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SUMMARY
Force-controlled series elastic actuators (SEAs) are the widely used components of novel physical
human–robot interaction applications such as assistive and rehabilitation robotics. These systems
are characterized by the presence of the “human in the loop” so that control response and stability
depend on uncertain human dynamics. A common approach to guarantee stability is to use a
passivity-based controller. Unfortunately, existing passivity-based controllers for SEAs do not define
the performance of the force/torque loop. We propose a method to obtain predictable force/torque
dynamics based on adaptive control and oversimplified human models. We propose a class of stable
human-adaptive algorithms and experimentally show advantages of the proposed approach.

KEYWORDS: Force control; Series elastic actuators; Soft/compliant actuators; Rehabilitation
robotics; Physical human–robot interaction; Adaptive control; Exoskeletons, Haptic interfaces.

1. Introduction
Most of the modern rehabilitation robotic systems make use of force-controlled joints following the
“assist as needed” paradigm. In this approach, the patient is delicately guided to a target trajectory,
progressively reducing the interaction forces as the patient learns to better follow a desired path.
In fact, it has been shown that patients should be active to enable the motor learning process,3, 9, 12

thus rehabilitative devices should not be coercive. Several control algorithms have been proposed
following this “assist as needed” approach, e.g. “path control,” “virtual model control,” “clime,”
gravity compensation,6, 13 or impedance control.25 This class of algorithms is built upon a force/torque
controller that is supposed to be ideally fast. However, when the algorithm is implemented, the force
variable cannot be commanded instantaneously and its transients depend on both robot and patient
dynamics. In particular, using a traditional controller we can have slow force/torque responses when
the patient displays a low mechanical impedance, and force/torque overshoots when the patient has a
high impedance configuration. These effects are undesirable because they can generate disturbances
that interfere with rehabilitation strategy and even potentially lead to instability and patient injuries.

Currently, a widely used method to guarantee stable human–robot interaction is based on passivity-
based (PB) control. Despite the complexity of passivity formalism, PB control is quite straightforward
to implement16, 24 and the whole stability can be guaranteed by assuming that humans behave in a
passive way. Unfortunately, in PB control it is not possible to give any servo specification because the
controller needs to be stable against any kind of external passive environment, no matter what kind of
environment and its scale, i.e. its level of inertia, stiffness, or damping. It follows that this approach
is very conservative, and by completely neglecting environmental dynamics, it is not possible to
speculate on control performance. It must be said that this limit is not due to passivity itself but due
to the absence of a human model. As a matter of facts, authors proposing passive controllers for
rehabilitation or physical human–robot interaction (pHRI) usually do not comment on control tuning
(that involves specifications). The implicit idea is of tuning the system by trial and error, considering
an average human dynamics and trying to match a desired transient. Then it is necessary to check if
passivity constraints are satisfied.24 However, this strategy leads to the following considerations:
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Fig. 1. Model for series elastic actuator proposed in ref. [16]. It includes the motor inertia, the elasticity, and the
coupling with the environment.

1. In our experience,5 it is quite difficult to carry out a tuning process with the human in the loop
from the point of view of both safety and practical feasibility. Of course, it is possible to couple the
system to an artificial limb or a manikin, but in these cases the solution will be quite approximate.

2. The tuning session can be time-consuming. In fact, if the passivity conditions are not satisfied in
the first trial, it is necessary to reiterate tuning until passivity is finally archived. In fact, there is
no method to verify passivity during the tuning process unless a very simple control structure is
assumed.

3. Pathologies can specifically affect limbs. With currently available PB controllers, the tuning
procedure should be carried out separately for each patient and patient joint. It follows that an
automatic tuning process can be of paramount importance.

4. Humans typically change their dynamics in response to the environment and depending on specific
tasks. For example, leg dynamics dramatically changes between the swing and the stance phase.
Also, damping and stiffness can be increased by muscle co-contraction, e.g. when we want to
make a precise positioning, or when we hold heavy loads.

To solve these issues, we propose a model-based controller that automatically varies force control
gains in response to changing conditions to match the desired force/torque transient. Since the whole
human modeling is too complex, it is reasonable to think that a simplified model can tell us at least
something about the patient. In particular, we approximate human joints and endpoints with second-
order linear models. Combining such a generic models with adaptivity, we meet two objectives: First,
using a generic model we can account for a generic human joint, and second, using adaptivity we
can update model parameters as the situation changes, e.g. when a grasped mass is added or when
co-contraction is modified. We propose an approach inspired by model reference adaptive control
(MRAC) where control specifications can be determined by the reference model, letting the tuning
process be automatic and online adapting to changing conditions.

