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The present study employs a linear global stability analysis to investigate buoyancy-
induced flickering of axisymmetric laminar jet diffusion flames as a hydrodynamic
global mode. The instability-driving interactions of the buoyancy force with the
density differences induced by the chemical heat release are described in the
infinitely fast reaction limit for unity Lewis numbers of the reactants. The analysis
determines the critical conditions at the onset of the linear global instability
as well as the Strouhal number of the associated oscillations in terms of the
governing parameters of the problem. Marginal instability boundaries are delineated
in the Froude number/Reynolds number plane for different fuel jet dilutions.
The results of the global stability analysis are compared with direct numerical
simulations of time-dependent axisymmetric jet flames and also with results of a
local spatio-temporal stability analysis.
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1. Introduction
At sufficiently low Froude numbers, jet diffusion flames undergo a bifurcation to

a periodic flow state referred to as flame flicker (Chamberlin & Rose 1948). The
associated frequencies observed in laboratory-scale experiments are in the range
of 10–20 Hz (Chen et al. 1988). The role of buoyancy as the driving mechanism
was recognized in the early theoretical analysis of Buckmaster & Peters (1986),
who postulated that the flickering was associated with a modified Kelvin–Helmholtz
instability of the annular flow induced by buoyancy in the envelope of hot gases
surrounding the jet flame. By performing an inviscid, parallel flow stability analysis
of a simplified self-similar model problem (the so-called infinite candle) they were
able to determine an expression for the flicker frequency, which was predicted to
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vary with the one-fourth power of the streamwise distance. This dependence, although
weak, was readily recognized as a weakness of the results (Mahalingam, Cantwell, &
Ferziger 1991). As pointed out by Buckmaster & Peters (1986), a ‘detailed viscous
stability analysis of the complete flow field’ could help to examine the validity of the
results of their simplified study, although they recognized that the suggested analysis
was ‘a formidable undertaking’ at the time. As a result of the increase in computer
power and of the development of robust numerical techniques that have occurred in
the intervening time, such an analysis can be performed nowadays with reasonable
computational cost, that being the main purpose of the present work.

While the early theoretical work assumed a convective instability (Buckmaster
& Peters 1986), later experimental observations by Lingens, Reeker & Schreiber
(1996b) and Maxworthy (1999) suggested that the flame flickering phenomenon
was associated instead with a globally excited oscillation forced by a region of
absolutely unstable flow near the base of the jet exit (see also Cetegen & Dong
2000). These findings were later supported by experiments (Juniper, Li & Nichols
2009), direct numerical simulations (DNS) (Jiang & Luo 2000; Juniper et al. 2009;
Boulanger 2010) and by local linear stability analyses assuming nearly parallel flow
(Lingens et al. 1996a; See & Ihme 2014). The present work is different from these
previous attempts in that it employs a linear global stability analysis to study the
problem. The method has been used successfully in recent years to investigate the
stability of non-buoyant jet flows, including constant-density jets (Garnaud et al.
2013a,b), compressible high-speed jets (Nichols & Lele 2011) and light jets at low
Mach numbers (Lesshafft et al. 2015; Coenen et al. 2016). The global instability
of reacting jets has been considered recently by Qadri, Chandler & Juniper (2015),
who studied the buoyancy-free lifted flame investigated earlier by Nichols & Schmid
(2008) and Nichols, Chomaz & Schmid (2009) using a combination of DNS and
local linear stability analysis. All of the previous linear global stability analyses of
jet flows have considered buoyancy-free conditions. The method is to be employed
below to examine buoyancy-induced flickering of axisymmetric laminar jet diffusion
flames. The study provides the critical conditions at the onset of the linear global
instability as well as the Strouhal number of the associated oscillations in terms of
the governing parameters of the problem.

An important aspect of jet-flow instability concerns the applicability of spatio-
temporal linear stability analyses for the predictions of the critical conditions at
the onset of the global instability. When the flow is sufficiently slender, in that the
resulting eigenmodes are much shorter than the jet development region, then the
assumption of nearly parallel flow becomes accurate and the critical conditions can
be identified from the analysis of the region where the flow is absolutely unstable, as
shown by Lesshafft, Huerre & Sagaut (2007). This slenderness condition is satisfied
in buoyancy-free jet flows, for which the eigenmodes scale with the jet radius, which
is much smaller than the jet development length for the moderately large values
of the Reynolds number that characterize the onset of the instability. For instance,
local linear stability analyses of light gaseous jets (Coenen, Sevilla & Sánchez
2008; Coenen & Sevilla 2012) have given predictions in agreement with those of
DNS (Lesshafft & Huerre 2007) and of global stability analyses (Lesshafft et al.
2015; Coenen et al. 2016). This is in contrast with the buoyancy-induced flickering
flames investigated below, for which the eigenmodes will be seen to scale with the
flame length rather than with the jet radius. Under those conditions, the quasi-parallel
assumption no longer holds and predictions based on the local linear stability analysis
become necessarily inaccurate, with resulting critical Froude numbers at the onset of
the instability that are off by a factor exceeding two, as shown below.
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Diffusion-flame flickering as a hydrodynamic global mode 999

