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The O(Pes) velocity and pressure fields are obtained as

u(Pes)
i =


∇(Φ

(Pes)
1 +Φ

(Pes)
2 +Φ

(Pes)
3 )

+
r2

λ
∇

(
p(Pes)

1

5
+

5p(Pes)
2

42
+

p(Pes)
3

12

)
−

r
λ

(
p(Pes)

1

10
+

2p(Pes)
2

21
+

p(Pes)
3

12

),
p(Pes)

i = p(Pes)
1 + p(Pes)

2 + p(Pes)
3 ,

u(Pes)
e =−U(Pes) +

∞∑
n=1


∇(Φ

(Pes)
−2 +Φ

(Pes)
−3 +Φ

(Pes)
−4 )

−r2∇

(
−

p(Pes)
−2

2
+

p(Pes)
−4

30

)
+ r

(
2p(Pes)
−2 +

p(Pes)
−3

2
+

4p(Pes)
−4

15

),
p(Pes)

e = p(Pes)
−2 + p(Pes)

−3 + p(Pes)
−4 .


(A 8)

The growing spherical solid harmonics present in (A 8) are obtained as

p(Pes)
1 = λr{A(Pes)

1,0 P1,0(cos θ)+ A(Pes)
1,1 cos ϕP1,1(cos θ)+ Â(Pes)

1,1 sin ϕP1,1(cos θ)},

p(Pes)
2 = λr2A(Pes)

2,1 cos ϕP2,1(cos θ), p(Pes)
3 = λr3A(Pes)

3,0 P3,0(cos θ),

Φ
(Pes)
1 = r{B(Pes)

1,0 P1,0(cos θ)+ B(Pes)
1,1 cos ϕP1,1(cos θ)+ B̂(Pes)

1,1 sin ϕP1,1(cos θ)},

Φ
(Pes)
2 = r2B(Pes)

2,1 cos ϕP2,1(cos θ), Φ
(Pes)
3 = r3B(Pes)

3,0 P3,0(cos θ),


(A 9)

where the unknown coefficients are obtained as

A(Pes)
1,0 =−

5{2MaΓΓ
(Pes)

1,0 − 3β(Pes)
1,0 }

3(λ+ 1)
, B(Pes)

1,0 =
2MaΓΓ

(Pes)
1,0 − 3β(Pes)

1,0

2(3λ+ 3)
,

A(Pes)
1,1 =

5β(Pes)
1,1

(λ+ 1)
, B(Pes)

1,1 =−
β
(Pes)
1,1

2 (λ+ 1)
, Â(Pes)

1,1 =
5

(λ+ 1)
β̂
(Pes)
1,1 ,

B̂(Pes)
1,1 =−

β̂
(Pes)
1,1

2(λ+ 1)
, A(Pes)

2,1 =−
21MaΓΓ

(Pes)
2,1

5(λ+ 1)
, B(Pes)

2,1 =
3MaΓΓ

(Pes)
2,1

10(λ+ 1)
,

A(Pes)
3,0 =−

36MaΓΓ
(Pes)

3,0

7(λ+ 1)
, B(Pes)

3,0 =
2MaΓΓ

(Pes)
3,0

7(λ+ 1)
,


(A 10)

with β(Pes)
1,0 =−U(Pes)

z , β(Pes)
1,1 =−U(Pes)

x and β̂(Pes)
1,1 =−U(Pes)

y .
The decaying spherical solid harmonics present in (A 8) are obtained as

p(Pes)
−2 = r−2

{A(Pes)
−2,0P1,0(cos θ)+ A(Pes)

−2,1 cos ϕP1,1(cos θ)+ Â(Pes)
−2,1 sin ϕP1,1(cos θ)},

p(Pes)
−3 = r−3A(Pes)

−3,1 cos ϕP2,1(cos θ), p(Pes)
−4 = r−4A(Pes)

−4,0P3,0(cos θ),

Φ
(Pes)
−2 = r−2

{B(Pes)
−2,0P1,0(cos θ)+ B(Pes)

−2,1 cos ϕP1,1(cos θ)+ B̂(Pes)
−2,1 sin ϕP1,1(cos θ)},

Φ
(0)
−3 = r−3B(Pes)

−3,1 cos ϕP2,1(cos θ), Φ
(Pes)
−4 = r−4B(Pes)

−4,0P3,0(cos θ),


(A 11)

where the unknown coefficients are obtained as
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A(Pes)
−2,0 =−

9λβ(Pes)
1,0 + 2MaΓΓ

(Pes)
1,0 + 6β(Pes)

1,0

6(λ+ 1)
, A(Pes)

