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ARTICLES

CONVERGENCE OF ADAPTIVE
LEARNING AND EXPECTATIONAL
STABILITY: THE CASE OF MULTIPLE
RATIONAL-EXPECTATIONS
EQUILIBRIA

Maik HEINEMANN
University of Hannover

This paper analyzes the relationship between the expectational stability of rational
expectations solutions and the possible convergence of adaptive learning processes. Both
concepts are used as selection criteria in the case of multiple rational expectations
solutions. Results obtained using recursive least squares lead to the conjecture that there
exists a general one-to-one correspondence between these two selection criteria. On the
basis of a simple linear model and a stochastic gradient algorithm as an alternative
learning procedure, it is demonstrated that such a conjecture would be incorrect: There are
cases in which stochastic gradient learning converges to rational expectations solutions
that are not expectationally stable.
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1. INTRODUCTION

Dynamic economic models, in which agents have to form expectations regarding
the future, are usually closed by assuming that agents form rational expectations.
Although this concept is formally elegant, it suffers from several problems. One
of these problems is due to the fact that economic models may exhibit multiple
rational expectations solutions. In such a case, it is impossible to select a specific
solution without imposing additional restrictions. This is especially unpleasant if
these solutions differ with respect to their comparative-static properties. Thus, the
economic literature [e.g., McCallum (1983) and Evans and Honkapohja (1992)]
discusses some selection criteria that should help to select a unique rational ex-
pectations solution in such cases.
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One of these selection criteria requires the respective solution to be a possible
result of adaptive learning processes on the side of the agents in the model. Un-
der the usual assumption of bounded rational learning, agents use parametrically
specified—but possibly misspecified—perceived laws of motion for the relevant
variables and form their expectations on the basis of these models. Learning in this
context means that agents recursively estimate the parameters of their perceived
law of motion. A central result of this approach is that the possible convergence of
learning processes is connected with the expectational stability (E-stability) of the
respective rational expectations solutions. The concept of E-stability is another cri-
terion proposed to select among multiple rational expectations solutions. It traces
back to Lucas (1978) and DeCanio (1979), while the extension of this concept
in the context of real-time learning is attributed to Evans (1989). Assuming that
agents learn using recursive least squares, Marcet and sargent (1988, 1989) and
Evans and Honkapohja (1994, 1995) show that only E-stable rational expectations
solutions are possible outcomes of such learning processes.

This result suggests that the convergence analysis of learning processes and the
selection of rational expectations solutions can be achieved simultaneously simply
by checking the E-stability of the respective solutions. Such a result would be very
comfortable because usually itis easier to check the E-stability of rational expecta-
tions solutions rather than the possible convergence of learning processes. So, for
instance, the survey on “Learning Dynamics” by Evans and Honkapohja (1998a)
heavily relies upon such a probable connection between E-stability conditions and
convergence conditions for economic learning processes. However, as the authors
themself state, “although the bulk of work suggests the validity of the E-stability
principle, there is no fully general result which underpins our assetrtiofio date
only a small set of estimators has been examined. We believe that obtaining precise
general conditions under which the E-stability principle holds is a key subject for
future research” [Evans and Honkapohja (1998a, p. 25)].

The present paper takes up this point and presents an example in which, contrary
to the usual case, there is no one-to-one correspondence between the convergence
conditions of a learning process and E-stability conditions. The analysis is based
upon a stochastic gradient (SG) algorithm that is used as an alternative to the
familiar recursive least-squares (LS) algorithm. On the basis of a simple linear
model exhibiting multiple rational expectations solutions, it is shown on the one
hand that there exist perceived laws of motion, for which the possible convergence
of the SG algorithm to rational expectations solutions is indeed governed by E-
stability conditions. On the other hand, there also exist perceived laws of motion for
which the possible convergence is independent of the E-stability of these sofutions.
In this respect the main result of the paper contrasts with a result obtained by
Evans and Honkapohja (1998b): Those authors show, for the case of the familiar
cobweb model, that the convergence conditions for learning are not altered if the
LS algorithm is replaced by the SG algorithm, meaning that convergence is again
governed by E-stability conditions. However, as will become clear below, this is
no general result but is due to the special structure of the model they discuss.
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The paper is organized as follows: The next section introduces a simple linear
dynamic model that exhibits multiple rational expectations solutions. The condi-
tions for E-stability of these solutions are reviewed with respect to two alternative
perceived laws of motion, the first one being an AR(1) model and the second
one being an ARMA(1,1) model. Sections 3 and 4 then proceed by assuming that
agents learn by estimating parameters of their perceived laws of motion. Regarding
the AR(1) perceived law of motion, Section 3 first reviews the well-known results
that establish a one-to-one correspondence between E-stability conditions and the
conditions for convergence of the LS algorithm. Furthermore, it is shown that
with respect to this perceived law of motion the asymptotic properties of the LS
algorithm and the SG algorithm are identical in the sense that both algorithms will
converge only to E-stable rational expectations solutions. Afterwards, in Section 4,
however, it is shown that this correspondence between the concept of E-stability
and the possible convergence of the two learning algorithms does not hold for
the ARMA(1,1) perceived law of motion. Using analytical results and numeri-
cal simulations, it is shown that the SG algorithm can in some cases converge to
E-unstable rational expectations solutions and in other cases fail to exhibit local
convergence to E-stable solutions. Proofs of the analytical results are relegated to
the Appendix.

2. E-STABILITY OF RATIONAL EXPECTATIONS SOLUTIONS
IN A LINEAR MODEL

In what follows, a model is considered that is equivalent to the one used by Evans
and Honkapohja (1995) to describe the concept of E-stability and its connection
to the possible convergence of adaptive learning procedures. This model is also
identical to the leading example discussed in the survey by Evans and Honkapohja
(1998ay It is assumed that the value of the endogenous varigliteperiodt
depends on its expected values for the pertaisdt + 1 as well as an exogenous,
serially uncorrelated disturbangge

Yt = Bo+ B1Y + B2Vl + Xt 1

With respect to the exogenous variable, it is assumed&pal = 0 andE[x;]? =
Var[x] = o2 for all t. The expectations appearing in (1) have to be formed before
y; is known and the relevant information setis givel®as={y: 1, Vt_2, . ..; X_1,
Xt_2, ...}. This implies that the exogenous disturbangeare observable for all
t—although they are observable only after the relevant expectatioimire been
formed.

As is shown by Evans (1985), the model exhibits multiple rational expectations
solutions. The two solution sets are givers by

o= x (22)
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Bo  1—p1
Vit = ——
B2 B2
Note that the white-noise solution (2a) is unique, whereas the ARMA(1,1) solution
(2b) represents a continuum of solutions for (1) becausan take any value.
The starting point for the concept of E-stability is a perceived law of motion for
the endogenous variable. In the following equations, two different perceived laws
of motion are considered:

Yi-1+ ¢Xe—1 + X, ¢ €R. (2b)

Yo = a+Yyi-1+ X, (3a)
Vi = o+ YY1+ dXe—1 + X (3b)

The crucial difference between these modelsis that, according to (3a), the perceived
law of motion for the endogenous variable is an AR(1) process, whereas according
to (3b), the perceived law of motion is an ARMA(1,1) process. Note that whereas
both models are able to represent the two rational expectations solutions (2a) and
(2b) for the model (1), the perceived law of motion (3a) is the model of smallest
degree regarding its AR and MA terms that encompasses at least partially both
rational expectations solutions of the underlying model.