The paper is organized as follows. Section 2 presents the currently available solutions for series
elastic actuator (SEA) control in pHRI. Section 3 describes the system to be controlled, and Section
4 introduces the proposed adaptive controller and gives a theoretical stability analysis. Experimental
results are presented in Section 5. Finally, conclusions are drawn in Section 6 together with the future
work plan.

2. Series Elastic Actuators and Their Control

2.1. Series elastic actuators and force control
Series elastic actuators have been proposed to overcome force control difficulties that arise using stiff
actuators.16 In SEAs a spring is arranged between the motor and the environment, which in our case
is a generic human joint. This is shown in Figure 1, where τm is the motor force/torque, k is the series
spring stiffness, θ is the motor position, τh is the human interaction force/torque, and q is the human
joint position. The relation among these variables can be expressed as

τh = k(θ − q), (1)

Jmθ̈ = τm − τh, (2)

where the first equation describes the force exerted by the spring on the human, and the second
accounts for motor inertia, Jm.
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The main advantages of SEAs are the increased force control robustness, augmented shock
tolerance, and safety due to lower reflected inertia. Moreover, force can be measured through spring
deformation that is cheaper than using a load cell (in the case of force) or a rotative torsiometer (in
the case of torque).

To the authors’ knowledge, all proposed SEA implementations make use of high transmission
ratios. For example: In ref. [17] a ball screw with a pitch of 2 mm per revolution (linear actuator)
is used, whereas in ref. [11] the transmission ratio is n = 130 (rotative actuator). The reason why
SEAs usually employ reducers or gearboxes is to obtain high force and high power density. However,
a geared motor is very stiff and difficult to control in force. By adding a series spring, SEAs
transform the force control problem into a position control problem (spring displacement) where high
ratio transmissions are known to be helpful: the motor results stiffened and the effects of external
disturbances are reduced.

2.2. Series elastic actuators and robust interaction control
Currently the main technique used to stabilize pHRI is based on the passivity theory. PB controllers
are quite easy to implement and impressively robust as they are stable when coupled to any passive
environment. However, nothing can assure us that a PB controller is a “good controller.” For example,
the PB force controller proposed in ref. [16] consists of a standard proportional-integral-derivative
(PID) controller with an integral roll-off, as represented by

F (s) = P + Ds

1 + Tds
+ I

1/Ti + s
, (3)

where P, D, and I are positive gains and the integral roll-off must satisfy Ti ≤ √
D/I . The

performance of this passive PID controller depends on both gain values and coupled environment
whose dynamics is usually unknown and produces unknown control performance. For passivity
analysis of different control architectures, including inner velocity loops and pure integrators, the
reader can refer to ref. [24], where it is shown that, depending on the architecture, the passivity
constraint imposes upper or lower bounds on certain control gains. About passivity, Hogan1 reported
that “discrete control, time delays, actuator and sensor limitations, and unmodeled dynamics can also
compromise passivity, making the implementation of passive control on real systems extraordinarily
challenging.”

A significantly different approach to pHRI control is described in ref. [23] and is based on
classic robust control and not on elastic actuators. This method potentially allows to account for
specifications, but it needs an accurate human model which is very hard to develop in practice.
Another robust strategy has been applied to the case of a stiff motor and is reported in refs. [1, 2].
Here the authors consider oversimplified models (linear second-order) for the human, and propose an
automated procedure to search for a robust controller which is optimal in terms of both performance
and stability. This is because most of classic robust methods provide only analysis tools to check the
stability at the end of a design phase, and in case of failure it is necessary to iterate between the design
and the analysis phases. Also, the robust design is a sub-optimal solution because the assumed model
set needs to be conservative to include uncertainties.

3. System Analysis
In this work, we follow the approach of using second-order linear models to approximate the human
joint impedance.1 Such a simple and general models have two main advantages. First, they need
fewer parameters to be adapted to. Second, a single adaptive controller structure can work for every
human joint and also for human endpoints, broadening the applicability of the approach.

In the first step, we model the system by considering the human joint as a pure inertia, Jh. In this
case we have the following human model

Jhq̈ = k(θ − q) = τh (4)

1 Although this oversimplification is quite rough, it is widely used (and tested) in the literature, see, for example
refs. [10, 15, 20–22, 26].
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to be considered together with SEA models (1) and (2). To describe the torque control application,
the overall model should be arranged with an input torque τ and an output torque τh. To this aim, it
is possible to rewrite (1), (2), and (4) as

Jm

k
τ̈h +

(
1 + Jm

Jh

)
τh = τ. (5)

Note that this torque to torque relation gives a second-order system in spite of being originally a
fourth-order system. The reason is that if we do not account for friction and/or human joint stiffness,
we have pole-zero cancellations. Thus, the second-order approximation is reasonable only in the case
of a pure inertial load, otherwise a higher order system should be considered. In particular, the model
becomes the third-order in the presence of human joint damping, and the fourth-order if we account
also for stiffness, leading to the following equations:

