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It is increasingly common for models of shallow-layer overland flows to include equations
for the evolution of the underlying bed (morphodynamics) and the motion of an associated
sedimentary phase. We investigate the linear stability properties of these systems in
considerable generality. Naive formulations of the morphodynamics, featuring exchange
of sediment between a well-mixed suspended load and the bed, lead to mathematically
ill-posed governing equations. This is traced to a singularity in the linearised system
at Froude number Fr = 1 that causes unbounded unstable growth of short-wavelength
disturbances. The inclusion of neglected physical processes can restore well posedness.
Turbulent momentum diffusion (eddy viscosity) and a suitably parametrised bed load
sediment transport are shown separately to be sufficient in this regard. However, we
demonstrate that such models typically inherit an associated instability that is absent
from non-morphodynamic settings. Implications of our analyses are considered for simple
generic closures, including a drag law that switches between fluid and granular behaviour,
depending on the sediment concentration. Steady morphodynamic flows bifurcate into two
states: dilute flows, which are stable at low Fr, and concentrated flows which are always
unstable to disturbances in concentration. By computing the growth rates of linear modes
across a wide region of parameter space, we examine in detail the effects of specific model
parameters including the choices of sediment erodibility, eddy viscosity and bed load flux.
These analyses may be used to inform the ongoing development of operational models in
engineering and geosciences.

Key words: shallow water flows, particle/fluid flow

1. Introduction

The growth of instabilities of inclined overland flows can cause small variations in the
free surface to roll up into large-amplitude waves and shocks (Dressler 1949; Needham
& Merkin 1984), with the potential over long distances to turn a homogeneous flowing

† Email address for correspondence: j.langham@bristol.ac.uk

© The Author(s), 2021. Published by Cambridge University Press 916 A31-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:j.langham@bristol.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.235&domain=pdf
https://doi.org/10.1017/jfm.2021.235


J. Langham, M.J. Woodhouse, A.J. Hogg and J.C. Phillips

layer into a sequence of destructive surges (Zanuttigh & Lamberti 2007). These ‘roll
waves’ have been observed to develop in shallow flows with diverse rheologies, including
turbulent fluid layers (Cornish 1934; Needham & Merkin 1984; Balmforth & Mandre
2004), hyperconcentrated suspensions and debris flows (Pierson & Scott 1985; Davies
1986; Davies et al. 1992), dense granular flows (Forterre & Pouliquen 2003; Razis
et al. 2014) and mixtures of cohesive sediment (Coussot 1994; Ng & Mei 1994). The
appearance (or lack) of roll waves on volcanic debris flows (lahars) and their waveform
characteristics have been used to infer flow properties and initiation processes (e.g. Doyle
et al. 2010). When flows are able to erode and deposit material, additional modes of
instability may be present, caused by coupling between the flow and its underlying
topography. These interactions, usually referred to as morphodynamics, bring about a rich
collection of intriguing wavy bed patterns, formed in different physical regimes (Engelund
& Fredsøe 1982; Seminara 2010; Slootman & Cartigny 2020). Where flows constitute
dangerous natural hazards, morphodynamic uptake of mass may significantly amplify
their destructive power and therefore cannot be ignored in geophysical models of these
systems (Iverson & Ouyang 2015). Post-event structures in deposits have been interpreted
as preservation of instabilities during such flows (Baloga & Bruno 2005).

There has been considerable interest in mathematical stability problems thought to
underpin and give rise to these various phenomena. The simplest relevant setting is
one-dimensional uniform shallow layers of turbulent water, flowing down a constant
incline. Linear stability of these states depends on a single control parameter, the Froude
number, defined by Fr = ũ0/(g⊥h̃0)

1/2, where h̃0, ũ0 are the height and velocity of the
steady uniform flow, and g⊥ denotes gravitational acceleration resolved perpendicular to
the slope. For example, when the typical Chézy formula for basal drag applies, the flow
is unstable for all Fr > 2 (Jeffreys 1925). Similar problems have been tackled over the
years, using different flow models and approaches to investigate various physical systems.
The literature concerning the linear stability of such flows is vast. It is particularly worth
noting the breadth of settings that may be treated by considering the evolution of small
disturbances in the shallow-flow equations, which includes turbulent open water (Keulegan
& Patterson 1940; Craya 1952; Dressler & Pohle 1953; Thual, Plumerault & Astruc 2010),
mudflows on impermeable (Liu & Mei 1994; Ng & Mei 1994) and porous slopes (Pascal
2006), debris flows (Zanuttigh & Lamberti 2004) and granular flows (Forterre & Pouliquen
2003; Gray & Edwards 2014).

The inclusion of morphodynamic processes adds complexity, but has nevertheless
received considerable attention, since stability theory provides a natural way to investigate
the genesis of observed bed patterns and surface waves. In this case, the shallow-flow
equations are paired with an equation for the bed evolution and an appropriate description
of how the flow and bed are coupled. Depending on the application, different degrees
of sophistication are needed. In many contexts, the bed evolves slowly (relative to the
flow velocity) and the pattern-forming instabilities of its free surface may be explained
using analyses that assume a steady flow (Richards 1980; Engelund & Fredsøe 1982).
Where there is significant exchange of material over flow time scales, such as in powerful
debris flows (Hungr, McDougall & Bovis 2005), a fuller analysis is required, as there is a
strong two-way coupling between the flow and bed motion. Trowbridge (1987) identified
the value of taking a generalised approach to shallow-flow stability analysis, deriving a
simple linear stability criterion for any inclined uniform solution to the unidimensional
shallow-flow equations in the non-erosive case, subject to an arbitrary basal drag law.
In doing so, the linear response of many different model rheologies was encompassed.
This analysis was recently extended by Zayko & Eglit (2019), who showed that for
some rheologies, Trowbridge’s stability criterion is bypassed by oblique (i.e.,
916 A31-2
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non-slope-aligned) disturbances. For morphodynamic flows, it seems doubtful that
comparably simple stability criteria may be obtained, due to the presence of
extra modes associated with the bed dynamics that complicate the general picture.
However, operational models feature many different physical closures for the various
morphodynamic processes and in each case there is a proliferation of viable choices.
Therefore, in this paper we formulate our analysis in a general setting so that our results
may then be applied to a variety of individual models. We pay particular attention to
a popular class of models recently developed to describe events that feature rapid and
substantial transfer of material with the bed, such as violent dam breaks or natural debris
flows. This is achieved by augmenting the standard shallow-flow equations with a transport
equation for a ‘suspended load’ of entrained solids and a bed evolution equation featuring
erosion and deposition terms (e.g. Cao et al. 2004, 2017). The extent to which the sediment
dynamics affects stability of flows in this setting is not well understood. Therefore, we
spend the bulk of this study attempting to address this in a general way.

Stability analysis can reveal underlying shortcomings in a model. In river
morphodynamics, it is common practice to couple the Saint-Venant equations with one
or more ‘bed load’ transport equations to describe the dynamics of different sediment
layers. It is now known that this approach can lead to systems of non-hyperbolic governing
equations that are ill posed as initial value problems (Cordier, Le & Morales de Luna
2011; Stecca, Siviglia & Blom 2014; Chavarrías, Stecca & Blom 2018; Chavarrías et al.
2019). Where this occurs, these models are rendered inappropriate as descriptions of
dynamical flows, at least in the form typically used in numerical solvers. Likewise, we
shall prove that models with suspended sediment load are, in their most basic formulation,
ill posed when the Froude number is unity. Two physical processes: turbulent diffusivity
and bed load transport, are shown separately to remove ill posedness. The former does so
unconditionally; for the latter, we derive general constraints for well-posed models similar
to prior analyses undertaken in the fluvial setting (Cordier et al. 2011; Stecca et al. 2014;
Chavarrías et al. 2018). By investigating the posedness and stability of these extended
formulations in a general setting, with both bed and suspended load, we take steps towards
a unified understanding of shallow morphodynamic models across multiple flow regimes.
Moreover, it should be straightforward to apply our conclusions to individual models, or
to incorporate additional modelling terms into the analysis.

