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Rise velocity of a spherical cap bubble

By DANIEL D. JOSEPH
University of Minnesota, Aerospace Engineering and Mechanics, 110 Union St. SE, Minneapolis,

MN 55455, USA

(Received 23 October 2002 and in revised form 26 February 2003)

The theory of viscous potential flow is applied to the problem of finding the rise
velocity U of a spherical cap bubble (see Davies & Taylor 1950; Batchelor 1967). The
rise velocity is given by

U√
gD

= −8

3

ν(1 + 8s)√
gD3

+

√
2

3

[
1 − 2s − 16sσ

ρgD2
+

32v2

gD3
(1 + 8s)2

]1/2

,

where R = D/2 is the radius of the cap, ρ and ν are the density and kinematic
viscosity of the liquid, σ is surface tension, r(θ) = R(1 + sθ2) and s = r ′′(0)/D is
the deviation of the free surface from perfect sphericity r(θ) = R near the stagnation
point θ = 0. The bubble nose is more pointed when s < 0 and blunted when s > 0. A
more pointed bubble increases the rise velocity; the blunter bubble rises slower. The
Davies & Taylor (1950) result arises when s and ν vanish; if s alone is zero,

U√
gD

= −8

3

ν√
gD3

+

√
2

3

[
1 +

32ν2

gD3

]1/2

,

showing that viscosity slows the rise velocity. This equation gives rise to a hyperbolic
drag law

CD = 6 + 32/Re,

which agrees with data on the rise velocity of spherical cap bubbles given by Bhaga
& Weber (1981).

1. Analysis
Potential flow is a solution of the Navier–Stokes equations; it satisfies all of the

usual equations for inviscid potential flow, like Bernoulli’s equation, the Cauchy–
Lagrange equation, etc., except that the viscous stresses do not in general vanish.
Viscous potential flows give rise to excellent physical results for flows with interfaces;
for such flows the viscosity enters the analysis explicitly through the normal stress
balance. The Rayleigh–Plesset bubble is an exact viscous potential flow analysis of
the Navier–Stokes equations; this solution works perfectly for all viscous liquids; it is
not an asymptotic result. Viscous potential flow analysis of problems for Rayleigh–
Taylor instability (Joseph, Belanger & Beavers 1999; Joseph, Beavers & Funada 2002),
for capillary instability (Funada & Joseph 2001) and Kelvin–Helmholtz instability
(Funada & Joseph 2002) gives rise to solutions dependent strongly on viscosity and
closely approximate solutions of the problem in which potential flow is not assumed.
Viscous potential flow has zero vorticity and it will certainly fail when vorticity is
important.
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214 D. D. Joseph

Figure 1. Spherical cap bubble. The rising bubble is viewed in a frame in which the bubble
is stationary. The origin of z increasing is at the stagnation point ŝ. The surface of the cap is
given by z = − h(r, θ ) = − (R − r(θ )cosθ ). The cap is strictly spherical if r(θ ) =R is constant.

The spherical cap bubble (figure 1) arises in the motion of large gas bubbles which
take a lenticular shape. The analysis of the rise velocity of these bubbles which was
given by Davies & Taylor (1950) is unusual since it is not computed from a balance
of the drag and buoyant weight as it is for spherical gas bubbles (Levich 1949;
Moore 1959, 1963; Taylor & Acrivos 1964; Miksis, Vanden-Broeck & Keller 1982;
Ryskin & Leal 1984). Batchelor (1967) notes that “The remarkable feature of (the
Davies–Taylor analysis) is that the speed of movement of the bubble is derived in
terms of the bubble shape without any need for consideration of the mechanism of
the retarding force which balances the effect of the buoyancy force on a bubble in
steady motion”.

In the analysis which follows, I extend the analysis of Davies & Taylor which is
based on inviscid potential flow to viscous potential flow and I show that surface
tension enters the formula for the rise velocity only when the axisymmetric bubble is
not spherical.

The velocity field on the gas bubble and the liquid is derived from a potential
u = ∇φ, ∇2 = 0. The velocity at z = ∞ is −U (against z) and g = −ezg. For steady
flow

ρu · ∇u = − ∇p − ρezg = −∇Γ (1.1)

where

Γ = p + ρgz.