−2,1 =−
(2+ 3λ)
2(1+ λ)

β
(Pes)
1,1 ,

Â(0)−2,1 =−
(2+ 3λ)
2(1+ λ)

β̂
(Pes)
1,1 , B(Pes)

−2,0 =−
2MaΓΓ

(Pes)
1,0 + 3λβ(Pes)

1,0

12(λ+ 1)
,

B̂(Pes)
−2,1 =−

λ

4(λ+ 1)
β̂
(Pes)
1,1 , B(Pes)

−2,1 =−
λ

4(λ+ 1)
β
(Pes)
1,1 ,

A(Pes)
−3,1 =−

6MaΓΓ
(Pes)

2,1

5(λ+ 1)
, B(Pes)

−3,1 =−
MaΓΓ

(Pes)
2,1

5(λ+ 1)
,

A(Pes)
−4,0 =−

15MaΓΓ
(Pes)

3,0

7(λ+ 1)
, B(Pes)

−4,0 =−
3MaΓΓ

(Pes)
3,0

14(λ+ 1)
.



(A 12)

The O(Pe2
s ) velocity and pressure fields are obtained as

u(Pe2
s )

i =


∇(Φ

(Pe2
s )

1 +Φ
(Pe2

s )

2 +Φ
(Pe2

s)
3 )+

r2

λ
∇

(
1
5

p(Pe2
s )

1 +
5
42

p(Pe2
s )

2 +
1

12
p(Pe2

s )

3

)
−

r
λ

(
1
10

p(Pe2
s )

1 +
2

21
p(Pe2

s )

2 +
1
12

p(Pe2
s )

3

)
 ,

p(Pe2
s )

i = p(Pe2
s )

1 + p(Pe2
s )

2 + p(Pe2
s )

3 ,

u(Pe2
s )

e =−U(Pe2
s ) +

∞∑
n=1


∇(Φ

(Pe2
s )

−2 +Φ
(Pe2

s )

−3 +Φ
(Pe2

s)
−4 )− r2∇

(
−

1
2

p(Pe2
s )

−2 +
1
30

p(Pe2
s )

−4

)
+ r
(

2p(Pe2
s )

−2 +
1
2

p(Pe2
s )

−3 +
4

15
p(Pe2

s )

−4

)
,

p(Pe2
s )

e = p(Pe2
s )

−2 + p(Pe2
s )

−3 + p(Pe2
s )

−4 .


(A 13)

The growing spherical solid harmonics present in (A 13) are obtained as

p(Pe2
s )

1 = λr{A(Pe2
s )

1,0 P1,0(cos θ)+ A(Pe2
s )

1,1 cos ϕP1,1(cos θ)+ Â(Pe2
s )

1,1 sin ϕP1,1(cos θ)},

p(Pe2
s )

2 = λr2A(Pe2
s )

2,1 cos ϕP2,1(cos θ),

p(Pe2
s )

3 = λr3
{A(Pe2

s )

3,0 P3,0(cos θ)+ A(Pe2
s )

3,1 cos ϕP3,1(cos θ)},

Φ
(Pe2

s )

1 = r{B(Pe2
s )

1,0 P1,0(cos θ)+ B(Pe2
s )

1,1 cos ϕP1,1(cos θ)+ B̂(Pe2
s )

1,1 sin ϕP1,1(cos θ)},

Φ
(Pe2

s )

2 = r2B(Pe2
s )

2,1 cos ϕP2,1(cos θ),

Φ
(Pe2

s )

3 = r3
{B(Pes)

3,0 P3,0(cos θ)+ B(Pe2
s )

3,1 cos ϕP3,1(cos θ)},


(A 14)

where the unknown coefficients are obtained as

A(Pe2
s )

1,0 =−
5(2MaΓΓ

(Pe2
s )

1,0 − 3β(Pe2
s )

1,0 )

3(λ+ 1)
, B(Pe2

s )

1,0 =
2MaΓΓ

(Pe2
s )

1,0 − 3β(Pe2
s )

1,0

6(λ+ 1)
,

A(Pe2
s )

1,1 =−
5(2MaΓΓ

(Pe2
s )

1,1 − 3β(Pe2
s )

1,1 )

3(λ+ 1)
, B(Pes)

1,1 =
2MaΓΓ

(Pe2
s )

1,1 − 3β(Pe2
s )

1,1

6(λ+ 1)
,

 (A 15)
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Â(Pes)
1,1 =

5
(λ+ 1)

β̂
(Pes)
1,1 , B̂(Pes)

1,1 =−
β̂
(Pes)
1,1

2(λ+ 1)
, A(Pe2

s )