2. Formulation

The setting for this paper is the geometry depicted in figure 1, which shows a cross-section
of a free-surface flow at time t̃, travelling down a sloping erodible bed principally driven
by gravitational acceleration g. We fix a coordinate x̃, oriented along the slope, which is
inclined at a constant angle φ to the horizontal. Only motions and spatial variations in
the flow fields along this axis are considered. Both the flow height h̃(x̃, t̃) and bed height
b̃(x̃, t̃) are measured in the direction normal to the slope and the depth of flowing material
is everywhere assumed to be small, relative to its streamwise and lateral coverage along
the slope plane.

Governing equations for flows in this setting may be obtained by integrating the
continuity and momentum transport equations for a general continuum body over the flow
depth and neglecting terms that are small for a shallow layer. This standard procedure
eliminates both the slope-normal components of motion and any non-hydrostatic pressure
gradients, and replaces the downslope velocity with its depth-averaged value, denoted
herein by ũ(x̃, t̃). Allowing for linear-order variations in the bed gradient results in a
contribution to the depth-averaged hydrostatic pressure term only. Higher-order variations
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Flow bulk

Bed load

Erodible  bed

g

x̃

ũ(x̃, t̃)

h̃(x̃, t̃)

b̃(x̃, t̃)

Q̃(x̃, t̃)

Γ̃ (x̃, t̃)

Γ̃b(x̃, t̃)
φ

Figure 1. Diagram of the system under consideration. A shallow flowing layer of height h̃ and velocity ũ
travels along an initially uniform slope inclined at an angle φ to the horizontal. Underneath is a bed of height b̃,
composed of homogeneous sediment that may be carried as a distinguished load (of fixed depth) along the bed
surface, or entrained into the flow bulk. The material transfer variables are labelled with arrows, to indicate the
directions of positive transport.

(i.e., curvatures) may be considered, but these are not relevant for studying the linear
stability of flows on constant slopes. For simplicity, we also choose to omit ‘shape factors’
– free parameters arising from the depth integration that quantify the level of vertical shear
in the velocity profile. While these can, in certain cases, modify solutions significantly
(Hogg & Pritchard 2004), they are typically unknown and very often neglected in
modelling studies (Macedonio & Pareschi 1992; Iverson 1997; Cao et al. 2004; Xia et al.
2010, for example). Nevertheless, our analysis could in principle be adapted to include
them.

If there are no morphodynamic processes present, the depth-averaged flow density
ρ̃(x̃, t̃) is a constant field and the equations of motion are

∂ h̃
∂ t̃

+ ∂

∂ x̃
(h̃ũ) = 0, (2.1a)

∂

∂ t̃
(h̃ũ)+ ∂

∂ x̃
(h̃ũ2)+ gh̃ cosφ

∂

∂ x̃
(h̃ + b̃) = gh̃ sinφ − τ̃/ρ̃. (2.1b)

The final component of (2.1b) is a forcing term obtained from depth integration of the
material stresses. It is a free constitutive law that captures the aggregate rheology of the
flow. A typical example is to set τ̃ ∝ ũ2, which models the turbulent drag experienced by
a fluid moving over a rough surface, although there are many other choices. To encompass
a broad range of systems in our analysis, we take τ̃ to be an arbitrary function of the local
flow fields.

We now allow the flow to exchange fluids and solids with the underlying bed, whose
height b̃(x̃, t) is measured in line with h̃. Entrained solid material is assumed to be
composed of homogeneous particles of density ρ̃s that are much smaller than the flow
depth, so that they may be treated as a continuous phase occupying a (depth-averaged)
fraction ψ̃(x̃, t̃) of the flow volume. The remainder of the mixture (occupying fraction
1 − ψ̃) is fluid of constant density ρ̃f . The overall density of the flow is then

ρ̃ = ρ̃f (1 − ψ̃)+ ρ̃sψ̃. (2.2)

The volumetric flux of net mass (comprising both fluid and solid phases) transferred
to the flow bulk from below shall be denoted by Γ̃ (x̃, t̃). This function encapsulates the
competing processes of sediment entrainment and deposition into a single source term.
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Linear stability of shallow morphodynamic flows

(Example parametrisations of these processes are given later, in § 4.1.) When Γ̃ > 0, there
is net uptake of material into the suspended load of the bulk; when Γ̃ < 0, there is a net
loss. On including the contribution of this term (2.1a), which describes conservation of
the total flow mass, becomes

∂ h̃
∂ t̃

+ ∂

∂ x̃
(h̃ũ) = Γ̃ . (2.3a)

We assume the bed has constant density ρ̃b and is everywhere saturated, comprising
a homogeneous mixture of fluid and solids, with the latter phase occupying volumetric
fraction ψ̃b. The volumetric flux of the solid and fluid phases into the flow bulk are then
necessarily ψ̃bΓ̃ and (1 − ψ̃b)Γ̃ respectively. This leads to a separate mass conservation
equation for the solid phase

∂

∂ t̃
(ψ̃ h̃)+ ∂

∂ x̃
(ψ̃ h̃ũ) = ψ̃bΓ̃ . (2.3b)

Between the flowing layer and the bed, we allow for a distinguished mobile layer of
material, commonly referred to as the bed load, that travels with flux Q̃(x̃, t̃). Below this
layer, the underlying substrate is assumed to be immobile and transfers material to the bed
load at a rate Γ̃b, such that the bed height obeys ∂ b̃/∂ t̃ = −Γ̃b. If the middle bed load
layer possesses a constant characteristic thickness, its mass conservation relation is given
by simply ∂Q̃/∂ x̃ = Γ̃b − Γ̃ . (Figure 1 is a useful reference for the sign conventions of
the fluxes and source terms here.) Therefore, conservation of mass for the moving and
immobile components of the bed as a whole implies

∂ b̃
∂ t̃

+ ∂Q̃
∂ x̃

= −Γ̃ . (2.3c)

The inclusion of bed load conceptually separates the gradual crawl of grains along the
bed surface (as typically observed in fluvial systems, for example), from transfer of
sediment with the bulk flow. The latter process, through changes to the bulk density and
drag characteristics, affects the dynamics of the overlying flow. Since these processes are
commonly modelled by flux and source terms respectively, they cannot be combined in
our analysis.

To complete the morphodynamic description, the momentum conservation equation
(2.1b) must be amended to account for spatial variations in ρ̃ that may arise via the
transport dynamics of the solids fraction. Re-deriving (2.1b) from the morphodynamic
standpoint introduces a density dependence into each term and also leads to an extra
contribution ρ̃ũbΓ̃ , included in some models, that accounts for jumps in velocity, stress
and density between the flow and the layer beneath it, which necessarily occur when
particles are either mobilised or de-entrained. In the absence of bed load, this term
represents the rate of change of momentum required to accelerate the entrained material to
a characteristic slip velocity ũb(h̃, ũ, ψ̃) near the bed surface. A comprehensive derivation
and discussion of this term is given by Iverson & Ouyang (2015). The complete governing
equation for momentum can be written as

∂

∂ t̃
(ρ̃h̃ũ)+ ∂

∂ x̃
(ρ̃h̃ũ2)+ 1

2
g cosφ

∂

∂ x̃
(ρ̃h̃2) = ρ̃gh̃

(
sinφ − cosφ

∂ b̃
∂ x̃

)
− τ̃ + ρ̃ũbΓ̃ .

(2.3d)

Equations (2.3a–d) constitute a general shallow-water model for a sediment-carrying flow,
coupled with its underlying topography by closures for mass exchange and bed load flux.

916 A31-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.235


J. Langham, M.J. Woodhouse, A.J. Hogg and J.C. Phillips

Our goal is to understand some of the general properties of these models, the solutions
of the governing equations and their stability. We divide this overall framework into four
subcategories

(i) Hydraulic limit. When Γ̃ = Q̃ = 0, (2.3a–d) reduce to equations (2.1a,b), which are
appropriate for flows on inerodible substrates. These have been thoroughly studied
elsewhere and provide a useful reference point for the other cases. We briefly cover
their linear stability in § 3.1.