As observed clearly in flow visualizations of jet flames with nearly uniform exit
velocity profiles (Chen et al. 1988), the flickering mode, characterized by large
toroidal vortices surrounding the flame, is accompanied by a Kelvin–Helmholtz
instability of the shear layer surrounding the fuel jet leading to the formation of an
inner train of small discrete vortices. To focus attention on the flickering phenomenon,
our analysis will purposely preclude the emergence of these shear instabilities
by considering only cases in which the fuel-feed velocity profile is parabolic, an
appropriate boundary condition for sufficiently long fuel injectors. Also, unlike
previous authors (See & Ihme 2014), who used in their stability analysis a detailed
flow field description including finite-rate chemistry and advanced molecular-transport
models, we choose to employ instead a simplified flow model that retains all relevant
aspects involved in the hydrodynamic instability leading to flame flicker while
neglecting secondary effects that complicate unnecessarily the description, thereby
facilitating both development of fundamental physical understanding and extraction
of parametric dependences. For instance, since the variations of density and transport
properties in combustion flows are mainly associated with the temperature changes
induced by the chemical heat release, a constant average molecular weight will be
employed when writing the equation of state and the different transport coefficients
will be assumed to be independent of the composition, while their temperature
dependence will be approximated by a power law. A Fickian description with unity
Lewis numbers will be used for the diffusion velocity of the reactants. Furthermore,
we shall consider non-premixed jet-flame configurations in which the rates of the
chemical reactions involved in the fuel-oxidation process are sufficiently fast for the
burning rate to be diffusion controlled (Liñán, Vera & Sánchez 2015). Under these
conditions, the resulting non-premixed flame remains anchored in the vicinity of the
injector rim and the interaction between the envelope of hot gases surrounding the jet
flame and the gravitational acceleration leading to the onset of the flickering mode can
be investigated by using the limit of infinitely fast reaction, with the composition and
temperature described in terms of a single passive scalar, the so-called mixture-fraction
variable. Consideration of finite-rate chemistry is necessary in stability analyses of
lifted flames, such as that performed recently by Qadri et al. (2015).

The paper is structured as follows. The non-dimensional equations and boundary
conditions are presented in § 2, which is followed in § 3 by relevant numerical results,
including sample spectra and transition diagrams in the controlling-parameter plane.
Comparisons of the predictions of the global stability analysis with results of DNS
of unsteady axisymmetric flows are presented in § 4. A local spatio-temporal stability
analysis of the transverse profiles of the base flow is performed in § 5; the results are
seen to significantly overpredict the critical Froude number, thereby underscoring the
limited predicting capability of local analyses for buoyancy-induced flickering. Finally,
concluding remarks will be offered in § 6.

2. Problem formulation

As indicated in figure 1, the configuration analysed includes a vertical fuel jet
discharging upwards through an injector of inner radius a into an infinite air
atmosphere. The specific geometry investigated here involves a thin injector of
thickness e � a. To minimize wake effects, the rim of the injector is knife-like
sharpened as indicated in the inset of figure 1. For the numerical integrations shown
below, the injector wall thickness and the slenderness ratio of the wedge tip were
selected to be e/a = 10−3 and d/e = 20, respectively. Smaller values of e/a and
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FIGURE 1. (Colour online) Base flow isocontours of Z̄ (left-hand side) and streamlines
(right-hand side) together with radial profiles of v̄x (solid curves) and T̄/(γ + 1) (dashed
curves) at x = (0, 5, 10, 15, 20, 25, 30, 35) for Pr = 0.7, S = 4.62, γ = 6, Re = 100 and
Fr = 300. The dot on the velocity profiles indicates the location of the inflection points.
The thick solid line represents the stoichiometric flame surface Z̄ = ZS, where T̄ = 1+ γ .

larger values of d/e were used in sample integrations to ensure that the results were
independent of these two geometric parameters, so that the solution given below is
representative of infinitesimally thin injectors.

For generality, the analysis considers dilution of the fuel with an inert gas,
with YF,0 denoting the fuel mass fraction in its feed stream, while YO2,A = 0.232
is the oxygen mass fraction in air. In the description, focused on the fluid
mechanical aspects of the flow, we adopt the one-step irreversible overall reaction
F + s O2 → (1 + s)Products + q, according to which the unit mass of fuel reacts
with a mass s of oxygen, releasing in the process an amount of energy q. The
above representation of the underlying stoichiometry for the oxidation of the fuel
embodies the two fundamental thermochemical parameters involved in non-premixed
combustion (Liñán et al. 2015),

S= sYF,0

YO2,A
and γ = qYF,0

cpT ′0(1+ S)
, (2.1a,b)
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Diffusion-flame flickering as a hydrodynamic global mode 1001

the former representing the mass of air that one needs to mix with the unit mass
of the gaseous fuel stream to generate a stoichiometric mixture and the latter being
the corresponding dimensionless temperature increment resulting from the adiabatic
combustion of that mixture. Here, T ′0 is the initial temperature of the feed streams,
assumed to be equal for the fuel jet and for the surrounding air atmosphere, and cp
represents the specific heat at constant pressure, taken to be constant in the following
analysis. Typical values for undiluted hydrocarbon–air flames initially at normal
ambient temperature are Su = s/YO2,A ' 15 and γu ' 6–7. Diluting the fuel stream
with an inert gas to give a fuel mass fraction YF,0 < 1 in its feed stream has a direct
effect on the value of S= YF,0Su, but a much more limited effect on the heat-release
parameter, as can be seen by writing the second expression in (2.1) for Su � 1 in
the approximate form (γu − γ )/γu ' (1 + YF,0Su)

