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Abstract. If A is a finite set (alphabet), the shift dynamical system consists of the space
AN of sequences with entries in A, along with the left shift operator S. Closed S-invariant
subsets are called subshifts and arise naturally as encodings of other systems. In this
paper, we study the number of ergodic measures for transitive subshifts under a condition
(‘regular bispecial condition’) on the possible extensions of words in the associated
language. Our main result shows that under this condition, the subshift can support at
most (K + 1)/2 ergodic measures, where K is the limiting value of p(n+ 1)− p(n), and
p is the complexity function of the language. As a consequence, we answer a question of
Boshernitzan from 1984, providing a combinatorial proof for the bound on the number of
ergodic measures for interval exchange transformations.

Key words: symbolic dynamics, classical ergodic theory, formal languages
2020 Mathematics Subject Classification: 37B10 (Primary); 28D05, 37A05 (Secondary)

Contents
1 Introduction 87

1.1 Outline of paper 90
2 Definitions 90

2.1 Languages on a finite alphabet 90
2.2 Subshifts of a finite alphabet 95
2.3 Natural coding of a system 97
2.4 Colorings 99

https://doi.org/10.1017/etds.2020.134 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2020.134
mailto:mdamron6@math.gatech.edu
mailto:jonfick@princeton.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2020.134&domain=pdf
https://doi.org/10.1017/etds.2020.134


Ergodic measures for subshifts 87

3 Exit words 101
4 Just graphs and colors 109

4.1 Regular bispecial moves 110
4.2 Just 2-loops 112
4.3 Larger loops: behavior 114
4.4 Larger loops: itineraries 116
4.5 Larger loops: graph � 118

5 Ergodic theory on subshifts 120
6 From ergodic theory to graphs 124

6.1 Building � and C: Notation 1 125
6.2 More on C: Rules List 1 126
6.3 RBS moves and Rules List 2 127
6.4 Building itineraries: Rules Lists 3 and 4 129

7 Proof of Proposition 4.9 133
8 Future work 138
Acknowledgements 139
References 139

1. Introduction
If N = {1, 2, 3, . . .} is the set of positive integers and A is a finite alphabet of symbols, we
let

AN = {x = x1x2x3 · · · : xi ∈ A for all i ∈ N}
denote the set of all one-sided infinite sequences with letters in A. When endowed with the
natural product topology, this set becomes a compact metric space with its Borel σ -algebra.
The left shift map S : AN → AN given by

(Sx)i = xi+1 for all i ∈ N,

is a continuous function and creates the natural dynamical system, the shift (AN, S). We
will consider subshifts X ⊆ AN, meaning closed S-invariant subsets of AN, and assume
that the restricted system (X, S) is transitive, meaning that for each pair of non-empty open
U , V ⊆ X there is an iterate n ∈ N such that Sn(U) ∩ V is non-empty.

Let A∗ = ⋃
n∈N An denote the set of all finite words with letters in A. We may naturally

associate to a subshift X its language

L(X) = {w ∈ A∗ : w = xixi+1 · · · xi+|w|−1 for some i ∈ N and x ∈ X},
meaning the collection of all finite words that occur as a subword within a sequence x ∈ X.
Here |w| is the length of w, meaning |w| = n if w = w1w2 · · · wn.

There exists a broad collection of literature that relates combinatorial properties of
L(X) with dynamical properties of (X, S). For example, under the stronger assumption
that (X, S) is minimal (meaning for every x ∈ X, its orbit {x, Sx, S2x, . . .} is dense,
or equivalently any closed S-invariant subset of X is either empty or X), Boshernitzan
[Bos84] bounded the size of E(X, S), the set of S-ergodic probability measures on X, by
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considering the growth rate of the complexity function

pX(n) = |{w ∈ L : |w| = n}|.
In particular, he showed that if lim infn→∞(pX(n))/n = α ≥ 1 then |E(X, S)| ≤ α.
Furthermore, if lim supn→∞(pX(n))/n = α ≥ 2 then |E(X, S)| ≤ α − 1. We note that
|E(X, S)| ≥ 1 due to the Krylov–Bogolyubov theorem [KB37] and if α < 1 in either
limit then (X, S) is periodic as a consequence of the Morse–Hedlund theorem [MH38].
More recently in [CK19], Cyr and Kra extended these results to a broader class
of dynamical systems and proved the same bound for the larger class of generic
measures. Furthermore, they showed that the original bounds by Boshernitzan are
sharp.

A class of systems discussed as motivation in [Bos84] were subshifts that arise naturally
from interval exchange transformations (IETs). These are piecewise isometries from
I = [0, 1) to itself defined by dividing the interval into d subintervals of prescribed lengths
λ1, . . . , λd and then rearranging them by translation according to a permutation π over
{1, . . . , d}. If we label the initial subintervals as I1, . . . , Id , the subshift associated to
such an interval exchange f is created by the closure of the image of the map

[0, 1) 
 z �→ x ∈ {1, . . . , d}N where xi = j ⇐⇒ f i−1z ∈ Ij . (1)

It was shown independently by Katok [Kat73] and Veech [Vee78] that for a minimal
interval exchange f over d subintervals we have

|E(I , f )| ≤ d

2
.

We note here that the bound is actually more precise and based on data (the genus of a
suspension of f . Such a surface may be realized by the zippered rectangle construction
defined by Veech [Vee82]) obtained from π that defines f , but in many cases this bound
agrees with �d/2�.

Under the natural encoding in (1), a minimal interval exchange becomes a minimal
subshift (X, S) and the complexity function pX(n) satisfies

pX(n+ 1)− pX(n) ≤ d − 1 for all n ∈ N,

and in fact, under a general assumption (the infinite distinct orbit condition, also called the
Keane condition; see [Kea75]), equality holds above for all n. This observation led to the
following natural question.

Question. (Boshernitzan [Bos84]) Can the bound d/2 for |E(X, S)| be shown combinato-
rially for (X, S) obtained from a minimal interval exchange transformation?

In part, this question was presented as motivation for the work in [Bos84] as the
main results prove that for a general interval exchange the bound |E(X, S)| ≤ d − 2
holds because limn→∞(pX(n))/n = d − 1. So for d = 2, 3, 4 this bound agrees with
the previously established bound. This problem has been considered and some work
has been done to extend Boshernitzan’s result. Before Cyr and Kra’s work [CK19],
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Ferenczi and Monteil [FM10, Theorem 7.3.7] expanded the bounds to ‘K-deconnectable’
systems.

In [DF17], the authors showed that |E(X, S)| ≤ K − 2 for minimal (X, S) satisfying

pX(n+ 1)− pX(n) = K for all large n ∈ N, (2)

where K ≥ 4. Because K = d − 1 for interval exchanges, this answered Boshernitzan’s
question for d = 5, 6.

To provide a proof for all d , we will in this paper make a further assumption on the
language L of (X, S). A word w ∈ L is left special if there are distinct letters a, a′ ∈ A
such that aw and a′w exist in the language. Likewise, w is right special if wb and wb′
exist in the language for distinct letters b, b′. A word is bispecial if it is both left and
right special. A bispecial word is regular bispecial if only one left extension of w is right
special and only one right extension ofw is left special. L (or equivalently (X, S)) satisfies
the regular bispecial condition (RBC) if all large enough bispecial words are regular. We
note here that the RBC implies the constant growth condition from (2) above for some K .
Furthermore, all subshifts that arise from interval exchanges satisfy this property by work
of Ferenczi and Zamboni [FZ08]. Finally, this property is stable in the following sense:
using results from [DP19a], we have that the RBC is closed under topological conjugacy,
meaning that if (X, S) is a subshift satisfying the RBC and (Y , S) is a subshift where
ϕ : X → Y is a homeomorphism satisfying ϕ ◦ S = S ◦ ϕ then (Y , S) also satisfies the
RBC.

Our main result is the following theorem.

THEOREM 1.1. (Main theorem) Let (X, S) be a transitive subshift satisfying the RBC with
growth constant K . Then |E(X, S)| ≤ (K + 1)/2.

Because the proof will be combinatorial in nature, this provides a complete answer to
Boshernitzan’s question for all d . The result is also strictly more general than one that
would apply only to interval exchanges, since interval exchanges form a proper subset
of those systems with the RBC. Indeed, linear involutions as discussed in [BL09] arise
as first returns of flows on half-translation surfaces and a generic involution satisfies the
RBC. However they are not equivalent to interval exchanges (there is a natural way to
define an IET that is a two-fold covering of a given linear involution; see [AR12], for
example). However, the set of invariant measures for the IET and the linear involution do
not necessarily agree.

In terms of Rauzy graphs, which are directed graphs derived from the language L of
a subshift, the works in [Bos84, FM10] bounded |E(X, S)| by identifying ‘important’
(in [Bos84] these were the vertices related to right special words in the language, while
in [FM10] these vertices formed a ‘K-deconnectable’ set) vertices in these graphs with
the measures in E(X, S). In [DF17], the improvement essentially developed from adding
a notion of dynamics to these graphs and tracing these identifications over time via a
‘coloring function.’ By incorporating the RBC condition with the dynamics from [DF17],
we will construct an auxiliary graph and relate the number of ergodic measures of (X, S)
to the connectedness of this graph.
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1.1. Outline of paper. Section 2 will provide definitions, including more conventional
objects as well as some of the machinery from [DF17]. We will first introduce languages L
over a finite alphabet as well as the subshift dynamical systems (X, S) and recall standard
results concerning their relationships. We also relate the RBC to a property defined by
Dolce and Perrin in [DP19a] to show that transitive subshifts with the RBC must in fact
be minimal (Corollary 2.9) and that the RBC is closed under topological conjugation
(Corollary 2.10). Then, following [DF17], the subshift/language will be used to define
a graph � with coloring rule C. The coloring rule is based on a type of density function
that will play a key role in translating between combinatorics in L and ergodic measures
for (X, S).

In §3, a notion of an exit word of a given word w will be developed along with relevant
combinatorial results. The main problem will be described using graphs � and coloring
rules in C in §4. In this section we build up the intuition for the main result by discussing
only graphs, colors and restrictions for these graphs via rules lists. When they are stated,
such rules will be assumed to hold. (The validation of these assumptions given our initial
dynamical system will be provided in §6.) To help understand the essential tools developed
in this section, a simpler case is first addressed in §4.2. As a main result, Proposition 4.9
will be proven in §7 and, via Corollary 4.10, will relate the bound on |E(X, S)| to the
connectedness of an auxiliary graph �.

The discussion concerning density from §2 and exit words from §3 will continue in §5.
Having already considered exit words from the word combinatorial perspective, we will in
this section derive ergodic theoretic properties. Lemma 5.1 will help in bounding densities
of recurring words, while Lemma 5.4 will establish mutual bounds between the density of
w and its exit words.

The rules lists from §4 will be justified for graphs and colorings constructed from
our dynamical systems in §6. Here we will use the results from previous sections to
explicitly construct our graphs as well as prove the aforementioned graph and coloring
rule restrictions.

The key result, Proposition 4.9, concerning the auxiliary graph will be proven in §7.
The arguments used rely only on definitions and the assumed rules lists from §4, and so
this section may be read independently of §§5 and 6.

2. Definitions
2.1. Languages on a finite alphabet. Let A be a finite alphabet of symbols, let

An = {w = w1w2 · · · wn : wi ∈ A for 1 ≤ i ≤ n}
be the set of words of length nwith letters in A and let A∗ = ⋃

n∈N An be the collection of
all finite words with letters in A. Note that in this paper the empty word is not considered
part of A∗ or any language (as will be defined). We denote by |w| the length of a word
w ∈ A∗. If u, v ∈ A∗ then uv represents the concatenation of u followed by v, and for
k ∈ N the word

uk = u · · · u︸ ︷︷ ︸
k
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represents k copies of u concatenated together. For w ∈ An and 1 ≤ i ≤ j ≤ n we call
w[i,j ] = wiwi+1 · · · wj the subword of w starting at position i of length j − i + 1. It
follows then that, for w ∈ An, 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ m ≤ j − i + 1,

(w[i,j ])[k,m] = w[i′,j ′] where
{
i′ = i + k − 1,
j ′ = i +m− 1.

(3)

For any two words w, u ∈ A∗ we let

|w|u = |{1 ≤ j ≤ |w| − |u| + 1 : w[j ,j+|u|−1] = u}|
denote the number of occurrences of u as a subword in w.

Definition 2.1. A language L ⊆ A∗ is a collection of finite words so that:
(1) A ⊆ L;
(2) for all w ∈ L and 1 ≤ i ≤ j ≤ |w|, w[i,j ] ∈ L;
(3) for each w ∈ L there exist a, b ∈ A so that awb ∈ L.
For each n ∈ N, Ln = An ∩ L is the collection of all words in L of length n.

A language L ⊆ A∗ is recurrent if for any u, v ∈ L there existsw ∈ L so that uwv ∈ L,
and L is uniformly recurrent if for each u there exists N ∈ N so that u is a subword of each
w ∈ LN . A language L is periodic if there exists p ∈ N so that for each w ∈ L we have
wi = wi+p for all 1 ≤ i ≤ |w| − p and L is aperiodic otherwise.

By definition, each w ∈ L may be extended to the left (respectively, right) by at least
one symbol in A. We say that w ∈ L is left special if the set

Ex	(w; L) := {a ∈ A : aw ∈ L}
of left extensions contains at least two elements. Likewise, w is right special if
|Exr(w; L)| ≥ 2, where

Exr(w; L) := {b ∈ A : wb ∈ L}
denotes the set of right extensions. We will typically exclude L in the notation of left
(respectively, right) extensions when the language is understood. Let L	 (respectively, Lr )
denote the left (respectively, right) special words in the language and let Ls

n = Ls ∩ Ln for
(n, s) ∈ N × {	, r}. As a convention, we will let 	-special (respectively, r-special) denote
left special (respectively, right special).

A wordw ∈ L is bispecial if it is both left and right special. We callw regular bispecial
if there are unique â ∈ Ex	(w) and b̂ ∈ Exr(w) such thatwb̂ is left special and âw is right
special. In other words, for each a ∈ Ex	(w) \ {â} the word aw is not right special and
likewise for each b ∈ Exr(w) \ {b̂} and word wb.

Remark 2.2. This definition of regular bispecial is a generalization of ordinary bispecial
words defined in [Cas96] but for alphabets of any size.

Definition 2.3. A language L ⊆ A∗ satisfies the regular bispecial condition (RBC) if for
some n0 ∈ N, all bispecial w ∈ L of length at least n0 are regular bispecial.
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The next result, Lemma 2.4, provides three statements essential to the proofs that follow.
In the case of left special words: the first part states that a prefix of a left special word is
left special, the second part states that any large enough left special word may be uniquely
extended to the right within the language to form another left special word, and the third
part states that the left extensions of large left special words having a large enough common
prefix must agree. The parts also analogously apply to right special words and suffixes.
The first part is well known and applies to any language L, while the last two parts require
the RBC condition.

LEMMA 2.4. Let L ⊆ A∗ be a language.
(1) For each n2 ≥ n1, s ∈ {	, r} and w′ ∈ Ls

n2
the word

w =
{
w′

[1,n1] if s = 	,

w′
[n2−n1+1,n2] if s = r ,

is s-special.
Now assume also that L satisfies the RBC and n0 is from Definition 2.3.
(2) For each n2 ≥ n1 ≥ n0, s ∈ {	, r} and w ∈ Ls

n1
there exists a unique w′ ∈ Ls

n2
such

that

w =
{
w′

[1,n1] if s = 	,

w′
[n2−n1+1,n2] if s = r .

(3) If n2 ≥ n1 are large enough and s ∈ {	, r} then any words w′ ∈ Ls
n1

and w′′ ∈ Ls
n2

satisfying {
w′

[1,n0] = w′′
[1,n0] if s = 	,

w′
[n1−n0+1,n1] = w′′

[n2−n0+1,n2] if s = r ,

have the same s-extensions.

Proof. We will prove the lemma for the case s = 	, as the other case is handled in a nearly
identical way. For part (1), if aw′ ∈ L then aw = (aw′)[1,n1+1] ∈ L as well. In particular,
Ex	(w′) ⊆ Ex	(w), or in other words, the set of left extensions of w′ is a subset of the
left extensions for w. Therefore w′ ∈ L	n2

implies that w ∈ L	n1
.

For part (2), note that by part (1) we may assume n1 = n0. Indeed, if w is in, for
example, L	n1

, then w[1,n0] is also left special, and if it has an unique right extension to
a left special word in Ln2 , then so does w. We then proceed by induction on n2. The
result holds for n2 = n0, so assume the claim is true for values at most n2 and consider
the value n2 + 1. Let w̃ ∈ L	n2

be the unique left special word of length n2 with prefix
w. If w̃ is not bispecial there is a unique b ∈ A so that w′ = w̃b ∈ Ln2+1. It follows that
w′

[1,n0] = w̃[1,n0] = w and each left extension of w̃ must also be a left extension of w′.
Therefore w′ is left special and is unique as w̃ is unique. If instead w̃ is bispecial, we use
the RBC to let b̂ ∈ Exr(w) be the unique element such that w′ = w̃b̂ is left special. Again
w = w′

[1,n0] and must be unique by the uniqueness of w̃.
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We will now show part (3). By part (2), for any w ∈ L	n0
and n ≥ n0 there is a unique

u(n) ∈ L	n so that (u(n))[1,n0] = w. As in the proof of part (1),

Ex	(u(n)) ⊇ Ex	(u(n+1)) for all n ≥ n0.

Therefore, there exists Nw so that equality holds above for all n ≥ Nw. The claim then
holds for all n at least N = maxw∈L	n0

{Nw}, as by parts (1) and (2) for any ñ ≥ N and

w̃ ∈ L	
ñ

there is a unique w ∈ L	n0
so that w̃ = u(ñ) as defined above for w.

So assume now that n1 ≥ N and, for w′ ∈ L	n1
, let w = w′

[1,n0]. If for n2 ≥ n1 we
have w′′ ∈ L	n2

such that w = w′′
[1,n0] then w′ and w′′ have the same 	-extensions as

claimed.