(ii) Suspended load model. When Γ̃ /= 0 and Q̃ = 0, any eroded sediment is entrained
directly into the bulk flow. This is our primary focus in the paper. Models in this
class are employed to describe energetic flows with significant sediment uptake and
mixing, often leading to high solids concentrations. Recent example studies from the
literature include (but are not limited to) Cao et al. (2004), Cao, Pender & Carling
(2006), Wu & Wang (2007), Yue et al. (2008) and Li & Duffy (2011). We derive
general linear stability results for these models in §§ 3.2 and 3.3; existence of steady
solutions and their stability properties are explored in detail for an example model
in §§ 4.2–4.6.

(iii) Bed load model. When Γ̃ = 0 and Q̃ /= 0, eroded sediment is only carried in the
distinguished bed load layer. These models are most often used in fluvial settings,
where the effects of lateral sediment transport are important, but individual grains
receive little upward momentum and remain largely near the bed surface.
These models are widely used: a partial list of examples in the literature includes
Hudson & Sweby (2005), Murillo & García-Navarro (2010), Benkhaldoun, Seaïd &
Sahmim (2011), Siviglia et al. (2013), Juez, Murillo & García-Navarro (2014) and
Kozyrakis et al. (2016).

(iv) Combined model. A few recent studies allow for both Γ̃ /= 0 and Q̃ /= 0, including
Wu & Wang (2007), Liu et al. (2015) and Liu & Beljadid (2017) and a two-layer
model due to Swartenbroekx, Zech & Soares-Frazão (2013) (which includes a
momentum equation for the bed load layer and is therefore not strictly encompassed
herein). This is approach is less commonplace, but potentially useful for physical
situations that fall between the regimes of (ii) and (iii). Moreover, as we suggest
below, it may be more widely applicable as a way to address issues with the
formulation of suspended load models. We analyse the well posedness of these
models together with pure bed load models in § 3.4. Existence of steady states for
example closures in the combined model is analysed in § 4.2 and their linear stability
is explored in § 4.7.

While very many models fit our general framework, there are a few underlying
assumptions that are important to list, since they dictate the scope of our analysis.
We have already made explicit our requirement that the flow and bed are composed
of small, roughly homogeneous grains, so that the solid fraction may be treated as
a single continuous phase. Moreover, we have neglected the equations for bed load
momentum (usually considered negligible) and the solid phase momentum, which may be
combined with that of the overall mixture provided the flow is well mixed. Amongst other
physical effects, we have implicitly neglected the role of interstitial pore fluid pressures
between grains, whose dynamics couples with shear and dilation of the granular phase
(Guazzelli & Pouliquen 2018). These interacting processes can lead to dramatic transients
known to impact flow outcomes and cause debris flows to be sensitive to initiation
conditions (Iverson 1997; Iverson et al. 2000). Consequently, our analysis is only strictly
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relevant to flow regimes where pore pressure is negligible (i.e., less concentrated flows),
or situations where the system has everywhere relaxed to the ambient hydrostatic pressure.

3. Linear stability

We assume the presence of a uniform steady flowing layer of height h̃0, velocity ũ0, solid
fraction ψ̃0, density ρ̃0 = ρ̃(ψ̃0), travelling on a flat sloping bed of (arbitrary) height
b̃0. According to (2.3a–d), the existence of such a solution depends on the particular
parametrisations for drag and solids exchange, which must satisfy

τ̃ (h̃0, ũ0, ψ̃0) = ρ̃0gh̃0 sinφ and Γ̃ (h̃0, ũ0, ψ̃0) = 0. (3.1a,b)

That is, at steady state, gravitational forcing is exactly balanced by the basal drag and
there is no net mass transfer between the bed and the flow. We may linearise the governing
equations around these putative steady flows without making explicit choices for τ̃ and Γ̃ .
The bed load Q̃ may also be kept as a general unknown function. In doing so, we obtain
general expressions that can be adapted to different situations by inputting appropriate
closures. Detailed discussion of the existence of steady flows, specialised to the case of
fluid–grain mixtures, is given later, in § 4.2.

For simplicity, we choose to rescale length, time and the dynamical variables as

x = x̃/�̃0, t = t̃ũ0/�̃0, h = h̃/h̃0, u = ũ/ũ0, ψ = ψ̃/ψ̃b and b = b̃/h̃0,
(3.2a–f )

where �̃0 ≡ ũ2
0/(g sinφ). Additionally, we define

τ = τ̃/τ̃0, Γ = Γ̃ �̃0/(h̃0ũ0), Q = Q̃/(h̃0ũ0), ub = ũb/ũ0,

ρ = ρ̃/ρ̃0, and ρi = ρ̃i/ρ̃0, (3.2g–l)

for ρ̃i ∈ {ρ̃b, ρ̃f , ρ̃s} and τ̃0 ≡ ρ̃0gh̃0 sinφ. On substituting (3.2a–l) into the governing
equations (2.3a–d) and simplifying, one arrives at

∂h
∂t

+ ∂

∂x
(hu) = Γ, (3.3a)

∂

∂t
(ψh)+ ∂

∂x
(ψhu) = Γ, (3.3b)

∂

∂t
(ρhu)+ ∂

∂x

(
ρhu2 + 1

2
Fr−2ρh2

)
= ρh

(
1 − Fr−2 ∂b

∂x

)
− τ + ρubΓ, (3.3c)

∂b
∂t

+ ∂Q
∂x

= −Γ, (3.3d)

where Fr ≡ ũ0/(gh̃0 cosφ)1/2 is the Froude number of the steady flow.
In this rescaled problem, the steady flow is a solution of (3.3a)–(3.3d) with height

h0 = 1, velocity u0 = 1, solid fraction ψ0 = ψ̃0/ψ̃b and arbitrary bed height b0. The
density of the layer is ρ0 = 1. Any slope-aligned perturbation to this state may be
decomposed into individual Fourier modes of real wavenumber k, which grow or decay
in time at some unknown complex growth rate σ . To find a general formula for σ , we
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construct the following ansatz:

h(x, t) = 1 + εh1 exp(σ t + ikx), (3.4a)

u(x, t) = 1 + εu1 exp(σ t + ikx), (3.4b)

ψ(x, t) = ψ0 + εψ1 exp(σ t + ikx), (3.4c)

b(x, t) = b0 + εb1 exp(σ t + ikx), (3.4d)

where h1, u1, ψ1, b1 are unknown constants and ε � 1. By substituting (3.4a)–(3.4d) into
(3.3a–d) and dropping O(ε2) terms, we obtain a linear system of the form

σAq + ikBq + Cq = 0, (3.5)

where q = (h1, u1, ψ1, b1)
T, and A, B, C are 4 × 4 matrices, defined shortly. This is a

generalised eigenvalue problem for σ(k). For each wavenumber, it has four solutions,
whose eigenvectors q(k) correspond, via (3.4a)–(3.4d), to disturbance amplitudes that
grow exponentially with rate Re(σ ) and travel along the slope at wave speed c =
−Im(σ )/k. Instability occurs when any of these solutions exponentially diverges from
the steady state, i.e., when Re[σ(k)] > 0. The matrices are

A =

⎛
⎜⎜⎝

1 0 0 0
ψ0 0 1 0
1 1 �ρ 0
0 0 0 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 1 0 0
ψ0 ψ0 1 0

1 + Fr−2 2 �ρ(1 + 1
2 Fr−2) Fr−2

Qh0 Qu0 Qψ0 0

⎞
⎟⎟⎠

(3.6a,b)

and

C =

⎛
⎜⎜⎝

−Γh0 −Γu0 −Γψ0 0
−Γh0 −Γu0 −Γψ0 0

τh0 − 1 − υ0Γh0 τu0 − υ0Γu0 τψ0 −�ρ − υ0Γψ0 0
Γh0 Γu0 Γψ0 0

⎞
⎟⎟⎠ . (3.6c)

For the sake of neatness, we have used some notational shorthand to simplify the entries.
In particular, we set �ρ ≡ ψ̃b(ρs − ρf ), so that

ρ(ψ) = ρf +�ρψ, (3.7)

by (2.2) and (3.2e,k,l). The matrices B and C depend on linear expansions of the unknown
functions Q, τ and Γ around the steady state. In these cases, we have written fζ0 ≡
∂f
∂ζ

∣∣1,1,ψ0 for each f ∈ {Q, τ, Γ } and ζ ∈ {h, u, ψ, b}. Note that, in deriving B and C, our
assumption of a homogeneous bed allowed us to set Qb0 = τb0 = Γb0 = 0. Finally, the
basal slip velocity, evaluated at the steady state, is denoted as υ0 ≡ ub(1, 1, ψ0, b0).