−1, which indicates that significant
variations of γ require extremely dilute fuel mixtures such that YF,0 ∼ S−1

u .
In the limit of infinitely fast reaction adopted here, the reaction takes place in

an infinitesimally thin layer, outside of which the chemical equilibrium condition
ŶFŶO = 0 applies, with ŶF = YF/YF,0 and ŶO = YO2/YO2,A representing the fuel
and oxygen mass fractions normalized with their values in their respective feed
streams. The reaction-rate terms in the conservation equations for energy and species
appear as Dirac delta distributions located at the flame, which latter becomes in this
limit an infinitesimally thin surface attached to the injector separating a near-axis
region without oxygen from a fuel-free outer atmosphere (Burke & Schumann 1928).
For equidiffusive reactants, Shvab (1948) and Zel’dovich (1949) showed how the
computation can be facilitated by the introduction of conserved scalars satisfying
transport equations, obtained by combinations of the species and energy conservation
equations that eliminate the chemical source terms. Two conveniently normalized
forms of these passive scalars are the mixture fraction and the excess enthalpy,
defined as

Z = SŶF − ŶO + 1
S+ 1

and H = T − 1+ γ (ŶF + ŶO − 1), (2.2a,b)

where the non-dimensional temperature T has been scaled with T ′0. The mixture
fraction is defined to be zero in the air stream and unity in the fuel stream,
respectively, whereas at the flame, where both reactants appear in zero concentrations,
Z takes the stoichiometric value ZS = 1/(S + 1). On the other hand, the excess
enthalpy is defined to be zero in both feed streams, so that when the injector walls
are adiabatic, which is the case considered here, the solution for the associated
transport equation reduces to H = 0 everywhere in the flow field, thereby facilitating
the description. The piecewise-linear expressions

ŶF = 0, ŶO = 1− Z
ZS
, T − 1= γ Z

ZS
, for 0 6 Z 6 ZS, (2.3a−c)

ŶO = 0, ŶF = Z − ZS

1− ZS
, T − 1= γ 1− Z

1− ZS
, for ZS 6 Z 6 1, (2.3d−f )

obtained from the definitions (2.2) with use made of the equilibrium condition
ŶFŶO= 0 and of the result H= 0, provide the reactant mass fractions and temperature
in terms of Z. Evaluation of the expressions for T at Z = ZS indicates that the
temperature at the flame surface is everywhere equal to the stoichiometric adiabatic
flame temperature T = 1+ γ , a known result of the infinitely fast reaction limit that
holds in adiabatic configurations with unity Lewis numbers of the reactants.
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The problem reduces to that of integrating the continuity and momentum equations
together with the transport equation for Z, which are written in the dimensionless
form

∂ρ

∂t
+∇ · ρv = 0, (2.4)

ρ
∂v

∂t
+ ρv · ∇v =−∇p+ 1

Re
∇ · ¯̄τ + 1

Fr
(1− ρ)ex, (2.5)

ρ
∂Z
∂t
+ ρv · ∇Z = 1

Re Pr
∇ · (ρDT∇Z), (2.6)

where Pr= 0.7 is the Prandtl number and

Re= ρ
′
0U0a
µ′0

and Fr= U2
0

ga
(2.7a,b)

are the Reynolds number and the Froude number for the jet flow, respectively, with
ρ ′0 and µ′0 representing the density and shear viscosity in the feed streams. The jet
radius a and the average jet velocity U0= ṁ/(πa2ρ ′0) based on the fuel mass flow rate
ṁ are used to scale the problem. The development employs axisymmetric cylindrical
coordinates x = (x, r) centred at the injector exit plane with an associated velocity
vector v = (vx, vr); the streamwise coordinate x pointing against the gravity vector
g=−gex.

In the low Mach number approximation utilized here, the pressure variations can
be neglected in the first approximation when writing the equation of state, which
therefore reduces to ρT = 1 when the additional assumption of constant molecular
weight is adopted to achieve maximum simplification, with ρ = ρ ′/ρ ′0 denoting the
dimensionless density. Furthermore, in this low Mach number limit, the viscous
stress term proportional to the second viscosity coefficient can be incorporated in
the definition of the variable p that represents in (2.5) the pressure difference from
the unperturbed ambient distribution. Correspondingly, the resulting viscous stress
tensor reduces to ¯̄τ =µ(∇v+∇vT), with both p and ¯̄τ scaled with the characteristic
value of the dynamic pressure ρ ′0U2

0 . The power-law expressions µ= ρDT = Tσ , with
σ = 0.7, are employed for the temperature dependence of the shear viscosity µ and
thermal diffusivity DT , both scaled with their feed-stream values.

Equations (2.4)–(2.6) must be integrated with appropriate conditions on the
boundaries of the computational domain, which includes an outer cylindrical boundary
with radius rmax � 1, with downstream and upstream boundaries located at x = xd
and at x = xu. The results corresponding to the most unstable mode were tested to
be independent of the size of the computational domain, with the values rmax = 45,
xd = 450 and xu = −10 selected for the computations shown below. The injector is
assumed to be sufficiently long for the fuel flow to be fully developed, thereby giving
v= 2 (1− r2)ex and Z= 1 in the fuel boundary upstream from the injector exit (i.e. at
x= xu for 06 r 6 1). On the injector walls the solution satisfies the non-slip condition
v = 0, together with the condition n · ∇Z = 0 corresponding to an impermeable wall,
with n representing here the normal unit vector. To let the air enter or leave the
computational domain as required to satisfy the development and the entrainment
needs of the jet, a stress-free condition −pn + ¯̄τ · n/Re = 0 is applied all around
the outer air boundary. Air enters the flow field through the lateral boundary and
through the upstream boundary, so that the condition Z = 0 applies there, whereas
n · ∇Z = 0 must be used on the downstream boundary to allow for the evacuation of
the combustion products.
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3. The global linear stability analysis
3.1. The eigenvalue problem