Since the conditions for E-stability of the rational expectations solutions (2a)
and (2b) are equivalent with respect to the perceived laws of motion (3a) and (3b),
the following formal exposition is based upon the perceived law of motion4(3b).
On the basis of (3b), expectations regarding the future values of the endogenous
variable are given by

¥e = ElVt | Vi1, %e—1] = o + VY1 + dX_1,
Yo = ElVer1 | Vi1, Xe—1] = o + Y E[ye | Vi1, Xe—1]
= L+ + ¥2¥1 + YéXi1.

Substituting these equations into the model (1) yields the following actual process
for the endogenous variabjge:

Yo = Bo+alBr+ B2(L+ W] + (Brvr + BV ?) Y1 + (Brg + Ba¥y ) Xe—1 + %

= To(0) + Ty () Yr—1 + Ts(O)Xt—1 + X.
Here, 8’ = (o, ¥, ¢) denotes the vector of parameters of the perceived law of
motion and the operatdr(6) =[T,(6), T, (0), T4(8)] maps the parameter vector

6 of the perceived law of motion (3b) to the parameters of the resulting actual
process foly;. Hence, the operatdr(0) is given by

o T.(0) Bo+ a[f1+ B2(1+ )]
TO =Ty |[=|Tu®O) | = By + Bayr? ; 4
¢ Ty(0) B1o + B2y
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and from (4) we can compute the equilibrium pointsi@d):
0y = [Po(L— p1— B2+, 0,0], (5a)
O, ={010'= (—poBs", (1 — BB " ¢), & €R}. (5b)

Itis apparent that the equilibrium points (5a) and (5b) imply that the perceived law
of motion (3b) coincides with the rational expectations solutions of (1).

Following Evans (1989), a rational expectations solution is E-stable if this so-
lution is asymptotically stable with respect to the differential equation

d—0=9=T(0)—0 (6)
dr

based on the operatdi(8). This in turn requires the associated equilibrium points
(5a) and (5b) to be asymptotically stable equilibrium points of the differential
equation (6). Taking into account that the Jacobian matrix of the differential equa-
tion (6) evaluated at these equilibrium points is giverdlg§*) = V, T (8%) — I3, it

is possible to derive the following E-stability conditions [Evans and Honkapohja
(1992)]:

(1) The rational expectations solution (2a) is E-stable with respect to the perceived laws
of motion (3a) and (3b) if

B1<1, Br+B2 <1l

(2) The rational expectations solutions (2b) are E-stable with respect to the perceived
laws of motion (3a) and (3b) f

B1>1, B2 <0.

As Figure 1 makes clear, these stability conditions imply that the parameter
space of the model is partitioned in a way that, given the perceived laws of motion
(3a) and (3b), either one of the solutions (2a) and (2b) or none of these solutions
is E-stable. Hence, depending on the values of the parangtearsd 8,, we can
distinguish three regions in Figure 1. In region 1, the only E-stable solution is
(2a), whereas in region 2 only the ARMA solutions (2b) are E-stable. Finally, in
region 3 neither of the two solutions is E-stable.

3. LEARNING WITH AN AR(1) PERCEIVED LAW OF MOTION

In what follows, it is assumed that agents in the model use perceived law of motion
(3a) for the endogenous variabje in order to form the relevant expectations.
Furthermore, it is assumed that the parameters of this perceived law of motion are
comprisedinthe vectd = («, ¥). Inevery period, agents learn by modifying the
relevant vecto#; by means of new observations of the exogenous and endogenous
variables that become available to them in this period.

With z = (1, y;—1), expectations formed on the basis of the perceived law
of motion (3a) imply that the actual value for the endogenous variable will be
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Br1=1
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No solution
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Ficure 1. E-stability of (2a) and (2b).

Ve =ZT(0r) + %, whereT (8) =[T,(0), T, (6)] results from (4) by dropping the
last row. This results in the following stochastic process on the vector

(1 (1 o 1Y), (°), -
A= vi ) \T.(0) Tu(6) Yi—1 1)

Note that, giverf;, the stochastic process (7) is stationary onlyTif (6:)| < 1.
Stationarity of (7) is an important assumption for the analysis of convergence of
learning processes that are presented in the following.

Regarding the estimation procedures or learning algorithms that agents use to
adapt their parameter vecték in the light of past experience, two alternative
procedures are considefed

(1) SG procedure or algorithmThe SG algorithm modifies the parameter vector on
the basis of the gradient of the forecgstof the endogenous variable in peribd
(afterx; has been observed), =z 6, + x;, with respect t@, and the forecast error
Yo — S =7[T(8) — 6:]. We get

011 = 0 + ¥1.11z{Z[T(6)) — 6.1}, (8)

wherey, =t~ with 0 < ¥ < 1 as atime-dependent and declining learning rate. Such
algorithms are quite common, especially for recursive estimation of nonlinear models
such as neural networks [see Sargent (1993) and Kuan and White (1994)].

(2) Recursive LS algorithnThe main difference between the SG algorithm and recursive
LS algorithm is that the latter uses the inverse of the estimated moment matrix of
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the explanatory variables to determine the step size of the parameter modification.
The LS algorithm thus is given as

1
0141 = 0; + (H-_l) Rtjrlth{ZE[T(Gt) — 6]}, (92)

1
Ri1 =R+ (t—l—_l)[ZtZ; - R]. (9b)

Both algorithms are quite similar: Boundedly rational learning on the side of the
agents in the model means that they take the stochastic process gengréind)
thusz) as given. This implies that the gradient of the squared prediction error
&2 = (yy — ¥,)? with respect td, is given for them as-2zZ[T (6;) — 6;]. In both
algorithms, this term determines the direction of adjustments of the parameter
vector@; during the iterations. Indeed, with = 1/t, the only difference between
these two algorithms is that the LS algorithm in equation (9a) modifies the step size
of the parameter modification according to the inverse of the estimated Hessian of
the squared prediction err@%z)~1. Thus, the LS algorithm can be interpreted as

a modification of the SG algorithm that results in a stochastic Newton algorithm
[Ljung and Sderstoim (1983)].

Under certain assumptions, following Ljung (1977), the asymptotic properties of
learning algorithms such as (8) and (9) can be described by means of an associated
deterministic differential equatichEvans and Honkapohja (1995) show that these
assumptions are satisfied for the model considered here. Thus, we can proceed
directly by analyzing the respective differential equations.