3.1. Hydraulic limit
We begin our analysis by briefly recapping the ‘purely hydraulic’ stability problem within
our framework. That is, we address the limiting case of weak morphodynamic processes,
by sending both Q → 0 and Γ → 0. In this case, perturbations in ψ and b can only be
advected along the slope, since there are no morphodynamic feedbacks through which
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Linear stability of shallow morphodynamic flows

they may grow or decay. Equation (3.5) possesses the solutions σ = −ik and σ = 0, that
respectively correspond to these modes of disturbance. The remaining two solutions are

σ = −ik − τu0

2
±
√
τ 2

u0
/4 − k2/Fr2 + ik(τh0 − 1). (3.8)

These branches correspond to disturbances in the hydraulic governing equations for h and
u, studied in the case of general drag by Trowbridge (1987). When k = 0, they pass through
σ = −τu0 and 0. It can be shown straightforwardly that Re(σ ) is a monotonic function with
respect to |k|, meaning that the maximum growth for each branch must occur at either
k = 0, or in the limit |k| → ∞. Growth rate saturation at short wavelengths is a known
property of the classical roll-wave instability that highlights the omission of physics (e.g.
turbulent dissipation) that would otherwise damp out disturbances over short length scales.
Evaluating the limit of (3.8) as |k| → ∞ yields

Re(σ ) → −τu0 ± |1 − τh0 |Fr
2

. (3.9)

If τu0 < 0, then there is always unstable growth (i.e., at k = 0). However, we consider
the more physically reasonable situation where τu0 > 0 (i.e., a drag parametrisation that
increases resistance to flow at higher shear rates). Then, if τh0 = 1, both branches are
everywhere stable and asymptote to Re(σ ) = −τu0/2. Otherwise, since the argument of
the square root in (3.8) always has a non-zero imaginary part (away from k = 0), the
growth rates are always distinct and in particular, the branch with positive root always
dominates. This turns unstable when (3.9) exceeds zero, which occurs if

Fr >
τu0

|1 − τh0 |
. (3.10)

This is the stability criterion due to Trowbridge (1987), written in our dimensionless
quantities. Inclusion of the absolute value in the denominator constitutes a minor
correction to the original formula that accounts for the case where τh0 > 1.

3.2. Suspended load model
We now reintroduce morphodynamics, by allowing for non-vanishing mass exchange
with the bed (Γ /= 0), but continuing to neglect bed load transport (Q = 0). This
substantially complicates (3.5), which becomes a fully 4 × 4 problem. Motivated by the
above discussion, we divide our morphodynamic analysis into two tractable regimes: the
long-wave (or global) limit k = 0 and the short-wave limit k 	 1, and verify later that
these limits control most of the important aspects of the problem.

3.2.1. Global modes: k = 0
A given steady morphodynamic flow is specified by four state variables h̃0, ũ0, ψ̃0
and b̃0, which are constrained by only two (3.1a,b). Therefore, the solution space is
underdetermined and there is a two-dimensional linear family of possible steady states.
In nature, selection of a particular flow from this family is assured via some boundary
condition, such as the total flux of material through a flow cross-section. Moreover,
transitions from one steady flow to another within this space can occur (e.g. through
an increase in the total flux). Infinitesimal transitions between steady states are linear
perturbations in the sense of (3.4a)–(3.4d), with k = 0 and σ = 0 (neutral stability).
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Therefore, by (3.5) they satisfy Cq = 0. Solving for q reveals a two-dimensional space
of neutral modes spanned by

v1 =

⎛
⎜⎜⎝

(τψ0 −�ρ)Γu0 − τu0Γψ0

(�ρ − τψ0)Γh0 + (τh0 − 1)Γψ0

τu0Γh0 − (τh0 − 1)Γu0
0

⎞
⎟⎟⎠ , v2 = e4, (3.11a,b)

where we adopt the convention of using ej to denote the jth standard basis vector. The
first of these, v1, may be interpreted in the following way. Written in our dimensionless
variables, the equations for steady flows (3.1a,b) are the roots of the function F (h, u, ψ) =
(τ − ρh, Γ )T. It is straightforward to verify that ∇F (h0, u0, ψ0) · v1 = 0 and therefore v1
represents a shift along the curve of solutions, implicitly defined by F = 0. The second
neutral mode v2 accounts for invariance to arbitrary translations of the bed height.

The remaining two global modes have non-zero growth rate and therefore, by (3.5), they
obey

σAq + Cq = 0. (3.12)

After factoring out the neutral growth rates, the characteristic equation yields a quadratic
from which the remaining two eigenvalues may be directly computed. The full set of
eigenvalues of (3.12) is then

σ = 0 (repeated),
s0 ± √

sc

2
, (3.13a,b)

where s0, sc are placeholders for

s0 = −τu0 + Γh0 + (υ0 − ρb)Γu0 + (1 − ψ0)Γψ0, (3.14a)

sc = Γ 2
u0
(υ0 − ρb)

2 + 2Γu0

{
(υ0 − ρb)

[
Γh0 + (1 − ψ0)Γψ0 − τu0

]
− 2

[
τh0 + τψ0(1 − ψ0)− ρb

]}+ [
τu0 + Γh0 + (1 − ψ0)Γψ0

]2
. (3.14b)

Here, we have made use of (3.7) with ψ = ψ0 and ψ = ψb = 1, to eliminate�ρ in favour
of the bed density ρb = 1 +�ρ(1 − ψ0) in these expressions, which nevertheless depend
on all nine independent quantities in the matrices A and C. Before moving on to the next
section, we note two important special cases.

In the non-erosive limit Γ → 0, (3.14a) and (3.14b) reduce to simply s0 = −τu0 and
sc = τ 2

u0
. Substituting these into (3.13b) leaves only one (typically negative) non-zero

growth rate, σ = −τu0 , consistent with the analysis in § 3.1.
If instead, Γ is finite, but |Γu0 | is sufficiently small, relative to the other components of

(3.14a,b), so that it may be neglected, the non-zero eigenvalues become

σ = s0 − √
sc

2
= −τu0 and σ = s0 + √

sc

2
= Γh0 + Γψ0(1 − ψ0). (3.15a,b)

Since the latter eigenvalue (later referred to as σa) may be positive, there exists a route
to a purely morphodynamic instability in this case, which depends on the signs and
relative magnitudes of Γh0 and Γψ0 . Positive values for these derivatives imply positive
morphodynamic feedbacks, amplifying the flow depth and concentration respectively. We
return to this in § 4, where we demonstrate using some generic model closures that this
mode can indeed be unstable.
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Linear stability of shallow morphodynamic flows

3.2.2. Short wavelengths: k 	 1
We now focus on short-wavelength perturbations. By analogy with the non-morphodynamic
case of § 3.1, we anticipate that the limit k → ∞ controls the onset and growth of
instabilities by maximising Re[σ(k)]. (We confirm that this is often the case for example
model closures in § 4.) The form of (3.5) suggests the following asymptotic expansions for
the four growth rates and their corresponding eigenmodes in this regime:

σ = −iλ1k + λ0 + λ−1k−1 + . . . , q = q0 + q−1k−1 + . . . . (3.16a,b)

Here, λ1, λ0, λ−1 and q0, q−1, are unknown constants and vectors to be determined shortly.
Substituting these expressions into (3.5) and retaining only the leading O(k) terms leaves
an eigenproblem for λ1

λ1Aq0 = Bq0. (3.17)

This may be solved to obtain four distinct values

λ1 = 1 ± Fr−1, 1, 0. (3.18)

Since c = −Im(σ )/k → λ1 as k → ∞, these are the wave speeds for disturbances in the
short-wavelength regime (and also the characteristics of the governing equations in this
context). The corresponding eigenvectors of (3.17) are

q0 =

⎛
⎜⎝

±Fr
1
0
0

⎞
⎟⎠ ,

⎛
⎜⎝
�ρ/2

0
−1
0

⎞
⎟⎠ ,

⎛
⎜⎝

1
−1
0

Fr2 − 1

⎞
⎟⎠ . (3.19)

Recalling the definition q = (h1, u1, ψ1, b1)
T and (3.4a)–(3.4d), the elements of these

vectors are the leading-order amplitudes for each mode. Throughout the rest of the paper,
we label these modes I–IV. Since these asymptotic vectors separate the four solution
branches of the general linear problem (3.5), it will be convenient later to use the same
labels to refer to quantities at finite k, though they may not necessarily share the properties
of their asymptotic counterparts.