For a language we define the complexity function p(n) = pL(n) : N → N by

p(n) = |Ln|. (4)

In other words, p(n) is the number of distinct words in L of length n. If L is recurrent, the
Morse–Hedlund theorem [MH38] in our case states that L is periodic (meaning there exists
a universal period p for all long enough words in the language) if and only if p(n0) ≤ n0

for some n0 ∈ N. Equivalently, there exists n0 ∈ N so that p(n0 + 1)− p(n0) = 0 and in
fact p(n+ 1)− p(n) = 0 for all n ≥ n0. It follows that the aperiodic recurrent languages
L must have complexity functions that satisfy p(n) ≥ n+ 1. The recurrent languages
such that p(n) = n+ 1 for all n ∈ N are the well-studied Sturmian languages [MH40].
Such languages have constant (complexity) growth 1 = p(n+ 1)− p(n) for all n ∈ N.
The following definition from [DF17] generalizes these observations.

Definition 2.5. A language L ⊆ A∗ has eventually constant growth (ECG) if there are
constants N0 ∈ N and K , C ∈ N ∪ {0} so that

p(n) = Kn+ C for all n ≥ N0, (5)

or equivalently for some constants K , N0 ∈ N,

p(n+ 1)− p(n) = K for all n ≥ N0. (6)

For any n ∈ N, each w′ ∈ Ln+1 is uniquely defined by its length n suffix w = w′
[2,n+1]

and its 	-extension a = w′
1, and the case for r-extensions is analogous. Therefore

p(n+ 1) =
∑
w∈Ln

|Exs(w)|

and so

p(n+ 1)− p(n) =
∑
w∈Ln

(|Exs(w)| − 1) =
∑
w∈Ls

n

(|Exs(w)| − 1). (7)

LEMMA 2.6. If language L ⊆ A∗ satisfies the RBC then it has ECG.

Proof. Let n0 be from the definition of the RBC and s ∈ {	, r}. Letting φn be the bijection
from Ls

n0
to Ls

n for any n ≥ n0 implicitly defined by parts (1) and (2) of Lemma 2.4, then
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by part (3) for some N0 and any n2 ≥ n1 ≥ N0 we have that

|Exs(φn2(w))| = |Exs(φn1(w))| for all w ∈ Ls
n0

.

For any such n1 and n2, it must be that∑
w′∈Ls

n1

(|Exs(w′)| − 1) =
∑

w′′∈Ls
n2

(|Exs(w′′)| − 1),

and by (7), p(n+ 1)− p(n) is a constant K for all n ≥ N0. Therefore L has ECG as
desired.

Aside from the sets of (one-sided) extensions Exs(w) for w ∈ L and s ∈ {	, r}, let

Ex	r(w; L) = {(a, b) ∈ A2 : awb ∈ L}
be the set of two-sided extensions. Adapting Dolce and Perrin’s notation from [DP19b],
let

mL(w) = |Ex	r(w; L)| − |Ex	(w; L)| − |Exr(w; L)| + 1.

In that paper, the authors prove the next result.

LEMMA 2.7. If a language L is recurrent and for some n0 we have mL(w) = 0 for all
w ∈ L such that |w| ≥ n0, then L is uniformly recurrent.

Dolce and Perrin called a language L eventually neutral if mL(w) = 0 for all large
enough w ∈ L. Furthermore, in [DP19a] they define a stronger property. To define this
property, we first define the graph E(w) for w ∈ L as follows: E(w) is a bipartite graph
with vertices Ex	(w) ∪ Exr(w) and an edge (a, b) if and only if (a, b) ∈ Ex	r(w). They
say that L is eventually dendric if there exists n0 such that for allw ∈ L satisfying |w| ≥ n0

the graph E(w) is a tree.
We note that a connected graph withm vertices is a tree if and only if it hasm− 1 edges.

It then follows that if E(w) is a tree thenmL(w) = 0 and so if L is eventually dendric then
L is also eventually neutral.

In fact, we have the following relationship between this property and the RBC.

LEMMA 2.8. Let L be a recurrent language. Then L is eventually dendric if and only if L
satisfies the RBC.

Proof. Let us first assume L is eventually dendric. By [DP19a, Lemma 1] there exists n0

such that, for w ∈ L satisfying |w| ≥ n0, E(w) is a simple tree, meaning that the diameter
(maximum path distance between any two vertices) is at most 3.

Fix w ∈ L satisfying |w| ≥ n0. If w is bispecial, then we will show that there exist
a unique a0 ∈ Ex	(w) and a unique b0 ∈ Exr(w) such that Ex	(w) = Ex	(wb0) and
Exr(w) = Exr(a0w). Because E(w) is a tree, w is regular bispecial and therefore L
satisfies the RBC.

By the bispeciality of w, Ex	(w) and Exr(w) each contain at least two elements. Let
a, a′ ∈ Ex	(w) be distinct elements. Because E(w) is connected with diameter at most
3, there must exist a path of length 2 connecting a and a′ (all paths between elements of
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Ex	(w) must be of even length). Let b0 ∈ Exr(w) be such that (a, b0) and (a′, b0) are in
E(w). Because E(w) is a tree, if there exists b ∈ Exr(w) such that (a, b) and (a′, b) are in
E(w), then b = b0. Furthermore, b0 is the unique vertex that is visited by any path of length
2 connecting distinct elements of Ex	(w). It follows that Ex	(wb0) = Ex	(w), and for
any b �= b0 in Exr(w) we have |Ex	(wb)| = 1. We may show by a similar argument that
there exists a0 ∈ Ex	(w) so that Exr(a0w) = Exr(w) and for a �= a0 in Ex	(w) we have
|Exr(aw)| = 1.

Now we assume that L satisfies the RBC and let n3 be such that all n2 ≥ n1 ≥ n3

satisfy all parts of Lemma 2.4. We first observe that for any w ∈ L the graph E(w) must
be a (simple) tree if w is not bispecial, so we now assume that |w| ≥ n3 and w is (regular)
bispecial. Let a0 be the unique left extension such that a0w is right special and b0 be the
unique right extension such that wb0 is left special. The connected component of E(w)

containing a0 and b0 is a (simple) tree, and suppose by contradiction that E(w) is not
connected. Then there must exist an edge (a1, b1) in E(w)where a1 �= a0 is inEx	(w) and
b1 �= b0 is in Exr(w). Note that (a1, b0) and (a0, b1) cannot be edges in E(w). However,
wb0 is left special, has w as its prefix but a1 �∈ Ex	(wb0). This is a contradiction of the
third part of Lemma 2.4 as Ex	(wb0) �= Ex	(w).

Therefore, E(w) is a tree for all large enough n, and this concludes the proof.

COROLLARY 2.9. If L satisfies the RBC, then L is recurrent if and only if it is uniformly
recurrent.

In [DP19a, Theorem 2], it was shown that the set of subshifts X with eventually
dendric L is closed under topological conjugation. We therefore also arrive at the same
conclusion.

COROLLARY 2.10. The subset X of subshifts whose languages satisfy the RBC is closed
under conjugation.

2.2. Subshifts of a finite alphabet. Let

AN = {x = x1x2 · · · : xi ∈ A for i ∈ N}

be the set of sequences on alphabet A, and for each x ∈ AN and 1 ≤ i ≤ j let

x[i,j ] = xixi+1 · · · xj
be the subword of x of length j − i + 1 starting at position i. On the set AN of infinite
sequences on finite alphabet A the cylinder sets

[w] = {x ∈ AN : x[1,|w|] = w} for w ∈ A∗,

form a basis for the natural topology T . Moreover, (AN, T ) is compact metric space
[Fog02] given by metric

d(x, y) = 2− min{i∈N:xi �=yi }
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for x, y ∈ AN, x �= y. The (left) shift S : AN → AN is the continuous map defined by
S(x1x2x3 · · · ) = x2x3 . . . , or

(Sx)i = xi+1 for all i ∈ N,

and the topological dynamical system (AN, T , S) is the shift on A.
A subshift X ⊆ AN is any non-empty closed set X such that SX = X, considered as

a subsystem (X, S), where we omit mention of the induced topology of T on X. (Using
this definition of S-invariance, the associated language is left extendable, meaning we may
find at least one a in the third condition of Definition 2.1. This may not be the case if we
instead assume SX ⊆ X.) (X, S) is transitive if for each non-empty open U , V ⊆ X there
exists n ∈ N so that Sn(U) ∩ V �= ∅. (X, S) is minimal if no proper closed subset A ⊆ X

is S-invariant.
The language L(X) associated to X,

L(X) = {w ∈ A∗ : x[1,|w|] = w for some x ∈ X},
is the collection of words that occur as subwords of some sequence in X. Likewise, given
a language L, we may define the associated subshift as

X(L) = {x ∈ AN : x[i,j ] ∈ L for all i, j ∈ N, i ≤ j}.
The following statements are well known, and, given the definitions above, the proof is

left as an exercise.

LEMMA 2.11. Let X ⊆ AN be a subshift and L ⊆ A∗ its associated language.
(1) (X, S) is transitive if and only if L is recurrent.
(2) (X, S) is minimal if and only if L is uniformly recurrent.

We may consider (X, S) as a measurable dynamical system by endowing it with the
Borel σ -algebra � generated by T . Let M(X, S) be the space of S-invariant probability
measures on X, noting that M(X, S) ⊆ M(AN, S) by assigning to any measurable
A ⊂ AN the measure μ(A ∩X). Because a subshift is a compact metric space, each
μ ∈ M(X, S) is regular. In particular, by the Riesz representation theorem each μ is
uniquely defined by

μ([w]) =
∫
X

1[w] dμ for all w ∈ A∗,

where 1[w] is the indicator function on [w], as {1[w] : w ∈ A∗} forms a basis for the space
of complex-valued continuous functions on AN.

Let E(X, S) be the set of ergodic probability measures of (X, S), meaning all measures
ν ∈ M(X, S) such that for any measurable A ⊂ X, ν(S−1(A)
A) = 0 implies that
ν(A) ∈ {0, 1}. By the pointwise ergodic theorem, for ν ∈ E(X, S) and ν-almost every
x ∈ X,

lim
N→∞

1
N

N−1∑
i=0

1[w](S
i(x)) = ν([w]) for each w ∈ A∗. (8)
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Equivalently, for u, w ∈ A∗, let

|u|w = |{1 ≤ i ≤ |w| − |u| : w = u[i,i+|w|−1]}|.
Then for ergodic ν and ν-almost every x ∈ X we have

lim
N→∞

|x[1,N]|w
N

= ν([w]) for each w ∈ A∗. (9)

We call such an x ∈ X a generic point for ν.
Consider a sequence of words {un}n∈N such that |un| → ∞ as n → ∞. For anyw ∈ A∗

we may refine to a subsequence {un}n∈Ww
for an infinite Ww ⊂ N so that

lim
Ww
n→∞

|un|w
|un| =: φ(w) (10)

exists. Because A∗ is countable, we may diagonalize to find infinite W ⊆ N so that (10)
exists for allw ∈ A∗. It follows that there is a unique μ ∈ M(AN, S) defined by μ([w]) =
φ(w) for all w ∈ A∗. Furthermore, if un ∈ L(X) for all n ∈ W for some subshift X, then
μ ∈ M(X, S). We denote this relationship by

{un}n∈W → μ. (11)

If we have multiple sequences {u(k)n }n∈N, for finite list of ks, we may find an infinite W ⊂ N

so that {u(k)n }n∈W → μ(k) for each k. Moreover, we may initially restrict this construction
to any infinite V ⊂ N and find an infinite W ⊂ V .

2.3. Natural coding of a system. Given a language L (or equivalently a subshift X with
language L = L(X)) and n ∈ N, the Rauzy graph �n is a directed graph with vertex set
equal to Ln, the words of length n in L, and edges defined by Ln+1 as follows: there
exists a directed edge from u ∈ Ln to v ∈ Ln if and only if there exists w ∈ Ln+1 such that
w[1,n] = u and w[2,n+1] = v.

A directed (multi)graph is strongly connected if for each pair of vertices u, v there
exists a directed path from u to v. A directed (multi)graph is weakly connected if its
associated undirected graph is connected, or equivalently for each pair of distinct vertices
u, v there exist vertices w1, w2, . . . , wk in the graph so that w1 = u, wk = v and for
each 1 ≤ i < k either an edge from wi to wi+1 or an edge from wi+1 to wi is in the
graph.

The proof of the following is a direct consequence of the definition above.

LEMMA 2.12. If (X, S) is a transitive subshift then each Rauzy graph �n, n ∈ N, is
strongly connected.

Example 2.13. The converse to this lemma is false. For example, the language L on A =
{0, 1} given by L = {w ∈ A∗ : |w|1 ≤ 1} is not transitive, as 1w1 �∈ L for any w ∈ L.
However, each Rauzy graph �n is strongly connected.

A left special word w ∈ L	n then corresponds to a vertex in �n with in-degree equal
to |Ex	(w)| ≥ 2, the number of left extensions of w. Likewise a right special word
w ∈ Lrn corresponds to a vertex with out-degree |Exr(w)| ≥ 2. Unless a word is right
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and/or left special, its vertex belongs to a directed path in �n containing no branching
points. In §6 we will ignore such paths and focus on these branching points. A path
from u ∈ Ln to v ∈ Ln in �n corresponds to a word w ∈ L such that w[1,n] = u and
w[|w|−n+1,|w|] = v. A path w is branchless in �n if w[i,i+n−1] is neither left nor right
special for each 2 ≤ i ≤ |w| − n; in other words, no subword of length n is special
except possibly the first or last. The following definition was given in a slightly different
manner in [DF17].

Definition 2.14. For language L, the special Rauzy graph for n ∈ N, �sp
n , is the directed

(multi)graph with vertex set L	n ∪ Lrn, treating a bispecial w ∈ Ln as two vertices, w	 and
wr . There is a directed edge from u to v for each branchless path in �n from u to v and for
each pair u = w	, v = wr for bispecial w ∈ Ln.

LEMMA 2.15. Fix s ∈ {	, r}. If a language L ⊆ A∗ is recurrent and for some n there exists
a closed circuit in the Rauzy graph �n, meaning edges ei from wi to wi+1 for 1 ≤ i ≤ k

such that w1 = wk+1 and wi �= wj for 1 ≤ i < j ≤ k, such that no vertex wi is s-special,
then L is periodic.

Proof. Suppose s = 	, as the s = r case is analogous. Because wi is not 	-special, there
is a unique left extension of wi and the prefix of the associated length n+ 1 word is
wi−1, where the index in understood mod k to belong to {1, . . . , k}. Fix any v ∈ Ln; by
recurrence, there exists u ∈ L so that vuw1 ∈ L. By examining the left extensions starting
at w1 in vuw1, it must be that v = wi for some i. Therefore Ln = {w1, . . . , wk}.

We will finish by showing that L is periodic with period k, noting that it suffices to
show that

Vj = Vj+k for all N ≥ n, V ∈ LN and 1 ≤ j ≤ N − k.

Fix such a word V . By our above reasoning each subword of length n must be an element
of {w1, . . . , wk}, and, starting with the suffix of length n and proceeding to the left, the
wi must occur in the cyclic order given by our original circuit. This provides the desired
periodicity.

COROLLARY 2.16. If L ⊂ A∗ is recurrent and aperiodic, then for all n ∈ N each edge in
�

sp
n joins distinct vertices.

Proof. Assume for a contradiction that an edge begins and ends at the same vertex w ∈
�

sp
n . This vertex w must be right or left special since otherwise the component of w in
�

sp
n consists of one vertex and one edge, and this would violate recurrence or aperiodicity.

Because a bispecial word Ln is divided into two distinct vertices in �sp
n , one that is right

special and one that is left special, it must be that w is either left special but not right
special or right special but not left special. By Lemma 2.15, L must be periodic, and this
is a contradiction.

Remark 2.17. If L has ECG with constant K and n is large enough, then the number of
vertices in �sp

n is bounded from above by 2K . Moreover, if L satisfies the RBC then by
Lemma 2.4 for all large n, each �sp

n has the same number of vertices of each type and
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multiplicity. For example if for some large n there are four left special vertices in �sp
n ,

three with in-degree 2 and the other with in-degree 4, then the same is true for �sp
n′ for all

n′ ≥ n. In particular, for all large n there are only a finite number of possible special Rauzy
graphs (up to naming of vertices and edges).

We note that, by the constructions above, for any language L and n ∈ N, the Rauzy
graph �n is strongly connected (respectively, weakly connected) if and only if the special
Rauzy graph �sp

n is strongly connected (respectively, weakly connected).
For reference, we end with a definition that will be of interest in what follows.

Definition 2.18. For a special Rauzy graph �sp
n and N ≥ 2, an N-loop is a directed circuit

of N edges that form a cycle of length N , meaning no vertex is visited more than once.

2.4. Colorings. The coloring assignment defined here was previously discussed in
[DF17]. However, we introduce the concept for convenience and to modify some of the
arguments. As mentioned in Remark 2.17, if X is transitive and L satisfies the RBC with
growth rate K , then there are only finitely many graphs that the special Rauzy graphs �sp

n

can equal (in other words, the set {�sp
n : n ≥ 1} is finite). In particular, we may choose

a directed graph � such that, up to vertex/edge naming, � = �
sp
n for each n ∈ W0 for

infinite W0 ⊂ N. For each vertex v ∈ �, there is a corresponding v(n) ∈ �sp
n for n ∈ W0

and likewise for each edge in�. As discussed in §2.2, we may find an infinite W ⊂ W0 so
that for each v ∈ � we have {v(n)}n∈W → μv ∈ M(X, S) as introduced in (11).

Assuming L has ECG of rate K , for any x ∈ X and w ∈ L we define the upper-density
function

D(w, x) := lim sup
N→∞

1
N

N∑
j=1

r(w, x, j), (12)

where, if n = |w|,

r(w, x, j) =

⎧⎪⎪⎨⎪⎪⎩
1, x[k,k+n−1] = w

for some (j − 1)(K + 1)n < k ≤ j (K + 1)n,

0 otherwise.

(13)

The next result is similar to [Bos84, Lemma 4.1] except that we consider the 	-special
case as well and assume transitivity rather than minimality.