Equation (1.1) may be integrated, since u · ∇u = ∇|u|2/2, giving rise to a Bernoulli
function in the liquid

ρ|u|2
2

+ Γ =
ρU 2

2
, (1.2)
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Rise velocity of a spherical cap bubble 215

and in the gas

ρG|u|2
2

+ ΓG = CG, (1.3)

where CG is an unknown constant.
We turn next to the normal stress balance

−[[p]] + 2[[µn · D[u]]] · n +
2σ

r(θ)
= 0, (1.4)

where

[[·]] = (·)G − (·)L
is evaluated on the free surface r(θ) = R(1 + sθ2), σ is surface tension, µ is viscosity
and

n · D[u] · n =
∂un

∂n
(1.5)

is the normal component of the rate of strain. Using (1.1), (1.4) and (1.5) we obtain

−[[Γ ]] − [[ρ]]gh + 2

[[
µ

∂un

∂n

]]
+

2σ

r
= 0 (1.6)

where −h is the value of z on the free surface.
Following Davies & Taylor (1950), we assume that u may be approximated near

the stagnation point on the bubble, which is nearly spherical, by the potential for the
sphere; thus

φ = −Ur cos θ

(
1 +

R3

2r3

)
(1.7)

for the liquid. The form of φ in the gas will not be needed. From (1.7) we compute

ur =
∂φ

∂r
= −U

(
1 − R3

r3

)
cos θ, (1.8)

uθ =
1

r

∂φ

∂θ
= U sin θ

(
1 +

R3

2r3

)
, (1.9)

∂un

∂n
=

∂ur

∂r
= −3UR3

r4
cos θ. (1.10)

The functions (1.8), (1.9) and (1.10) enter into the normal stress balance at r =
R(1 + sθ2). This balance is to be satisfied near the stagnation point, for small θ ,
neglecting terms that go to zero faster than θ2. At the free surface,

ur = −U

{
1 − 1

(1 − sθ2)3

}
= −3Usθ2, uθ = 3

2
Uθ,

∂un

∂n
= −

3U
(
1 − 1

2
θ2

)
R(1 + sθ2)4

= −3U

R

{
1 −

(
4s + 1

2

)
θ2

}
, (1.11)
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216 D. D. Joseph

u2
r = 0, (1.12)

u2
θ = 9

4
U 2θ2, (1.13)

h = R − r cos θ = R − R(1 + sθ2)
(
1 − 1

2
θ2

)
= R

(
1
2

− s
)
θ2. (1.14)

The motion of the gas in the bubble is not known but it enters into (1.6) as the
coefficient of ρG and µG, which are small relative to the corresponding liquid terms.
Evaluating (1.2) and (1.3) on the free surface, with gas motion zero, we obtain

Γ = − 9
8
ρU 2θ2 + ρ

U 2

2
, (1.15)

ΓG = CG. (1.16)

Using (1.11) to (1.16), we may rewrite (1.6) as

0 = −CG + Γ + ρgh − 2µ
∂ur

∂r
+

2σ

r

= −CG +
ρU 2

2
− 9

8
ρU 2θ2 + ρgR

(
1
2

− s
)
θ2

+
6µU

R

{
1 −

(
4s + 1

2

)
θ2

}
+

2σ

R
(1 − sθ2). (1.17)

The constant terms vanish:

CG =
ρU 2

2
+

6µU

R
+

2σ

R
. (1.18)

The coefficient of θ2 also vanishes:

9
8
ρU 2 +

3µU

R
+

24µUs

R
= ρg

R

2
− s

(
ρgR +

2σ

R

)
. (1.19)

Surface tension, which balances the static pressure difference in a sphere or spherical
cap, enters the formula for the velocity only when the axisymmetric cap is not
spherical. When the spherical cap is perfectly spherical, as in the case treated by
Davies & Taylor (1950), s = 0 and

U = −4

3

ν

R
+

√
4
9
gR + 16

9

ν2

R2
. (1.20)

Equation (1.20) shows that the viscosity slows the rise velocity; when the viscosity is
much larger than gravity

U =
1

6

gR2

ν
, (1.21)

which is the velocity of a rising sphere computed by Moore (1959) from viscous
potential flow balancing the drag with the buoyant weight.