The differential equation associated with the SG algorithm (8) can be specified

as
O = 0= EEAIT®) — 0] = MO[TO) ~ 0] (10)

Regarding the LS algorithm, the resulting associated differential equations are

de

= 0 = R IM,(0)[T () — 0], (11a)
drR _ R= M,(©) — R. (11b)
dr

In both differential equationsvl,(0) refers to th&2 x 2) moment matrix[zz].
From (7) and the above-made assumptions, it then follows\hé#) is bounded

and given by
1 To(0)
1-T,0) ,
M,(6) = E[zZ] = 1
@ =Flzz) T,(0) { T.(0) ]2+ T N
1-T,0 |[1-T,0] "1-T,02
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The essential result of Ljung (1977) states that the parameter vkaesulting
from learning algorithms such as (8) and (9) will only converge—if at all—to
equilibrium points of these associated differential equations. Moreover, the proba-
bility for such a convergence to occur is positive only if the respective equilibrium
points are asymptotically stable. Convergence with probability 1 can be guaran-
teed only if additional restrictions are employé&t:almost surely will converge
to an equilibrium point of the associated differential equation if the learning algo-
rithm is equipped with a so-called projection facility. This projection guarantees
that the estimated parameter vector almost surely will stay infinitely often in the
domain of attraction of that equilibrium point. Given a stable equilibrium point
of the associated differential equation, it is always possible to find a nontrivial set
(i.e., a set containing not only the equilibrium point itself) having this property,
such that one can always find a nontrivial projection facility ensuring almost sure
convergence [see Marcet and Sargent (1989)].

Now let®R be the setof all € R2, suchthal (8) = 6. Obviously®R ={0%, 6;},
where@;, is the one element from®;;, for that¢ = 0. Thus, allo* € ®R are equi-
librium points of the operatof (6). Recall that this means that the perceived law
of motion (3a) coincides with one of the rational expectations solutions (2a) and
(2b) for all@* € ®R,

Looking at (10) and (11), we see that we can state the following proposition
without any formal prodf?:

PROPOSITION 1.Any8* e ®Ris an equilibrium point of the differential equa-
tions(10)and(11).

As already noted, rational expectations solutions are defined to be equilibrium
points of the operatdr (8). Thus, Proposition 1 states that any rational expectations
solution might be a possible outcome of the learning procedures considered here.

The following proposition now establishes the well-known correspondence be-
tween the E-stability of rational expectations solutions and the possible conver-
gence of the LS algorithm.

PROPOSITION 2 [Marcet and Sargent (1989 necessary and sufficient con-
dition for 8* € ®R and an associated 'R= M,(6*) to be a stable equilibrium point
of the differential equatiofiLl1)is that@* be a stable equilibrium point of the dif-
ferential equatiord = T (8) — 6.

The proof is based upon showing that, 8&re R, all eigenvalues of the Jaco-
bian matrix of (11) that do not equall coincide with the eigenvalues of the Jaco-
bianJ(0) of T (8) — 6 evaluated af*. To check local stability, it is therefore suffi-
cientto look atthe subsystem (11a). Sifia®@*) = 6*, for all 8* € ®R the Jacobian
matrix Jx o (@) of (11) evaluated @ is given byJx o (8*) = (R*) "*M,(6%)J (6%).
Because an equilibrium point of (11) implies tRit= M,(8™), we getJk o (") =
J(6") such that the eigenvalues &f o(6*) coincide with that ofJ (6*).

Note that the validity of this proposition is quite general and not restricted to
the AR(1) perceived law of motion used here: Because any equilibrium point of
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the differential equations (11) must be a fixed point of the operaté, such

an equilibrium point will be stable only if the corresponding rational expectations
solution is E-stable. An immediate consequence is that the LS algorithm will
never converge to rational expectations solutions that are not E-stable with respect
to the perceived law of motion under consideration. Thus, to make predictions
regarding the possible convergence of this learning procedure and in order to select
among multiple rational expectations solutions, itis sufficient to check whether the
respective solutions are E-stable or not. This is a quite comfortable result because
the formal proof of E-stability is easier to check than the possible convergence of
the LS algorithm.

Let us now turn to the SG algorithm. In this case the stability analysis of the
equilibrium points® R is a more complicated matter: Note that the correspondence
between the concept of E-stability and the possible convergence ofthe LS algorithm
is due to the fact that any equilibrium point of (11) implies tRat M,(®), such
that (11a) reduces t8 =T (@) — 6. However, because the step size of the SG
algorithm is independent dR, the argument underlying Proposition 2 does not
carry over to the SG algorithm.

So, the local asymptotic stability of the equilibrium points of (10) has to be
checked explicitly. It is quite easy to show that the equilibrium points of (10)
coincide with the equilibrium points df (8) — 8.1 Thus, the Jacobian matrix of
(10) evaluated at an equilibrium poifite ©R is given as

Jsa(0) = Mz(0)[Vs T(0) — I2]. (13)

This equation already reveals that if there is any connection between E-stability
conditions and the convergence conditions of the SG algorithm, this connection
will not be an obvious one. Of course, E-stability guarantees that the eigenval-
ues ofV, T(8) — |, are negative. However, no general conclusions regarding the
eigenvalues oflsg can be drawn from this. Nevertheless, at least for the AR(1)
perceived law of motion, it is now possible to state the following proposition:

PROPOSITION 3.

(i) Anecessary and sufficient condition &jrto be an asymptotically stable equilibrium
point of the differential equatiofl0)is that the corresponding white-noise solution
be E-stable.

(i) Given stationarity of the ARMA,1) solutions(2b), a necessary and sufficient con-
dition for 0} to be an asymptotically stable equilibrium point of the differential
equation(10)is that the corresponding ARMA 1) solution be E-stable.

Throughout this paper, attention is restricted to rational expectations solutions
that are stationary, and so, Proposition 3 establishes a one-to-one correspondence
between the SG algorithm and E-stability conditions. Thus, if the agent’s perceived
law of motion is given by the AR(1) model (3a), we get the following results: First,
the asymptotic properties of the SG algorithm and the LS algorithm are identical
in the sense that both algorithms will converge to identical parameter vectors and
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thus to identical rational expectations solutions. Second, the necessary conditions
for the convergence of both algorithms toward one of the two solutions coincide
and are identical to the conditions for E-stability of these solutions.

4. LEARNING WITH AN ARMA(1,1) PERCEIVED LAW OF MOTION

It is now assumed that the perceived law of motion used by the agents is given
by the ARMA(1,1) model (3b). Given such a perceived law of motion, we have
z = (1, yi—1, X—1) and the stochastic process generafing given as

1 1 0 0 1 0
Zia=| Y% | = | Ta@) Ty(0r) Ty(0y) Vier |+ 11 %, (14)
Xt 0 0 0 Xt—1 1

whereT (8) now coincides with (4). As before, stationarity requifég(0)| < 1
and, from (14), th€3 x 3) moment matrixe[z z] = M,(8) for the vector follows
as?