The first pair of modes (I,II) in (3.19) contain no morphodynamic content. Indeed, they
are identical to the short-wavelength modes of the purely hydraulic problem (§ 3.1), which
is guaranteed since A and B do not depend on Γ . They describe disturbances in h and u,
propagating at speeds c = 1 ± Fr−1. Mode III couples unit speed perturbations in ψ with
the flow free surface, while mode IV is stationary (c = 0) and disturbs the bedform, as
well as h and u.

The second term in the expansion of σ determines the leading-order real part of the
growth rate. We substitute (3.16a,b) back into (3.5) and subtract away the O(k) component,
i.e., (3.17). Retaining only O(1) terms in the remaining equation, leaves

λ0Aq0 + i(B − λ1A)q−1 = Cq0. (3.20)

The unknown vector q−1 can be eliminated by solving the eigenproblem adjoint to (3.17),
which yields vectors r0 such that λ1rT

0 A = rT
0 B. Multiplying (3.20) on the left by rT

0 and
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rearranging gives the formula

λ0 = −r0 · Cq0

r0 · Aq0
. (3.21)

Using this, the following four expressions for λ0 are obtained, which we label
λ0,1, . . . , λ0,4 for later reference:

λ0,1 = f+(Fr)
Fr(Fr + 1)

, λ0,2 = f−(Fr)
Fr(Fr − 1)

, (3.22a,b)

λ0,3 = (1 − ψ0)(Γψ0 −�ρΓh0/2), λ0,4 = Γu0 − Γh0

Fr2 − 1
. (3.22c,d)

By (3.16a), these asymptotic values dictate the limits of Re(σ ) as k → ∞ for modes I–IV.
We list them in the same order as their respective wave speeds in (3.18) and the O(1)
eigenvectors in (3.19). The functions f± are third-order polynomials in Fr defined by

f±(Fr) = ±1
2 [Γh0(υ0 − ρb)+ (1 − τh0)]Fr3

+ 1
2 [Γh0(2υ0 − ρb + 1)/2 + Γu0(υ0 − ρb)+ 1 − τh0 − τu0]Fr2

± 1
4 [Γh0(ρb − 1)+ Γu0(2υ0 − ρb + 1)− 2τu0]Fr + 1

4Γu0(ρb − 1). (3.23)

It is easily confirmed that as Γ → 0, λ0,1 and λ0,2 reduce to the high-k growth rates of
the non-erosive problem, given in (3.9), while λ0,3, λ0,4 → 0. For this reason, we will
sometimes label λ0,1, λ0,2 and their corresponding modes (I,II) as ‘hydraulic’ and λ0,3,
λ0,4 as ‘morphodynamic’ even though all of (3.22a–d) are coupled to the bed and sediment
dynamics when Γ is non-vanishing.

Just as in the non-erosive problem, the asymptotic growth rates in (3.22a–d) are
non-zero, but typically finite. However, there is an extra complication. Since f±(0) =
Γu0(ρb − 1)/4 and f±(∓1) = (Γh0 − Γu0)/2, the pairs (λ0,1, λ0,2) and (λ0,2, λ0,4) possess
singularities at Fr = 0 and Fr = 1 respectively (provided Γh0 /=Γu0 /= 0).

When Fr = 0, the steady flow velocity is zero. The singularities in the expressions
for λ0,1 and λ0,2 are artefacts arising from the fact that the time scale chosen to
non-dimensionalise (3.3a–d) vanishes in the limit ũ0 → 0. Referring back to (3.2b,h,l),
we may rewrite (3.22a,b) in dimensional units and verify that these growth rates remain
finite. Specifically, when ũ0 = 0, the expressions are λ̃0,j = (3/4 − j/2)Γ̃ũ0(ρ̃b/ρ̃0 −
1)(g cosφ/h̃0)

1/2, for j = 1, 2.
However, the singularities in (3.22b,d) at unit Froude number cannot be removed by a

choice of units. They occur when the wave speeds λ1 = 1 − Fr−1, 0 for disturbances to
the flow and bedform, coalesce, as do the corresponding O(1) modes in (3.19). Since λ0
cannot be O(1) at this singular point, our expansions in (3.16a,b) are inappropriate here.
Therefore, we propose instead that at Fr = 1 (and for modes II and IV only), σ and q take
the asymptotic form

σ = λ1/2k1/2 + λ0 + . . . , q = q0 + q−1/2k−1/2 + q−1k−1 + . . . , (3.24a,b)

where λ1/2, λ0 and q0, q−1/2, q−1 are to be determined. We proceed as before, by
substituting these expressions into (3.5) and isolating its constituent parts at different
orders in k. Retaining only O(k) terms yields Bq0 = 0, with only one solution, q0 =
(1,−1, 0, 0)T. As it must, this matches the coalescent modes in (3.19), when they are
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Linear stability of shallow morphodynamic flows

evaluated at Fr = 1. At O(k1/2), we have

λ1/2Aq0 + iBq−1/2 = 0. (3.25)

On substituting q0 into this equation, a little algebra shows that e4 · q−1/2 = 2iλ1/2. To
find λ1/2, we use the O(1) equation, which is

λ0Aq0 + λ1/2Aq−1/2 + iBq−1 + Cq0 = 0. (3.26)

Now we notice that e4 · Aq0 = e4 · Bv = 0 for any vector v. Therefore, projecting (3.26)
onto e4 eliminates the unknowns λ0 and q−1. On doing this, substituting our expressions
for q0 and e4 · q−1/2 from above and rearranging, we find

λ1/2 = ±1 + i
2
(Γh0 − Γu0)

1/2. (3.27)

Except for the particular case Γh0 = Γu0 (where there is no singularity in λ0,2, λ0,4),
these expressions have non-zero real part. Therefore, at Fr = 1 and for k 	 1, the second
and fourth modes (3.19) of the linear stability problem (3.5) diverge with amplitudes
∼ exp(±A

√
kt), where A = |Re(λ1/2)|. Crucially, one of these amplitudes is strictly

positive and unbounded in the limit k → ∞. This implies that the morphodynamic
governing equations (3.3a–d) at are ill posed as an initial value problem when Fr =
1, because their solutions do not depend continuously on initial data (Joseph & Saut
1990). Mathematically speaking, this is a direct consequence of the model losing the
property of strict hyperbolicity when its characteristic wave speeds (3.18) intersect. More
intuitively, problems arise because over any finite time interval, there are short-wavelength
disturbances that grow arbitrarily rapidly, making it impossible for the governing equations
to behave in a physically consistent way. This fact has practical consequences beyond the
theory of steady flows on constant slopes. Computer simulations of these models (in both
one and two spatial dimensions) conducted on complex topographies almost inevitably
feature locations where the conditions locally match our problem at unit Froude number
and shortwave oscillations can grow catastrophically. Numerical ‘solutions’ in this case
may nevertheless look physically reasonable, since spatial discretisation imposes an upper
limit on k. However, they will not converge as the numerical resolution increases and
cannot be relied upon to model real flows.