LEMMA 2.19. Let X be a transitive subshift whose language L has ECG of rate K . Let
x ∈ X. Either L is periodic or for all large n and any j ∈ N the word x[j ,j+(K+2)n−2]

contains at least one w ∈ Ls
n (for both s = 	 and r) as a subword.

Proof. Let n0 be given by the EGC growth condition, meaning |Ln| = Kn+ C for all n ≥
n0, and fix n ≥ max{n0, C}. Assuming there are no s-special subwords in x[j ,j+(K+2)n−2]

for some j ∈ N, we will show that L is periodic. For each i with j ≤ i ≤ j +
(K + 1)n − 1, let

wi = x[i,i+n−1]
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be the length n subword of x[j ,j+(K+2)n−2] beginning at position i in x. There are
(K + 1)n such words and because |Ln| = Kn+ C it must be that wi = wi′ for some
pair i < i′. Choose distinct i, i′ that minimize i′ − i, noting in particular that wk �= wk′
for i ≤ k < k′ < i′. On the Rauzy graph �n there is a directed circuit corresponding to
the word x[i,i′+n−1] whose vertices are not s-special. By Lemma 2.15, L is periodic as
claimed.

COROLLARY 2.20. Let X be transitive subshift whose aperiodic language L has ECG of
rate K . Then for any x ∈ X, large enough n ∈ N and s ∈ {	, r},

D(w, x) ≥ 1
K

for some w ∈ Ls
n.

Proof. Assume n is large enough to satisfy Lemma 2.19. For a fixed j ∈ N, consider the
subword x[(j−1)(K+1)n+1,j (K+1)n+n−1] of length (K + 2)n− 1 that contains the words
that start in positions k in x for (j − 1)(K + 1)n < k ≤ j (K + 1)n. By Lemma 2.19,
there exists a word w(j) ∈ Ls

n so that w(j) = x[k,k+n−1] for such a k. In other words,
r(w(j), x, j) = 1 as in (13). So for each N ,

N∑
j=1

∑
w∈Ls

n

r(w, x, j) ≥ N .

BecauseK = p(n+ 1)− p(n), we have |Ls
n| ≤ K by (7). Therefore, there must exist w ∈

Ls
n so that, for infinitely many N ,

1
N

N∑
j=1

r(w, x, j) ≥ 1
K

,

which implies that D(w, x) ≥ 1/K as desired.

For each ergodic measure ν ∈ E(X, S) we fix a generic x(ν) ∈ X, so (9) holds for x(ν)

in place of x and for each w ∈ A∗, noting that ν([w]) = 0 for all w /∈ L. Recall our
infinite W0 ⊂ N so that {v(n)} → μv ∈ M(X, S) as defined before (11). We then define
the following notation:

D(μv , ν) := lim sup
W0
n→∞

D(v(n), x(ν)). (14)

The following result has related counterparts in [DF17] as well as in [Bos84].

LEMMA 2.21. Assume X is a transitive subshift whose aperiodic language L has ECG of
rate K . If, for v a vertex in � and ν ∈ E(X, S), we have

D(μv , ν) > 0,

then D(μv , ν′) = 0 for all ν′ ∈ E(X, S) such that ν′ �= ν.
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Proof. Let β = D(μv , ν). We claim that ν ≥ β/(2(K + 1))μv , meaning

ν([u]) ≥ β

2(K + 1)
μv([u]) for all u ∈ L.

This implies that ν = β/(2(K + 1))μv + (1 − β/(2(K + 1)))μ∗ for some μ∗ ∈
M(X, S). By the extremality of ergodic measures, this implies that μv = ν, which
completes the proof.

We are left to prove the claim. Fix u ∈ L and ε > 0. Choose a large m ∈ W0 so that

|β − D(v(m), x(ν))| < ε and
∣∣∣∣μv([u])− |v(m)|u

|v(m)|
∣∣∣∣ < ε,

and let n = |v(m)|. Now choose large N > (1/ε) so that∣∣∣∣D(v(m), x(ν))− 1
N

N∑
j=1

r(v(m), x(ν), j)
∣∣∣∣ < ε and

∣∣∣∣ν([u])− |x(ν)[1,N(K+1)n]|u
N(K + 1)n

∣∣∣∣ < ε.

We see that

|x(ν)[1,N(K+1)n]|u ≥ |v(m)|u
2

N∑
j=1

r(v(m), x(ν), j)− 1,

as each possible beginning of v(m) contributing to the sum may overlap at most pairwise
and otherwise contributes all its occurrences of u to the left-hand quantity, except possibly
the v(m) beginning in the last (K + 1)N block. Therefore,

ν([u]) >
|x(ν)1,N(K+1)n]|u
N(K + 1)n

− ε

≥ 1
2(K + 1)

|v(m)|u
n

1
N

N∑
j=1

r(v(m), x(ν), j)− 1
N(K + 1)n

− ε

>
1

2(K + 1)
(μv([u])− ε)(β − 2ε)− 2ε.

Because this holds for any ε > 0, we conclude that ν([u]) ≥ β/(2(K + 1))μv([u]), as
claimed.

Given the previous lemma, the following ‘coloring’ function is well defined. In §6 we
will expand this definition to include edges of �. The assumed properties of this coloring
function will be given in §4 and justified in §6 as well.

Definition 2.22. Assume the notation in this section. For each vertex v ∈ �, we define
C(v) = ν ∈ E(X, S) if and only if D(μv , ν) > 0 and C(v) = 0 if and only if D(μv , ν) = 0
for all ν ∈ E(X, S), where 0 is a fixed symbol not in E(X, S).

3. Exit words
In §4 we will further discuss the coloring rule C from Definition 2.22. As will become
apparent at that point, we will become concerned with the behavior of ‘N-loops,’ which
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are finite closed and simple paths (or circuits) within the (special) Rauzy graphs used to
construct �.

If we consider a vertex w ∈ Ln in �n and follow a path that returns to w that visits any
other vertex at most once, this path may be represented by a word P ∈ L such that

P[1,n] = P[|P |−n+1,|P |] = w,

and this path in �n is of length |P | − n+ 1. In addition to P , we will want to discuss the
path P ′ that arises by beginning at w and following the path P s ∈ N consecutive times.
Then P ′ must be of the form

P ′ = (P[1,|P |−n])
sw = w(P[n+1,|P |])s

with |P ′| = s(|P | − n)+ n.
There are many paths in �n (corresponding to words in A∗) that we may construct that

begin and end at w (particularly when the path length is much greater than n). We will be
concerned with paths that are short relative to n. In such cases, the occurrences of w as
P[1,n] and P[|P |−n+1,|P |] will overlap and so special conditions must hold concerning the
word w to allow such a path to exist. In the following definition, we consider q = |P | − n

to be the length between occurrences of w and we are fixing the condition q ≤ n/2 so
that the arguments that follow hold. (This condition corresponds to the path being short
relative to the length of the word w.) For now, we observe that under this restriction, there
will certainly be overlap between occurrences of w.

Definition 3.1. For n ≥ 2 and w ∈ An, suppose q ∈ Z satisfies 1 ≤ q ≤ n/2 and

w[q+1,n] = w[1,n−q]; (15)

that is, the suffix of w of length (n− q) is also its prefix of the same length. For r ∈ N, let
wq∗r be the word of length n+ (r − 1)q such that

(wq∗r )[q(i−1)+1,q(i−1)+n] = w

for all 1 ≤ i ≤ r . Then q is a valid step for w in language L if (15) holds and wq∗2 ∈ L.

Remark 3.2. The rule (15) for q andw ∈ An may be stated in various equivalent ways. For
example, consider the length q prefix y = w[1,q] of w and the infinite sequence wq∗∞ :=
yyyyyy · · · ∈ AN. Then (15) holds if and only if

(wq∗∞)[1,n] = w.

Alternately, (15) holds if and only if wq∗r is defined for all r ≥ 2.

LEMMA 3.3. Let w ∈ Ln and let q ′, q be valid steps for w in L such that q ′ < q. Then
both of the following hold.
(1) The infinite sequences wq∗∞ and wq

′∗∞ are equal.
(2) The word wq

′∗2 is a prefix of the word wq∗2.

Proof. Using condition (15) from the definition of valid, we have

w = w[1,q]w[1,n−q] and w = w[1,q ′]w[1,n−q ′].
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Placing the second equation in the first, we use the fact that q + q ′ ≤ n to get

w = w[1,q](w[1,q ′]w[1,n−q ′])[1,n−q] = w[1,q]w[1,q ′]w[1,n−q ′−q].

Similarly, w = w[1,q ′]w[1,q]w[1,n−q ′−q]. From these two, we obtain the commutativity
relation

w[1,q ′]w[1,q] = w[1,q]w[1,q ′].

A consequence of this relation is that

wq∗q ′
wq

′∗q = (w[1,q])
q ′
(w[1,q ′])

q = wq
′∗qwq∗q ′

,

and so wq∗q ′ = wq
′∗q . From this we conclude that wq∗∞ = wq

′∗∞; that is, item (1) holds.
To show item (2), note that the prefix of length n+ q ′ of wq

′∗∞ is wq
′∗2, so by item

(1), the prefix of length n+ q ′ of wq∗∞ is also wq
′∗2. But since the prefix of length

n+ q (which is greater than n+ q ′) of wq∗∞ is wq∗2, we find that wq
′∗2 is a prefix

of wq∗2.

LEMMA 3.4. Let w ∈ Ln. If q ′ and q are valid steps for w in L with q ′ < q, then their
greatest common divisor q ′′ = gcd(q, q ′) is a valid step for w in L.

Proof. Take valid steps q, q ′ for w in L with q ′ < q. We first note that q − q ′ is valid for
w in L. Indeed, by item (2) of Lemma 3.3, wq

′∗2 is a prefix of wq∗2, and so w appears in
positions 1 and 1 + q − q ′ of the word (wq∗2)[q ′+1,n+q]. This word, which is in L because
it is a subword of wq∗2, must therefore be w(q−q ′)∗2, and so q − q ′ is valid.

To prove the lemma, we will use induction, so for m = 1, . . . , �n/2� − 1, let S(m) be
the following statement: for q = m and any q ′ with 1 ≤ q ′ < q, if q ′ and q are valid steps
for w in L, then so is q ′′ = gcd(q, q ′). Note that S(1) is vacuously true. Suppose that for
somem satisfying 1 ≤ m ≤ �n/2� − 1, the statement S(k) holds for all k = 1, . . . , m− 1.
Let q = m and let q ′ with 1 ≤ q ′ < q be such that q ′ and q are valid steps for w in L. If
q ′ divides q, then gcd(q, q ′) = q ′ and so the lemma is trivial, so suppose that q ′ does not
divide q, and so in particular q ′ > 1. There are two cases.

In the first case, q − q ′ < q ′. Then apply the statement S(q ′). Since q ′ < q and 1 ≤
q − q ′ < q ′, we find that gcd(q ′, q − q ′) is a valid step. But gcd(q ′, q − q ′) = gcd(q ′, q),
so gcd(q ′, q) is a valid step.

In the second case, q − q ′ ≥ q ′. Since q − q ′ �= q ′ (as q ′ does not divide q), we must
have q ′ < q − q ′. Then because 1 ≤ q − q ′ < q, we can apply S(q − q ′) to find that
gcd(q ′, q − q ′) is a valid step. But gcd(q ′, q − q ′) = gcd(q ′, q), so gcd(q ′, q) is a valid
step. This completes the induction.

Definition 3.5. If for w ∈ An there exists a valid step q ′ for w, we call

min{q ′′ : q ′′ is valid for w}

the minimal step for w. By Lemma 3.4, the minimal step divides all valid steps.
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LEMMA 3.6. Considerw ∈ Ln with valid step q. If, for some i, j with 1 ≤ i < j ≤ q, one
has

(wq∗2)[i,i+n−1] = (wq∗2)[j ,j+n−1], (16)

then j − i < q is a valid step for w.

Proof. Let u ∈ Ln be the word in positions i and j given in (16). If i = 1, then u = w

and the claim holds, so we now assume i > 1. Note that j − i < q is a valid step for u,
meaning

u[(j−i)+1,n] = u[1,n−(j−i)] (17)

We want to show this relationship for w.
We have

w[i,n−(j−i)] = (wq∗2)[i,n−(j−i)]
= u[1,n+1−j ]

= (wq∗2)[j ,n]

= w[j ,n] (18)

and

w[1,n+i−q−1] = (wq∗2)[q+1,n+i−1]

= u[q+2−i,n]

= (wq∗2)[q+1+(j−i),n+i−1+(j−i)]
= w[1+(j−i),(n+i−q−1)+(j−i)]. (19)

Because n+ i − q − 1 ≥ i, it follows that

w[1,n−(j−i)] = w[1,i−1]w[i,n−(j−i)] = w[1+(j−i),j−1]w[j ,n] = w[1+(j−i),n] (20)

or j − i is a valid step for w.

COROLLARY 3.7. If q is the minimal step for w ∈ Ln, then the words

(wq∗2)[i,i+n−1] for 1 ≤ i ≤ q, (21)

are all distinct.

Proof. Suppose, for some i, j with 1 ≤ i < j ≤ q, we have

(wq∗2)[i,i+n−1] = (wq∗2)[j ,j+n−1]. (22)

By Lemma 3.6, q ′ = j − i < q is a valid step forw, contradicting the minimality of q.

The wordwq∗r represents the path obtained by traversing a loop (circuit) corresponding
to wq∗2 exactly r − 1 times. If our language L is transitive and aperiodic, then for w ∈ L
we cannot realize all words of the type wq∗r, r ∈ N, within the language. As we will argue
precisely in Lemma 3.11, if a long enough path contains w (and w is not at the beginning
of the path) then the path must contain wq∗r for some r ∈ N (the case r = 1 is possible)
entering the loop at some point, and then leaving. The next definition characterizes
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the paths of minimum length that begin and end outside of the loop wq∗2 but also
visit w.

Definition 3.8. Let q be a valid step for w in L. The word z is called an exit word for
w with step q if it has a representation z = pwq∗r s with |p|, |s| ≤ q such that all of the
following hold:
(1) pwq∗r s ∈ L;
(2) pwq∗r is not a suffix of wq∗(r+1) but p[2,|p|]wq∗r is; and
(3) wq∗r s is not a prefix of wq∗(r+1) but wq∗r s[1,|s|−1] is.

Remark 3.9. If wq∗r = wq
′∗r ′ for some q ′ < q and r ′ > r , it is possible that there are

different choices of pairs (p, s) and (p′, s′) so that

z = pwq∗r s and z = p′wq ′∗r ′s′

form different representations of the same exit word for w. For example, if we take w =
14 = 1111 (so n = 4) then the exit word z = 01150 may be represented by the following
choices of parameters: p = 0, s = 110, q = 3, r = 4, and p′ = 01, s′ = 0, q ′ = 2, r ′ = 6.

LEMMA 3.10. Let w ∈ Ln and let q be a minimal step for w in L. If z is an exit word for
w with step q, then:
(1) the representation of z as pwq∗r s is unique; and
(2) |z|w = r , that is,

{1 ≤ i ≤ |z| − n : z[i,i+n−1] = w}
contains exactly r values.

Proof. We begin with part (2). First, let j = |p| + 1 be the starting position of wq∗r in z.
Then

z[j+q(i−1),j+qi−1] = w (23)

for 1 ≤ i ≤ r , so |z|w ≥ r . Assume that there is some other position k with 1 ≤ k ≤ |p| +
|s| + (r − 1)q + 1 that is not of the form |p| + 1 +mq for some m in 0, . . . , r − 1 such
that z[k,k+n−1] = w. We will obtain a contradiction.

We may assume that there exists i in 1, . . . , r such that 0 < |j + q(i − 1)− k| =:
q ′ < q, because otherwise either k = 1 and |p| = q, or k = |p| + |s| + (r − 1)q + 1 and
|s| = q, and both of these can be seen to contradict the definition of an exit word. The
assumed inequalities imply that q ′ < q is a valid step for w, and this contradicts the
minimality of q.

Now part (1) follows immediately, as the positions of w in z are completely determined
by part (2) and so is the position of wq∗r .

Recall that a sequence x ∈ AN is eventually periodic if for some (n′, p) ∈ N × N we
have xj+p = xj for all j ≥ n′. If a subshift X is minimal and its language L is aperiodic,
then no x ∈ X is eventually periodic.
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LEMMA 3.11. Let X be a subshift. If x ∈ X is not eventually periodic and q is a
minimal valid step for w ∈ Ln, then for each beginning position j ∈ N of w in x (i.e.
x[j ,j+n−1] = w) exactly one of the following must hold:
(1) x[1,j+n−1] is a suffix of wq∗r where r = �(j − 1)/q� + 1; or
(2) there exists a unique exit word z of w with step q with an occurrence in x that

contains w at position j , that is, there exists k < j so that z = x[k,k+|z|−1] and
k + |z| − 1 > j + n− 1.

Proof. Define

j1 = min{k ∈ [1, j ] : x[k,j+n−1] is a suffix of wq∗r },
and note that the set in question contains j , so it is non-empty. The condition j1 = 1 is
equivalent to item (1). In this case, if x[j ,j+n−1] were part of an exit word pwq∗r0s in x,
then by Lemma 3.10, x[j ,j+n−1] would have to be one of the r0 many occurrences of w in
pwq∗r0s. In other words, the exit word would have to begin at position j −mq − |p| ≥ 1
for some m ≥ 0. By the definition of exit word, pwq∗r0 is not a suffix of wq∗(r0+1) and so
x[j−mq−|p|,j+n−1] is also not a suffix of wq∗(r0+1), which in turn implies it is not a suffix
of wq∗r . This contradicts the definition of j1. In other words, items (1) and (2) cannot hold
simultaneously. If (1) fails, then j1 > 1 and we further define

j2 = max{k ≥ j : x[j ,k+n−1] is a prefix of wq∗∞}.
Note that the set in question contains j , so it is non-empty. Furthermore, because x is
not eventually periodic, j2 < ∞. Then x[j1−1,j2+n] is an exit word of w with step q, with
representation p′wq∗r ′s′, where

p′ = x[j1−1,j−�(j−j1)/q�q−1] and s′ = x[j+�(j−j1)/q�q+n,j2+n],

so that r ′ = �(j2 − j)/q� + �(j − j1)/q� + 1. Indeed, because w only appears in
positions mq + 1 for m ≥ 0 in the sequence wq∗∞, the word p[2,|p|]wq∗r

′
q[1,|q|−1] =

x[j1,j2+n−1] is a subword of wq∗∞, and therefore p[2,|p|]wq∗r
′

is a suffix of wq∗(r ′+1) and
wq∗r ′s[1,|s|−2] is a prefix of wq∗(r ′+1). Furthermore by definition of j1 and j2, pwq∗r ′ is
not a suffix of wq∗(r ′+1) and wq∗r ′s is not a prefix of wq∗(r ′+1).