Introduction of the temporal normal mode decomposition (v, p, Z) = (v̄, p̄, Z̄) +
ε(v̂, p̂, Ẑ)e−iωt, involving the steady base flow (v̄, p̄, Z̄)(x), the eigenfunctions
(v̂, p̂, Ẑ)(x) multiplied by an arbitrarily small factor ε, and the complex angular
frequency ω=ωr+ iωi, leads to a set of nonlinear equations for the base flow (i.e. the
steady counterpart of (2.4)–(2.6)), to be integrated with the boundary conditions stated
in the last paragraph of the preceding section. The associated linear equations for the
perturbed flow

−iωρ̂ +∇ · ρ̂v̄ +∇ · ρ̄v̂ = 0, (3.1)

−iωρ̄v̂ + ρ̂v̄ · ∇v̄ + ρ̄v̂ · ∇v̄ + ρ̄v̄ · ∇v̂

=−∇p̂− 1
Fr
ρ̂ex + 1

Re
∇ · [µ̂(∇v̄ +∇v̄T)+ T̄σ (∇v̂ +∇v̂

T
)], (3.2)

−iωρ̄Ẑ + ρ̂v̄ · ∇Z̄ + ρ̄v̂ · ∇Z̄ + ρ̄v̄ · ∇Ẑ = 1
Re Pr

∇ · [(µ̂∇Z̄ + T̄σ∇Ẑ)], (3.3)

arise from linearization of (2.4)–(2.6); these must be supplemented with ρ̂/ρ̄ =−T̂/T̄
and µ̂ = σ T̄σ−1T̂ , which follow from the equation of state and from the transport
description, and with T̂ = γ Ẑ/ZS for 06 Z̄ 6 ZS and T̂ =−γ Ẑ/(1− ZS) for ZS 6 Z̄ 6 1,
which follow from (2.3). Boundary conditions for (3.2)–(3.3) are v̂= Ẑ= 0 in the fuel
stream and v̂ = n · ∇Ẑ = 0 on the injector wall. On the air boundary, the stress-free
condition for the perturbed flow reduces to −p̂n + (∇v̂ + ∇v̂

T
) · n/Re = 0 on the

upstream and lateral air boundaries, where Ẑ = 0, and to σγ [(p̄/T̄)(Ẑ/ZS) − p̂]n +
T̄σ (∇v̂+∇v̂

T
) · n/Re= 0 on the downstream boundary, where n · ∇Ẑ= 0. Non-trivial

solutions (v̂, p̂, Ẑ) 6= 0 are found for a discrete set of eigenvalues ω. The real part of ω
is the frequency of the perturbation, defining a Strouhal number St= ωr/π (the ratio
of the residence time 2a/U0 to the period of the oscillation); the imaginary part is the
growth rate, which dictates whether the flame is globally stable (ωi < 0) or unstable
(ωi > 0).

3.2. Sample numerical results
The base flow was integrated using a finite-element method with P1 elements for
the pressure field and P2 elements for the remaining variables, combined with a
Newton–Raphson root-finding algorithm; details of the discretization method, used
for instance by Garnaud et al. (2013b), can be found in Hecht (2012). The same
finite-element formalism was employed to discretize the perturbed equations, resulting
in a generalized eigenvalue problem that was solved using a shifted inverse power
method (Lehoucq, Sorensen & Yang 1998).

The integrations explored in particular configurations with 2.08 6 S 6 9.66 and
moderately large values of Re, for which the resulting flame height is much larger than
the injector radius, as shown in figure 1 for the case S= 4.62, Re= 100 and Fr= 300.
A thick solid curve is used to denote the flame location, where Z̄ = ZS ' 0.178 and
T̄/(γ + 1) = 1. Besides isocontours of Z̄, the plot includes streamlines, which serve
to illustrate the motion of the air induced by the entrainment of the mixing layer
surrounding the flame envelope.
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FIGURE 2. (Colour online) (a) Eigenvalue spectra for Pr= 0.7, S= 4.62, γ = 6, Re= 100
and Fr= (250, 300, 400, 550, 625). (b) Real part of the streamwise velocity v̂x (left) and
mixture fraction Ẑ (right) for the eigenfunctions of the most unstable mode with Re= 100
and Fr= 300.

Radial profiles of axial velocity v̄x and normalized temperature T̄/(γ + 1) are
represented in figure 1 at different axial locations. Even for this relatively large Froude
number, buoyancy is seen to accelerate the flow in the flame envelope, leading to the
appearance of two inflection points in the velocity profile near the flame, additional
to the inflection point associated with the shape of the initial velocity profile (the
locations of these inflection points are marked with a dot). As shown previously for
mixing layers (Soteriou & Ghoniem 1995) and low-density jets (Lesshafft & Huerre
2007), the action of the baroclinic torque, induced in jet flames by the radial density
gradient present in the near-flame region where the velocity profile displays inflection
points, plays a key role in the development of a region of absolute stability (Lingens
et al. 1996a), which in turn triggers the global oscillations. The rate at which the
induced perturbations are convected away from this wavemaker region depends on the
local value of the axial velocity, with smaller velocities favouring the development of
absolute instabilities (Lesshafft & Marquet 2010).

Figure 2(a) shows the eigenvalue spectra computed for Re=100 and different values
of Fr. For all cases, the most unstable eigenmode is indicated with a bigger symbol in
red. Decreasing the Froude number is seen to destabilize the flow, so that for Fr= 300
the growth rate ωi of the most unstable mode is still negative, but it is already positive
for Fr = 250. For completeness, eigenmodes corresponding to the subcritical case
Fr = 300 are plotted in figure 2(b). As can be seen, both the radial extent of the
eigenmodes and their wavelength scale with the flame dimensions. Although the
length xd = 450 of the computational domain was not long enough to capture the
downstream decay of the eigenmodes, the associated values of ω for the most unstable
mode were seen to be independent of xd provided that xd > 400, as verified in a series
of computations.