The essential issue of unbounded growth rates in these models was recognised by
Balmforth & Vakil (2012), who studied the stability of a similar, but non-equivalent
system: uniform flows eroding at a constant positive rate in the Saint-Venant equations.
In the limit of slow erosion, they also observed that the high-wavenumber growth rate
of perturbations suffers a singularity at unit Froude number. Moreover, they were able to
show that the inclusion of a diffusive term in the momentum dynamics was sufficient to
regularise their system. Our more general setting adds dynamic coupling with the solid
phase and an arbitrary basal drag parametrisation, thereby demonstrating that the same
problem affects a far broader range of shallow morphodynamic flow models. Indeed, it
suggests that in any situations close to, but not strictly covered by our framework, it is
important to check carefully whether the governing equations are well posed and amend
them if necessary. Therefore, we continue with an analysis of how this might be achieved.

3.3. Regularisation
We shall introduce a new term to (3.3c) in order to quash unbounded growth at small length
scales. As noted by Joseph & Saut (1990), ill posedness often signals that there are physical
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processes missing from a model. In our case, two possible culprits are the shallow-layer
approximation and the omission of bed load from the current analysis. We assess the effect
of bed load shortly, in § 3.4. A particular effect neglected by the assumption of shallow
flow is the aggregate loss of horizontal momentum caused by turbulent eddies. This is
usually acceptable, since it is only significant at length scales shorter than the flow depth.
However, for short waves it is no longer strictly negligible. A simple and common way to
include this missing physics is to try to capture it via diffusion-like process. We denote
a characteristic eddy viscosity for the flow by ν̃ and non-dimensionalise by setting ν =
ν̃/(ũ0 l̃0). This free parameter sets the scale of the diffusive term (∂/∂x)(νρh(∂u/∂x)),
which we add to the right-hand side of (3.3c). We note that the extra term does not affect
the steady uniform layer itself. Similar expressions have been employed elsewhere, as a
regularisation term by Balmforth & Vakil (2012) in their analysis and in the shallow-flow
models of Simpson & Castelltort (2006), Xia et al. (2010) and Langendoen et al. (2016).
Later, in § 4.6 we briefly address the implications of adding a similar term to (3.3b) to
encapsulate turbulent sediment diffusivity.

It is unclear a priori whether the eddy viscosity term is sufficient to regularise the
ill-posed model equations on its own. Therefore, we must extend the high-wavenumber
growth rate analysis of § 3.2.2. With the extra term, the linearised system of (3.5)
generalises to

σAq + ikBq + Cq = −k2Dq, (3.28)

where D = (Dij) is a 4 × 4 matrix with entries D32 = ν and Dij = 0 otherwise. At high
wavenumber, the leading-order component in the linearised momentum equation is given
by the new diffusive term itself. Suppose that there is at least one eigenvalue that balances
this term. This motivates the following asymptotic expansions for σ and q when k 	 1

σ = λ2k2 + λ1k + λ0 + . . . , q = q0 + q−1k−1 + q−2k−2 + . . . , (3.29a,b)

where λ2, λ1, λ0 and q0, q−1, q−2 are to be determined. At O(k2), (3.28) reduces to the
eigenproblem

λ2Aq0 = −Dq0, (3.30)

with characteristic equation −λ3
2(λ2 + ν) = 0. When λ2 = −ν, it may be easily

verified that q0 = e2. Therefore, the diffusion operator creates one stable eigenvalue
σ = −νk2 + O(k) associated with viscous damping of u. The remaining three solutions
are all λ2 = 0 and so in these cases σ is determined by a lower order balance. Using (3.30),
the corresponding vector q0 is determined up to the eigenspace spanned by e1, e3 and e4.

We shall concentrate on the three eigenvalues with λ2 = 0, since the mode with λ2 =
−ν is always stable at high k. Then, at O(k), (3.28) becomes

(λ1A + iB)q0 = −Dq−1. (3.31)

Note that eT
j D = 0 for j = 1, 2, 4, since eddy viscosity appears only in the third row of

(3.28). We can therefore eliminate the unknown q−1 in (3.31) as so

ej · (λ1A + iB)q0 = 0, for j = 1, 2, 4. (3.32)

Likewise, we can write down the eigenproblem adjoint to (3.31) as (λ1A + iB)Tr0 =
−DTr−1, where r0 and r−1 are unknown left eigenvectors. We will shortly need the
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constrained problem, with r−1 eliminated as so

ek · (λ1A + iB)Tr0 = 0, for k = 1, 3, 4. (3.33)

Expanding q0 = a1e1 + a3e3 + a4e4 in (3.32) results in a 3 × 3 eigenvalue problem for
the unknowns a1, a3, a4 and λ1. Its characteristic equation is

λ1(λ1 + i)2 = 0. (3.34)

So λ1 = 0 or −i. In either case, we are forced to proceed further to determine the leading
real part of σ . Therefore, we use the O(1) part of (3.28), which is (for λ2 = 0)

(λ0A + C)q0 + (λ1A + iB)q−1 = −Dq−2. (3.35)

We shall divide our pursuit of λ0 according to the value of λ1.

(i) Case: λ1 = 0. Solving (3.32) for the eigenvector yields q0 = e4. To eliminate, the
unknown vectors q−1 and q−2, from (3.35), we simply note that eT

4 B = 0, since the
last row of B is all zeros (when Q = 0). Therefore, we project (3.35) onto e4 and
substitute in q0 to give

λ0 = −e4 · Ce4

e4 · Ae4
= 0. (3.36)

Referring back to our expansions (3.29a,b), this means that there always exists
an eigenpair (σ, q) with σ → 0 and q → e4 as k → ∞. Note that this situation
corresponds to perturbations of the bedform.

(ii) Case: λ1 = −i. Since this is a repeated root, (3.32) only determines q0 within a
two-dimensional subspace. Straightforward algebra gives this simply as q0 = a1e1 +
a3e3. Similarly, the corresponding adjoint eigenproblem (3.33), constrains the left
eigenvector r0 to lie in the subspace spanned by e1 and e2. We project (3.35) onto
these vectors, yielding

e1 · (λ0A + C)q0 + ie2 · q−1 = 0, (3.37a)

e2 · (λ0A + C)q0 + iψ0e2 · q−1 = 0. (3.37b)

Note that only the second element of q−1 appears in these equations. To eliminate
it, we return to the full O(k) problem. Since e3 · Dv = νe2 · v for any vector v, we
project (3.31) onto e3 and rearrange to give e2 · q−1 = −i(2a1 +�ρa3)/(2νFr2).
Substituting this expression into (3.37a,b) yields a 2 × 2 system for a1, a3 and λ0,
which we solve to find the two eigenvalues

λ0 = λ±(Fr) ≡ R
2

+ ±√
S − 1

2νFr2 , (3.38)

where R ≡ Γh0 + Γψ0(1 − ψ0) and S ≡ (RνFr2 + 1)2 − 2νFr2Γh0(ρb + 1). One of
the pair, λ−, possesses a singularity at Fr = 0. However, as in § 3.2.2, this is
merely an artefact of our choice of dimensionless units that may be removed by
an appropriate rescaling. The corresponding eigenvectors are

q0 = e1 + νFr2(R − 2Γh0)+ 1 ± √
S

2Γψ0νFr2 −�ρ
e3. (3.39)

In the limit of vanishing eddy viscosity (ν → 0), q0 → e1 − (1 ± 1)e3/�ρ.
Therefore, since we anticipate small ν, λ− corresponds largely to growth in h only,
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whereas λ+ corresponds to coupled growth in h and ψ . By comparing with the
modes of the unregularised problem in (3.19), λ− may be traced to the hydraulic
modes and λ+ to the third mode related to solid fraction perturbations. The former
is responsible for very strong damping, since λ− ≈ −1/νFr2 for small ν. Conversely,
using l’Hôpital’s rule, it may further be verified that limν→0 λ+ = λ0,3 from (3.22c).
Therefore, in the limit of small ν, this mode is not affected by the regularisation term.