The general solution of (1.19) with D = 2R is

U√
gD

= −8

3

ν(1 + 8s)√
gD3

+

√
2

3

[
1 − 2s − 16sσ

ρgD2
+

32v2

gD3
(1 + 8s)2

]1/2

. (1.22)
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Rise velocity of a spherical cap bubble 217

It is convenient to write (1.22) in a dimensionless form:

Fr = −8(1 + 8s)

3�G

+

√
2

3

[
1 − 2s − 16s

Eö
+

32

�2
G

(1 + 8s)2
]1/2

, (1.23)

where

Fr=
U√
gD

Froude number,

�G =

√
gD3

ν
gravity Reynolds number,

Eö =
ρgD2

σ
Eötvös number.

These three parameters are the only ones that enter into correlations for the rise
velocity of long bubbles in round pipes (Wallis 1969; Vania et al. 2002).

It is of interest to consider different effects entering into the formula for the rise
velocity U given by (1.22). The Davies & Taylor formula

U =

√
2

3

√
gD (1.24)

arises from (1.22) when ν = σ = s = 0. Recall that s = r ′′(0)/D represents the
difference from an undeformed spherical cap. When s = 0 the cap is exactly spherical;
when s < 0 the nose of the cap is more pointed than the spherical cap and when
s > 0 the nose is blunter than a sphere. The Davies–Taylor formula (1.24) arising
from (1.22) in the asymptotic limit for large values of � and Eö

U =

√
2

3
(1 − 2s)

√
gD (1.25)

holds only when s = 0.
Unfortunately the analysis does not give the value of s; the shape of the nose is

given when U is known, or if s is known then U is predicted. A more satisfying result
would need to relax the assumption that the velocity potential (1.7) does not change
when the spherical cap is not exactly spherical. This kind of perturbation analysis
requires global data and is well beyond what can at present be obtained by analysis.

2. Experiments
A review of experiments on the rise of spherical cap bubbles prior to 1973 together

with an excellent collection of photographs can be found in the paper by Wegener
& Parlange (1973). Reviews treating rising bubbles of all types were presented by
Harper (1972) and Bhaga & Webber (1981).

The comparison of the prediction (1.23) of the rise velocity of a sperical cap bubble
arising from the application of viscous potential flow is unambiguous when the
deviation s from sphericity vanishes. There are two cases in which s = 0: according
to the analysis of Davies & Taylor (1950), the spherical cap which arises for large
bubbles is one case; the other case includes the rise of small bubbles, or bubbles with
large surface tension, which was considered by Levich (1949) and Moore (1959, 1963).
In the first the sphericity arises from dynamics alone and the effects of surface tension
on the spherical cap is negligible. In the case of small bubbles, or bubbles moving
very slowly, surface tension can be important in keeping the bubble spherical, but the
effect then of surface tension is absorbed totally by the pressure drop [[p]] = 2σ/R, as
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Figure 2. (After Vania et al. 2002). Rise velocity Fr vs. �G for different Eötvös numbers
for all published experiments on the rise velocity of Taylor bubbles in round pipes. The rise
velocity is independent of Eö when Eö > 40.

in (1.18), and does not enter the dynamics. The effects of surface tension on the rise
velocity are associated with the deviation from sphericity; it is a shape effect since
the net force and moment on a smooth bubble due to surface forces are zero (Hesla,
Huang & Joseph 1993).

An efficient description of the effects affecting the deformation and rise velocity
of gas bubbles in stagnant liquids can be carried out in terms of dimensionless
parameters. The formula (1.23) expresses a functional relation between three
parameters: the Froude number, the gravity Reynolds number �G and the Eötvös
number Eö; these three parameters completely describe the rise velocity of Taylor
bubbles, which are long gas bubbles capped by a spherical cap rising in tubes filled
with stagnant liquid which were discussed in the Davies–Taylor paper. Vania et al.
(2002) correlated all the published data, 262 experiments, on the rise velocity, Fr, of
Taylor bubbles in round pipes with a highly accurate rational fraction of power of the
parameters �G and Eö; a graph of the data processed by them is shown in figure 2.

Other parameters are frequently used for the description of the rise velocity; these
are

CD =
4

3

gde

U 2
drag coefficient,

Re =
Ude

ν
Reynolds number,

W =
ρU 2de

σ
Weber number,

M =
gµ4

ρσ 3
Morton number.