3.3. Transition diagrams
Marginal conditions were determined by linear interpolation of the results of
stability spectra computed for given values of S and Re and decreasing values of Fr
(including stable and unstable cases), giving the transition diagrams and accompanying
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FIGURE 3. (Colour online) (a) Transition diagram in the Re–Fr parametric plane for
different values of S, with the (b) accompanying panel showing the variation with Fr
of the non-dimensional frequency Fr1/2St= (ωr/π)/

√
g/a at the margin of instability and

the empty symbols in both plots representing DNS predictions for Re = (50, 100, 150).
As explained in the text, (c) a comparison for S = 4.62, Re = 100 and Fr = 261.40 of
the eigenmode T̂(x) (right-hand side) with a snapshot extracted from the DNS results
(left-hand side).

frequencies shown in figure 3. The resulting marginal curves serve to assess effects
of fuel-feed dilution and of molecular transport. Increasing Re for a given value of S
is seen to have a destabilizing effect, in that the global instability sets in at a higher
value of Fr, in agreement with recent observations for low-density jets (Coenen et al.
2016). Conversely, fuel-feed dilution (i.e. decreasing values of S) tends to stabilize
the flow, a result that can be explained by noticing that dilute flames sit closer to
the axis, where the downstream convective rate of the perturbations is higher, thereby
hindering the development of a region of absolute instability and resulting in smaller
critical values of Fr.

The large variations in critical values of Fr observed in figure 3(a) would be
considerably reduced should the characteristic scales of the flame, rather than those
associated with fuel injection, be used in defining the relevant Froude number (Liñán
et al. 2015). Thus, with Re� 1 and S� 1 the flame length is of the order of S Re a.
At these distances, the jet velocity has decreased to values of the order of U0/S,
which must be compared with the buoyancy-induced velocity g S Re a, the square of
their ratio giving Fr/(S3Re) as the relevant Froude number for jet flames. Inspection
of the results in figure 3(a) reveals that this alternative definition would result in a
transition diagram with less pronounced variations of the critical Froude number over
the range of conditions explored.
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For the range of Reynolds numbers explored in figure 3, the effective Froude
number accounting for the residence time in the flame region Fr/(S3Re) is somewhat
smaller than unity, corresponding to jet flames with significant buoyancy effects.
Consequently, the dynamics of the resulting oscillations at the margin of stability is
characterized by the buoyancy time

√
a/g, rather than by the residence time a/U0

employed initially in non-dimensionalizing the problem. This scaling is tested in
figure 3(b), where the frequency is represented in terms of (ωr/π)/

√
g/a = Fr1/2St.

As can be seen, for each value of S, the resulting frequencies change only by
approximately 10 % over the whole range of Froude numbers explored in the figure,
thereby demonstrating the prevalence of the buoyancy scaling. This is in agreement
with the experimental observations of Durox & Villermaux (1997) and Sato, Amagai
& Arai (2000), who found that St∼ Fr−1/2.

The buoyancy-dominated flickering mode observed here is markedly different from
that corresponding to buoyancy-free light jets and flames, for which the resulting
frequencies scale with a/U0, with associated eigenmodes scaling with the jet radius
rather than with the flame length. This alternative buoyancy-free mode, which
must become dominant at sufficiently high Froude numbers (and sufficiently high
accompanying Reynolds numbers), was not observed in the computations carried
out here. For the Poiseuille exit velocity profile considered in our work, preliminary
computations for Fr=∞ and S= 6.10 indicated that non-buoyant flames are globally
stable up to the largest Reynolds number considered (Re= 1000). A critical Reynolds
number exceeding 1000 for buoyancy-free jet flames is consistent with previous
results concerning the influence of the exit velocity profile on the stability of light
jets (Hallberg & Strykowski 2006). Smaller critical values of the Reynolds number
are expected, for instance, for nearly uniform profiles, encountered with shorter fuel
injectors.

4. Comparison with DNS results
The predictions of the stability analysis at the margin of stability were compared

with DNS results obtained with a time-dependent axisymmetric code (Carpio, Prieto
& Vera 2016) using the same grid employed in the global stability computations. The
numerical simulations at three different points along the marginal curve for S= 4.62,
namely, (Re, Fr)= (50, 26.60), (Re, Fr)= (100, 261.40) and (Re, Fr)= (150, 745.64),
yielded periodic solutions with small amplitude. The associated Strouhal numbers, St=
(0.0628, 0.0200, 0.0132), obtained by fitting the oscillations of the numerical solutions
to a sinusoidal function, were seen to be in excellent agreement with the values St=
(0.0638, 0.0190, 0.0134) predicted by the stability analysis. The agreement extends to
the morphology of the flickering mode, as can be seen in figure 3(c), which compares
the eigenmode T̂(x) corresponding to (Re, Fr) = (100, 261.40) with the near-critical
DNS results, the latter obtained by subtracting the time-averaged temperature from the
instantaneous distribution T(x; t∗), with the time t∗ appropriately selected to minimize
the observed differences. As can be seen, there exists excellent agreement not only in
the predicted wavelength, but also in the shape of the cells representing the travelling
rollers.