To recap, using (3.29a,b)–(3.39), we have computed the growth rates σ of perturbations
for non-zero values of ν at leading order for large wavenumber. These expressions are valid
for all Fr > 0 and models of the form (3.28). They are

σ = −νk2 + O(k), 0 + O(k−1), −ik + λ±(Fr)+ O(k−1), (3.40a–c)

where λ±(Fr) was defined in (3.38). The corresponding mode amplitudes are given by
q0 = e2, e4 and the two expressions in (3.39). Since the growth rates are all bounded
above, we conclude that the inclusion of a diffusive term in (3.3c) successfully regularises
the singularities in (3.5) that are otherwise present at Fr = 1, removing the problem of ill
posedness. However, since the real parts λ± of the last two modes remain non-zero, they
are still potentially unstable in the k 	 1 regime (if λ± > 0). We return to this point in § 4.

As k → 0, the diffusive term vanishes in the linearised equations (3.28) to leading order.
Therefore, the coefficient ν sets the effective length scale over which eddy viscosity damps
out perturbations. For large-scale geophysical flows where ν is relatively small, we may
thus anticipate linear growth rates for the most part matching those of the ν = 0 problem,
with eddy viscosity only affecting very short wavelengths. In this case, the linear stability
may still be controlled by the values of the ν = 0 asymptotic growth rates given in (3.22).
The intuition here is that for sufficiently small ν there must be a scale separation between
the ‘asymptotic’ (k 	 1) regime of the ν = 0 case and any damping (at still higher k) of σ
induced by turbulent momentum diffusion. We verify this for illustrative model closures
in § 4.6.

3.4. Bed load
Returning to the original system (3.3a–d), with the eddy viscosity regularisation ν = 0,
we widen our perspective, to allow for non-zero bed flux Q. Unfortunately, in this case,
analytical solutions of the linear system (3.5) become too complex to work with (even
in the long- and short-wavelength regimes) and cease to be useful. Therefore, in this
subsection we limit our scope to one important concern: how is the well-posedness of
the model affected by Q? To address this, we compute the system characteristics, λ1, as
given by solutions to (3.17), since these are sufficient to determine whether (3.3a–d) may
be correctly posed as an initial value problem. Specifically, if the characteristics are all
real valued and distinct, the system is strictly hyperbolic and well posed. If instead, any
of the characteristics have non-zero imaginary part, the system is not hyperbolic and ill
posed (see e.g. Ivrii & Petkov 1974). Alternatively, if the characteristics are all real, but
one or more are repeated, the equations are hyperbolic, but may still be ill posed, as we
saw in § 3.2.2. In the case of bed load models (Γ = 0), strict hyperbolicity has previously
been demonstrated for various cases. A number of earlier papers derived formulae for the
system characteristics by expanding λ1 in terms of parameters that are small when the bed
dynamics is slow compared with the hydraulic variables (Lyn 1987; Zanré & Needham
1994; Lyn & Altinakar 2002; Lanzoni et al. 2006). From this perspective, the degeneracy
of the system characteristics that underpins ill posedness in the Q → 0 limit is already
well appreciated, since it causes naive asymptotic formulae for λ1 to break down near
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Fr = 1 (Lyn 1987; Zanré & Needham 1994). Later, Cordier et al. (2011) derived general
requirements for bed load models to be strictly hyperbolic. We extend their analysis to our
setting, which allows for the bulk density variations that may arise with a suspended load.
Indeed, since Γ does not appear in (3.17), it does not affect the characteristics and so the
following analysis applies equally well whether or not bulk entrainment is included.

Bed load terms are most often employed in dilute systems, where we would not expect
the basal stresses that drive bed load transport to be sensitive to small changes in the bulk
solid fraction. Therefore, we make the additional simplifying assumption that Qψ0 is small
enough that it may be neglected, so Qψ0 = 0 in (3.6b). Then, the characteristic equation
resulting from (3.17) reduces to

(λ1 − 1)p(λ1) = 0, (3.41)

where p(λ1) = Fr2λ3
1 − 2Fr2λ2

1 + (Fr2 − Qu0 − 1)λ1 + Qu0 − Qh0 . The system is strictly
hyperbolic if and only if (3.41) has four distinct real solutions. Note that these solutions
only depend on Qh0 , Qu0 and Fr. One of them, arising from the solid mass transport
equation (3.3b), is always λ1 = 1. In the particular case where Qh0 = −1, we also have
p(1) = 0, so this eigenvalue is degenerate. Otherwise, if Qh0 /=−1, then p(1) = −Qh0 −
1 /= 0, and the remaining solutions to (3.41) are never unity. Therefore, we only need to
assess the roots of the cubic polynomial p to see if all four characteristics are distinct.

On differentiating p (with respect to λ1), its turning points may be found at

λ1 = 2
3

± 1
3Fr

√
Fr2 + 3(Qu0 + 1). (3.42)

Hence, a necessary condition for strict hyperbolicity is Qu0 > −1 − Fr2/3. Labelling the
two turning points as λ1 = �±, it follows immediately from considering p as λ1 → ±∞
in this case, that �− is always a local maximum and �+ a local minimum. Therefore,
for p to possess three real roots, it must additionally satisfy p(�−) > 0 and p(�+) < 0.
By evaluating p(�±) and noting that ∂p/∂Qh0 = −1, it is straightforward to show that
p(�−) > 0 when Qh0 < G+ and p(�+) < 0 when Qh0 > G−, where

G±(Fr,Qu0) = 1
27Fr

[2Fr3 ± 2(Fr2 + 3Qu0 + 3)3/2 + 9Fr(Qu0 − 2)]. (3.43)

Therefore, the region of parameter space where the system is strictly hyperbolic
satisfies G− < Qh0 < G+. Conversely, when either Qh0 < G− or Qh0 > G+ two of
the characteristics, i.e., roots of (3.41), are complex conjugate and the system is
non-hyperbolic. We now seek to identify constraints on Qh0 and Qu0 such that the system
is strictly hyperbolic for all Fr.

In the particular case when Qh0 = Qu0 , the solutions of (3.41) may be readily computed
to be

λ1 = 1 ± Fr−1√Qh0 + 1, 1, 0. (3.44)

These expressions are commensurate with the case Q → 0, whose characteristics were
given in (3.18). Here, only the hydraulic modes are altered by the bed load term. All four
values are distinct (so G− < Qh0 < G+), unless Fr = √

Qh0 + 1, where a hydraulic mode
intersects with the bed characteristic λ1 = 0, and Qh0 = Qu0 = G+. On differentiating
(3.43) with respect to Fr, it can be shown that this point is a global minimum of
G+(Fr,Qu0) for any fixed Qu0 . Therefore, Qh0 < G+ for all Fr only if Qh0 < Qu0 .

The lower limit G−, is a strictly increasing function of Fr (for any Qu0), with
G−(Fr,Qu0) → −∞ as Fr → 0 and G−(Fr,Qu0) → −1 as Fr → ∞. Combining this
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Figure 2. Hyperbolicity of the morphodynamic model equations depends on the bed load function Q.
(a) Regions of non-hyperbolicity as a function of Fr and Qh0 , for fixed Qu0 = 0.1 (purple shading), 1 (blue
shading) and Qψ0 = 0. Outside these regions, the model is strictly hyperbolic, save along the bounding curves
G± (dotted lines) and the special case Qh0 = −1 (dashed line), where one of the roots of c intersects with
the solid mass transport characteristic. (b) System characteristics as a function of Fr for Qu0 = 0.1, Qψ0 = 0
and Qh0 = 0.095 (dotted lines), 0.105 (solid lines). We label the curves I–IV according to the ordering of the
corresponding characteristics derived in (3.18) for the Q = 0 case.

information with the lower bound for G+, we conclude that the system (with Qψ0 = 0
assumed) is strictly hyperbolic over all Froude numbers if and only if

−1 < Qh0 < Qu0 . (3.45)

We note, with reference to (3.42), that this stronger condition automatically satisfies the
requirement that p has two turning points. In figure 2(a), we plot examples of the bounds
G±, as (dotted) curves in (Fr,Qh0)-space for fixed Qu0 , indicating the regions where the
model fails to be hyperbolic. The axes have been chosen so as to encompass very general
Q closures. However, fortunately in applications sediment flux typically depends only very
weakly, if at all on the flow depth, so |Qh0 | � 1 is expected. In fact, it is common in fluvial
models to have Qu0 strictly positive and Qh0 = 0 or −1 � Qh0 < 0 (e.g. in the latter case,
if a Manning friction law is employed). Therefore, most studies that include bed load
operate in a regime where (3.45) is satisfied.