J

k
τ̈h +

(
1 + Jm

Jh

)
τh − rh(q − q0) − rdq̇ = τ , (6)

Jhq̈ = τh − h(q − q0) − dq̇, (7)

where r = Jm

Jh
. The structure of human joint model (7) can be used to represent both passive and active

human conditions. In the passive human condition the stiffness term h(q − q0) can be considered as
a linear approximation of gravitational torque, and the damping term dq̇ describes the mechanical
joint friction due to muscle, tendons, and articulations. In the active human condition the human is
supposed to actively control the joint to reach the position q0, and the damping and stiffness terms
are mainly due to muscle contraction/co-contraction.

In both models (5) and (6), the dynamics of τh depends on two parameters:

a = Jm

k
, c = (1 + Jm

Jh

) = 1 + r. (8)

Interestingly, the inertia uncertainty is lumped in c, while a can be known a priori, as it characterizes
the actuator. In the control application, the worst case is when c, or equivalently r , is high, showing high
sensitivity to the human joint model. This can be seen in (6) where r multiplies human forces/tuques.
Unfortunately, this is often the case of SEAs where geared motors are usually adopted. In fact, the
(reflected) motor inertia Jm, which is proportional to r , acts as a sensitivity gain. If one considers that
the reflected motor inertia is augmented by a factor n2, where n is the transmission ratio, it follows
that in most applications the system can be very sensitive to uncertainties.

4. System Control
In the MRAC framework, control specifications are given using a model reference. This is particularly
convenient when it is easy to specify the desired bandwidth and damping/overshoot as in the linear
second-order reference model. However, in MRAC the reference model should have the same order
as the plant to ensure adaptation convergence (perfect tracking assumption). In this work, we propose
a slightly modified approach to use the second-order reference model even if the system (6)–(7) is of
fourth order.

Let’s start by considering the following model reference:

τ̈r (t) + λ1τ̇r (t) + λ2τr (t) = λ2r(t), (9)

where parameters λ1 and λ2 are chosen according to the desired bandwidth and damping of the
controlled system, and τr (t) is the desired torque dynamics for τh in response to the bounded
reference input r(t).

If we consider the pure inertial model (5), we can achieve perfect tracking using the following
control law:

τm = a(τ̈r − 2λė − λ2e) + cτh, (10)
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where e = τh − τr is the error between the system torque and the reference model torque, λ is the
positive design parameter, and a, c are defined in (8). If we compute the closed loop dynamics, we
obtain exponential convergence to the reference model with rate λ, that is

ṡ + λs = 0, (11)

where s = ė + λe is the measure of the tracking error whose convergence (s → 0) implies the
convergence of e and ė (e → 0, ė → 0) (see ref. [19, Section 7.1.1]).

Inertia uncertainty can be taken into account by substituting the parameter c in (10) with its
estimate ĉ, provided that

˙̂c = −γ sτh, (12)

where γ is the adaptation gain to control the estimation speed. Stability of this adaptive controller
can be proven within the standard MRAC framework, as reported in the Appendix. Unfortunately,
this stability analysis is not valid when considering the fourth-order system (6)–(7) as discussed
earlier. This invalidates the perfect tracking assumption and the stability analysis in the Appendix.
To overcome this problem, we propose some candidate controllers that retain the simplicity of the
second-order reference model, but are stable when applied to the system (6)–(7), which is of higher
order. The standard MRAC approach would lead to a more complex control structure (to reach perfect
tracking) and higher dimensional estimation. Also, we would lost the smart parametrization of models
(5) and (6) where (known) actuator parameters are separated from (unknown) human parameters,
i.e. coefficient a does not depend on human dynamics. In the following we propose first a controller
based on five parameter estimates, then we show that the number of estimates can be reduced while
increasing stability robustness.

4.1. An adaptive controller for SEAs
The first controller that we propose is based on the compensation of certain dynamics aiming to
make the τ/τh relation behaving like a second-order system. We consider an arranged version of
system (6),

aτ̈h + bτ̇h + cτh = τm + h∗θ − h0 + d∗θ̇ , (13)

where, naming r = Jm

Jh
, we have the following parameters: a = Jm

k
, b = r d

k
, c = 1 + r(1 + h

k
), h∗ =

rh, h0 = h∗q0, and d∗ = rd. Parameter a is known a priori, while the others depend on human
dynamics. The advantage of adopting this arrangement is that with respect to (6) it explicitly shows
the full dynamics of the interaction torques (all the τh derivatives) and contains only collocated
variables. In fact, non-collocated feedback is known to have lower stability margins. In practical
applications, where it is quite usual to have unmodeled dynamics, combining adaptivity with low
gain margins can actually present a risk of instability. In light of this consideration, we propose the
following adaptive controller:

τm = a(τ̈r − 2λė − λ2e) + b̂τ̇h + ĉτh − ĥθ − d̂ θ̇ + ĥ0 − δ, (14)

˙̂b = −ρsτ̇h
˙̂c = −ρsτh

˙̂d = −ρsθ̇ ˙̂h = −ρsθ ˙̂h0 = −ρs, (15)

where s = ė + λe, e = τh − τr is the error with respect to the reference model (9) and ρ is an
adaptation gain. In the following theorem we prove that this control law can stabilize the fourth-order
system (6)–(7) by using a second-order reference model. This result will be used also in the rest of
the paper, and, in our opinion, it is an original contribution. To achieve the proof we introduce in the
control law the term

δ = ε
e

s
q̇, (16)

where ε is an arbitrarily small positive parameter. Note that λ is usually chosen as high as possible,
thus in practice δ � ε

λ
q̇ approximates the form of a damper.
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THEOREM 1. Given system (6)–(7) where τ is determined by the adaptive control law (14) with
adaptation (15) and assuming a steady state reference model condition τr (t) = τ̄r , then the trajectories
of states e, ė, q̇ are asymptotically stable (AS) and estimation errors and q are marginally stable.

Proof. Consider the following Lyapuanov function V (t) = Vs(t) + Vq(t) + Vp(t), where

Vs(t) = 1

2
as2, Vq(t) = 1

2
f q̃2 + 1

2
gq̇2 (17)

with q̃ = q − q̄, q̄ = τ̄r

h
+ q0, and

Vp(t) = 1

2ρ
(b̃2 + c̃2 + d̃2 + h̃2 + h̃2

0), (18)

where naming p a generic parameter, p̃ represents the parameter estimation error p̃ = p̂ − p. For
better understandability, we first prove the stability assuming perfect estimation. In such a case the
closed loop dynamics is a(ṡ + λs) = −δ, and the Lyapuanov time derivative is

V̇s = asṡ = −aλs2 − sδ. (19)

For states q and q̇, we have V̇q = f qq̇ − f q̄q̇ + gq̇q̈, and from (7) we have q̇q̈ = 1
Jh

[τhq̇ − h(qq̇ −
q0q̇) − dq̇2] and, by choosing f = hε and g = Jhε, we find

V̇q = ε(τhq̇ + hq0q̇ − hq̄q̇ − dq̇2).

Now substituting δ as in (16) and considering that τh = e + τ̄r , we obtain V̇ = −aλs2 + ε̇q(τ̄r +
hq0 − hq̄) − εdq̇2. Finally, we eliminate the second term by substituting the expression of q̄, leading
to

V̇ = −aλs2 − εdq̇2 ≤ 0. (20)

If now we introduce the parameter dynamics, the estimation errors appear in

V̇s = −aλs2 + s(b̃τ̇h + c̃τh + d̃ θ̇ + h̃θ + h̃0) − sδ. (21)

Summing V̇p = 1
2ρ

(b̃ ˙̃b + c̃ ˙̃c + d̃ ˙̃d + h̃ ˙̃h + h̃0
˙̃h0) and substituting the proposed adaptation (15), one

obtains V̇s+p = −aλs2 − sδ, which is equal to (19). Then the demonstration proceeds as in the
previous case leading to (20) that implies global marginal stability for state trajectories. Finally, using
Barbalat’s lemma it can be proved that states s, q̇ are asymptotically stable. �

4.2. A simpler and more robust adaptive controller
The control strategy proposed in the previous section is theoretically sound and we will show in
Section 5 that under certain conditions it works with very high performance. However, it is known
that such a multi-dimensional estimation can be a hazard in practice, especially when there is a
mismatch between the model structure and the human dynamics and/or we do not have persistent
excitation. We show that using fewer parameters it is possible to have performance similar to algorithm
(14) with increased robustness, i.e. we can consider a more generic human joint model

Jhq̈ + Zh(q, q̇, q0) = τh, (22)

where Zh represents nonlinear stiffness and damping forces. With respect to (7), this is a more realistic
description because the human muscles are strongly nonlinear. As muscle forces are also limited, we
introduce the following bound:

|Zh(q, q̇, q0)| ≤ 	 (23)

https://doi.org/10.1017/S0263574714001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001519


Human-adaptive control of series elastic actuators 1307

with 	 ≥ 0. By using this joint model, the interaction dynamics can be rewritten as

aτ̈h + cτh = τ + rZh(q, q̇, q0) (24)

with parameters a and c as defined in (8) and r = Jm

Jh
. We propose the following control law:

τm = a(τ̈r − 2λė − λ2e) + ĉτh (25)

with adaptation

˙̂c = −ρ(sτh + σ ĉ), (26)

where e = τh − τr is the error with respect to the reference model (9) and s = ė + λe. Parameter ρ

is an adaptation gain and σ is the forgetting factor that was introduced in ref. [14].