M;(0) = E[zZ]

1 T4 (0) 0
1—T,(0)

- T, (6) { T,(0) ]2 1+ Ts(0)2 + 2T, OT,0) ,

1-T,0) |1-T,0) 1—T,(6)2 x o Ox

0 OXZ sz

(15)

As before, the aim is to analyze the possible convergence of the two alternative
learning procedures described in the preceding section. However, in presence of
an ARMA(1,1) perceived law of motion, this analysis becomes more complicated.

4.1. Learning Via the SG Algorithm—a Formal Analysis

Consider first the SG algorithm and its associated differential equation (10). Equi-
librium points of this differential equation satisfy the equatidi(6)[T (0) —

0] =0. Obviously, alb* € ©} as well a®}, are equilibrium points of this differen-

tial equation because all of the@&imply thatT (8*) = 68*. However, as stated in

the following proposition, there are other equilibrium points as well: If we define
the set®S = {07, ©;} as the set of all equilibrium points df(6) — 6 and the set

©F as the set containing all equilibrium points of (10), we get Proposition 4.

PROPOSITION 4.Define®N = ®F\®S. Then®N is non-empty and given by
ON=1{016'=[L—¥)ho(L—Br— B " ¥, —¥], ¥ €R, ¥ £0}.
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Proposition 4 says that the differential equation (10) possesses equilibrium
points that are not simultaneously equilibrium points of the operatén and
therefore do not represent rational expectations solutions in the usual sense.

Given ad € ®N, the perceived law of motion results in

Ve =1 —y)Bo(l— B1— B+ ¥¥io1 — ¥X—1 + X (16)

As can be seen, this process is generated from the white-noise solution (2a) by
multiplication with the lag polynomia{l — yrL). Note that the overparameter-
ized white-noise process (16) and the solution (2a) are equivalent toorly if

Yo = Xo + [Bo/(1— B1 — B2)] [Evans and Honkapohja (1986)]f this initial con-

dition is not satisfied, both processes are at least asymptotically equivalent if
|v| <1, that is, if (16) is a stationary process. Regarding the expectations based
upon such a perceived law of motion, it must be noted, however, that these expec-
tations imply an actual process for the endogenous varighlat is not given by

(16). Substitution 08 € ®N into (14) reveals that the actual processyiois given

by
Yo = lL (1= Bav = Bov®) + [Bav + Bov® s
—B1— B
— [Br¥ + Bovr?] Xi—1 + ;. 17)

For any initial valuesyy andXg, the process (17) is asymptotically equivalent to
(2a) only if |B1y + B2y?| < 1.1 This condition is equivalent tfT, (8)| < 1; that

is, the stochastic process (14) is stationary fodatl®N that in addition satisfy
|81y + Bov?| < 1. Note that, for this condition to hold, it is neither necessary nor
sufficient thaty | < 1.

The main difference between perceived laws of motion that are parameterized
by 8 € ®©N and those parameterized By ©S is that the latter coincide with
rational expectations solutions. Contrary to this, perceived laws of motion param-
eterized byd € ®N will coincide with the rational expectations solution (2a) only
asymptotically and even this occurs onlyTi, (8)| < 1. In what follows, | refer to
perceived laws of motion that are parameterized®ky®N and satisfy the con-
dition | Ty, (8)| < 1 as overparameterized white-noise solutions and subsume these
solutions under the rational expectations solutions of the underlying model (1).

Thus, given the perceived law of motion (3b) and the learning procedure (8), the
model (1) exhibits two distinct sets of rational expectations solutions, each corre-
sponding to a continuum of parameter vecirJ he set®j}; from (5b) generates
ARMA solutions of the form (2b), and the set

0;=1{010' = [L—v)pol—pr— B " ¥.—¥].  [Ty©®)] <1}

generates, at least asymptotically, the white-noise solution (2a). In what follows,
the set®F = (@}, O} refers to these vectors.

The stationarity conditioT, (8)| < 1 is important in the following respects:
First, stationarity of the process farresulting from (14) is necessary to perform
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the convergence analysis of the learning process. Second, this condition ensures
that the perceived law of motion (3b) parameterize@lay®N coincides with the
rational expectations solution (2a) at least asymptotically. Furthermore, a closer
look at the moment matridi;(0) in equation (15) reveals that the differential
equationé: M,(6)[T (8) — 6] associated with the SG algorithm will exhibit
singularities for ally € R thatimply|Ty (6)| = 1. This means that this differential
equation may exhibit quite complicated dynamics that cannot be described solely
by formal analysis.

An additional difficulty arises because convergence results for stochastic ap-
proximation algorithms using the approach of Ljung (1977) are not valid if the
respective equilibrium points represent continua as is the casejfand ©;
[Evans and Honkapohja (1994)]. Since the motivation for these convergence re-
sults is to show that algorithms like (8) converge to specific points in the parameter
space, the respective theorems apply to isolated equilibrium points only. However,
there is one result that can be used, even if we are confronted with a continuum
of equilibrium points: Theorem 3 of Ljung (1977) states that the learning rate of
the algorithm can be chosen such thattfes oo the time path o, of the al-
gorithm stays arbitrary close to an exponentially stable solution of the associated
differential equation with an arbitrarily high probability. Hence, if we have trajec-
tories of the associated differential equation that converge to points that belong
to a continuum of equilibrium points, the probability that the learning algorithm
converges to points that belong to this continuum cannot be zero. Moreover, irre-
spective of this, at least the following statements about the SG algorithm and its
associated differential equation remain valid: The SG algorithm considered here
will not converge to parameter vectors that are not equilibrium points of the asso-
ciated differential equation and it will never converge to equilibrium points that are
unstable.

Thus, to derive the conditions for possible convergence of the SG algorithm
toward one of the rational expectations solutions, the stability of the equilibrium
points8* € ©F = {®%, B} has to be checked. Unfortunately, a formal proof of
stability is no easy task because the Jacobian matrix of (10) will possess at least
one eigenvalue that equals zero for d@yec ®F. However, although we cannot
use standard techniques for stability analysis in this case, it is possible to obtain at
the least the following necessary condition for convergéhce

PROPOSITION 5.0ne eigenvalue of the Jacobian matrix(@0) evaluated at
0* € ©F equals zero. In case of of stationarity &f that is, if [T, (0")| <1, the
remaining two eigenvalues are negative if and only if

(i) for the white-noise solution®* € ®;, we havep;+ g, <1 as well asy <
(L= pBu)/B2if p2>0, 0r ¥ > (1 — p1)/ B2 if B2 <O0;

(i) for the ARMAL,1) solutions@* € ®f, we havep, <0 as well as¢ € (—(1—pB1)/
B2 —B2/(L1=p1)) if 1—p1>0, or ¢&(—(1—p1)/B2, —B2/(1—p1)) if 1—
}31 <0.
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In Proposition 5, attention is restricted to stationary rational expectations solu-
tions of the model (1). This is reasonable because we are particularly interested
in convergence conditions for the SG algorithm itself rather than in the stability
conditions for equilibrium points of the differential equation (10).