(2.1)
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Figure 3. (After Batchelor 1967). The drag coefficient of gas bubbles rising through liquids.
The points for two particular liquids are taken from experimental curves given by Haberman
& Morton (1953). The line CD = 32/Re was added by me. The formulae use effective diameters
de = D where R = D/2 is the radius of the sphere.

The choice of effective diameter is important; two choices are made here: de = D

where de is the sphere diameter or the diameter of the spherical cap, de = d where

d is volume equivalent diameter defined by V = 1
6
πd

3
, and Reynolds numbers by

Re = uD/ν, Re = ud/ν based on D and d . Any pair of independent dimensionless
parameters determine all the others in steady flow; as in (1.23), a dimensionless para-
meter involving U may be expressed in terms of two other independent
parameters.

It is convenient to compare the theory developed here with experiments in which
the surface tension, or parameters in which the surface tension is a factor, affect the
rise velocity and those for which these parameters are not important; for example,
according to figure 2, Fr is a function of �G alone when Eö > 40.

In the case of a spherical cap bubble, limitations on the bubble size arise from
several sources and restrict the values of the parameters which may be observed.
Grace, Wairegi & Brophy (1978) reported the maximum volume of air in bubbles
that remain intact in five different liquids in a wide tank but did not identify which
of the five were spherical cap. Batchelor (1987) looked at these data in terms of
a stability theory which limits the maximum size bubbles. A numerical study by
Bolton-Stone, Robinson & Blake (1995) suggests that spherical cap bubbles arise
only when the Eötvös number based on an equivalent spherical radius is less than
about 32. For higher values of Eö an unstable toroidal bubble is formed before
breakup.

Figure 3 was presented in Batchelor’s (1967) book. He compared experiments with
drag laws CD = 48/Re computed by Levich (1949) using the dissipation approximation
and Moore’s (1959) CD = (48/Re)(1 − 2.2/R1/2

e ) correction of this law. Moore tried to
correct the pressure jump across the spherical bubble surface for effects of a vorticity
boundary layer. Kang & Leal (1988) showed that Moore’s result is incomplete because
it does not include displacement thickness effects; they found 48/R at leading order
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Figure 4. (After figure 7 in Bhaga & Weber 1981.) CD(= 4gd/U 2) vs. Re(= Ud/ν). Taylor
& Acrivos 1964 (- - -); CD given by (2.2) (—); M = 1.64 × 10−3 (�).

using a general relationship between the viscous pressure correction and the vorticity
distribution for a spherical bubble in an arbitrary axisymmetric flow. The values of
CD given by Stoke’s flow, viscous potential flow and the dissipation are 16/Re, 32/Re

and 48/Re, respectively.
It seems to me that the experiments in figure 3 are not convincing evidence for

any of the three drag laws just mentioned. The deviation from a linear law, say
32/Re rather than 48/Re, might be interpreted in terms of changes in drag due to
bubble deformation rather than any effect of vorticity on the pressure jump. This
interpretation is consistent with the experiments and with the analysis of Taylor
& Acrivos (1964) and Ryskin & Leal (1984), who showed that bubbles resembling
spherical caps arise when the Weber number is large, as in the points past the
minimum, and perhaps before the minimum CD in figure 3. Evidently, it is not very
easy to do experiments in which an 48/Re drag law is actually realized.

The data shown in figure 3 are quite different from the data presented in figure 4.
The data in figure 3 do not apply to the spherical cap bubble that is considered in this
paper. The large-Re limit leading in figure 4 to the Davies–Taylor limit is in excellent
agreement with experiments and is not likely to be greatly improved by a boundary
layer analysis, even if it could be carried out.

Harper (1972) makes a distinction between high-and low-Morton-number (M)
liquids. He characterizes the high-M liquids as those for which CD decreases
monotonically with Re as in figure 4, and the low-M liquids as those for which
CD vs. Re has a minimum as in figure 3. Bhaga & Weber (1981) identify this critical
value as M = 4 × 10−3; a low-M liquid response is identified by the solid circle data
points in figure 4.