THEOREM 2. Given system (24), with the assumption of bounded human forces (23), and the
adaptive control law (25)–(26), then the state trajectories s(t) and c̃(t) are globally uniformly
ultimately bounded (UUB).

Proof. Consider system (24), where we have a known a priori. Consider the Lyapuanov function
V (t) = Vs(t) + Vp(t) with Vs as before in (17) and Vp = 1

2ρ
c̃2. By applying the control law (25) with

adaptation (26) to system (24), (23) we find

V̇s = asṡ = −aλs2 + srZh + sc̃τh,

V̇p = 1
ρ
c̃ ˙̃c = −sc̃τh − σ c̃2 − σcc̃,

(27)

where c̃ = ĉ − c. By summing V̇s and V̇p, we have

V̇ = −aλs2 + rZhs − σ c̃2 − σcc̃. (28)

Then, if we analyze the Lyapuanov derivative outside the region

−aλs2 + srZh − σ c̃2 − σcc̃ = 0, (29)

we have V̇ < 0. Thus, outside (29) the trajectory behaves as if the origin was uniformly asymptotically
stable. Consequently, the function V will continue decreasing until the trajectory enters the region
(29) in finite time and remains there. Formally by choosing β such that |β| > r	, we have that V̇ < 0
is satisfied on every boundary expressed as

aλs2 − sβ + σ c̃2 + σcc̃ = 0, (30)

meaning that trajectories s(t) and c̃(t) are globally uniformly bounded. Moreover, an ultimate bound
can be computed by substituting β = r	 in (30). �

It is easy to show that the boundary area decreases monotonically with λ, and that boundedness
of s implies boundedness of e(t) and ė(t) (see for proof, ref. [19, Section 7.1.1]). We conclude that
by a proper choice of λ the attracting region can be sufficiently small and we can have acceptable
tracking errors. Figure 2 graphically represents the attracting region (30) in the state plane (left) and
in the error phase plane (right).

Theorem 2 is again, in our opinion, original. In fact, with respect to standard MRAC, control law
(25) embeds only a partial system model, as it discards the dynamics of q and q̇.

An interesting observation is that a high human joint inertia helps to improve accuracy (this is
because β decreases with Jh). In fact, the control task is usually facilitated in case of high coupled
impedance. Here we explain this effect for model (6)–(7). If we consider the limit cases of infinite
damping or stiffness (h → ∞ or d → ∞) then the human joint position q becomes infinitely stiff,
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ψ(t)

s

c̃

−c

e

ė

Fig. 2. On the left we draw a representation of the attracting region (29) where ψ(t) = rZh. When Zh is negative,
the region is mirrored on negative x-axis. On the right we represent only the states e, ė, and one can see the
region mapped on the error phase plane.

thus imperturbable. This makes the system model (6)–(7) become

aτ̈h = τm − τh. (31)

Then by applying the control law (25) with adaptation (26) we are in the case given in the Appendix,
with the parameter c equal to 1. In this case the controlled system is asymptotically stable, i.e. it has
infinite accuracy. This also shows that it is a good choice to adapt parameter c. When the environment
changes dynamics from (6)–(7) to (31), the parameter changes its meaning and the controller achieves
better accuracy.

Finally, we propose a similar adaptive algorithm that uses additional parameter b̂ to estimate the
human damping or dissipation. The proposed control law is

τm = a(τ̈r − 2λė − λ2e) + b̂τ̇h + ĉτh − δ (32)

with adaptation dynamics given by

˙̂b = −ρ(sτ̇h + σ b̂), ˙̂c = −ρ(sτh + σ ĉ). (33)

This control law is expected to perform better because it can distinguish between the stiffness and
the damping (dissipative) part of human dynamics. Stability of this controller can be analyzed in a
similar way to the previous case but considering the linear human join model (7) which separates
stiffness and damping forces. In this case, we can also prove the boundedness of human displacement
q̃ and velocity q̇.

THEOREM 3. Given system (6)–(7), constrained to |h(θ − q0) + rdθ̇ | ≤ 	, and the adaptive
control law (25)–(26), assuming a steady state reference model condition τr (t) = τ̄r , then state
trajectories s(t), q̇, q̃, c̃(t), and b̃(t) are globally uniformly ultimately bounded.

Theorem 3 uses the original findings of both Theorems 1 and 2. Control law (25)–(26) stabilizes
the human displacement q̃ and discards the dynamics of q and q̇.