For similar reasons, the exit word z must be unique. If there were two, say pwq∗r s
and p′wq∗r ′s′, then x[j ,j+n−1] would have to appear in one of the r or r ′ many positions
allotted by Lemma 3.10. This, along with the suffix and prefix properties of exit words,
forces r = r ′ and furthermore that the beginning positions of wq∗r and wq∗r ′ containing
x[j ,j+n−1] are equal. Likewise, by these same properties, the beginning and ending
positions of pwq∗r s and p′wq∗r ′s′ must be equal, giving p = p′ and s = s′.

COROLLARY 3.12. Let x ∈ AN with language L = Lx and w ∈ Ln with minimal valid q
and z = pwq∗r s, z′ = p′wq∗r ′s′ be exit words of w with step q. If z begins at position i
of x and z′ begins at position i′ > i of x, then i′ ≥ i + |z| − n. Moreover, even if these
occurrences overlap (i.e. i′ < i + |z|), x still contains at least r + r ′ occurrences of w in
this common interval. In other words, |x[i,i′+|z′|−1]|w ≥ r + r ′.
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Proof. Consider the Rauzy graph �∗
n of size n for the full language A∗. Because q is valid,

wq∗2 ∈ A∗ is defined. Moreover,wq∗2 (andwq∗r for r > 2) is realized as a directed circuit
L of edges in �∗

n. Specifically, L is the circuit with vertices (in order) v1, . . . , vq+1, where
v1 and vq+1 correspond to the word w, and for i = 2, . . . , q, vi corresponds to the word
(wq∗2)[i,i+n−1]. Because of Corollary 3.7, this circuit is vertex self-avoiding (except for its
initial and final points). In other words, if vi = vj , then either i = j or i, j ∈ {1, q + 1}.
The edges of L are (in order) e1, . . . , eq , where ei begins at vi and ends at vi+1, and ei
corresponds to the word (wq∗2)[i,i+n]. Then the word wq∗r corresponds to fully traversing
this circuit r − 1 times, starting at v1 and ending back at v1 = vq+1. (When r = 1, we start
at v1 and do not cross any edges.)

Let

ei = z[i,i+n], 1 ≤ i ≤ |z| − n,

be the consecutive edges of the path represented by z in �∗
n. We claim now that e1 /∈ L. To

prove this, note that by definition of an exit word, the word z[2,n+1] must correspond to a
vertex u in L, whereas the vertex u′ corresponding to z[1,n] cannot equal u′′, the vertex in
L that directly precedes u. If u′ /∈ L, then e1 /∈ L. Otherwise, if u′ ∈ L but e1 ∈ L, then
the edge from u′ to u and the edge from u′′ to u are both in L. They are distinct because
u′ �= u′′, and they are non-trivial (not self-loops) because if either of u′ or u′′ were equal
to u, then L would contain only one vertex, and this would contradict u′ �= u′′. However
there is only one edge in L which ends at u, since L is a vertex self-avoiding path. This
shows that e1 /∈ L.

An argument similar to the above shows that e|z|−n /∈ L. Furthermore, the definition
of an exit word mandates that for all i = 2, . . . , |z| − n− 1, ei ∈ L. Likewise, the edges
e′i for z′ (defined analogously) in �∗

n also satisfy e′1, e′|z′|−n �∈ L while e′i ∈ L otherwise.
Therefore the position i′ of z′ must be at least at the position of e|z|−n in z at i, or

i′ ≥ i + |z| − n.

If z and z′ do not overlap (i′ ≥ i + |z|), then the inequality |x[i,i′+|z′|−1]|w ≥ r + r ′
is immediate. If the words overlap, we can conclude the same lower bound using
the inequality i′ ≥ i + |z| − n. Indeed, there are r occurrences of w in the word z at
locations |p| + 1, |p| + q + 1, . . . , |p| + (r − 1)q + 1 (corresponding to wq∗r ), and this
last occurrence at position |p| + (r − 1)q + 1 satisfies

|p| + (r − 1)q + 1 < |z| − n,

This means that there are r occurrences ofw at indices less than i + |z| − n in x. Similarly,
there are r occurrences of w at indices greater than i′ in x (corresponding to wq∗r ′). This
gives a total of at least r + r ′ occurrences of w in the common interval.

Remark 3.13. Concerning the last statement of Corollary 3.12, in the common overlapping
interval of z and z′ a w may begin in z and end in z′ (but not occur as subword of
either). More precisely, w may begin at position j for i + |z| − n < j < i′. Although not
necessary for this work, one can show the following: if q is the minimal valid step for
w ∈ Ln and there exists q ′ ≤ n− q so that (15) holds for q ′, then q ′ is a multiple of q
and for any r ≥ 1 we have wq

′∗r = wq∗(kr−k+1), where q ′ = kq. Using this fact, it may

https://doi.org/10.1017/etds.2020.134 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.134


108 M. Damron and J. Fickenscher

be shown that j must belong to an interval of length at most 4q − n− 4. We would then
have |x[i,i′+|z′|−1]|w ≤ r + r ′ + 2 as q ≤ n/2 and in fact |x[i,i′+|z′|−1]|w = r + r ′ if, for
instance, q ≤ n/4.

Remark 3.14. Given w in L of length n with minimal step q, let z = pwq∗r s be an
exit word, noting that |z| = n+ q(r − 1)+ |s| + |p| ≥ n+ 2. Let u = z[2,n+1] and v =
z[|z|−n,|z|−1]. By definition, u and v are subwords of wq∗2 ∈ L, so let their respective
positions in wq∗2 be i > 1 and j ≤ q, noting that the word at position 1 is w, which
is also in position q + 1. Let a be the letter such that the left extension au satisfies
au = w

q∗2
[i−1,i+n−1]. By definition of an exit word, if a′ is the letter satisfying a′u = z[1,n+1],

then a′ �= a. Likewise if b is the letter satisfying vb = w
q∗2
[j ,j+n], then vb′ = z[|z|−n,|z|]

where b′ �= b. Furthermore, the words a′u = z[1,n+1], vb′ = z[|z|−n,|z|] and the parameter
r uniquely define z. We can see this by using the notation of the previous proof of
Corollary 3.12. Write L for the self-avoiding circuit in the Rauzy graph �∗

n with the
property that wq∗2 (with q minimal) corresponds to beginning at w, traversing this circuit
once, and ending back at w. Then we have seen that an exit word pwq∗r s corresponds to
starting at a vertex, taking an edge not in L but whose other endpoint is in L, traversing L
until we reach w, following the circuit L r − 1 times, then moving to another vertex of L,
and then taking one edge not in L. (The last portion of the path after the r − 1 iterations
of L follows L only partway and does not touch w, since Lemma 3.10 mandates that the
traversal only touchw a total of r times.) The words a′u and vb′ above indicate the entrance
and exit edges to and from L, and the parameter r indicates the number of traversals of L.

LEMMA 3.15. Under the RBC with related constant K and large enough word w in the
language, the set of exit words X of minimal valid step q for w contains at most 2K2

elements.

Proof. We begin by proving that if z = pwq∗r s ∈ X and z′ = pwq∗r ′s ∈ X , r ≤ r ′, have
the same prefix and suffix, but possibly different middle repetition, then either r ′ = r or
r ′ = r + 1. Suppose by contradiction that r ′ ≥ r + 2 and consider the word y = z[2,|z|−1]

obtained by removing the first and last letters of z. Note that

y = z′[2,1+|y|] = z′[2+q,1+q+|y|] = · · · = z′[2+(r ′−r)q,1+(r ′−r)q+|y|]

We will argue that y is bispecial but not regular bispecial, violating the RBC.
First, y is left special, as the occurrences of y at positions 2 and 2 + q in z′ have
different left extensions. Likewise, y is right special, as the occurrences of y at positions
2 + (r ′ − r − 1)q and 2 + (r ′ − r)q have different right extensions. Therefore y is
bispecial. Let b be defined by yb = z[2,|z|], noting that yb = z′[2+(r ′−r)q,2+(r ′−r)q+|y|] as
well. Because z is an exit word, the left extension z of yb must differ from the left
extension z′[1+(r ′−r)q,2+(r ′−r)q+|y|] and so yb is left special. However, if b′ is defined
by yb′ = z′[2,2+|y|] then yb′ = z′[2+q,2+q+|y|] as well and b′ �= b. Similarly, z′[1,2+|y|] and
z′[1+q,2+q+|y|] are distinct left extensions of yb′. Because y admits two left special right
extensions, it is not regular bispecial as claimed.
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Recall from Remark 3.14 that an exit word z for w is uniquely determined by the
words z[1,n+1] = a′u, z[|z|−n,|z|] = vb′, and the parameter r . Note that any such u is left
special because, in addition to the left extension a′u, there is also another left extension
au which is a subword of wq∗2 (it corresponds to an edge which follows the circuit to
which wq∗2 corresponds). So by (7), there are at most K choices for a′u. Likewise there
are at most K choices for vb′ and therefore at most K2 choices for pairs (a′u, vb′). Each
such pair determines p and s in any representation z = pwq∗r s by the method described
in Remark 3.14. (One enters the circuit L using the edge described by a′u, moves to w,
makes r − 1 traversals of L, and leaves through an edge described by vb′. Then p is the
prefix of any such z up until the first location ofw.) Once p and s are determined, there are
at most two choices for r , and therefore there are at most 2K2 exit words as desired.

4. Just graphs and colors
Instead of remembering where �s and the corresponding C rules come from (the
underlying shift and ergodic measures, respectively), in this section we will define abstract
graphs and coloring functions satisfying a set of properties. We will then show (in
§§4.3–4.5 and prove in §7) that such graphs cannot have more than (K + 1)/2 N-loops of
different colors (see Corollary 4.10). In §4.2, we will first show this conclusion for 2-loops.
The 2-loop case is presented first (although it falls under the general case) because it is
easier to prove and conveys some of the principal arguments used in the general case.

These results will be used in §6, where we will construct special Rauzy graphs and
coloring functions (from subshifts that obey the RBC) satisfying the properties outlined
in this section, meaning Notation 1 and Rules Lists 1–4. We will then conclude that such
graphs cannot support more than (K + 1)/2 N-loops of different colors, and deduce our
main theorem, Theorem 1.1.

Notation 1. With or without decoration (primes, tildes, etc.), � will be a directed
(multi)graph such that, for given integers K > 2 and 1 ≤ K	, Kr ≤ K:
(N.1) � has K	 +Kr vertices;
(N.2) K	 of the vertices are left special, meaning they each have at least two incoming

edges and exactly one outgoing edge;
(N.3) Kr of the vertices are right special, meaning they each have exactly one incoming

edge and at least two outgoing edges;
(N.4) � has K +K	 +Kr edges (it is possible that distinct edges e and e′ share the

same initial and terminal vertices, because this is a multigraph);
(N.5) � is strongly connected, meaning for any two vertices u and v in �, there exists a

directed path in � from u to v.
Items (N.1)–(N.5) above imply in particular that � cannot have any ‘self-loops,’ meaning
edges that begin and end at the same vertex. Indeed, if u had a self-loop and were, for
example, left special, then there would not be a path from u to any other distinct vertex v
in �.

With each graph, there will be an associated coloring rule C on the vertices and edges
of � that takes values in N ∪ {0}. By this we mean:
(N.6) C(v) ∈ N ∪ {0} is defined for each vertex v in �;
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(N.7) C(e) ∈ N ∪ {0} is defined for each edge e in �;
(N.8) if C(e) �= 0 for an edge e from u to v in �, then C(u) = C(v) = C(e).

Remark 4.1. In this section we are treating C as a function whose image is a subset of
N ∪ {0}. However, when we justify these rules and definitions for graphs derived from an
appropriate subshiftX in §6, C will have image E(X) ∪ {0}. Upon first reading here, it may
help to associate the number 0 to the symbol 0 (‘not colored’) and associate any positive
integer to a measure in E(X).

We impose the following rules on C. Moving forward, we assume these hold for C.
(In §6 we justify why these rules must hold for our systems.)

Rules List 1. (Rules concerning one graph) For �, C, and some integer E > 0, we make
the following requirements.
(R1.1) C only assigns values in {0, 1, . . . , E}.
(R1.2) For each ν ∈ {1, . . . , E}, there exist at least one left special u and at least one

right special v such that C(u) = C(v) = ν.
(R1.3) If for a vertex v we have C(v) �= 0, then there exist edges e, e′ such that e ends at v,

e′ begins at v and C(e) = C(e′) = C(v). As a consequence, C(u) = C(w) = C(v)
as well, where e begins at u and e′ ends at w. Note that by our assumptions in
Notation 1, v /∈ {u, w}, although it is possible that u = w.

(R1.4) If C(e) �= 0 for an edge e in �, then there exists a closed directed path (i.e. a
directed circuit) in � containing the edge e such that each edge e′ in the path
satisfies C(e′) = C(e).

4.1. Regular bispecial moves. We now consider regular bispecial (RBS) moves to
transition from one graph � to a new graph �′. These moves give us dynamics on the
sets of graphs and coloring functions, and only RBS moves are allowed to transition
between graphs. (These moves have counterparts on special Rauzy graphs constructed
from subshifts, as will be shown in §6). An edge e0 from a vertex u to a vertex v is said to
be bispecial if u is left special and v is right special. Fix such an edge e0 and its vertices v
and u. Note that if e0 is bispecial, then it is the unique edge from u to v. Let e1, . . . , eL be
the distinct edges that end at u and ẽ1, . . . , ẽR be the distinct edges beginning at v. It may
be the case that ei = ẽj for some is and js. For each i = 1, . . . , L we define yi to be the
vertex at the beginning of ei , and for each j we let zj be the ending vertex of ẽj .

We will now define an RBS move from � to a graph �′. The rigorous definition will
follow this paragraph, but informally we will be removing the edge e0 from the graph as
well as the vertices u and v, reattaching v as the ending vertex of ei0 for a single i0 with
1 ≤ i0 ≤ L, reattaching u as the beginning vertex of ẽj0 for a single j0 with 1 ≤ j0 ≤ R,
reattaching the ei , i �= i0, to end at u, reattaching the ẽj , j �= j0, to begin at v, and then
replacing e0 with an edge from v to u. See Figure 1 for an example with L = R = 3 and
i0 = j0 = 1.

For the full definition, we first define an auxiliary graph �̃. This graph �̃ has the vertices
from � except u and v, and we add new vertices x1, . . . , xL, x̃1, . . . , x̃R . For each edge
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FIGURE 1. A regular bispecial move.

e �∈ {e0, e1, . . . , eL, ẽ1, . . . , ẽR} from � we have an edge in �̃ with the same beginning
and ending vertices. For each ei , 1 ≤ i ≤ L, we include in �̃ an edge that begins at yi
but ends at xi if ei �∈ {ẽ1, . . . , ẽR}. If ei = ẽj for some 1 ≤ j ≤ R, then we include in
�̃ an edge beginning at x̃j and ending at xi . For each ẽj , 1 ≤ j ≤ R, that is not an
element of {e1, . . . , eL} we include an edge in �̃ from x̃j to zj . Then for the single
1 ≤ i0 ≤ L and 1 ≤ j0 ≤ R, we replace e0 in � with an edge from xi0 to x̃j0 in �̃. Note
that this graph is not strongly connected as no edge begins at xi �= xi0 and no edge ends
at x̃j �= x̃j0 .

To create �′, we have the same vertices as �. For each edge e in �̃ let q and q ′ be its
beginning vertex and ending vertex, respectively. We then include in�′ an edge from�(q)

to �(q ′) where � is a function from the vertex set of �̃ to the vertex set of �′ given by

�(p) =

⎧⎪⎪⎨⎪⎪⎩
u, p = x̃j0 or p = xi for i �= i0,

v, p = xi0 or p = x̃j for j �= j0,

p, otherwise.

In particular, if an edge e was copied from� to �̃ without modification then that edge will
remain unaltered in�′. Moreover, each edge e in�may be naturally associated to an edge
in �′ and we refer to this edge also as e without ambiguity.

An RBS move is a transformation as described above such that the resulting graph �′
remains strongly connected. For example, if y2 = y3 = z1 and y1 = z2 = z3 in Figure 1
then the choice i0 = j0 = 1 shown would not define an RBS move. However, the choice
i0 = 2, j0 = 1 would define an allowed RBS move.

The coloring rule C′ for �′ will be related to the rule C for �. We currently assume
these rules hold, and will justify this assumption in §6.

Rules List 2. (RBS moves and colors) Let � have coloring C and let �′ be the result of
the RBS move with the vertex and edge names defined in this section. Then coloring rule
C′ for �′ must satisfy the following requirements.
(R2.1) If q is a vertex in �′ not equal to u or v, then C′(q) = C(q).
(R2.2) If e �= e0 is an edge in �, then C′(e) = C(e).
Furthermore, both C and C′ must satisfy Rules List 1.
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4.2. Just 2-loops. In this section we give a special case of our main result on abstract
graphs: under the rules listed in the last section, � can have distinct colors on at most
(K + 1)/2 many 2-loops from Definition 2.18. (See Corollary 4.6.) The argument we
employ will be referred to as a separation argument. The basic strategy is to show
that if C assigns distinct colors to a collection of 2-loops, then the graph produced
from � by removing these loops must be connected (i.e. the loops cannot separate
the graph). A counting argument then shows that the number of such loops is at most
(K + 1)/2.