2,1 =−
21MaΓΓ

(Pe2
s )

2,1

5(λ+ 1)
,

B(Pe2
s )

2,1 =
3MaΓΓ

(Pe2
s )

2,1

10(λ+ 1)
, A(Pe2

s )

3,0 =−
36MaΓΓ

(Pe2
s )

3,0

7(λ+ 1)
, B(Pe2

s )

3,0 =
2MaΓΓ

(Pe2
s )

3,0

7(λ+ 1)
,

A(Pe2
s )

3,1 =−
36MaΓΓ

(Pe2
s )

3,1

7(λ+ 1)
, B(Pe2

s )

3,1 =
2MaΓΓ

(Pe2
s )

3,1

7(λ+ 1)
,


(A 16)

with β
(Pe2

s )

1,0 = −U(Pe2
s )

z , β(Pe2
s )

1,1 = −U(Pe2
s )

x and β̂
(Pe2

s )

1,1 = −U(Pe2
s )

y . The different constants
present in the expression of surfactant concentration (Γ (Pe2

s )
n,m ) for O(Pe2

s ) are given in
appendix B. The decaying spherical solid harmonics present in (A 13) are obtained as

p(Pe2
s )

−2 = r−2
{A(Pe2

s )

−2,0P1,0(cos θ)+ A(Pe2
s )

−2,1 cos ϕP1,1(cos θ)+ Â(Pe2
s )

−2,1 sin ϕP1,1(cos θ)},

p(Pe2
s )

−3 = r−3A(Pe2
s )

−3,1 cos ϕP2,1(cos θ),

p(Pe2
s )

−4 = r−4
{A(Pe2

s )

−4,0P3,0(cos θ)+ A(Pe2
s )

−4,1 cos ϕP3,1(cos θ)},

Φ
(Pe2

s )

−2 = r−2
{B(Pe2

s )

−2,0P1,0(cos θ)+ B(Pe2
s )

−2,1 cos ϕP1,1(cos θ)+ B̂(Pe2
s )

−2,1 sin ϕP1,1(cos θ)},

Φ
(0)
−3 = r−3B(Pe2

s )

−3,1 cos ϕP2,1(cos θ),

Φ
(Pe2

s )

−4 = r−4
{B(Pe2

s )

−4,0P3,0(cos θ)+ B(Pe2
s )

−4,1 cos ϕP3,1(cos θ)},


(A 17)

where the unknown coefficients are obtained as

A(Pe2
s )

−2,0 =−
9λβ(Pe2

s )

1,0 + 2MaΓΓ
(Pe2

s )

1,0 + 6β(Pe2
s )

1,0

6(λ+ 1)
,

A(Pe2
s )

−2,1 =−

{
MaΓΓ

(Pe2
s )

1,1

3(λ+ 1)
+

3λ+ 2
2(λ+ 1)

β
(Pe2

s )

1,1

}

Â(Pe2
s )

−2,1 =−
3λ+ 2

2(λ+ 1)
β̂
(Pe2

s )

1,1 , B(Pe2
s )

−2,1 =−

{
MaΓΓ

(Pe2
s )

1,1

6(λ+ 1)
+

λ

4(λ+ 1)
β
(Pe2

s )

1,1

}
,

B̂(Pe2
s )

−2,1 =−
λ

4(λ+ 1)
β̂
(Pe2

s )

1,1 , B(Pe2
s )

−2,0 =−
2MaΓΓ

(Pe2
s )

1,0 + 3λβ(Pe2
s )

1,0

12(λ+ 1)
,

A(Pe2
s )

−3,1 =−
6MaΓΓ

(Pe2
s )

2,1

5(λ+ 1)
, B(Pe2

s )

−3,1 =−
MaΓΓ

(Pe2
s )

2,1

5(λ+ 1)
,

A(Pe2
s )

−4,1 =−
15MaΓΓ

(Pe2
s )

3,1

7(λ+ 1)
, B(Pe2

s )

−4,1 =−
3MaΓΓ

(Pe2
s )

3,1

14(λ+ 1)
,

A(Pe2
s )

−4,0 =−
15MaΓΓ

(Pe2
s )

3,0

7(λ+ 1)
, B(Pe2

s )

−4,0 =−
3MaΓΓ

(Pe2
s )

3,0

14(λ+ 1)
.