Note that Proposition 5 does not give a sufficient condition for the stability
of equilibrium points belonging t®". Nevertheless, there is at least one re-
sult that can be derived immediately: There exist rational expectations solutions
that may be E-stable with respect to the perceived law of motion under consid-
eration, but that cannot be learned with the help of the SG algofithifn for
instance, the underlying model is such tifat< 0 and 1— g; <0, anyf € ©;
is E-stable with respect to a perceived law of motion (3b) (cf. Figure 1), but for
¢ € (—(1— B1)/B2, —B2/(1— B1)) the respective equilibrium point of the differ-
ential equation is unstable, such that these solutions cannot be reached via SG
learning.

Although Proposition 5 allows us to identify parts of the continua of equilibrium
points in®F that are definitively unstable, there always remain parts where stability
is not a priori excluded. Moreover, as is verified later by numerical simulations
of the associated differential equation, the conditions stated in Proposition 5 also
seem to be sufficient for stability of these equilibrium points. Taking into account
that Proposition 5 does not require the respective rational expectations solution
under consideration to be E-stable in order for the respective equilibrium point to be
stable or at least not a priori unstable, we get the result that the differential equation
associated with the SG algorithm may have equilibrium points that are not E-stable
but that are nevertheless stable. Given such a result, it is therefore quite reasonable
that the learning algorithm may converge to rational expectations solutions that
are not E-stable. In Section 4.2, results from numerical simulations of the SG
algorithm are presented to verify that the properties of the associated differential
equation do indeed carry over to the learning algorithm. As aresult, itis shown that
learning via the SG algorithm may converge toward rational expectations solutions
that are not E-stable with respect to the perceived law of motion (3b).

4.2. Simulation Results for the SG Algorithm and Its Associated
Differential Equation

In this subsection, results from numerical simulations of the differential equation
associated with the SG algorithm as well as the SG algorithm itself are presented
to verify the earlier statements regarding the convergence properties of the SG
algorithm based upon the perceived law of motion (3b). Such simulation results
cannot be seen as formal proofs, but they give at least strong evidence in favor of
the statements made earlier.

The simulations are based upon two specifications of the model, with alternative
values for the parametefls and 8, and fixed valueg, = 1 ando? = 1. The first
configuration specifie; = —0.25 andg, = —1.5, such that only the white-noise
solution (2a) is E-stable, whereas the second configuration speiifie$.25 and
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B2 =—1, such that only the ARMA(1,1) solutions (2b) are E-stable (cf. Figure 1).
Note that these values fgh and B, imply that, for each configuration, we have
|(1— B1)/B2| < 1. Thus, the stochastic process (14)Zowill be stationary for all

0 € ©f. Stationarity of (14) foP € ®} requires no further restrictions because, for
all B1, B2, there exists a non-empty interval fgr, implying | T, (8)] < 1.1

Given these two specifications of the model, the respective differential equa-
tion was solved numerically starting with initial vecta#$0) that are given by
four predetermined values for the paramateand a grid of points in the, ¢-
plane for each value of,.'® To avoid problems arising from the existence of
singularities,y was restricted such that the stationarity conditiop(@)| <1 is
satisfied. For the first configuratighh = —0.25 andg, = —1.5, the predetermined
values foryr are given by = —0.9, ¢ = (1— B1)/B82=—0.833,y = —0.75, and
¥ = —0.65. The values for the parameterand¢ form a 50x 50 grid of equidis-
tant points with—1.25<«a <2.75 as well as—1.25 < ¢ <2.75. For the other
configuration of the model, the predetermined valueg/fare given by = 0.1,

v =(1-B1)/B2=0.25,¢ =0.7, andy = 0.9 and the values for the parameters
a and¢ form a 50x 50 grid of equidistant points with-0.5 <« < 3.0 as well as
—7<¢ <1.Soinall, for each configuration of the model, the differential equation
has been solved for 10,000 different initial vectr®).

Figures 2 and 3 present some details of the simulation results to illustrate the
guite complex dynamics of the differential equation and especially the sensitivity to
initial conditions. For each of two configurations of the model, the figures show the
respective grid of starting values in theg-plane for one of the above-described
predetermined values gf. A bold point indicates that the trajectory starting in this
point converges to & € ©f; a thin point indicates convergence toway. The

Ficure 2.Convergence of the differential equation (10) with=1, 8; = —0.25,8, = —1.5,
ando? =1 for ¢ = (1 — B1)/B. = —0.833 and different initial values far and¢.
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Ficure 3. Convergence of the differential equation (10) wiig=1, g1 =1.25, 8, =—1,
ando?2 =1 for ¢ = (1 — B1)/B2 = 0.25 and different initial values far andé.

white regions without any points indicate starting values of diverging trajectories.
In each figure, the solid lines represent projections of all stationary points onto
the respectiver, ¢-plane, and the single bold point displays the stationary point
in this plane.

The main result presented in Figure 2 is that there exist initial ve@&@}s
that give rise to converging trajectories and that, depending on the initial values,
convergence towarél € ©} as well as toward € ®}; might occur, although the
configuration of the model implies that the ARMA(1,1) solutions (2b) are not
E-stable. Thus, we have the result that the differential equation (10) possesses
stable equilibrium points that do not correspond to E-stable rational expectations
solutions. Figure 3 shows a similar result for the other configuration of the model.
With the parameters of the model given By=1.25 andg, = —1, the white-
noise solution (2a) is not E-stable, but as the figure reveals, there nevertheless exist
initial values that give rise to trajectories converging towae®; . As for the other
configuration, itdepends on the specific initial values whether diverging trajectories
or convergence towarl € ®} as well as toward € @] occurs. Note that because
of 1— B; < 0, all ARMA(1,1) solutions withy € (—(1— B1)/B2, —B2/(1— B1))
are unstable. Thus, there are two separate areas with initial values converging
toward the two distinct stable regions®f. Summarizing, we again get the result
that the differential equation (10) possesses stable equilibrium points that do not
correspond to E-stable rational expectations solutions.

Figure 4 shows the equilibrium points that resulted from the numerical sim-
ulations of the differential equation. For all converging trajectories depicted in
Figures 2 and 3, the resulting parametgrand¢ are showrt® The solid lines in
the both figures correspond to the continua of equilibrium pdiitand©;, the
dashed lines indicate the interval for the paramegtspecified in Proposition 5. In
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Figure 4A, equilibrium points that resulted for the configuratian= —0.25 and
B.=—1.5 are depicted. As can bee seen, there are two branches of stable equi-
librium points. Moreover, the figure makes evident that the necessary conditions
formulated in Proposition 5 indeed seem to be sufficient for stability: Stable equi-
librium points are located everywhere on the solid line correspondigigto—¢,
where the conditiony > (1 — B1)/B- is satisfied and, in addition, they are located
everywhere on the solid line correspondingyte= (1 — 81)/82, where the con-
dition ¢ € (—(1— B1)/B2, —B2/(1— B1)) is satisfied. Figure 4B, corresponding

to the configuratiorg; = 1.25 andg, = —1, gives the same findings. The only
difference is that, becaug® > 1, stable equilibrium points are located every-
where on the solid line corresponding to= (1 — 81)/82, where the condition

¢ & (—(1— B1)/B2, —B2/(1— p1)) is satisfied.