Given Rules List 1, the minimal preimage of ν ∈ {1, . . . , E} comes from a 2-loop,
meaning a pair of vertices u and v, with u left special and v right special, an edge e0 from
u to v and an edge e1 from v to u such that

C−1(ν) = {u, v, e0, e1}.

We recall the edges e1, . . . eL, ẽ1, . . . , ẽR and vertices y1, . . . , yL and z1, . . . , zR from
§4.1 and assume in this case that e1 = ẽ1. We also note that y1 = v and z1 = u. As before,
an RBS move is defined by the choices 1 ≤ i0 ≤ L and 1 ≤ j0 ≤ R.

There are exactly two types of allowed RBS moves on the edge e0:
(m1) If i0 = j0 = 1, the RBS move actually preserves the 2-loop from� to�′. Here the

roles of e0 and e1 switch as e0 is from v to u in �′ and e1 is from u to v.
(m2) If i0 �= 1 and j0 �= 1, the 2-loop becomes ‘undone’, meaning both edges e0 and e1

are from v to u in �′.
If only one of i0 or j0 is equal to 1, then one can check that the resulting graph �′ is not
strongly connected. See Figure 2 for an example of each type of move with L = R = 3.

For graphs constructed from subshifts in §6, a 2-loop with non-zero color is preserved
(and keeps its color) for a number of RBS moves of the first type (m1) above until the RBS
move of the second type (m2) occurs. In the resulting graph, the color must pass along at
least one incoming and at least one outgoing edge into the rest of the graph. As Rules List
2 shows, the color must have been passed along those analogous edges in � as well. We
will explain the subtleties that complicate this idea in §6. However, for now we will state
what we need in terms of colorings and graphs. As with all of our rules, we are assuming
these hold and will justify our assumptions in that section as well.

Rules List 3. (Acceleration for 2-loops) Given a fixed choice of 2-loops in�with coloring
C (a) satisfying Rules List 1 and (b) such that all the fixed 2-loops have distinct non-zero
colors, there exists�′ with coloring C′ (also satisfying Rules List 1) such that the following
requirements are met.
(R3.1) �′ is the result of a finite sequence of RBS moves acting on �.
(R3.2) The fixed 2-loops remain in �′ from �, meaning no RBS moves other than type

1 above from� to�′ have acted on these 2-loops. Furthermore, C′ agrees with C
on the fixed 2-loops that are colored by C.

(R3.3) There exists at least one fixed 2-loop in �′ colored by ν �= 0 such that C′ colors
at least one edge leaving the 2-loop and at least one edge entering the loop by ν.
In other words, the color ν ‘spreads’ outside the 2-loop in �′.
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FIGURE 2. The RBS moves possible on a 2-loop. The left move preserves the 2-loop while the right move
eliminates it.

Definition 4.2. For a graph� and a set L of edges in�, � \ L is the graph obtained from
� by removing the edges in L. L disconnects� if� \ L is weakly disconnected, meaning
� \ L contains more than one weakly connected component.

In this work, L will be completely composed of loops, and we want to consider L to be
a collection of loops rather than a collection of edges.

Definition 4.3. If P = {L1, . . . , Lκ} is a partition of a set L of edges of � and L

disconnects �, then P is a minimal disconnecting partition if for each i ∈ {1, . . . , κ},
L \ Li does not disconnect �.

When P is understood, we will suppress its appearance in the notation. According to
(R3.3), it may be the case that the ν-colored edge leaving the 2-loop L0 that ‘spreads’ is
also the ν-colored edge entering the 2-loop. This is possible if there are multiple edges
from right special v to left special u that are visited by L0. Such a case remains compatible
with our arguments below as only one edge from v to u is included in L0 while any other
such edge is part of the graph �′ \ L0. In particular, L0 would never be part of a minimal
disconnecting partition (as in the proof of Lemma 4.5) because there exists at least one
edge from v to u in �′ \ L0.
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Remark 4.4. If L disconnects � and P is a partition of L, then there exists P ′ ⊆ P that
is a minimal disconnecting partition with disconnecting set L′ = ∪Li∈P ′Li , although the
choice of P ′ may not be unique.

LEMMA 4.5. Let � and C satisfy Rules List 1 and suppose we may apply Rules List 3 to
any choice of non-zero-colored 2-loops. If L is a union of all edges from a collection of
distinctly colored 2-loops in �, then L cannot disconnect �.

Proof. We will use a separation argument. Assume for a contradiction that L disconnects
�. Let P be the partition of L into the 2-loops, and choose a minimal disconnecting
partition P ′ ⊆ P . Then L′ = ⋃

Li∈P ′ Li disconnects �. If u and v are the left special and
right special vertices respectively of a 2-loop in Li ∈ P ′, let Cu and Cv be the respective
weakly connected components containing u and v in � \ L′. If Cu = Cv , then L \ Li is a
disconnecting set of edges for �, contradicting that P ′ is a minimal partition. Therefore
Cu �= Cv .

By Rules List 3, accelerate to �′ with C′ using P ′ as our chosen fixed 2-loops and
let L ∈ P ′ be a 2-loop whose color ‘spreads’ in �′ with non-zero color ν (from (R3.3)).
Because only moves of type 1 (those that preserve a 2-loop) occur from� to�′, any other
RBS moves must occur on edges whose vertices are not in the 2-loops from P ′ and these
do not alter the connected components (viewed as vertex sets) from � \ P ′. Therefore �′
is disconnected by P ′. If u (respectively, v) is the left (respectively, right) special vertex
in the 2-loop L, then by Rules List 1 there must exist a directed path in �′ with color ν
that begins at v, ends at u and does not contain the edge from v to u in L. Furthermore,
this path cannot intersect any edge in L′ as the other 2-loops have non-zero colors different
than ν. This implies that the weakly connected component containing v in �′ \ L is equal
the weakly connected component containing u, a contradiction.

COROLLARY 4.6. If � and C as are in Lemma 4.5, then there may be at most (K + 1)/2
distinct colors on 2-loops.

Proof. Let P = {L1, . . . , Lκ} be a set of distinctly colored 2-loops in � such that every
color ν on a 2-loop in � is included and let L = ⋃κ

i=1 Li . Let Ks be the number of
s-special vertices in �, s ∈ {	, r}. Removing the 2κ edges of L from � results in graph
� \ L with K	 +Kr vertices and K +K	 +Kr − 2κ edges. By Lemma 4.5, L cannot
disconnect �, and to be weakly connected, a graph with V vertices must have at least
V − 1 edges. Therefore,

K +K	 +Kr − 2κ ≥ K	 +Kr − 1 ⇒ κ ≤ K + 1
2

,

as desired.

4.3. Larger loops: behavior. While 2-loops are relatively simple, Rules List 1 does
allow for ν ∈ {1, . . . , E} to color more than two vertices. However, in such an event
we may still associate to ν an N-loop, N ≥ 3, meaning a directed circuit of N edges
in � colored by ν. (Here we address all values of N simultaneously.) Note that ν may
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color more edges and we choose for simplicity to restrict our attention to just one N-loop
per color. Having extra colored edges will not alter or otherwise interfere with our
arguments. By (R1.4), for every ν ∈ {1, . . . , E}, there is an N-loop with color ν.

The allowable RBS moves on an N-loop, N ≥ 3, will now be described. Two of the
moves will be analogous to those for 2-loops, while a third move will only apply to larger
loops. As in the previous sections, let e0 denote a bispecial edge from a vertex u to a
vertex v in ourN-loop. Using prior notation for edges e1, . . . , eL, ẽ1, . . . , ẽR and vertices
y1, . . . , yL, z1, . . . , zR , assume e1 is the edge ending at u in the N-loop and ẽ1 is the
edge leaving v in the N-loop. The following list describes all allowable types of RBS
moves. As in §4.2, we assume the RBS move is defined by the choices 1 ≤ i0 ≤ L and
1 ≤ j0 ≤ R.
(M1) Twist move. In this case i0 = j0 = 1. After untangling, the order of u and v is

reversed in the N-loop, while all other edges are preserved. In a 2-loop, this would
simply preserve the loop. See Figure 3(a).

(M2) Shrink move(s). Either i0 = 1 and j0 �= 1 or i0 �= 1 and j0 = 1. After the move,
one of the vertices is removed from the N-loop, resulting in an (N − 1)-loop.
Figure 3(b) shows a shrink move that removes u from the N-loop and there is
an analogous move that removes v from the N-loop instead. This move is only
allowed if the removed s-special vertex is not the only s-special vertex in the
N-loop initially. For example, in Figure 3(b) either y1 or z1 must be left special.
This is never allowed in a 2-loop.

(M3) Collapse move. In this last case i0 �= 1 and j0 �= 1. After the move, the N-loop
becomes collapsed into two paths given by edge e0 from v to u and a new path
from v to u along the remaining N − 1 edges. This is shown in Figure 3(c) and is
the analogue of the second type of move for 2-loops described at the beginning of
§4.2. By Rules Lists 1 and 2, a non-zero color on the N-loop in�must agree with
the coloring on ei0 and ẽj0 (‘outside’ edges) by both C and C′.

Note that a twist move (M1) only permutes the order of two vertices within the N-loop
itself but does not otherwise alter the graph structure. For example, the outside edges that
end at u still do so after the move and likewise for the outside edges beginning at v. Thus
each N-loop is preserved for a number of moves of the first type until a move of either the
second or third type, (M2) or (M3), occurs. Similar to the 2-loop case, we want to focus
on a collection of N-loops until either a shrink move (M2) occurs or an N-loop passes its
color to outside edges. We again do not know (or care) what happens to the other colors
and want to apply a separation argument.

However, we are met with a complication due to shrink moves. The general strategy of
the separation argument, as introduced in §4.2, is that we begin with a purported minimal
disconnecting partition (of N-loops here) in � and accelerate the graph to �′ when one
of the N-loops spreads its color. If the given collection of N-loops is still a minimal
disconnecting partition in �′, we get a contradiction, as one loop spreads color to another,
but this assumption may no longer hold. Consider the move in Figure 3(b) with N-loop
colored by ν. Let us assume that every directed path from y3 to z3 in � touches u, which
is part of the pictured N-loop. Thus the N-loop disconnects y3 from z3, and so no color
ν′ �= ν can pass from y3 to z3. However, after the shrink move (M2) that transforms � to
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(a) A twist RBS move from (M1).
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(b) A shrink RBS move from (M2). In Λ′ a path from y3 to z3 exists that avoids the loop.
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(c) A collapse RBS move from (M3). Here Λ′ has been untangled.

FIGURE 3. The types of RBS moves on u → v in an N -loop.

�′, the resulting (N − 1)-loop no longer disconnects y3 from z3. If u is not colored by ν
in �′, then the color ν′ can freely pass from y3 to z3. This demonstrates the fact that a
minimal disconnecting partition in � need not be one in �′. We will address this issue in
two steps. In §4.4 we will form the N-loop analogue of Rules List 3. In §4.5 we will make
an auxiliary graph on which we will form our minimal separating partition argument for
our main proof.

4.4. Larger loops: itineraries. We will use the previous section’s notions of N-loops
and outside edges, meaning edges that are not part of the N-loop but either begin or end
at a vertex visited by the N-loop. The next definition is meant to articulate the following
idea: we want to select a set of loops and ‘follow them’ while they undergo RBS moves.
Twist moves do not alter the graph outside of the loops, so we want to accelerate through
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RBS moves until at least one loop either shrinks or passes its color along at least one pair
of outside edges. In the case of 2-loops, this was given simply by Rules List 3.

Definition 4.7. If � has a colored N-loop L (colored by the function C) and �′ is the
result of applying a finite ordered list of RBS moves to � such that
(1) the only moves acting on vertices of L are twist and shrink moves,
(2) the color on L is preserved by C′ for �′, and
(3) the color of L passes along at least one outside edge entering and one outside edge

leaving L in �′ (this may be one edge that both leaves and enters the N-loop),
then we say that L experiences a spread event from � to �′.

As we will show in §6, in the graphs we construct from subshifts, every N-loop must
eventually undergo a collapse move and must therefore experience a spread event.

The next definition is used in our final rules list. As with the other lists, this one will be
justified in §6 for graphs � constructed from subshifts.

Definition 4.8. Given � with coloring C and fixed collection of N-loops P (each colored
by a distinct non-zero color), an itinerary is a sequence

(�(i), C(i), P(i))Mi=0

of graphs, colorings, and N-loop collections respectively, and a sequence L = (Li )M−1
i=0 of

finite ordered lists of RBS moves so that

(�(0), C(0), P(0)) = (�, C, P).

In addition, if i ∈ {0, 1, . . . , M − 1}, we have the following statements.
(I.1) �(i+1) is obtained from �(i) by using the list Li of RBS moves.
(I.2) The only moves acting on N-loops from P(i) from �(i) to �(i+1) are the twist and

shrink moves described in the previous section.
(I.3) At least one of the following occurs from �(i) to �(i+1):

(a) at least one loop in P(i) is shrunk by at least one RBS move,
(b) at least one loop in P(i) undergoes a spread event.
At most one type of event (shrink or spread) may occur per N-loop in P(i) from
�(i) to �(i+1). Multiple shrink moves are permitted to simultaneously occur on a
particular N-loop in P(i) (these moves will act on edges that pairwise do not share
endpoints in the N-loop).

(I.4) If an N-loop in P(i) undergoes shrink moves and twist moves from �(i) to �(i+1),
then the list Li contains all twist moves before any of the shrink moves.

(I.5) The loops from P(i+1) are the loops in P(i) that did not spread, minus the edges
(and therefore vertices) jettisoned by shrink moves.

(I.6) C(i+1) agrees with C(i) on P(i+1) and any N-loops in P(i) that spread. Any vertices
lost by shrink moves will be uncolored by C(i+1).

(I.7) P(i) �= ∅ for i < M and P(M) = ∅.
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An itinerary notes the important sequential events that occur for each loop in P until
they are no longer of interest. We now are able to give our new rules list. As with our
previous lists, we will show this must be true in §6. This rules list is really telling us two
things: an itinerary as given in Definition 4.8 for P exists, and we may refine this itinerary
as needed. In particular, after creating our itinerary, we may then start over with a smaller
set of loops P∗ ⊆ P , and for these loops the relevant events we initially observed for P
will remain and occur in the same order.

Rules List 4. (Acceleration for N-loops) Given a fixed choice P of N-loops in � with
coloring C satisfying Rules List 1 (and each colored by a distinct non-zero color), there
exists an itinerary

(�(i), C(i), P(i))Mi=0.

For any other choice P∗ � P of N-loops, there exists an itinerary

(�
(j)∗ , C(j)∗ , P(j)∗ )

M∗
j=0

such that for some 0 = i0 < · · · < iM∗ ≤ M and all 0 ≤ j ≤ M∗:

(R4.1) �
(j)∗ = �(ij );

(R4.2) C(j)∗ = C(ij ); and
(R4.3) P(j)∗ = P(ij ) ∧ P∗, meaning P(j)∗ is the collection of all sets of the form L ∩ L′

where L ∈ P(ij ) and L′ ∈ P∗ such that the intersection is non-empty.

4.5. Larger loops: graph�. In order to find a minimal separating subset for a collection
of N-loops P we need to take into account the effect of shrink moves because these moves
can merge components together: as discussed previously, a shrink move may increase
connectivity in �(i+1) \ P(i+1) as compared to that in �(i) \ P(i).

For each ν ∈ {1, . . . , E}, choose a colored N-loop and let P be the set of all such
loops. By Rules List 4, there exists an itinerary for P . From this itinerary, we may extract
an ordered sequence of shrink RBS moves and spread events. If a spread event occurs from
�(i) to �(i+1) for a loop L ∈ P(i) we may mark or identify outside edges from which the
color of L spreads to �(i+1) \ L. These edges are consistently identified in �(j) for all
i ≤ j by using the associations made when defining RBS moves in §4.1.

Let m1, . . . , mτ be the twist and shrink moves, in order, extracted from the list L of
moves in our itinerary for P . We will now construct a new undirected (multi)graph �.
Informally, we will act on � by the twist and shrink moves m1, . . . , mτ (ignoring all
other moves) to arrive at new a graph �∗. As discussed in previous sections, we may
without ambiguity refer to the same loops L∗

1, . . . , L∗
E in �∗. From �∗ we will then

remove all edges from the loops in L∗
1, . . . , L∗

E to get a new undirected graph�∗. Finally,
we will create � by identifying all s-special vertices in L∗

ν as one new vertex νs for each
ν ∈ {1, . . . , E} and s ∈ {	, r}.

More specifically, act on � by the moves m1, . . . , mτ on loops L1, . . . , LE given by
the itinerary to arrive at new graph �∗. Note that each loop Lν must exist in �∗, as twist
moves only permute vertices while shrink moves may only act on Lν if it has at least three
edges. Call the resulting loops L∗

ν in�∗ for each ν ∈ {1, . . . , E}. Traversing each loop L∗
ν
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FIGURE 4. The local construction of �∗ and � from � around 4-loop Lν . Here we assume the xi do not belong
to an N -loop.

in �∗, we visit the same vertices we would visit when traversing Lν in � except for those
lost due to shrink moves, and the order of visitation may change due to twist moves.

We now create the undirected graph �∗. The vertices of �∗ are the same as those of �
(and�∗). For each edge e in�∗ that does not belong to a loopL∗

ν for some ν ∈ {1, . . . , E},
we add an undirected edge e′ that connects in�∗ the initial vertex of e in�∗ to the terminal
vertex of e in �∗.

Finally, we create � from �∗. Let V − be the collection of all vertices in �∗ that are
contained in a loop L∗

ν for some ν ∈ {1, . . . , E} and let

V + = {νs : s ∈ {	, r}, ν ∈ {1, . . . , E}}

be a new set of 2E vertices that do not belong to �∗. The vertices of � are then all those
that belong to �∗ except for those in V −, along with the new vertices in V +. Define a
function ψ on the vertices of�∗ to be ψ(w) = νs if w ∈ V − is an s-special vertex L∗

ν and
ψ(w) = w if w �∈ V −. For each edge e in �∗ (not �∗) we add an edge e′ to the edges of
� where e′ is induced by the image of ψ . See Figure 4 for an example of how to construct
� about a 4-loop.