5. Experimental Results
The experimental setup is the SEA prototype shown in Figure 3, comprising a DC torque motor
connected in series to a spring and then to a metal bar simulating the support for a human limb. Two
high precision encoders are used to measure motor position and spring displacement. Velocities are
obtained by measuring pulse inter-periods, using hardware interrupts.

The control system runs on a standard PC equipped with a quadcore processor and a real-time
Linux kernel. Real-time is obtained using a process with kernel-like priority and system sleep function
with nanosecond granularity. The control process runs at 3 KHz and communicates with the motor
drive and the sensor electronics via Ethercat protocol at the same rate.

System parameters have been estimated using a procedure similar to the one described in ref.
[4] and reported in Table I. In the experiments, the metal support in Figure 3 has been replaced
by a wood frame to create the worst-case working condition. This is because we use a direct drive
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Table I. System parameters.

Parameter Symbol Mean value

Spring Stiffness k 1.040 Nm/rad
Torque constant kt 0.42 Nm/A
Motor inertia Jm 0.00041 Kg/m2

Wood load inertia JW 0.00025 Kg/m2

Metal load inertia JM 0.00390 Kg/m2

a Jm/k 0.00039
c – wood load 1 + Jm/JW 2.62
c – metal load 1 + Jm/JM 1.10

Table II. Motor and human inertia pairs where c ∼ 2.5.

Joint Human inertia, Jh Motor inertia, n2Jm n

Hip (swing) ∼ 0.5 ÷ 5 Kg m2 ∼ 0.8 ÷ 8 Kg m2 ∼ 200 ÷ 800
Knee (swing) ∼ 0.4 Kg m2 ∼ 0.6 Kg m2 ∼ 50 ÷ 250
Elbow ∼ 0.08 Kg m2 ∼ 0.1 Kg m2 ∼ 30 ÷ 100
Wrist ∼ 0.0015 Kg m2 ∼ 0.002 Kg m2 ∼ 15 ÷ 40

Fig. 3. (Colour online) The SEA prototype used as test bed. The motor M is connected to the torsional spring S
and the angular quantities θ and q are measured by encoders E1 and E2 respectively. L is the arm support that
is a pure inertial load when the system is not interacting with a human joint.

transmission and need to have a small load inertia (less or comparable with Jm) to get pessimistic
values for parameter c, as defined in (8). With the wood load we achieve c = 2.62. To understand
whether our setup is a representative of a real rehabilitation scenario, we report in Table II some
pairs (human inertia, motor inertia) that are characterized by c ∼ 2.5 (or equivalently r ∼ 1.5), which
defines sensitivity to environment dynamics. Approximate values for human inertia are derived from
bio-mechanical measurements in refs. [8, 27]. We also report examples of transmission ratios n that
are computed considering a motor shaft of 10−6 ÷ 10−5Kg m2. Reported values are consistent to
those seen in practical applications.

The objective of experiments is to test the controllers in the worst-case scenario when the system
dramatically changes its dynamics. To this aim, we designed the following experiments. At the
beginning we create a high impedance condition by holding the wood frame by hand and trying to be
as stiff as possible (c ∼ 1). Then after some seconds we release the frame to create a low-impedance
condition (c ∼ 2.5). The sequence can be repeated to test stability at impact when we hit the load to
hold it for the second time. In this case we call the experiment “intermittent interaction test.” Note
that as the wood load inertia is very low, the impact velocity can be very high.

To have a baseline, we first show the behavior of PB controllers. The passive PID controller (3) is
tuned with P = 10 and D = 0.1 and I = 4 with a 1 Hz roll-off frequency (accordingly to passivity
constraints). The torque reference is low-pass filtered with a cut-off frequency of 35 Hz to avoid too
oscillatory responses in case of discontinuities and to make a fair comparison with MRAC as we will
use also a 35 -Hz reference model. Results of sinusoidal torque tracking are shown in Figure 4. Errors
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Fig. 4. Response of Algorithm (3) using a sinusoidal reference τr . First, the load is held by hand, and then
released at about t = 3.5 s.
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Fig. 5. Response of a PD controller tuned on free wood load condition. First, the load is held by hand, and then
released at about t = 3.0 s.

are quite low in the case of high impedance, but when the load is released, errors increase and evident
oscillations occur. To have high performance in the low-impedance condition, we avoid the integral
term and use a fix-gain version of algorithm (25) considering c = 2.62. This algorithm is passive
because by setting λ = 120 we have P = aλ2 − 2.62 > 0 and D = 2aλ > 0. Figure 5 shows that
while the response is accurate in the case of low impedance, we have significant overshoots when the
impedance is high.