From the figures presented so far, it cannot be inferred whether the equilibrium
points depicted in Figures 4A and 4B are locally stable or merely semistable.
However, additional simulations—uwith initial vecta#$0) as specified earlier but
with smaller variations inr—indicate that initial vectors in a small neighborhood
of the respective sets of equilibrium points result in convergence to these sets. This
means that the respective equilibrium points are locally stable.

Let us now turn to the SG algorithm itself. If the stability of equilibrium points in
the differential equation (10) does not necessarily correspond to the E-stability of
the respective rational expectations solution, it is reasonable that the SG algorithm
may converge to solutions that are not E-stable with respect to the perceived law
of motion (3b). The simulation results for the SG algorithm presented in Figure 5
show that this is indeed the case and thus verify this presumption.

These simulations are based upon the same configurations of the pargpeters
andp, as well as the same initial vectd#g that have been used for the numerical
solution of the associated differential equation. In all of the simulation runs, the
exogenous variabbg was assumed to be the realization of a normally distributed
random variable witiE[x;] = 0 and variance;? = 1.0 and, regarding the learning
rate 1, it was assumed thagt =t=%5, that is,x = 0.5. This value forx results
in tolerably fast convergence, such that 15,000 iterations of the algorithm were
sufficient to assess its convergeReéNote that, even if the initial vectofy is
given, the behavior of the SG algorithm depends on the initial values specified for
the vectorzy as well as the realizations of the random variableort =0, 1, ....
Because of this, for each of the 10,000 initial vectors, five simulation runs of the
SG algorithm have been performed. Every single simulation run started with a
randomly chosen vectay and different realizations for the exogenous variables
Xt. Thus, allin all, the results for each configuration are based upon 50,000 different
simulation runs of the SG algorithm.

As above, the bold points in Figure 5 show the resulting parameter values for
Y andg for the two configurations of the model, for those simulation runs where
convergence occurréd.Regarding the configuratigy = —0.25 andg, = —1.5,

2,713 of 50,000 simulations resulted in convergence [2,311 white noise/402
ARMA(1,1)]. As can be seen from Figure 5A, the SG algorithm converged
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toward overparameterized white-noise solutions as well as toward ARMA(1,1)
solutions (2b) that satisfy the stability conditions stated in Proposition 5. Because
these ARMA(1,1) solutions are not E-stable, given the underlying configuration
of the model, Figure 5A establishes the result that the SG algorithm indeed can
converge toward rational expectations solutions that are not E-stable.

A similar result can be obtained with the other parameter configurgtienl.25
and g, = —1. Here, 4,335 of 50,000 simulations resulted in convergence [2,896
white-noise/1,439 ARMA(1,1)]. Although in this case the white-noise solution (2a)
is not E-stable, Figure 5B reveals that the SG algorithm nevertheless converged
toward overparameterized white-noise solutiéhés before, we get the result
that the convergence of the SG algorithm toward rational expectations solutions
is not one-to-one with E-stability conditions. Moreover, both figures show that, in
the case of the perceived law of motion (3b), learning via the SG algorithm will
not select a unigue rational expectations solution.

Altogether, the simulation results reveal that the SG algorithm may indeed con-
verge to parameter vectors that are not simultaneously equilibrium poifi®of
Thus, it is by no means necessary that learning with an overparameterized model
will result in values for the additional parameters that converge to zero, as would
be the case for the differential equation (6) based on the opé&rafr Although
this result might not be very surprising, it nevertheless is worth noting because, as
shown in the figures, a simulated learning algorithm will quite often converge to
such overparameterized solutions.

4.3. A Remark on Learning via the LS Algorithm in Case of an ARMA(1,1)
Perceived Law of Motion

Actually, one should not expect something new concerning LS learning with an
ARMA(1,1) perceived law of motion because the results reviewed in Section 3
imply that the LS algorithm will converge only to equilibrium points that corre-
spond to E-stable rational expectations solutions. However, given an ARMA(1,1)
perceived law of motion, things become more complicated regarding the white-
noise solution (2a): A look at the moment matrix (15) reveals ihg#) becomes
singular for anyg* € ®%. The reason is that in the case of the white-noise solu-
tion (2a), the endogenous variabjecontained in the perceived law of motion
follows the process; = Bo(1 — B1 — B2) "1 + %. Thus,y; is nothing more than a
linear combination of the two exogenous variables that are already contained in
the perceived law of motion and, consequenitliy(6) becomes singular for any
0" € ©. This implies that the differential equations (11) exhibit a singularity for
all 8" € ®; and R= M,(8") and, contrary to the SG algorithm, the €&} does
not represent equilibrium points of the differential equations ¢ Mloreover,
the LS algorithm (9) itself becomes undefined for@lle ®; and all associated
R = Mz(6;) becauséM,(6;)~1 will not exist2*

Even if formal analysis of the LS algorithm is not possible in the presence
of such singularities, at least some evidence regarding the characteristics of the
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learning process can be given here. Numerical simulations of the differential equa-
tions (11) associated with the LS algorithm suggest that the E-stability conditions
affect the properties of the singularity@f . In particular, there is evidence that the
singularity attracts nearby trajectories if the white-noise solution is E-stable, and
that it repels nearby trajectories if the white-noise solutions is not E-stable. Addi-
tional numerical simulations of the LS algorithm itself (not presented here) suggest
that the connection between the learning algorithm and this differential equation
still remains valid, meaning that the learning process steers taffaz®?, in the
case of a white-noise solution that is E-stable. Clearly, in such a case, the moment
matrix M,(6) approaches a singular matrix, such that—sooner or later—the learn-
ing algorithm will break down. Indeed, in the numerical simulations, this happened
in finite time for all learning processes that were attracte@33®

Given these findings and taking for granted that their interpretation is correct,
one may state with due care that the convergence properties of the LS algorithm
toward the rational expectations solutions of the model are again governed by E-
stability conditions: We have the definite result that rational expectations solutions
of the ARMA(1,1) type (2b) can be learned only if these solutions are E-stable
with respect to the ARMA(1,1) perceived law of motion. Moreover, the simulation
results suggest that the learning process will be attracted to overparameterized
white-noise solutions only if the white-noise solution (2a) is E-stable.

5. SUMMARY OF THE RESULTS

The formal analysis as well as the numerical simulations carried out in the pre-
ceding sections have shown that whether there is a correspondence between the
convergence of the SG algorithm and E-stability conditions depends on the per-
ceived law of motion.

An AR(1) model is the model of smallest degree regarding its AR and MA
terms that encompasses at least partially both rational expectations solutions of
the linear model considered in this paper. Proposition 3 states that if the perceived
law of motion is given by such an AR(1) model, SG learning is indeed governed
by E-stability conditions. Thus, the asymptotic properties of the SG algorithm and
the LS algorithm are in this respect identical.