Recall that � has K	 +Kr vertices and K +K	 +Kr edges, where Ks is the number
of s-special vertices in � for s ∈ {	, r}. For each ν ∈ {1, . . . , E} let N∗

ν be the number of
vertices (equivalently edges) in the loop L∗

ν in �∗ (after all shrink and twist moves have
been applied) and let N∗ be the sum of all the N∗

ν . We note that �∗ has the same number
of vertices (respectively, edges) as �, �∗ and � have N∗ fewer edges than �, and � had
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N∗ vertices removed and 2E vertices added. Therefore

#edge(�) = K +K	 +Kr − N∗,

#vert(�) = K	 +Kr + 2E − N∗, (24)

and so

#edge(�)− #vert(�) = K − 2E. (25)

In the next proposition, we will show that � must be weakly connected. As in the proof
of Corollary 4.6, #edge(�)− #vert(�) ≥ −1 or

K − 2E ≥ −1 ⇐⇒ E ≤ K + 1
2

, (26)

which is our main result. The proof of this proposition is given in §7.

PROPOSITION 4.9. Let � with coloring C satisfy Rules List 1 and let P be a collection of
distinctly colored N-loops. If we may find itineraries for �, C and P according to Rules
List 4 and construct � as in this section, then � must be weakly connected.

COROLLARY 4.10. Any coloring C on � satisfying the conditions in the previous
proposition must use at most (K + 1)/2 colors.

5. Ergodic theory on subshifts
We now build on the results from [DF17] and §2.4 concerning the upper density function
D(w, x), which is used to define the coloring function C. In §6 these results, along with
those from §2.4, will be used to justify the rules lists from §4 for graphs � constructed
from subshifts.

AssumeX is a transitive subshift on A with language L satisfying the RBC with growth
constantK . By Corollary 2.9 and Lemma 2.11 it must be thatX is actually minimal. Recall
that r(w, x, j), w ∈ L and x ∈ X, is 1 if w occurs in x beginning at a position within the
j th block of length (K + 1)|w| in x and 0 otherwise. If we define

SN(w, x) =
N∑
j=1

r(w, x, j) and DN(w, x) = 1
N
SN(w, x), (27)

then D(w, x) = lim supN→∞ DN(w, x).
The next lemma gives a lower bound for densities in the following situation. If, in any x,

one of z(1), . . . , z(p) occurs between any two occurrences of w, then there is a z(j) whose
density in x can be bounded below in terms of the density of w in x.

LEMMA 5.1. Let w ∈ Ln and suppose

B = {z(1), z(2), . . . , z(p)} ⊆ Lm

satisfies the following: for each y ∈ L, |y| > max{n, m}, and j , j ′ with 1 ≤ j < j ′ ≤
|y| − max{m, n} such that

y[j ,j+n−1] = y[j ′,j ′+n−1] = w
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(i.e. w occurs at least twice in y), there exist i, k with 1 ≤ i ≤ p and j ≤ k < j ′ so that
y[k,k+m−1] = z(i) (i.e. z(i) begins between the two occurrences of w). Then, for x ∈ X,
there exists j with 1 ≤ j ≤ p so that

D(z(j), x) ≥ 1
p(1 + 3n/m)

D(w, x).

Remark 5.2. If m ≥ n then the coefficient 1/4p may be used instead.

Proof of Lemma 5.1. For any large M ∈ N, consider x[1,M(K+1)nm] which is both the first
Mn of x’s (K + 1)m-blocks and the first Mm of x’s (K + 1)n-blocks. Between any two
beginnings of w in different (K + 1)n-blocks, there exists at least one z(i) in between. So
there must be z(jM) that occurs at least (1/p)(SMm(w, x)− 1) times. Of these occurrences,
we claim that at most 3 + (m/n) of them may begin in the same (K + 1)m-block.

Indeed, if m ≤ n then any (K + 1)m-block may overlap with at most two (K +
1)n-blocks. If m = kn, then each (K + 1)m-block overlaps exactly k = m/n Ln-blocks.
If m = kn+ k′ for integer 0 < k′ < n, then each (K + 1)m-block may overlap at most
2 + (m/n) many (K + 1)n-blocks. In all cases, the number of beginnings of z(jM) in a
(K + 1)m-block is at most 1 plus the number of overlapped (K + 1)n-blocks.

It follows then that

SMn(z(jM), x) ≥ 1
p(3 +m/n)

(SMm(w, x)− 1)

or

DMn(z(jM), x) ≥ 1
p(3 +m/n)

m

n
DMm(w, x)− 1

Mp(3n+m)

= 1
p(1 + 3n/m)

DMm(w, x)− 1
Mp(3n+m)

.

Fix an infinite subset M ⊆ N so that
(1) D(w, x) = limM
M→∞ DMm(w, x), and
(2) j = jM for fixed j and all M ∈ M.
By taking the limsup over M we have

D(z(j), x) ≥ lim sup
M
M→∞

DMn(z(j), x)

≥ lim
M
M→∞

1
p(1 + 3n/m)

DMm(w, x)− 1
Mp(3n+m)

= 1
p(1 + 3n/m)

D(w, x),

as desired.

The next lemma appeared in [DF17] and the proof is similar to the one for Lemma 5.1
above.
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LEMMA 5.3. (in [DF17, Lemma 3.7]) If w′ is a subword of w ∈ A∗ and x ∈ AN, then

D(w′, x) ≥ |w′|
2|w|D(w, x).

In the arguments contained in §6, we will want to relate the density of w to that of
one or more of its exit words z of step q. In some cases, for a sequence w(n) of words
we use in those constructions, the related exit words z(n) will satisfy |w(n)|/|z(n)| → 0 as
n → ∞. Under this condition, the previous lemma would become trivial. The next lemma
will be used instead, as it provides bounds relating these densities that do not depend on
the lengths of the w(n) or z(n).

LEMMA 5.4. For fixed w ∈ Ln, with minimal valid step q for w in L, let X = Xq(w)
denote the set of exit words of w in L with step q. Then, for any x ∈ X and z ∈ X ,

D(w, x) ≥ 1
3K + 9

D(z, x). (28)

Also, there exists z′ ∈ X so that

D(z′, x) ≥ 1
(2K + 3)|X |D(w, x). (29)

Note that (28) is similar to [DF17, Lemma 3.10]. Also, for the subshifts X we are
considering the set of exit words X for w in L with minimal step q must be finite. Because
X is minimal in our case, we have |X | < ∞, meaning (29) is non-trivial. Furthermore,
once Lemma 3.15 applies this provides a lower bound depending only on K . The results
[DF17, Lemma 3.10 & Corollary 3.11] collectively provided a similar result that was
used in that paper to treat 2-loops. However, the RBC was not assumed in that paper,
so a uniform (over all word lengths) bound on the number of exit words, as provided in
Lemma 3.15, associated to a 2-loop could not be assumed.

Proof. We first will show (28). Let pwq∗r s be the representation of z ∈ X and m = |z|,
noting that

m = |p| + |wq∗r | + |s| ≤ n+ (r + 1)q.

We fix a parameter α = (3K + 9)/2. If m ≤ αn, then we may apply Lemma 5.3 to get

D(w, x) ≥ 1
2α

D(z, x).

Now suppose m > αn and fix M ∈ N. If z = pwq∗r s begins in a (K + 1)m-block
of x[1,M(K+1)mn] except for the last one, then w must begin in at least �((r − 1)q)/
((K + 1)n)� + 1 consecutive (K + 1)n-blocks. Two occurrences of z may overlap in x,
but this overlap will not reduce the number of occurrences of w by Corollary 3.12.
However, it is possible that at most the first appearance of w in z occurs in the same
(K + 1)n-block as the last appearance of w in the previous z.
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We therefore should remove at most one occurrence in a (K + 1)n-block of w from
each z in our count, as up to two per z may be over-counted by a factor of 2. Therefore,

SMm(w, x) ≥
⌊
(r − 1)q
(K + 1)n

⌋
(SMn(z, x)− 1)

and so

D(w, x) ≥ n

m

⌊
(r − 1)q
(K + 1)n

⌋
D(z, x).

Because m < (r − 1)q + 3n and m > αn,

n

m

⌊
(r − 1)q
(K + 1)n

⌋
>
n

m

(r − 1)q − (K + 1)n
(K + 1)n

>
m− (K + 4)n

Lm

>
1

K + 1
− K + 4
(K + 1)α

,

or

D(w, x) ≥
(

1
K + 1

− K + 4
(K + 1)α

)
D(z, x).

It follows that the global lower bound is given by

D(w, x) ≥ min
{

1
2α

,
1

K + 1
− K + 4
(K + 1)α

}
D(z, x),

which, with our value of α, gives (28).
We will now prove (29). Consider the ith Ln-block in x[1,M(K+1)mn] where m is the

least common multiple of the lengths |z| for each z ∈ X . Let I = IM be the integers
i ∈ [1, Mm] such that w begins in the ith (K + 1)n-block of x[1,M(K+1)mn], that is, w
begins in x at a position in [(K + 1)n(i − 1)+ 1, (K + 1)ni]. For each i ∈ I, let ji be the
minimum beginning position of w in [(K + 1)n(i − 1)+ 1, (K + 1)ni], in other words,
the minimum ji in this interval so that

x[ji ,ji+n−1] = w.

Let β = �m/((K + 1)n)� and I ′ = I ∩ [β, Mm− β]. If i ∈ I ′, there exist a unique
position ki and unique zi ∈ X such that

zi = x[ki ,ki+|zi |−1] and ki ≤ ji < ki + |zi | − n,

by Lemma 3.11. Then there exists z′ ∈ X such that

|{i ∈ I ′ : zi = z′}|
|I ′| ≥ 1

|X | ,

and let K = {ki : i ∈ I ′, zi = z′} be the positions of z′ in our full block of x. For each
k ∈ K there may be at most γ elements i ∈ I ′ such that ki = k, where

γ =
⌊
(r − 1)q − 1
(K + 1)n

⌋
+ 2 ≤ |z′|

(K + 1)n
+ 2,
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given decomposition z′ = pwq∗r s. To justify this, note that Corollary 3.12 ensures that
each beginning of w can be a subword of at most one occurrence of z′ and must occur
within wq∗r in the decomposition of z′. At worst, z′ may be positioned so that the first w
in wq∗r begins at the end of a (K + 1)n-block (requiring an overlap of only the beginning
position in this block) and the last w in wq∗r begins at the beginning of a (K + 1)n-block
(requiring the entire word w to overlap in this block). The remaining portion of wq∗r that
fully covers (K + 1)n-blocks has length at most

|wq∗r | − n− 1 = n+ (r − 1)q − n− 1 = (r − 1)q − 1,

and may therefore only contribute beginnings in at most ((r − 1)q − 1)/((K + 1)n)
consecutive (K + 1)n-blocks.

We claim that at mostK + 1 occurrences of z′ may begin within one (K + 1)|z′|-block.
Suppose there are B beginning positions of z′ in a (K + 1)|z′|-block, and i1 is the first
beginning position and iB is the last. Because iB and i1 occur in the same (K + 1)|z′|-block
and by Corollary 3.12,

(K + 1)|z′| − 1 ≥ iB − i1 ≥ (B − 1)(|z′| + n),

which implies that B ≤ K + 1.
If m′ = m/|z′|, then we conclude that

SMm′n(z
′, x) ≥ 1

(K + 1)γ |X | (SMm(w, x)− 2β).

If we divide each side by Mm′n to get a lower bound on D(z′, x) in the lim sup on the
left-hand side, the right-hand side has leading coefficient

1
Mm′n

· 1
(K + 1)γ |X | = |z′|

(K + 1)γ |X |n
1
Mm

and so

D(z′, x) ≥ |z′|
(K + 1)γ |X |nD(w, x).

We observe that

|z′|
(K + 1)γ |X |n ≥ |z′|(K + 1)

(K + 1)|X |(|z′| + 2(K + 1)n)

≥ |z′|
|X | · |z′|(2(K + 1)+ 1)

= 1
(2K + 3)|X | ,

concluding the proof.

6. From ergodic theory to graphs
Fix a transitive subshift X whose aperiodic language L satisfies the RBC. By Lemma 2.6,
L has eventually constant growth as well. LetK be the growth constant andN0 be such that
p(n+ 1)− p(n) = K for all n ≥ N0 and each bispecial w ∈ Ln is regular for all n ≥ N0.
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Recall that for ν ∈ E(X) we fix a generic x(ν) ∈ X for ν, meaning (9) holds for all
w ∈ A∗. By Corollary 2.9, X is in fact minimal and so each fixed x(ν) is not eventually
periodic (as defined before Lemma 3.11). Following the discussion in §2.2, we may find an
infinite W ⊆ N and base graph � so that, up to fixing a vertex naming, � = �

sp
n for each

n ∈ W . For w ∈ �, let wn denote the corresponding vertex in �sp
n , n ∈ W . We may refine

W further so that the following statements hold.
(1) For each w ∈ � there exists μw ∈ M(X) such that {wn}n∈W → μw as described

before (11).
(2) For each w ∈ �,

D(μw, ν) = lim
W
n→∞

D(w(n), x(ν)),

which differs from (14) as we have lim rather than lim sup on the right-hand side.
In the following subsections, we will verify the rules lists from §4 for our graph �

defined above.

6.1. Building � and C: Notation 1. Items (N.1)–(N.5) in Notation 1 follow naturally
from the counting arguments presented in §2. Recall the coloring function C from
Definition 2.22 which assigns to each w ∈ � a value in E(X) ∪ {0} as follows: C(w) =
ν ∈ E(X) if and only if D(μw, ν) > 0, and C(w) = 0 if and only if D(μw, ν) = 0 for all
ν. Item (N.6) is satisfied, as C is well-defined once we identify E(X) with {1, . . . , |E(X)|}
and 0 with the number 0. We then want to show that items (N.7) and (N.8) are satisfied.
To do so, we must extend our coloring rule C to edges and show consistency between the
coloring of an edge and its endpoint vertices.

First, for each edge e in � and n ∈ W , there exists a branchless path P in �n, which
we consider to be a word P ∈ L of some length N ≥ n. For each 1 ≤ j ≤ N + 1 − n, let
wj = P[j ,j+n−1] be the j th vertex in �n visited by P . Let u be the starting vertex and v
be the terminal vertex of e in � with u(n) and v(n) the corresponding vertices in �n for
this fixed n. It follows that w1 = u(n), wN−n+1 = v(n), wj is neither left nor right special
if 1 < j < N − n+ 1, and wj �= wj ′ for any j �= j ′. We have that N = n if and only if
u(n) = v(n), and in such cases e is a bispecial edge in �.

Definition 6.1. We say that a word w is representative of e from u(n) to v(n), as described
prior to this definition, in �n if one of the following is satisfied:
• w = u(n) if u(n) = v(n);
• w = wj if u(n) �= v(n) and j satisfies

– j > 1 if u(n) is right special and
– j < N − n+ 1 if v(n) is left special;

• w = P ∈ Ln+1 if u(n) is right special, v(n) is left special and the path word P

describing e is exactly length n+ 1.

In other words, w is representative of e in �n if any path visiting w must agree with
path P until first visiting v(n) in the forward direction and until first visiting u(n) in the
reverse. The length of w is n+ 1 in the last case, but this does not impact the arguments
that follow. Note that there are many choices of a representative for a long path P , and this
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is intentional as we will take advantage of this flexibility in many of the arguments that
follow.

For each n ∈ W fix w(n) = wj that is representative of e and for ν ∈ E(X) we assign
C(e) = ν if and only if

lim sup
W
n→∞

D(w(n), x(ν)) > 0, (30)

and C(e) = 0 if and only if this limit is 0 for all ν.
As we will now show, condition (30) will imply that C(u) = C(v) = ν as well, satisfying

item (N.8). This implies that we may assign at most one color to an edge. The final
statement of the following lemma shows that our definition of C(e) is independent of the
choice of representative w(n). This will allow for more flexible arguments in the remainder
of §6 as we may freely choose convenient representatives as desired.

LEMMA 6.2. Let e from u to v be as above with a sequence w(n) of representative words.
(1) For a fixed ν ∈ E(X), let α = D(u, ν) and β = D(v, ν). Then

min{α, β} ≥ 1
4 lim sup
W
n→∞

D(w(n), x(ν)).

(2) If w̃(n) is another sequence of representative words for e, let

γ = lim sup
W
n→∞

D(w(n), x(ν)) and γ̃ = lim sup
W
n→∞

D(w̃(n), x(ν)).

Then γ ≥ 1
4 γ̃ and γ̃ ≥ 1

4γ .

Proof. We prove the first item for α and then discuss the remaining parts. By the definition
of a representative word, for each n ∈ W , we may apply Lemma 5.1 to w(n) with B =
{u(n)} on the sequence x(ν) to get

D(u(n), x(ν)) ≥ 1
4D(w

(n), x(ν)).

The claim then holds by taking the lim sup and recalling that W has been refined so that
α is obtained by a limit (the inequality for β is similar). The remaining results all follow
from similar applications of Lemma 5.1.

Similar to our treatment of vertices, we finish by refining W so that

lim inf
W
n→∞

D(w(n), x(ν)) > 0 if (30) holds. (31)

Once we have fixed this refinement, (31) will also hold for any choice of representative
sequence w(n). We are then able to refine further as required in the next sections and do so
using any representative sequence without altering the assignment of C.

6.2. More on C: Rules List 1. As already discussed, we may rename E(X) so that E(X)
is identified with {1, . . . , E} and 0 is identified with the number 0, satisfying item (R1.1).
By Corollary 2.20, for each ν ∈ E(X) and n ∈ W , there exist left special un ∈ �sp

n and
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right special vn ∈ �sp
n such that

D(un, x(ν)) ≥ 1
K

and D(vn, x(ν)) ≥ 1
K

.

There exist u, v ∈ � so that u corresponds to un for infinitely many n ∈ W and likewise for
v and the vn. This implies that min{D(μu, ν), D(μv , ν)} ≥ (1/K), or C(u) = C(v) = ν,
so item (R1.2) holds.