As mentioned above, for the parametric values corresponding to the marginal
conditions of the stability analysis, the DNS results were seen to exhibit small
oscillations of non-negligible amplitude. Additional computations for increasing values
of Fr, resulting in periodic solutions with decreasing amplitude, were performed to
determine the marginal curve predicted by the DNS results. The transition to the
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flickering state is governed by a supercritical Hopf bifurcation. Correspondingly, with
the Froude number being the relevant bifurcation parameter for fixed values of S
and Re, the amplitude of the oscillations near the margin of stability is expected to
exhibit the proportionality A2 ∼ (Fr − Fr∗) (Landau & Lifshitz 1959, § 27), where
Fr∗ is the critical value of Fr. This is illustrated in figure 4(a), which shows the
squared amplitude of the mixture-fraction oscillations along the axis at four different
downstream locations, as obtained in numerical simulations for Re= 50, S= 4.62 and
decreasing values of Fr. Extrapolating the corresponding results to zero amplitude
provides the critical value Fr∗ of Fr, giving for instance Fr∗ = (33, 305, 940)
for Re = (50, 100, 150). These values are compared in figure 3 with the values
Fr∗ = (26.60, 261.40, 745.64) corresponding to the linear stability analysis.

The direct numerical simulations also indicate that near the margin of stability
there exists a linear dependence of the oscillation frequency on the Froude number.
As shown in figure 4(b), the observed frequency is identical at all four locations
– confirming the global nature of the flicker instability – with the critical value
St∗ = 0.054 approached as Fr→ Fr∗ ' 33. This is to be compared with the value
St = 0.0628 predicted by the global stability analysis at the corresponding critical
Froude number Fr = 26.60. The differences observed, for both critical Froude
numbers and associated frequencies, whose relative magnitude is of the order of
20 % in the range of Reynolds numbers investigated, may be attributed to the fact
that disturbances experience very large gains in slightly subcritical settings, leading
to a substantial amplification of small numerical noise in the DNS integrations that
results in the larger critical values of Fr shown in figure 3. Clearly, the origin of the
observed discrepancies warrants further investigation in future work.

5. Comparison with a local stability analysis
As explained in Huerre & Monkewitz (1990), for slender flows there exists a

close relationship between the evolution of the local stability characteristics at each
streamwise position x and the global instability properties of the flow. However, this
relationship depends crucially on the requirement that the wavelength λ be much
smaller than the typical evolution length scale L of the basic flow; and, quoting
Huerre & Monkewitz (1990), ‘A breakdown of this assumption would preclude any
possible connection between local and global instability properties’. For the diffusion
flame presented in figure 3, it can be seen that the wavelength λ of the global
instability is comparable to the flame height, which characterizes the spatial evolution
of the base flow. Therefore, the conditions needed for applicability of the local
spatio-temporal analysis are not satisfied, which may result in significant inaccuracies
in inferred predictions of global instability properties. This aspect of the problem is
to be investigated here. Specifically, we shall study the downstream evolution of the
local spatio-temporal stability properties of the base flow used earlier for the global
stability analysis. We begin by formulating the local stability analysis, and then show
results for the case S = 6.1 and Re = 75, with Fr = 375 and Fr = 800. In analysing
the results it is worth bearing in mind that the global instability analysis predicts a
critical Froude number Fr= 368 for S= 6.1 and Re= 75, so that the flow should be
globally stable under these conditions.

At each downstream position x, the basic flow is assumed to be locally parallel,
with radial profiles of velocity v̄(r) = (v̄x(r), 0) and mixture fraction Z̄(r); small
perturbations are introduced as normal modes [ṽx(r), iṽr(r), p̃(r), Z̃(r)] exp[i(kx−ωt)],
with complex axial wavenumber k = kr + iki and complex angular frequency
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FIGURE 4. DNS computations of the (a) squared amplitude of oscillations, A2, and
(b) Strouhal numbers St, measured at different downstream axial locations, x= 20, 25, 30
and 35 for Re= 50 and S= 4.62. The solid lines in the upper part of the plot represent
linear fits of the points (Fr, A2) in order to determine the critical Froude number, Fr∗,
for which the amplitude of the oscillations is zero. Upon extrapolation, a critical value
Fr∗ = 33.065 was found, with an associated Strouhal number St∗ = 0.0544, marked with
a cross, whereas the Strouhal number for the conditions predicted by the global stability
analysis was found to be St= 0.0628.

ω = ωr + iωi. Here k, ω, and t are non-dimensionalized using a and U0. In
appendix A.1 it is shown how substitution of the normal modes into the equations
of motion (2.4)–(2.6), linearized around the steady base flow, yields the system of
ordinary differential equations (A 1)–(A 4) that, together with the boundary conditions
(A 11)–(A 12), provides a generalized eigenvalue problem. The local stability
properties can be obtained by solving the latter, whereby eigenfunctions ṽx(r), ṽr(r),
p̃(r), Z̃(r) only exist if k and ω satisfy a dispersion relation D(k, ω;Re,Fr, S, γ , . . . ,
v̄x, v̄r, p̄, Z̄) = 0. In the present section we are concerned with the absolute or
convective character of the instability. Therefore we need to find the spatio-temporal
instability modes with zero group velocity, i.e. modes for which dω/dk = 0. The
growth rate ω0,i of these is called the absolute growth rate and determines whether
the instability is convective, ω0,i < 0, or absolute, ω0,i > 0. The condition dω/dk = 0
is equivalent to the existence of a double root, or saddle point, in the complex
k-plane, ∂D/∂k|k=k0 = 0. Among all the saddle points that may exist, only the one
with the largest value of ω0,i, while satisfying the Briggs–Bers criterion, determines
the large-time impulse response of the flow (see, for instance, Huerre 2000, and
references therein). The numerical method used to determine (ω0, k0) is described in
appendix A.2.
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FIGURE 5. (a–d) Downstream evolution of the local spatio-temporal stability properties for
S= 6.1 and Re= 75, with Fr= 800 (solid line) and Fr= 375 (dashed line). (e) Location of
the saddle point (ω0, k0) in the complex k-plane at the downstream position x= 28.4, as
indicated in (a–d) by the dots; the solid lines are spatial branches with a constant value
of ωi; the dashed lines are lines of constant ωr =ω0,r.