If, however, the perceived law of motion is given by an ARMA(1,1) model,
there is no such one-to-one correspondence between the convergence of the SG
algorithm and E-stability conditions. Proposition 5 as well as the simulation results
allow for the following conclusions: Dependent on the specification of the model,
the E-stable rational expectations solutions may not be learnable using the SG
algorithm. In addition, the SG algorithm can converge to rational expectations
solutions that are E-unstable.

6. CONCLUDING REMARKS

The aim of this paper was to show that there may not be a full correspondence be-
tween the concept of E-stability and the possible convergence of adaptive learning

https://doi.org/10.1017/51365100500016011 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100500016011

ADAPTIVE LEARNING AND EXPECTATIONAL STABILITY 283

procedures in linear economic models. Such a correspondence indeed exists if the
recursive LS algorithm is considered. However, this algorithm represents merely
one of many plausible adaptive learning procedures. Taking a SG algorithm as an
alternative to the LS algorithm, there exist cases in which the correspondence is
not one-to-one.

Assuming a simple linear rational expectations model, it has been shown that
SG learning may converge to rational expectations solutions that are not E-stable
with respect to the underlying perceived law of motion. Furthermore, even E-stable
rational expectations solutions may not be stable under SG learning.

Thus, there is no fully general E-stability principle that can be used to determine
the “learnability” of rational expectations solutions. However, to be fair, it must be
emphasized that a general assertion that E-stability and the possible convergence of
adaptive learning procedures correspond to each other is not made anywhere in the
literature. So, the message of this paper is merely that one should not hope for such
a general assertion to be valid. The specific conditions that have to be fulfilled for
such a correspondence to be valid at least within limits still have to be determined.

The analysis of two distinct perceived laws motion also revealed that there exist
perceived laws of motion where the correspondence between E-stability condi-
tions and the possible convergence of the SG algorithm is indeed one-to-one.
Regarding the SG algorithm and its possible convergence points, the main differ-
ence between the two perceived laws of motion considered in the paper is that the
AR(1) model gives rise to locally unique rational expectations solutions, whereas
the ARMA(1,1) model gives rise to continua of such solutions. So far, it is not
clear whether the local uniqueness of rational expectations solutions in the case of
the AR(1) perceived law of motion is the reason for the correspondence between
E-stability and convergence conditions. This is a possible starting point for future
research.

NOTES

1. Barucciand Landi (1997) make a similar point. They use the term “least mean squares algorithm”
for the SG algorithm.

2. Evans and Honkapohja (1995) give a comprehensive analysis of this model with respect to E-
stability and check the possible convergence of recursive least-squares learning for perceived laws of
motion that will not be considered here.

3. Other solutions, which can be obtained by taking sunspot variables into account, are ignored.
See Evans and Honkapohja (1992, 1995).

4. Conditions for E-stability depend on whether the underlying perceived law of motion is correctly
parameterized or overparameterized with respect to the rational expectations solution at hand. Given
the perceived laws of motion (3a) and (3b), it is obvious that both models are overparameterized with
respect to the white-noise solution (2a) but correctly parameterized with respect to the ARMA(1,1)
solutions (2b). However, regarding the perceived law of motion (3a), this last statement is only true if
¢=0.

5. Because one eigenvalue &{0*) equals zero, the stability analysis is more difficult in this
case. However, as shown by Evans and Honkapohja (1992), the conditions stated above ensure weak
E-stability for all6* € ©§.

6. For adiscussion of these and other algorithms, see Ljung eaer§om (1983).
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7. Inaccordance with the SG algorithm, the LS algorithm can be modified by using the more general
learning ratex 1 = (t + 1) with 0 <« < 1 instead of [¥(t + 1)].

8. Comprehensive descriptions of this approach and the required assumptions are already available
in economic literature [Marcet and Sargent (1989), Woodford (1990)].

9. BecauséE[x] =0, we getE[yix] =02 andE[y] = T, /(1 — Ty). From the two equations

Elyeyea] = LEWM + TyE[y2 1],  E[¥¥] = TWEIW] + Ty Elyey1l + oF,

it then follows that(1 — T2)E[y¢] = Tu(1+ Ty) E[y] + 0%

10. For all thes@*, an equilibrium point of (11b) is given biR* = M,(8*) such that this equation
need not to be considered.

11. If we havex andy such that the first equation of the syst&m(6)[T () — 6] equals zero,
then the second equation equals zexgdfTy (8) — ¥1/[1 — Ty (8)?] = 0. This requires tha =0 or
¥ = (1— B1)/B2 and, from this, it follows thad = Bo/(1— B1 — B2) or @ = —Bo/B2.

12. BeCﬁUS&[Xt] =0,we getE[ytxt] = sz, E[tht_ll = (Tv, + Td,)crf and E[yt] =T,/(1— T,[,)
From the two equations

Elyewt-1] = ToElyl + Ty E[y2,] + Ty o7,
E[v?] = TwEIw] + Ty Elytyeal + Ty Elyox 1l + o2,

it then follows that(1 — T2 E[yZ] = T (1+ Ty) Ely] +[1 4+ T/ + 2T TyJof.

13. Equation (16) implies that = Bo/(1 — B1 — B2) + Xt + ¥ [Yo — Bo/(1 — B1 — B2) — Xo]-
14. From (17), we get

Bo 2\t Bo
g o) o
If yo = Bo/(1— B1 — B2) + X0, Yt will converge to solution (2a) far — oo only if |f1v + Bo?| < 1.

15. Incase of zero eigenvalues, the stability of equilibrium points may be determined using the center
manifold technique [cf. Guckenheimer and Holmes (1990)]. For the nonlinear system of differential
equations given here, this turned out to be an extremely difficult task and so this approach was not
pursued here.

16. | am indebted to an anonymous referee for drawing my attention to this point.

17. Ify =0, we gefTy, (§) = 0. SinceTy, (0) is quadratic iny and takes an extreme valuejai= 0,
there exists an open interval arouttd= 0, where we hav¢Ty, (8)| < 1. Regarding the specification
B1=—-0.25 andB, = —1.5, stationarity of, that is,| T, (8)| < 1, requiresy € (—0.904 0.737); with
Br=125and8; = —1, ally € (—0.554 1.804) implies| T, ()| < 1.If B > 387 or p, < — 3 2, there
exists another open interval, where the conditign()| < 1 is also satisfied.

18. The numerical solutions were obtained with Mathematica 3.0 using the fut$eavel ].

The terminal time for the numerical solutions was sef te 100.

19. The terminal timél = 100 appeared to be large enough in order to interpret these points as
stable equilibrium points.

20. Although a smaller value efgenerally results in faster convergence, it also reduces the chance
for convergence because the exogenous shocks will have an effect on the algorithm for a longer period
of time.

21. Parameter values f@r and¢ are depicted only for those cases in which the SG algorithm
converged. For those simulation runs in which the elements of the parameter vector became greater
than 166 in absolute value, the respective results were simply ignored. Because no projection facility
was used in the simulations, the algorithm diverged quite often.