We now want to show that item (R1.3) holds. As discussed in that item, we are left
showing that for a vertex v such that C(v) = ν �= 0 there exists an edge e ending at v and
an edge e′ beginning at v such that C(e) = C(e′) = ν.

Let e1, . . . , eL be the edges that end at v, where 1 ≤ L ≤ K is the in-degree of v. For
each n ∈ W and 1 ≤ k ≤ L, fix w(n)k representative of ek in �n. If v(n) corresponds to v in
�

sp
n , then by applying Lemma 5.1 to v(n) with B = {w(n)1 , . . . , w(n)L } there exists kn so that

D(w(n)kn , x(ν)) ≥ 1
4K

D(v(n), x(ν))

for each n ∈ W . There exists at least one k with 1 ≤ k ≤ L so that k = kn for infinitely
many n in W . For any such k, it must be that C(ek) = ν as (30) must hold for that edge.
Similarly, we may find at least one e′ that begins at v such that C(e′) = ν.

It remains to show that item (R1.4) holds. Suppose for a contradiction that for an edge
e such that C(e) = ν �= 0 and for every circuit containing e there exists an edge ẽ in that
circuit such that C(ẽ) �= ν. Let w(n) be a representative sequence for e. It must be that (30)
fails for any representative sequence w̃(n) for ẽ as above. Let E be the collection of all such
ẽ’s. For fixed n ∈ W let B(n) = {w̃(n)1 , . . . , w̃(n)p } be the set of all chosen representative
words for the edges ẽ in E. Because there are at most 3K edges in �, it must be that
p ≤ 3K . By applying Lemma 5.1 to w(n) and this set B(n) we have that

D(w̃(n)kn , x(ν)) ≥ 1
12K

D(w(n), x(ν))

for some kn with 1 ≤ kn ≤ p. As in our argument for item (R1.3) above, this implies that
for at least one edge ẽ represented by the words in the B(n) sets we have C(ẽ) = ν. This is
a contradiction.

6.3. RBS moves and Rules List 2. In §4.1 we defined RBS moves as they transition from
graph � to �′. Here, we will explain how they arise naturally from the underlying graphs
�

sp
n . To begin, we will examine how for n ∈ W the graphs �sp

n and �sp
n+1 are related by

natural identifications.
Assume that n is large enough so that the conclusions of Lemma 2.4 hold. In particular,

if w ∈ Ln is s-special, its unique s′-extension w′ ∈ Ln+1, s′ �= s, that is s-special satisfies
Exs(w) = Exs(w′), or, in other words, w and w′ may each be s-extended by the
same letters. Because our graphs � are created using an infinite sequence n ∈ W , we
may remove the finitely many n that fail this assumption from W without loss of
generality.

If v(n) is a vertex in �sp
n associated with the word w ∈ Ln, identify w with w′ ∈ Ln+1

as defined above. We then name v(n+1) as the vertex in �sp
n+1 associated with w′. This
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naming is consistent even when w is bispecial as there will be one right special word
w′ ∈ Ln+1 and one left special word w̃′ ∈ Ln+1 defined this way from w. Therefore, for
fixed vertex v ∈ � and corresponding v(n) in �sp

n we have a natural associated vertex v(n+1)

in �sp
n+1.

Now consider an edge e from u to v in � as represented in �n by a path word P . We
want to associate to e an appropriate path word P ′ in �n+1 consistent with the vertex
transformations u(n) to u(n+1) and v(n) to v(n+1). In all cases, P ′ will contain P as a
subword and will possibly be extended on each side.

We define P ′ by cases on the special words w and z of length n that respectively begin
and end P . If neither w nor z is bispecial then we may define P ′ to be the minimal word
that:
(a) contains P as a subword;
(b) begins with the length n+ 1 extension w′ associated to w as described above; and
(c) ends with the length n+ 1 extension z′ associated to z.
In these cases P ′ is either equal to P or is obtained via extending P by at most one letter
on each side.

If w �= z (so |P | > n) but either w or z is bispecial (or both) we change our definition
P ′ as follows.
(b′) If w is bispecial we consider the length n+ 1 prefix wc of P . If wc = w′ is left

special (this is then the unique such right extension of w) then we begin P ′ with P .
If wc is not left special then wc ends a unique branchless path Q in �n+1 that

begins at a special vertex. In this case we extend P ′ to start with Q before P .
If w is not bispecial we use (b) above to decide how to extend P on the left.

(c′) Similarly, if z is bispecial we let dz be the length n+ 1 suffix of P . If dz is right
special we end P ′ with P .

If dz is not right special we let Q′ be the unique branchless path from dz to a
special vertex in �n+1. P ′ is then extended after P to include Q′.

If z is not bispecial we use (c) above to decide how to extend P on the right.
Finally, if w = z then w = z is bispecial and we have the unique right special extension

aw and unique left special extension wb. In this case P ′ = awb.
In all cases, we then name as e the edge in �sp

n+1 associated to this path P ′.
Using these identifications, we first note that the only changes between �sp

n and �sp
n+1

occur when an edge e0 of �sp
n is bispecial and its path word P in �n is a bispecial word of

length n. It is important to note that a bispecial edge must exist in �sp
n (the graph is strongly

connected) and cannot share an endpoint with another bispecial edge in�sp
n . Therefore each

change from �
sp
n to �sp

n+1 is ‘local’, meaning it only depends on the edges adjacent to the
bispecial edge. Note the paths for each bispecial edge decrease in length from �n to �n+1

as its new path word P ′ is actually equal to P . (So the bispecial edge in �sp
n is the same

edge in �sp
n+1, but the underlying length decreases from �n to �n+1.) We may then choose

ñ to be the minimal integer of size at least n so that a bispecial word exists in Lñ. Then let
n′ = ñ+ 1 and, because |P | ≤ (K + 1)n+ C, we have

n′ ≤ Kn+ C (32)
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where K and C are from the definition of ECG. The graph �sp
n′ will undergo at least one

regular bispecial move from �
sp
ñ

(which by induction must be equal to �sp
n ), meaning at

least one bispecial edge will be replaced with an edge that starts at a right special vertex
and ends at a left special vertex as in the last case of the definitions above.

Before continuing, we refine W so that all n are large enough to satisfy the assumptions
above (the conclusions of Lemma 2.4 hold). Furthermore, we assume that the map n �→ n′
is a bijection by removing all but one n value from W that maps to n′ (for each such n′).
Because of how we have created � and C, these definitions will not change under these or
any further refinements to the infinite set W .

Returning to the graph � with coloring C defined using W , we now address how to
construct �′ and C′. We let W̃ ′ be the collection of all n′ values derived from all n values
in W . We restrict W̃ ′ (and W by the natural bijection) so that there is one graph �′ such
that �sp

n′ = �′ for all W̃ ′. Finally, refine to W ′ to get coloring C′ on�′ satisfying Notation 1
and Rules List 1.

We now direct our attention to Rules List 2. If we show that item (R2.2) holds, then
item (R2.1) follows from Rules List 1 as it applies to C and C′. For fixed n ∈ W , let e from
y to z be an edge in � that does not undergo an RBS move from � to �′. Let P from y(n)

to z(n) be the path word identified with e in �n, and let P ′ from y(n
′) to z(n

′) be the path
word for e in �n′ .

We will argue in full detail assuming that y and z are both left special and leave the
other cases to the reader. Here |P ′| > |P |. Fix any length n subword w �= z(n) of P and
any length n′ subword of w′ �= z(n

′) of P ′. Then w is representative of e (from �) in �n,
and w′ is representative of e (from �′) in �n′ . If i is the position of w in P and i′ is the
position ofw′ in P ′, then for any (long) wordW ∈ L, any k such that 1 ≤ k ≤ |W | − n+ 1
and 1 ≤ k − i + i′ ≤ |W | − n′, we have thatw occurs at position k if and only ifw′ occurs
at position k + i′ − i. In particular, we may apply Lemma 5.1 twice to conclude that

D(w′, x(ν)) ≥ 1
4
D(w, x(ν)) and D(w, x(ν)) ≥ 1

3K + 4
D(w′, x(ν))

as n+ 1 ≤ n′ ≤ (K + 1)n by (32) if we assume n ≥ C. Because both ratios are positive
and independent of n, we conclude that the definitions of C(e) and C′(e) must agree.

It may be possible that two or more RBS moves occur at the same time. This would
be the case if there are at least two distinct edges in � that each are identified with
a (bispecial) path word of length n′ − 1 in �n′−1 for infinitely many n′ ∈ W ′. Because
the transformations described above are all local, we may instead view these moves as
occurring one at a time and the resulting graph does not depend on the order of occurrence.
(See Lemma 5.2 from [DF17] for a more technical treatment of this issue.)

6.4. Building itineraries: Rules Lists 3 and 4. We now show how to construct an
itinerary as introduced in Definition 4.8.

For subshiftX, fix a generic ν ∈ E(X), x(ν) ∈ X, and constructed W ,� and C satisfying
Notation 1 and Rules List 1. Let P be a selected set of N-loops in � such that each L ∈ P
is colored by an element of E(X) and no distinct L, L̃ in P have the same color.
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We describe in detail how to create an itinerary for the case P = {L}, L colored by ν,
and then briefly explain how to extend to larger lists. Suppose first that anotherN-loop L̃ is
colored by ν and contains at least one of the vertices in L, so in particular a ν-colored path
exists in � that enters and leaves L. In this case we set �(0) = �(1) = �, C(0) = C(1) = C
and P(1) = ∅ as there is already a ‘spread event’ as discussed in §4.4.

So for the remainder of this section we assume that no such L̃ exists. Fix a vertexw ∈ �
in L with corresponding w(n) ∈ �sp

n , n ∈ W , and associated path words L(n) representing
L. In other words, L(n) is a path in �n that starts at w(n), follows the edges defined by L
in order and ends at w(n). So w(n) is visited exactly twice by L(n) and each other vertex in
�n is visited at most once.

Before continuing, we make the following claim. This will allow us to exclude some
problematic cases before addressing the general case.

LEMMA 6.3. For the fixed choices in this section and any d ≥ 0, there exists a path word
P ∈ L that begins with w(n), traverses at least d edges in �sp

n (possibly with repetition)
and

D(P , x(ν)) ≥
(

1
16(K + 1)

)d
D(w(n), x(ν)).

Proof. If d = 0, then the proof is concluded using P = w(n). Assume we have constructed
such a path P ′ that satisfies the claim for a given d ≥ 0; we will produce a path P for d + 1.

Let B = {P ′a ∈ L : a ∈ A} be the set of right extensions of P ′ in the language. By (7),
B must contain at most K + 1 elements. By Lemma 5.1, there exists a such that

D(P ′a, x(ν)) ≥ 1
4(K + 1)

D(P ′, x(ν)).

We then extend P ′a further: there exists a unique right extension of P ′a of minimal length,
which we call P , that has an s-special word as its suffix s of length n for some s ∈ {	, r}.
Because this extension is unique, we may again apply Lemma 5.1 to get

D(P , x(ν)) ≥ 1
4D(P

′a, x(ν)).

Furthermore, P is the extension of path P ′ in �sp
n either by two edges (if s is bispecial) or

by one edge (otherwise). Therefore the claim holds for P as desired.

First, we argue that for infinitely many n ∈ W the loop word L(n) both belongs to the
language and satisfies

lim inf
W
n→∞

D(L(n), x(ν)) > 0.

If either of these conditions fail, then by Lemmas 5.3 and 6.3 there exists a path word P
in � of length at least d (the number of edges in L) that contains w(n) with each edge
colored by ν. It follows that there is at least one edge that starts at a vertex visited by L
but is not itself in L (meaning an ‘outside edge’ as discussed previously) that is colored
by ν. This means that a spread event has occurred already in � which has previously been
addressed (above Lemma 6.3) as this edge belongs to an N-loop L̃ �= L that is colored by
ν that intersects with L at a vertex.
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Let N = |L(n)| and q = N − n. Then for each r ≥ 1, [L(n)]q∗r is a path in �n that
travels around loop L exactly r + 1 times. We would like to use our arguments now for
exit words for L(n) with step q as discussed in §3. However, to do so we would need q to
satisfy N ≥ 2q or equivalently that N ≤ 2n. To avoid this issue, we will replace L(n) with
the word P (n) = [L(n)]q∗2. The length q will remain a valid minimal step for P (n) and
|P (n)| = N + q ≥ 2q. Before continuing with the general construction, we note that by a
similar argument to the one in the previous paragraph we may assume that (after ignoring
finitely many n ∈ W) P (n) = [L(n)]q∗2 is in the language and the lim inf of the densities
of these words in x(ν) are positive. Otherwise, a spread event will occur at �.

If we consider the vertex L(n) in �N , then [L(n)]q∗r now travels around r times on the
loop closely related to L(n) from �n. Because N ≤ (K + 2)n for large enough n ∈ W we
may consider the densities of the vertices and edges in �sp

N as they will force a lower bound
on densities for corresponding edges and vertices in �sp

n by Lemma 5.3.
For the word P (n) we may apply Lemmas 5.4 and 3.15 to find exit word Z =

p[P (n)]q∗r0s such that

D(Z, x(ν)) ≥ D(P (n), x(ν))
2K2(2K + 3)

. (33)

Because Z is also an exit word for [P (n)]q∗r , r ≤ r0, with minimal step q, we may apply
the first part of Lemma 5.4 to get

D([P (n)]q∗r , x(ν)) ≥ 1
3K + 9

D(Z, x(ν)) for all 1 ≤ r ≤ r0. (34)

Let N ′ = N + (r0 − 1)q be the length of [P (n)]q∗(r0−1).

LEMMA 6.4. Using the notation described above, for each m satisfying n ≤ m ≤ N ′ the
following statements all hold.
(1) �m has a path word L(m) corresponding to the loop L.
(2) For each vertex v(m) in �m visited by L(m),

D(v(m), x(ν)) ≥ CK · D(P (n), x(ν)),
where CK > 0 depends only on K .

(3) If we consider the special graphs �sp
n , �sp

n+1,. . . , �sp
m , the edges that correspond to

subpaths of L in � can only be altered by RBS moves that either exchange vertices
(twist moves) or eject vertices (shrink moves).

Proof. For the first part, L(m) traverses the closed circuit that [P (n)]q∗r0 does in �m,
meaning it corresponds to L in �.

For the second part, we may consider two cases: m ≤ N and N < m ≤ N ′. If m ≤ N ,
then v(m) is a subword of P (n) and so

D(v(m), x(ν)) ≥ 1
2(K + 1)

D(P(n), x(ν))

by Lemma 5.3, using that N ≤ (K + 2)n as previously discussed.
If N < m ≤ N ′, let r ′ be the unique integer satisfying

N + (r ′ − 1)q < m ≤ N + r ′q.
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In this case, v(m) is a subword of Pq∗r ′ and so

D(v(m), x(ν)) ≥ 1
24K2(K + 3)(2K + 3)

D(P(n), x(ν)),

by Lemma 5.3, the bounding inequalities (33) and (34) and using that N + rq ′ ≤ 2m.
For the third part, recall that in §6.3 we justified that only RBS moves may occur from

one graph to the next, and the discussion of possible RBS moves on loops corresponding
to L was covered in §§4.2 and 4.3.

By the bounding arguments above, we witness a spread event at or beforeN ′. Indeed, the
loop corresponding to L in �sp

m , n ≤ m ≤ N ′, has a density with positive lower bound that
only depends onK and the density of P (n). Furthermore, the edges in �sp

N ′ that correspond
to the N ′-length prefix and suffix of exit word Z respectively also have density with
positive lower bound and these edges must be outside edges, meaning edges that begin
or end at a vertex in the loop but are not themselves in the loop.

Let n = m
(n)
0 < m

(n)
1 < · · · m(n)

M(n) = N ′ be the times such that at least one shrink RBS

move on L(m
(n)
i ) occurs from �

sp

m
(n)
i

to �sp

m
(n)
i +1

for 1 ≤ i ≤ M(n) − 1. We note that M(n)

cannot be more than the number of vertices in L minus 2 and it is possible that M(n) = 1,
meaning no shrink moves occur from n to N ′.

For each n ∈ W we obtain the values m(n)0 , . . . , m(n)
M(n) and may refine W so that:

• M(n) is a constant value M , independent of n;
• there exist�(1), �(2), . . . , �(M) so that for each i ∈ {1, . . . , M} and n ∈ W , we have

�
sp

m
(n)
i

= �(i);

• there are colorings C(1), . . . , C(M) so that each pair �(i), C(i) satisfies Notation 1 and
Rules List 1.

We let �(0) = � and C(0) = C. By our construction above, the loop L persists, meaning
a corresponding version of the loop exists by the L(m

(n)
i ) path words described above, and

is colored by ν on each of these graphs. We also know that a spread event must occur
for L by �(M) and we may (by removing graphs �(i) at the end) assume that the spread
event occurs from �(M−1) to �(M). Combinatorially, the transition from �(i) to �(i+1)

may be defined by choosing any n ∈ W and using the finite list of RBS moves from �
sp

m
(n)
i

to �sp

m
(n)
i+1

.

To finish building this itinerary, we let P(0) be our original partition P = {L} and for
i < M we let P(i) be the partition containing what remains in L after ejections via shrink
moves, meaning the loop corresponding to the L(m

(n)
i ) paths as discussed above. Because a

spread event occurs on L from �(M−1) to �(M), we let P(M) = ∅.
If we instead assume an initial partition with multiple loops, we may proceed as we

did in the simpler case with some modifications. For each n ∈ W and loop Lν ∈ P where
ν ∈ E(X) denotes the color of the loop, we may find the values

n = m
(n,ν)
0 < · · · < m

(n,ν)
M(n,ν)
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as described above for Lν . We then interleave all values over all loops to get n = m
(n)
0

< · · · < m
(n)

M(n) .
We then again refine our set W and create the graphs �(0), . . . , �(M) and respective

colorings C(0), . . . , C(M) as before. When creating our partitions P(0), . . . , P(M) we keep
each loop from P (minus ejections due to shrink moves) until that loop’s spread event.
Once a spread event occurs for a loop, it is removed from the P(i) from that point on.