The monotonic curve through the high-M open symbol points in figure 4 is
described by an empirical formula

CD = [(2.67)0.9 + (16/Re)
0.9]1/0.9 (2.2)
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CD = 0.445 (6 + 32/Re)

CD = [2.670.9 + (16/Re)0.9]1/0.9

Figure 5. Comparison of the empirical drag law (2.2) with the theoretical drag law (2.6)
scaled by the factor 0.445 required to match the data in figure 4 with the experiments of
Davies & Taylor (1950) at large Re .

in which CD is determined by Re alone. The shapes of the bubbles change from
spheres to spherical cap bubbles as Re increases; CD and Re are defined here using
the volume equivalent diameter d, which decreases from the sphere diameter D at
low Re to a value d < D for a spherical cap bubble which can be estimated from the
results of Davies & Taylor (1950) and those given here.

Consider the case in which the deviation from sphericity s = 0. In this case equation
(1.20) holds. We may rewrite this equation as a drag relation

CD = 6 + 32/Re, (2.3)

where CD = 4
3
(gD/u3), Re = UD/ν and D = 2R is the diameter of the spherical cap.

The large- Re limit of (2.3), CD = 6 is the value of drag coefficient which was
established in the brilliant experiments by Davies & Taylor (1950). The asymptotic
large-Re limit of (2.2) is CD = 2.67. These two limits should be the same, hence

CD

CD

=
2.67

6
=

d

D
.

If this limit is a spherical cap bubble the volume equivalent diameter is

d = 0.445D (2.4)

for the spherical cap diameter d = 2R. The ratio of the volume of the spherical cap
bubble to the volume of a sphere of radius R = D/2 is

V =
d3V

D3
= 0.0881. (2.5)

The volume of the spherical cap bubble in this computation is a little less than
1/10 the value of the volume of the sphere from which it is cut.

In comparing (2.2) and (2.3) we must convert Re to Re and though this cannot be
done generally, it can be done empirically for the limiting case of large Re for which
Re = 0.445Re. In figure 5 we compare the empirical relation (2.2) to a rescaled plot

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

49
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003004968


222 D. D. Joseph

of (2.3)

C̃D = 0.445

(
6 +

32

Re

)
. (2.6)

The agreement between (2.6) and (2.2) is spectacular but possibly misleading since
the relation between d and D is not generally known.

A direct comparison of (2.3) with numerical results is tentative because the spherical
cap bubble limit is beyond the capabilities of the numerical methods which have been
applied to the problem. The calculations of Ryskin & Leal (1984) seem reliable and
they work well for Weber and Reynolds numbers at which the spheres are greatly
distorted. Their figure 1 is a plot of CD vs. W with Re as a parameter, which is in
agreement with (2.2) for Re < 20. The empirical formula could not be tested for the
large values of W for which the cap bubbles arise but the Re variation for smaller
values of W is also consistent with (2.2).

The comparison of theory and experiment for the case when the deviation s from
sphericity is not zero is complicated. In this case the curvature of the nose of the
bubble is different from the spherical radius R used in our calculations and those of
Davies & Taylor. We have already noted that the analysis leading to s neglects some
of the changes in the potential function which arise from the change in the shape of
the domain. The computation or measurement of s will not be undertaken here but
the comparison mode in figures 1 and 2 of the paper by Miksis et al. (1982) for
distorted bubbles in lenticular shape, but far from spherical caps, may point the way.

3. Conclusions
Viscous potential flow is as a potential flow solution of the Navier–Stokes equations

in which the vorticity vanishes and no-slip conditions at the interface are not enforced.
This solution does not require that the viscosity be put to zero and it is not a good
idea to put it to zero. Using this theory, we extended the analysis of Davies & Taylor
(1950) of the spherical cap bubble to include effects of viscosity, surface tension
and the deviation of the bubble nose from sphericity. The result of these analyses
are then expressed by the rise velocity formula (1.22) and the drag formula (2.3).
These formulae are in good agreement with experiments of Bhaga & Weber (1981)
at the high Morton numbers for which the cap bubbles arise, with the caveat that
the conversion of the spherical radius to an effective volume equivalent radius is
ambiguous. The possible effects of vorticity boundary layers on the rise velocity have
not been analysed here; it is not possible to use the same methods that work for
spherical gas bubbles and it is unlikely that the results of such an analysis would
greatly improve the agreement between theory and experiments documented here.

This work was supported in part by the DOE (engineering research program of
the Dept. of Basic Engineering Sciences) and the NSF under grants from Chemical
Transport Systems.
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