(A 18)
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Appendix B. Expressions for the constant coefficients present in (3.24) for
surfactant concentration of O(Pe2

s )

The coefficients present in the O(Pe2
s ) surface harmonics of surfactant concentration

are obtained as

Γ
(Pe2

s )

1,0 =
ξBo
3Ca

MaΓ
(3λ+ 2)2

+
(2δ + 3MaTζR2

+ 4)MaΓ
(9δλ2 + 12δλ+ 4δ + 18λ2 + 8+ 24λ)R2

,

Γ
(Pe2

s )

1,1 =−
ξBo

30Ca
(5λ+ 3)

(λ+ 1)(3λ+ 2)
e

R2

−

(
70δλ2

+ 109δλ+ 40δ + 140λ2
+ 218λ+ 80

+105MaTζR2λ2
+ 168MaTζR2λ+ 63MaTζR2

)
e

70(7δλ+ 8δλ2 + 3δλ3 + 2δ + 6λ3 + 16λ2 + 4+ 14λ)R4
,

Γ
(Pe2

s )

2,0 =



ξBo
Ca

{
ξBo

27Ca(3λ+ 2)2
+

(47λ+ 50)
126R2(λ+ 1)(3λ+ 2)2

+
2
3

ζMaT

(3λ+ 2)2(δ + 2)

}

+


1134(λ+ 1)2Ma2

Tζ
2R4
+ 27(47λ+ 50)(λ+ 1)(δ + 2)MaTζR2

+(δ + 2)2 ( 567e2λ3
+ 750λ+ 1404e2λ2

+ 288e2
+ 400+ 351λ2

+1116e2λ )


378R4(λ+ 1)2(3λ+ 2)2(δ + 2)2


,

Γ
(Pe2

s )

2,1 =
1
15

MaΓ e
(λ2 + 2λ+ 1)R2

, Γ
(Pe2

s )

2,2 =−
1

252
(7λ+ 4)e2

(λ2 + 2λ+ 1)R4
,

Γ
(Pe2

s )

3,0 =−
1
42

MaΓ
R2(λ2 + 2λ+ 1)

,

Γ
(Pe2

s )

3,1 =
2ξBo
45Ca

e
R2(3λ2 + 5λ+ 2)

+
[432(λ+ 1)MaTζR2

+ (45λ2
+ 351λ+ 310)(δ + 2)]e

1080(3λ+ 2)(λ+ 1)2(δ + 2)R4
.


(B 1)

Appendix C. Velocity and pressure fields in the high-Pes limit
The leading-order velocity and pressure fields are obtained as

u(0)i =∇× (rχ
(0)
1 ),

p(0)i = 0,

u(0)e = (V∞ −U(0))+

∞∑
n=1


∇(Φ

(0)
−2 +Φ

(0)
−3 +Φ

(0)
−4)

−r2∇

(
−

p(0)−2

2
+

p(0)−4

30

)
+ r

(
2p(0)−2 +

p(0)−3

2
+

4p(0)−4

15

),
p(0)e = p∞ + (p

(0)
−2 + p(0)−3 + p(0)−4).


(C 1)

The growing spherical solid harmonics present in (C 1) are obtained as

χ
(0)
1 =

1
2 γ̂

(0)
1,1 r sin ϕP1,1(cos θ). (C 2)
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The decaying spherical solid harmonics present in (C 1) are obtained as

p(0)−2 = r−2
{A(0)−2,0P1,0(cos θ)+ A(0)−2,1 cos ϕP1,1(cos θ)+ Â(0)−2,1 sin ϕP1,1(cos θ)},

p(0)−3 = r−3A(0)−3,1 cos ϕP2,1(cos θ), p(0)−4 = r−4A(0)−4,0P3,0(cos θ),

Φ
(0)
−2 = r−2

{B(0)−2,0P1,0(cos θ)+ B(0)−2,1 cos ϕP1,1(cos θ)+ B̂(0)−2,1 sin ϕP1,1(cos θ)},

Φ
(0)
−3 = r−3B(0)−3,1 cos ϕP2,1(cos θ), Φ

(0)
−4 = r−4B(0)−4,0P3,0(cos θ),


(C 3)

where the unknown coefficients are obtained as

A(0)−2,0 =−
5
2α

(0)
1,0 −

3
2β

(0)
1,0, A(0)−2,1 =−

3
2β

(0)
1,1, Â(0)−2,1 =−

3
2 β̂

(0)
1,1,

B(0)−2,0 =−
3
4α

(0)
1,0 −

1
4β

(0)
1,0, B(0)−2,1 =−

1
4β

(0)
1,1, A(0)−3,1 =−5β(0)2,1,

B(0)−3,1 =−
1
2β

(0)
2,1, A(0)−4,0 =−

35
4 β

(0)
3,0, B(0)−4,0 =−

5
8β

(0)
3,0.

 (C 4)
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