The outcomes of the proposed adaptive algorithms are shown in Figure 6–9. In all the following
tests we used a critically damped 35-Hz reference model and a convergence rate, λ = 120. Larger
values for λ lead to noise amplification. Estimated parameters are initialized to zero. The plotted
error e is computed with respect to the reference model, thus it is not only a measure of accuracy but
also of specification fulfillment. Figure 6 shows the behavior of algorithm (14) when only the high
impedance is applied. It is possible to see a final very small error as well as convergence of parameters
b̂ and ĉ. Adaptation transient is kept slow in order to put in evidence the effects of parameter learning.
In a real-life application, convergence can take less than one second without generating oscillations,
as we will show in the following. We do not expect that parameters converge to their true value
because estimation errors are proved to be marginally stable. In fact, in the experiment in Figure 6,
parameters d̂ ĥ and ĥo (not shown) remain low, especially in the case of d̂ and ĥ that remain very close
to zero. Unfortunately, in the case of low impedance, when the load is unconstrained, this algorithm
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Fig. 6. Performance of control law (14) in response to a sinusoidal reference in the high impedance condition.

has worse behavior and we observed instability. This is probably due to the fact that in the case
of low impedance, the load is let free and as a consequence the environment does not display any
stiffness. This absence of stiffness information can cause a misbehavior of the estimation procedure
which searches for a modeled stiffness actually missing in the real world. This causes both ĥ and ĥ0

estimates to be prone to divergence. Even from the point of view of system identification, when the
environment does not display a stiffness/damping component, our model results over-parametrized,
leading to the risk of a non-consistent estimation.

On the other hand, the simplified algorithm (25) shows a very stable behavior. We made a stress
test by cyclically holding the load by hand and releasing it, thus testing also the impact stability.
Figure 7 shows data from this “intermittent interaction test.” Here, in particular, the load is first held
by hand and released after about 5 s. Then, at time t = 10, the moving load is held again (a hit
occurs) and then released after 5 s. Figure 7 shows that when the interaction changes, the parameter
adapts showing noticeable decreasing error transients. Also, we have the evidence of a non-biased
estimation. When the load is free, ĉ converges to the correct value in Table I, otherwise when the load
is held by hand, c ∼ 1.

The controller (32) shows the best outcome, as shown in Figure 8 and 9. It combines the high
tracking performance of algorithm (14) with the high robustness of its simplified version (25). In
fact, when the joint is held by the human, it is subjected to some energy dissipation that leads the
controller to change its derivative gain and achieve performance similar to that of Figure 6. In Fig.
7, this controller shows improved accuracy and similar robust behavior when the external impedance
changes. These results are shown in Figure 8, where one can note the non-biased estimation of c.

In Figure 9, we show that the adaptation dynamics can be tuned to be very fast without degrading the
maximum reachable precision nor the stability. If we compare this plot with the PB control responses
reported in Figure 4 and 5, it is immediate to note improvements. A quantitative comparison of
the described controllers is reported in Table III. Here each controller is tested in the high and low
impedance condition separately. Root mean square (RMS) and maximum errors are reported for
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Table III. Comparison of RMS and maximum error (10−3Nm).

High impedance Low impedance

Passive Adaptive Passive Adaptive

PID PD ĉ b̂, ĉ PID PD ĉ b̂, ĉ

RMS 27.3 102.6 9.3 5.8 69.0 15.1 13.9 6.2
σRMS 0.28 1.0 0.99 0.30 0.47 1.5 1.2 0.54
Max 41.4 146.5 17.2 12.1 99.6 26.3 18.9 13.9
σMax 0.67 1.1 2.6 1.1 0.84 2.9 3.6 1.3
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Fig. 7. The control law (25) in response to a sinusoidal reference in the “intermittent interaction test”. The error
peak occurs when we hit the load to hold it again.

each case. Because of the uncertain nature of pHRI, these indexes are computed for each reference
period2 and considered as random processes. Relative means and standard deviations are reported in
Table III. Performance results greatly improved by the adaptive controller. Considering 3σ intervals,
there are no statistically significant differences between performance in the high- and low-impedance
conditions, especially in the case of control law (32), as represented graphically in Figure 7.

6. Conclusions
We proposed two simple and effective force control algorithms for SEAs (Eqs. (25) and (32)) that
enable stable and predictable interaction with the human in both passive and active configurations.
With respect to the existing PB controllers, the proposed solutions have several advantages. First,
they can meet desired force control specifications even when the coupled dynamics changes; second,
they do not need a tuning process as they are patient- and joint-specific self-tuning controllers; third,
they proved to be very accurate. We think that these advantages are of paramount importance for
control engineers to build rehabilitation or assistive devices. We demonstrated the quality of proposed
controllers by discussing their theoretical properties and providing experimental validation. A brief

2 We have a total of 240 periods for each controller, 120 in the high-impedance condition and 120 in the
low-impedance condition.
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Table IV. Summary of paper results.