22. Interestingly, it was never the case that the algorithm converged toward ARMA(1,1) solutions
with ¢ < —B2/(1— B1), although as Figure 4B reveals, these solutions represent stable equilibrium
points of the differential equation (10).

Yi= 7X0} + Xt-
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23. Nevertheless, arff* € ©} is—as long aRR is invertible—an equilibrium point of (11a).

24. Interestingly, it is just this case of a perceived law of motion that is overparameterized with
respect to its ARas well asits MA terms that Evans and Honkapohja (1994) exclude explicitly from
their analysis of the LS algorithm. There are good reasons for doing so, because a formal analysis of
the LS algorithm becomes impossible in case of such a singularity.

25. There is no assumption in the model that allows prediction of agents’ behavior in such a case,
but it seems plausible to assume (ad hoc) that agents will treat this singularity as an econometrician
would treat it. This means that agents will infer that the variakle in their perceived law of motion
(3b) is a linear combination of the exogenous variables. Thus they will drop the vayiahléom
the auxiliary model such that it coincides with the AR(1) model (3a). However, in such a case, agents
would learn@; and arrive at the “standard” white-noise solution (2a).
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APPENDIX

Proof of Proposition 3. (i) Given the vecto® associated with the white-noise solu-
tion, the Jacobian matrix becomes

BitB2—1 —Bo
Jse = s Bi— o (L= BB+ po—1)
° Br+pB2—1

A necessary and sufficient condition for asymptotic stabilit§pfs that all eigenvalues of
Jsg are negative so thakg is negative definite. This is the case if and only if the principal
minors of Jsg satisfy the following conditions:

|Jsc,| =B+ B—1<0, |Jsc,| = detdsg = (B1 — (B + B2 — 1) 07 > O.

From these two conditions, it can be seen easily that the eigenvalukg afe negative
onlyif 81+ 82—1 < 0and thugs; — 1 < 0. These are exactly the conditions for E-stability
of the white-noise solution.

(i) Given ¢, the Jacobian matrix is given as

BoB2
Jem— & 1-81—-58
s¢ BoB2 B2 (1— B1)B2o2 1-pp2 |’

+
1-pB1—B2 Br+B2—1 Bo—P+DBr+B—-1D  (Br+p2—1)2
and the conditions regarding the principal minorsle§(6y) are

(B1 — VB30 -0
Bt po—D(B2— B+ 1)

|JSGL’=/32<Os |J5GZ|=detJSG=—

Thus, the eigenvalues dkg are negative only i3, < 0. Restricting attention to station-
ary solutions, we must havé€l — 8;)/82| < 1. However, if 8, <0, this implies that the
denominator of deflsg is positive. So, stability requirg®, — 1 > 0 and again the stability
conditions coincide with the conditions for E-stability of the respective rational expectations
solution. |

Proof of Proposition 4. Given M,(0) according to (15), the last equation in the sys-
tem of equation$/,(0)[T (0) — 8] =0 reads asy + ¢)[B1 + B — 1] =0. Therefore, the
respective solutions are given lfy= —¢ andy = (1 — B1)/B2, » € R. With ¢ = —, the
second equation in this system of equations becomes

2
R (N A N Y PR
1-T,0 [Te(0) — o] + {L — Td,(f))} + oy }[Tw(e) Y] + o2 [T4(6) — ¢] = 0.

https://doi.org/10.1017/51365100500016011 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100500016011

ADAPTIVE LEARNING AND EXPECTATIONAL STABILITY 287

Since¢ = —y, we haveT,(68) = —T,(0) and this equation is fulfilled i& andy satisfy
the first equation

T.(0)

[Te(60) —a] + 1-7,0 [Ty(0) —y] =

T.A-9)
1-T,

a=0.

Substituting forT, and T, from (4) then reveals that this requires= (1 —v¥)[Bo/(1 —
B1— B2)]. [ |
Proof of Proposition 5. (i) Consider first the case of equilibrium poitse ®;. Speci-

fying c(y)=py + By —1, aW)=0f(fr+ B¢y —1), and b=1—p;—p,, the
Jacobian matriXJsg is given by

b/c(y) Bo/C(¥) 0
Jse= | Bo/cw) a() + B3/[bcy)] ay)
0 a(y) a(y)

The characteristic equatioi(1) of Jsg thus is given by
f(0) = —2%+22{2a@y) + b/cy) + B3 /[bcy)] }
+2.{—2ba()/c(y) — Bray) /[be¥)] }.

Thus, one characteristic root equals zero. According to Descartes’ rule, the remaining two
roots are negative if and only if the terms in curly braces are negative. This gives rise to the
following conditions:

b{2a@)/b+1/c) + B5/[0°c)]} <0, [a@)/ben][-2b% - gF] <O.

The last condition is satisfied onlyaf(y) /[bc(v)] > 0. Stationarity implies that(y) < 0,
and this requires that(y)/b < 0. Then, the first condition will be satisfied onlytf> 0,
which inturn requires that(y) < 0. If 8, > 0,a(y¥) < 0is equivalenttas < (1 — B1)/B. if
B2 <0,¢ > (1— B1)/B2impliesthaa(y) < 0. Note thab > 0 is equivalent to the condition
for (weak) E-stability of the white-noise solution.

(if) For equilibrium points8™ € ®, defined = (—BoB2)/(B1 + B> — 1) and

p1—1 B2
h¢) = (1 - 1+ ¢° .
(@) =( /31)/32[ +¢ +¢< 5 +ﬂl—l)]
With H (¢) = —a2B2[h(#)/(B1 — B2 — 1)(B1 + B2 — 1)], the Jacobian matridsg results in

B2 d 0
Jse=| d &/B+H(@) 0
0 1-B1+p9p O

In that case, the characteristic equatiof.) for Jsg is given by

() = =22+ 22[d?/ B2 + B2+ H(@)] — 1BH (9).
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As before, one root of (1) equals zero. The remaining two roots are negative if and only if

H(@){d?*/[BH(@)] + B2/H(¢) +1} <0,  —pH(@) <O.

The last condition is satisfied only &5 H (¢) > 0. This implies that the first condition will
be satisfied only iH (¢) < 0 and this in turn requires th@ < 0. Now, if 8, < 0, station-
arity of the ARMA(1,1) solutions requires thgi + 8, —1<0 andB; — 8, — 1> 0. So,
H (¢) < 0 requiresh(¢) < 0. The zeros of the functidm(¢) are given by-8,/(1— B;) and
—(1 - B)/Bzandif1— B > 0,allp € (—(1— B1)/B2, —B2/(1— B1)) imply thath(¢) <O.
If1—p1<0,allg & (=1~ B1)/B2. —P2/(1— 1)) imply thath(¢) <O.

Note that these results do not mean that stationarity is a necessary condition for stability.
So, for instance, in case (i), stationarity implieg/) <0, but this condition also may
be satisfied ifg;y + B2 2 < —1, that is, if the resulting process is nonstationary. Thus,
nonstationarity of the resulting process fgrdoes not necessarily imply instability of the
respective equilibrium point. |
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