The construction presented above builds an itinerary from Definition 4.8. To realize
Rules List 4, we note that we may restrict from a partition P to any partition P ′ of a
subset of the loops in P and build from our initial itinerary an itinerary for P ′ by ignoring
intermediary graphs that only realize shrink or spread events for loops in P \ P ′. Recalling
that shrink moves are not possible for 2-loops and a twist move actually fixes a 2-loop, we
see that Rules List 3 is a simplification of Rules List 4 when we restrict to the case of only
2-loops.

To summarize the work in this section, we state the following lemma.

LEMMA 6.5. If X is a subshift that is transitive and satisfies the RBC with growth
constant K ≥ 3, then there exists � and C satisfying Notation 1 and Rules List 1 with
E = |E(X, S)|. Furthermore, for any collection P of distinctly colored N-loops P there
exists an itinerary for �, C and P according to Rules List 4.

In other words, the conditions in Proposition 4.9 for �, C and P are satisfied. Once the
result of this proposition is shown, the proof of Theorem 1.1 will be complete.

7. Proof of Proposition 4.9
Here we prove Proposition 4.9. We begin with our (limiting) special Rauzy graph�, which
is a directed graph satisfying the following conditions (recall Notation 1 and the choice of
loops from §4.5).

Conditions A.
(1) � has K	 +Kr vertices, Kr of in-degree 1 and out-degree at least 2, and K	 of

in-degree at least 2 and out-degree 1.
(2) � is strongly connected; that is, between any two vertices of �, there is a directed

path.
(3) � contains directed circuits L1, . . . , LE which are vertex disjoint and vertex

self-avoiding, each with at least two vertices.

Given a graph � and circuits L1, . . . , LE as specified in Conditions A, define � as
the graph obtained from � by removing all edges in the union of the Li . We will use the
terms Li for the corresponding objects in�, which are actually no longer circuits, but only
collections of vertices.

We first explain what happens to the (weakly connected) components of � after
applying an RBS move to both � and �. Letting C1, . . . , Cp be the components of �
(as unordered vertex sets), we note that since � was connected, each Ci must contain at
least one vertex from the union of all the circuits Lj for j = 1, . . . , E. Let Xi be the
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E-tuple (Si1, . . . , SiE) consisting of entries Sij , the set of vertices of Lj that are in Ci . We
will track both the components Ci and the ‘tags’ Xi after applying an RBS move. The
move will be one of the following types (recall these terms from §4.3):
A. a ‘twist’ move operating on two vertices of the same circuit Lj ;
B. a ‘shrink’ move operating on two vertices of the same circuit Lj containing at least

three vertices; or
C. some other RBS move operating on two vertices in the complement of

L1 ∪ · · · ∪ LE .
These are the only three possible RBS moves that operate on � because there are no
bispecial edges (edges leaving an out-degree 1 vertex and entering an in-degree 1 vertex)
entering or exiting the Li . Note that after applying one of these moves to a graph �
satisfying Conditions A to result in a graph ζ , we can identify the circuits Li in � to
circuits in ζ in the natural way. Move A will permute the order of two vertices on a circuit,
and move B will remove one vertex from a circuit. We also call these associated circuits in
ζ by the names Li .

The next proposition explains what happens to the Ci and Xi after an RBS move of the
three types above. To describe the result, we use the following notation. If Xi1 and Xi2 are
tags, then we write Xi1 ∪Xi2 for the E-tuple (Si11 ∪ Si21 , . . . , Si1E ∪ Si2E ). Furthermore, if x
is a vertex of a circuit Lj0 , then (Xi1 ∪Xi2) \ {x} refers to the E-tuple whose j0th entry is
(S
i1
j0

∪ Si2j0
) \ {x}.

PROPOSITION 7.1. Let� be a graph satisfying Conditions A and define� as above. Define
ζ as the graph obtained from � by applying an RBS move of type A, B, or C, and let ζ
be the graph obtained from ζ by removing the edges in the union of the Li . If C1, . . . , Cp
and X1, . . . , Xp are the components and tags for �, write D1, . . . , Dq and Y1, . . . , Yq
for the components and tags for ζ . The RBS moves A, B, or C have the following effects on
the Ci , Xi , Di , and Yi .
(1) Moves A and C leave components and tags unchanged. That is, q = p, and for each

i there is a unique j such that (Ci , Xi) = (Dj , Yj ).
(2) Move B can only merge components. That is, q ∈ {p − 1, p}, and there are I1, I2, J

(where I1 can equal I2, and this occurs if and only if q = p) with the following
properties. For all i �= I1, I2, there is a unique j �= J such that (Ci , Xi) = (Dj , Yj ).
Furthermore, DJ = CI1 ∪ CI2 , and YJ = (XI1 ∪XI2) \ {x}, where x is the vertex
contained in the circuit Lj0 in � which is removed from Lj0 in ζ by the move.

Proof. A move of type A only permutes two vertices on a circuit in �, so their
corresponding components in� also permute. Thus none of the components or tags change
from � to ζ . Suppose we perform a move of type C in � on a bispecial edge e, which
is not in any of the circuits L1, . . . , LE , to obtain ζ . Since both endpoints of e are in
the same component we can verify that no components or tags change: let u, v be the
endpoints of e and, following earlier notation, let y1, . . . , yL (respectively, z1, . . . , zR)
be the beginning (respectively, ending) vertices of edges that end (respectively, begin) at
u (respectively, v). Then in �, all the vertices u, v, yi , zi are in the same component.
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Because none of the edges between these vertices are in any of the circuits Li , after
performing the RBS move (see Figure 1) these vertices are still all in the same component
of ζ , and the tags for this component do not change. The last case is a move of type B.
In this case, write e (with endpoints u and v) again for the edge on which the move
occurs, so that e is on a loop Lj0 . In �, u and v are in tags for components CI1 and CI2 ,
respectively (and these components could be equal). There are two possible shrink moves
that operate on e. In one, the edge e is replaced by an edge from v to u and u is ejected
from Lj0 (this move is shown in Figure 3(b)). The other is similar, but v is ejected from the
circuit.

Note that in both cases, one edge and one vertex are removed fromLj0 . Since this circuit
had at least three vertices (and three edges) in�, in ζ it is still a circuit. In the first case,CI1
is the component of u in�, all vertices fromCI1 are placed intoCI2 , and since u is removed
from Lj0 and not placed in another circuit, it is removed from the set of tags. Therefore
there is a component YJ of ζ equal to CI1 ∪ CI2 , and one has YJ = (XI1 ∪XI2) \ {u}. In
the second case, all vertices of CI2 are placed into CI1 , and v is removed from the set
of tags. Therefore there is a component YJ of ζ ′ equal to CI1 ∪ CI2 , and one has YJ =
(XI1 ∪XI2) \ {v}.

As a direct corollary of the previous proposition, the components and tags of any two
graphs on the same vertex set with the same directed circuits Li and the same components
and tags behave the same under moves A–C.

COROLLARY 7.2. Let�, � be graphs satisfying Conditions A on the same vertex set, both
containing the (vertex disjoint, vertex self-avoiding) directed circuits L1, . . . , LE . Define
� and � as above, by removing the edges in the circuits Li in both � and �. Suppose that
the components and tags for � and � are equal.
(1) Let ζ be the graph obtained by applying an RBS move of type C to�, with ζ obtained

from ζ by removing the edges of circuits L1, . . . , LE . Then the tags and components
of � and ζ are the same.

(2) Similarly, let χ and ξ be the graphs obtained from � and � by applying the same
move of type A or B to both (to the same vertices in the circuit), with χ and ξ
the corresponding graphs with edges of L1, . . . , LE removed. Then the tags and
components of χ and ξ are the same.

Given these preliminaries, we now continue with the original connectedness claim for
the graph � (the proof of Proposition 4.9). First we recall that the graph � from §4.5
was constructed as follows. We first extract all the shrink and twist moves from the list
L, taken from the itinerary, as m1, . . . , mτ . These moves act on the circuits L1, . . . , LE .
We first apply all these moves to � to get a new graph �∗ with corresponding circuits
L∗

1, . . . , L∗
E . We then remove all edges in the union of these circuits (and make all other

edges undirected) to obtain a graph �∗. Then we identify all right special vertices in a
loop L∗

i in �∗ to one vertex νir and all left special vertices in L∗
i to one vertex νi	. The

resulting graph is called �. We will show here that � is weakly connected. As stated in
Corollary 4.10, this implies that E ≤ (K + 1)/2.
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So suppose that � is not weakly connected. We choose a maximal set of pairs Pi =
(νi	, ν

i
r ) as follows. Note that if, for all i, we add an edge ei between νi	 and νir , then �

becomes weakly connected. To see this, the (directed) graph �∗ is weakly connected. The
addition of an edge ei between νi	 and νir in � is equivalent to adding an edge between
each pair of left and special vertices of L∗

i in �∗. Because each L∗
i contains at least one

left special vertex and at least one right special vertex, removing the edges of L∗
i and

replacing them with these new edges preserves the weak connectedness of �∗. Therefore
this process on � produces a weakly connected graph.

So choose a maximal set T (possibly empty) of pairs Pi such that if we add all the
associated ei into �, then � is still not connected. Now let S be the set of pairs not in T ,
and note that S is non-empty. For simplicity, after a possible reordering of the Li we will
write

S = {P1, . . . , Pq} and T = {Pq+1, . . . , PE} for q ∈ [1, E].

Furthermore, adding the edges ei into � for i = q + 1, . . . , E produces a graph �̂ which
has exactly two components, and

for i = 1, . . . , q, νi	 and νir are in different components of �̂. (35)

Now let I be chosen so that LI is one of L1, . . . , Lq (corresponding to pairs P1, . . . , Pq )
undergoing a spread event at the first time in the itinerary when a spread event occurs
(such I may not be unique). We then let �̂ be the first graph from the itinerary in which
Li undergoes a spread event, According to the definition of a spread event and (R1.4), in
this graph �̂, there must be a directed path π from a right special vertex xI on LI to a left
special vertex yI on LI such that this path lies entirely outside LI , and each vertex of π
has the same color as that of the circuit LI in �̂. We claim that

π intersects Lj for some j �= I and j ∈ [1, q] (36)

(by ‘intersects’ we mean ‘shares a vertex with’). As in the proof of Lemma 4.5, this will
give a contradiction to the coloring rules, since in �̂, Lj has a different color than does LI .

To show (36), we need some more constructions. In what follows, we will use the
following notation: if χ is a graph with the loopsL1, . . . , LE , then χ is the graph obtained
by removing the edges in these loops, and χ0 is the graph obtained by removing the edges
in L1, . . . , Lq . In the graph �, νI	 and νIr are in different components, and we have seen
that when we add the edges ei for i = r + 1, . . . , E into � to produce �̂, then νI	 and νIr
are still in separate components (they are in the two different components of �̂). Now we
produce a second graph �∗

0 by expanding the pairs Pi for i = q + 1, . . . , E into circuits
Lq+1, . . . , LE containing all their edges, and re-expanding the pairs Pi for i = 1, . . . , q
into circuits L1, . . . , Lq with their edges removed. Equivalently, �∗

0 is the graph �∗ with
the edges in L1, . . . , Lq removed. Then directly from (35), we obtain

in �∗
0, for each i = 1, . . . , q, each right special vertex of Li

is in a different component than each left special vertex of Li .
(37)

Given (37), the next step in proving (36) is to define two sequences of graphs. First list

� = ζ (0), . . . , ζ (τ) = �∗
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as the sequence of graphs obtained by applying the shrink and twist movesm1, . . . , mτ in
order to �. Write

�0 = ζ
(0)
0 , . . . , ζ (τ)0 = �∗

0

as the sequence of graphs obtained from ζ (0), . . . , ζ (τ) by removing the edges in the
circuits L1, . . . , Lq . We next claim that

for 1 ≤ i ≤ q, and 0 ≤ t ≤ τ , xi and yi are in separate components in ζ (t)0 . (38)

Here, xi and yi are defined similarly to xI and yI : they are left and right special vertices
in Li through which Li spreads color during its first spread event. To show (38), we
argue inductively, backward on t . Suppose that for some t ∈ [1, p], one has xi and yi
in separate components for all i = 1, . . . , q, in ζ (t)0 (it holds by (37) for t = τ ). Now apply
Proposition 7.1 with� = ζt−1 and ζ = ζt (removing loops L1, . . . , Lq ). If the movemt−1

is of type A then the components and tags of ζ (t−1)
0 and ζ (t)0 are the same. In particular, for

any i = 1, . . . , q, the vertices xi and yi are in separate components in ζ (t−1)
0 . If the move

is of type B (which is the only other possibility), then two components from ζ
(t−1)
0 may

have merged to form a single component in ζ (t)0 . But since, for each i = 1, . . . , q, xi and

yi were in separate components in ζ (t)0 , they must also then be in ζ (t−1)
0 . This shows (38).

Next we list all shrink and twist moves m1, . . . , mκ from the full list m1, . . . , mτ
that was taken from L in the itinerary from the original graph � until we reach �̂ (the
graph obtained from � by applying all moves—not just shrink and twist moves—from
the itinerary, until the loop LI spreads its color). (To clarify, these are the first κ moves
from the list of shrink and twist movesm1, . . . , mτ used to define�.) Now we must relate

ζ
(κ)
0 to �̂. To do so, we need two more sequences of graphs. List all moves M1, . . . , Ms

performed from� to �̂ from the full list L, and apply these to the graph�. In other words,
we define a sequence of graphs

� = 
(0), . . . , 
(s) = �̂

obtained from� so that
(j) is the result of applying movesM1, . . . , Mj to�. As before,
we also set

�0 = 

(0)
0 , . . . , 
(s)0 = �̂0

as the sequence obtained from 
(0), . . . , 
(s) by removing the edges from the circuits

L1, . . . , Lq . To synchronize these graphs to the sequences (ζ (i)) and (ζ (i)0 ), we note that
the shrink and twist moves m1, . . . , mτ are in the list L, whose moves are M1, . . . , Ms ,
so we write k0 = 0, and set kj so that

mj = Mkj for j = 1, . . . , κ ,

where kκ ≤ s.
Given these definitions, we finally claim that

for 1 ≤ i ≤ q, xi and yi are in separate components in 
(s)0 = �̂0. (39)
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Applying this claim to i = I shows that in particular xI and yI are in separate components

in 
(s)0 = �̂0, and so the path π from (36) must intersect a circuit Lj for 1 ≤ j ≤ q and
j �= I , showing (36).

To show (39), we first prove that

for j = 0, . . . κ , the components and tags of 

(kj )

0 are the same as those of ζ (j)0 . (40)

This is true for j = 0, since 

(k0)
0 = �0 = ζ

(0)
0 . Assuming it holds for some j =

0, . . . , κ − 1, we use Corollary 7.2 (item (1)) with � = 
(kj ), � = ζ (j), and removing
circuits L1, . . . , Lq . To obtain 


(kj+1)
0 from 
(kj ), we apply a move of type C, so we

set ζ = 
(kj+1). We deduce then that components and tags of 

(kj+1)
0 are the same as

those of ζ (j)0 . We now repeat this argument, at the ath time, applying the corollary with
� = 
(kj+a−1), � = ζ (j), and ζ = 
(kj+a), and so on, to eventually find that the tags

and components of 

(kj+1−1)
0 are the same as those of ζ (j)0 . To move from 
(kj+1−1) to


(kj+1) (and ζ (j) to ζ (j+1)), we must use the move mj+1, which is of type A or B. We
therefore apply Corollary 7.2 (item (2)) with � = 
(kj+1−1), � = ζ (j), χ = 
(kj+1), and

ξ = ζ (j+1). We then deduce that the tags and components of

(kj+1)

0 are the same as those

in ζ (j+1)
0 . By induction, this verifies (40).

Since the components and tags of 
(kκ)0 are the same as those of ζ (κ)0 , we apply the
previous paragraph’s argument a few more times to compare the components and tags for
the graphs



(kκ)
0 , 
(kκ+1)

0 , . . . , 
(s)0

to those of ζ (κ)0 . Since the only moves involved in transitioning between these graphs are
of type C, we can again use Corollary 7.2 to say that all of these graphs have the same

components and tags. In particular, 
(s)0 and ζ (κ)0 have the same components and tags.
Using (38) with t = κ , we find that for 1 ≤ i ≤ q, xi and yi are in separate components in

�
(s)
0 , which is (39), and this completes the proof.

8. Future work
The main result in this paper provides a new combinatorial proof of the bound d/2 for
ergodic measures for minimal d-IETs. However, if π is the permutation on d symbols
used to define a minimal IET, the known upper bound is g(π) as shown independently by
[Kat73, Vee78], where g(π) is the genus of the translation surfaces naturally associated
to the IET via the zippered rectangle construction as defined in [Vee82]. This upper
bound is sharp as shown in [Kea77] for d = 4, in [Yoc10] when π is the order-reversing
permutation, and in [Fic14] for the remaining cases. While g(π) = �d/2� when π belongs
to the same Rauzy class as the order-reversing permutation, the relationship g(π) < �d/2�
does hold in many classes. If the remaining conditions from [FZ08] are applied, and so X
is indeed the encoding of a minimal IET, can the correct bound of g(π) be shown using
these combinatorial methods?
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In [DF17], the bound K − 2 was shown under the eventually constant growth con-
dition with constant K ≥ 4. Is the RBC assumption necessary to improve the bound to
(K + 1)/2? In this work, the RBC was necessary to bound the number of exit words in
Lemma 3.15.

Generic measures are those such that (9) holds for some x ∈ X. By the pointwise
ergodic theorem, every ergodic measure is generic. However, not every generic measure
is ergodic. In [CK19], new methods were used to strengthen and extend the results from
[Bos84] to bound generic measures. Our current coloring definition no longer applies to
generic measures as they are not extremal. However, does there exist an alternate coloring
compatible with generic measures that may be used to get the (K + 1)/2 bound presented
here? As of the authorship of this work, the correct bound for generic measures for a
minimal d-IET is not known (by any method).
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