Figure 5(a–d) show the downstream evolution of the spatio-temporal stability
properties for the case S= 6.1 and Re= 75, with two values of the Froude number:
Fr = 800 (solid lines) and Fr = 375 (dashed lines). The location of the saddle
point k = k0 in the complex k-plane is shown in figure 5(e), where the solid lines
indicate spatial branches of constant ωi and the dashed lines have a constant value of
ωi = ω0,i. It can be seen how, for Fr . 800, a pocket of absolute instability emerges
around x = 28, with absolute frequency ω0,r = 0.02 (St = 0.006) and wavelength
λ0 = 2π/k0,r = 63. In numerical simulations of weakly non-parallel heated jets, the
appearance of such a pocket of absolute instability was shown to destabilize the
nonlinear global mode responsible for the self-excited behaviour (Lesshafft et al.
2007). Moreover, at criticality, the corresponding global frequency was found to
coincide with the value given by the local stability analysis at the downstream
position where the character of the instability changes from convective to absolute, in
agreement with the theory developed by Pier, Huerre & Chomaz (1998) for weakly
non-parallel flows.

The spatio-temporal stability analysis therefore predicts the flow to be globally
unstable for Fr . 800, with a frequency at the margin of instability such that
St = 0.006. These predictions differ significantly from those of the global stability
analysis, which gives a critical Froude number Fr = 368 with an associated Strouhal
number St' 0.014. These departures can be attributed to the failure of the condition
λ� L needed for applicability of the quasi-parallel analysis. Similar overpredictions
in the growth rate of the perturbations have been reported in previous comparative
studies of local/global stability analyses for wakes (Juniper, Tammisola & Lundell
2011).

A pocket of absolutely unstable flow, away from boundaries, was also found by
Qadri et al. (2015) in the context of non-buoyant flames for their ‘mode B’. As in
the present work, they found this region of local absolute instability to lie at the
basis of the excitation of a global low-frequency flickering mode. In the buoyancy-free
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configuration analysed by Qadri et al. (2015) the density of the fuel jet upstream from
the lifted flame is significantly lower than that of the surrounding atmosphere, causing
a second instability mode (‘mode A’) to be present in their analysis, with a region of
absolute instability that starts at the outlet of the jet, similar to that found by Coenen
& Sevilla (2012) in the context of light jets.

6. Conclusions

The present investigation has employed, for the first time, a global stability analysis
to study the buoyancy-induced flickering of jet diffusion flames as a hydrodynamic
global mode. The paper provides the parametric dependence of the critical conditions
at the onset of instability as well as the morphology and frequency of the resulting
oscillatory modes, giving predictions in fair agreement with results of direct numerical
integrations.

While the simplified model employed here contains the fundamental underlying
physics involved in the flickering phenomenon, additional effects should be investi-
gated in future work. For instance, influences of shapes of jet-velocity profiles,
including interactions of the different instabilities observed previously (Chen et al.
1988), could be investigated by incorporating the boundary-layer thickness as an
additional parameter, as done in previous spatio-temporal stability analyses of light
jets (Coenen et al. 2008). Preferential diffusion effects, associated with light and
heavy fuel molecules, could be addressed in the infinitely fast reaction limit by using
coupling-function formulations accounting for reactant Lewis numbers that differ from
unity (Liñán 1991). Consideration of finite-rate effects would be needed to examine
the stability characteristics of lifted flames, studied in previous work (Qadri et al.
2015) under buoyancy-free conditions. While the present work pertains to laminar
flames, the global instability analysis could also be applied to turbulent conditions,
with the steady base flow obtained for instance by time averaging results of large
eddy simulations, as done earlier in connection with local spatio-temporal analyses
of jet flames (See & Ihme 2014).

While the mode identified here is buoyancy dominated, resulting in frequencies
that scale with (g/a)1/2, the dynamics at sufficiently large Froude numbers is
expected to be controlled by a different mode, with frequencies that scale with
U0/a, similar to those observed in light jets (Hallberg & Strykowski 2006). Our
preliminary computations indicate that the investigation of the transition between
the buoyancy-dominated and the momentum-dominated instabilities will require
consideration of much higher Froude numbers, with associated critical Reynolds
numbers exceeding Re = 1000. The associated global instability computation is
expected to experience difficulties associated with the existence of resonance modes
caused by spurious feedback from the outflow boundary, encountered earlier in the
analysis of jets (Garnaud et al. 2013a).

Our analysis indicates that the streamwise wavelength of the dominant instability
mode scales with the flame height. Correspondingly, the assumption of quasi-parallel
flow, necessary to ensure the predictive capability of local stability analyses, does
not hold in buoyant jet diffusion flames, resulting in associated predictions of critical
Froude numbers at the margin of instability that are off by a factor exceeding
two. This finding further underscores the utility of global instability analysis for
investigation of buoyancy-induced flickering instabilities.