1. Control law
2. System model
3. Adaptation Theoretical stability Experimental outcome

1. Eq. (14)
2. Eqs. (6)–(7)
3. Param. b, c, d h, h0

AS only when coupled with
second-order linear impedance

High performance, poor stability
(absence of environmental
stiffness leads to instability).

1. Equation (25)
2. Equations (23)–(24)
3. Param. c

Globally UUB when coupled with
the generic impedance (24)–(23).
AS when coupled with “infinite”
impedance (infinite inertia or
stiffness or damping, etc.)

Medium performance, robust
stability (it never goes to
instability despite stress tests).

1. Equations (32)
2.Equations (6)–(7)
3. Param. b, c

Similar to the previous case. Here
the boundedness proof also
includes states q̃ and q̇.

High performance, robust stability.
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Fig. 8. The control law (32) in response to a sinusoidal reference in the “intermittent interaction test”. The error
peak occurs when we hit the load to hold it again.

view of achievement is summarized in Table IV, where for each controller we report related human
joint model and adaptation parameters.

For the future work, we plan two objectives. The first is to investigate a passive version of the
proposed adaptive approach. The second is to introduce adaptation mechanisms that are not only
based on tracking errors but also on prediction errors.
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Fig. 9. The control law (32) with high adaptation gains in response to a sinusoidal reference in the “intermittent
interaction test”.
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Fig. 10. (Colour online) RMS and maximum torque tracking error for passive PID, passive PD (tuned for low
impedance), and adaptive controllers. Green and yellow bars represent data collected in high- and low-impedance
conditions respectively. 3σ confidence intervals are shown.
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mechanical parameters of leg segments in individuals with and without physical disabilities,” IEEE Trans.
Rehabil. Eng. 4(3), 201–211 (Sep. 1996).

21. S. Stroeve, “Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture
control,” Biol. Cybern. 81(5–6), 475–494 (Nov. 1999).

22. K. P. Tee, E. Burdet, C. M. Chew and T. E. Milner, “A model of force and impedance in human arm
movements,” Biol. Cybern. 90(5), 368–375 (May 2004).

23. H. Vallery, “Stable and User-Controlled Assistance of Human Motor Function.” Ph.D. Thesis (University
of Munchen, Munich, Germany, 2009).

24. H. Vallery, R. Ekkelenkamp, H. van der Kooij and M. Buss, “Passive and Accurate Torque Control of Series
Elastic Actuators,” Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems (Oct. 2007) pp. 3534–3538.

25. H. Vallery, E. H. F. van Asseldonk, M. Buss and H. van der Kooij, “Reference trajectory generation for
rehabilitation robots: Complementary limb motion estimation,” IEEE Trans. Neural Syst. Rehabil. Eng.
17(1), 23–30 (Feb. 2009).

26. Y. Xu and J. M. Hollerbach, “A robust ensemble data method for identification of human joint mechanical
properties during movement,” IEEE Trans. Biomed. Eng. 46(4), 409–419 (Apr. 1999).

27. V. M. Zatsiorsky, Kinetics of Human Motion (Human Kinetics, Champaign, IL, 2002).

Appendix

A1 Stability analysis of control law (10) on model (5)
The following candidate Lyapuanov function for the controlled system, including the plant (5), the
control law (10), and the adaptation law (12), is chosen,

V = 1

2
[as2 + 1

γ
c̃2] ≥ 0,
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where s = ė + λe is a measure of the tracking error and c̃ = ĉ − c is the parameter estimation error.
By computing the time derivative one can find

V̇ = asṡ + 1

γ
c̃ ˙̃c, (A1)

where computation of ṡ needs the knowledge of the closed loop dynamics. This can be obtained by
substituting Eq. (10) into (5) leading to ṡ = c̃τh

a
− λs and then to

V̇ = −aλs2 + c̃sτh + 1

γ
c̃ ˙̃c. (A2)

By applying the adaptation law ˙̃c = ˙̂c = −γ sτh in (A2) we finally have V̇ = −aλs2 ≤ 0 that implies
global marginal stability for the system, thus bounded s and c̃. To prove convergence of s to zero,
we can use Barbalat’s lemma. Given a lower bounded V , it requires V̇ ≤ 0 and V̇ to be uniformly
continuous in time, then it proves that s → 0 for t → ∞. A sufficient condition for uniform continuity
is a bounded second-order derivative that can be computed as

V̈ = −2λc̃sτh + 2a(λs)2. (A3)

Then asymptotic stability of s can be proven, considering that we already proved the boundedness of
s, e, and c̃ and the human force τh = τr + e is limited if we apply the bounded desired force r(t) to
the stable reference model (9).
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