The global linearized approach opens up a range of possibilities for further
studies. For instance, the computation of the adjoint modes – with the discretized
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Navier–Stokes operators at one’s disposal, the discrete adjoint can be obtained in
a straightforward manner by solving the conjugate-transposed eigenvalue problem –
readily permits a structural sensitivity analysis in the sense of Giannetti & Luchini
(2007). Hereby the sensitivity of the eigenvalue with respect to ‘internal feedback’
mechanisms is obtained by measuring the local overlap between the direct and the
adjoint eigenfunctions. It is argued that flow regions where this measure is large
contribute strongly to the eigenvalue selection and thus represent the ‘wavemaker’
of the eigenmode. Another interesting concept is the sensitivity to a steady body
force or to modifications in the base flow (Marquet, Sipp & Jacquin 2008). This
is particularly relevant in the context of passive control techniques, such as the
introduction of an adequately positioned control cylinder to stabilize the flame flicker
(see, for instance Toong et al. 1965). These sensitivity analyses have been recently
applied to non-buoyant lifted flames (Qadri et al. 2015).

Finally, linear non-modal stability techniques may be applied to investigate the
discrepancy between the onset of instability predicted by the global stability analysis
and that obtained by DNS. A similar difference has recently been encountered
by Coenen et al. (2016) in low-density jets when comparing the results of a global
stability analysis with the experimental observations of Hallberg & Strykowski (2006).
In that regard, the computation of the pseudospectrum (Trefethen & Embree 2005) of
the linearized Navier–Stokes operator can show if non-normality plays a role. For the
low-density jet, a very large gain in the frequency response (see also Garnaud et al.
2013b) was found, even for Reynolds number substantially smaller than the critical
value. These aspects should be investigated for buoyant jet diffusion flames in future
work.
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Appendix A. Details of the local stability analysis
A.1. Stability equations

To obtain the stability equations, the normal modes {ṽx(r), iṽr(r), p̃(r)Z̃(r)} exp[i(kx−
ωt)] are substituted into the equations of motion (2.4)–(2.6), linearized around the base
flow {v̄x(r), v̄r(r), p̄(r), Z̄(r)}, yielding the system of ordinary differential equations

−ωρ̃ + kρ̄ṽx + ρ̄(ṽ′r + ṽr/r)+ ρ̄ ′ṽr + kv̄xρ̃ = 0, (A 1)

iρ̄(−ωṽx + kv̄xṽx + v̄′xṽr)=−ikp̃− Fr−1ρ̃

+Re−1[µ̄(ṽ′′x + ṽ′x/r− k2ṽx)+ µ̄′(ṽ′x − kṽr)+ (v̄′′x + v̄′x/r)µ̃+ v̄′xµ̃′], (A 2)

iρ̄(−ωṽr + kv̄xṽr)

= ip̃′ + Re−1[µ̄(ṽ′′r + ṽ′r/r− ṽr/r2 − k2ṽr)+ µ̄′(ṽ′r − ṽr/r− kṽx)+ kv̄′xµ̃], (A 3)
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iρ̄(−ωZ̃ + kv̄xZ̃ + Z̄′ṽr)

=+ (Re Pr)−1[µ̄(Z̃′′ + Z̃′/r− k2Z̃)+ µ̄′Z̃′ + (Z̄′′ + Z̄′/r)µ̃+ Z̄′µ̃′], (A 4)

where the prime indicates differentiation with respect to r. Note that

T̄ =
{

1+ γ Z̄/ZS for 0 6 Z̄ 6 ZS,

1+ γ (1− Z̄)/(1− ZS) for ZS 6 Z̄ 6 1,
(A 5)

ρ̄ = T̄−1, (A 6)
µ̄= T̄σ , (A 7)

and

T̃ =
{
γ Z̃/ZS for 0 6 Z̄ 6 ZS,

−γ Z̃/(1− ZS) for ZS 6 Z̄ 6 1,
(A 8)

ρ̃ =−T̄−2T̃, (A 9)
µ̃= σ T̄σ−1T̃. (A 10)

The stability equations are accompanied by suitable boundary conditions. In the far
field, all perturbations must vanish,

(Z̃, ṽx, ṽr, p̃)→ 0 as r→∞, (A 11)

whereas at the centreline, a vanishing azimuthal dependence of the perturbations as
r→ 0 may be imposed (Batchelor & Gill 1962), leading to

ṽr = ṽ′x = 0 and (Z̃, ṽx, p̃) finite at r= 0. (A 12a,b)

Note that a Taylor expansion of (A 2)–(A 4) around the centreline yields

µ̄ṽ′x + µ̃v̄′x = 0, (A 13)
Re−1k(µ̄ṽ′x + µ̄′ṽx)− 3Re−1µ̄ṽ′′r /2− ip̃′ = 0, (A 14)

Z̄′µ̃+ µ̄Z̃′ = 0. (A 15)

A.2. Numerical method
The numerical method that is employed to obtain the saddle point (ω0, k0) is
identical to that of Coenen & Sevilla (2012). A quadratic Taylor expansion of
ω(k) around (ω0, k0) permits the employment of a Newton–Raphson root-finding
algorithm, whereby at each iteration the temporal eigenvalue problem must be solved
(Deissler 1987). To that end, a spectral collocation method is used with a function
ξ = [rc − r(1 + 2rc/rmax)]/(rc + r) that maps the N collocation points from the
Chebyshev interval −1 6 ξ 6 1 to the physical domain 0 6 r 6 rmax (Khorrami, Malik
& Ash 1989). Values rc = 3, rmax = 50 000 and N = 300 are found to be adequate.
For more details on the numerical method, we refer to Coenen & Sevilla (2012,
appendix B).
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