This analysis suggests an alternative to the regularisation strategy of § 3.3, since adding
even a small bed load flux term can ensure that the model equations are well posed,
provided that (3.45) is satisfied. We visualise the effect of bed load on the system
characteristics in figure 2(b), either side of the threshold Qh0 = Qu0 where the system
loses hyperbolicity. We plot Re(λ1) as a function of Fr for Qu0 = 0.1 and Qh0 = 0.095
(dotted lines), 0.105 (solid lines). The four branches of λ1 are labelled I–IV, according to
the ordering of the corresponding modes in the Q = 0 case, adopted in § 3.2.2. When
Qh0 = Qu0 = 0.1 (not shown), the mode II and IV characteristics intersect at a single
point, Fr = √

1.1 ≈ 1.05 in this case, which is easily calculated using the expressions
in (3.44). Decreasing Qu0 (so that Qu0 < Qh0) causes these characteristics to coalesce into
a complex conjugate pair, resulting in a region (0.95 � Fr � 1.15) where the system is
non-hyperbolic. Conversely, increasing Qu0 separates the intersecting characteristics so
that four real values are present across all Froude numbers. (Note that these separated
curves are labelled with both II and IV, since they originate from different modes at
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either end.) The other two characteristics (I and III) are essentially unaffected by small
changes in the bed load.

4. Implications

In this section, we examine the above analyses in greater detail by choosing some closures
for the morphodynamic model equations (3.3a–d). We focus initially on the primary case
of the basic suspended load model, before investigating the effects of incorporating eddy
viscosity and bed load. It is our contention that the specifics of individual modelling terms
should not qualitatively affect the observations below, provided that they are consistent
with the essential physics of the problem. Therefore, in this exposition, we favour simple
phenomenological formulae.

4.1. Model closures
In order to capture a range of different sedimentary flows, from dilute suspensions to fully
granular flow, we use a mixed drag formulation that depends on the bulk solid fraction,
writing

τ̃ = (1 − ψ)τ̃f + ψτ̃g, (4.1)

where τ̃f and τ̃g are fluid and granular drag laws respectively. We assume that the bed
is a saturated mixture of fluid and sediment containing the maximum possible sediment
concentration ψ̃b = ψ̃∗. The maximum solid fraction ψ̃∗ depends on how efficiently
particles can be packed and is typically observed to be around 60–70 % (Santiso &
Müller 2002; Farr & Groot 2009). Since ψ = ψ̃/ψ̃b, we have 0 ≤ ψ ≤ 1 for all flows and
therefore (4.1) contains all weighted combinations of fluid and granular drag. For the fluid
law, we employ the common Chézy formula for turbulent shear stress, τ̃f = Cdρ̃ũ2, where
Cd is a drag coefficient, which we assume to be constant. For the granular drag, we use the
frictional law due to Pouliquen & Forterre (2002), which sets τ̃g = μ(I)ρ̃g cos(φ)h̃. The
phenomenological parameter μ is modelled as an increasing function of the dimensionless
inertial number I ≡ uh−3/2dFr, where d = d̃/h̃0 and d̃ denotes the characteristic diameter
of the sediment particles. It is constructed so as to vary smoothly between a lower (static)
limit μ1 and an upper (dynamic) bound μ2, with 0 < μ1 < μ2, and takes the form

μ(I) = μ1 + μ2 − μ1

1 + βI−1 , (4.2)

where β is a positive constant that may be determined experimentally.
We suppose that mass transfer is governed by the competing processes of bed erosion

at a rate Ẽ and particle deposition at rate D̃, writing Γ̃ = Ẽ − D̃. Since these processes
take place at the scale of individual particles, we opt to non-dimensionalise these closure
terms using the velocity ũp = (g′

⊥d̃)1/2, where g′
⊥ = g cosφ(ρ̃s/ρ̃f − 1) is the reduced

gravity for a particle in dilute suspension, resolved perpendicular to the slope. The
dimensionless transfer rates are then Ep = Ẽ/ũp and Dp = D̃/ũp. This rescaling allows us
to fix appropriate dimensionless constants for these closures when considering the steady
balance Ep = Dp independently. However, note that care must be taken when reintroducing
these terms into (3.3a–d), which uses a different velocity scale for ∂b/∂t. Specifically, if
Γp ≡ Ep − Dp, then (3.2h) implies that Γ = ΓpFrd1/2(ρs/ρf − 1)1/2 cotφ.

Entrainment of particles into the flow is caused by turbulent shear stresses at
the bed, which must overcome the static friction experienced by resting grains.
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Competition between ∼ τ̃ d̃2 drag forces and ∼ ρ̃f g′
⊥d̃3 frictional forces (assumed

proportional to the submerged weight of individual grains) can be captured by their
ratio, the dimensionless Shields number θ ≡ τ̃/(ρ̃f g′

⊥d̃). Experimental observations for
dilute flows suggest that at sufficiently high drag, flow erosion obeys a power law of
the form Ẽ ∝ (θ − θc)

3/2, where θc is a critical Shields number below which there is
no entrainment. Beyond this there is considerable disagreement concerning both the
exact functional form for Ẽ and its magnitude (Lajeunesse, Malverti & Charru 2010).
Moreover, it is unclear whether this general erosion model applies for more concentrated
suspensions, where effects such as the pore water pressure modify the force relationship
encapsulated in the Shields number. Since our aim here is only to elucidate some general
properties of solutions, we prefer simplicity here and suppose that Ẽ depends linearly on
ũp(θ − θc)

3/2. However, we shall make one important modification to this dilute erosion
law. Since concentrated layers may be held static on shallow grades by their granular
friction, we must not permit erosion to occur in situations where θ > θc, yet ũ = 0.
Therefore, we set θc = θ∗

c + θ0, where θ∗
c denotes the usual critical Shields number (for

dilute suspensions) and θ0(h̃, ψ̃) = θ |ũ=0, i.e., the Shields number of a resting flow, which
may become large as ψ̃ increases. For simplicity, we consider θ∗

c constant in this study,
even though in principle it depends on flow properties such as the particle Reynolds
number Rep ≡ ũpd̃/ν̃f , where ν̃f is the kinematic viscosity of the fluid (Soulsby 1997).
On dividing through by ũp, the dimensionless entrainment rate is then

Ep(h, u, ψ) =
{
ε [θ(h, u, ψ)− θc(h, ψ)]3/2 , if θ > θc,

0, otherwise,
(4.3)

where ε is a proportionality coefficient that characterises the erodibility of the bed.
We treat sediment deposition as being governed by a process of hindered settling.

At low concentrations, particles settle independently, so the (monodisperse) sediment
deposits at a rate ∼w̃sψ , where w̃s denotes the characteristic falling speed of the grains. As
concentrations increase, pure settling becomes disrupted as particles increasingly interact,
ultimately shutting off as ψ → 1 and grains can no longer fall (in a time-averaged sense)
under gravity. Therefore, we take the deposition term to be

Dp(ψ) = wsψ(1 − ψ), (4.4)

where ws = w̃s/ũp. This a slight simplification of the widely used formula due to
Richardson & Zaki (1954). More detailed and accurate expressions for Dp typically involve
empirical fits featuring the same essential form (e.g. Spearman & Manning 2017).

When considering a bed load, we use the following standard expression, which mirrors
the entrainment rate of (4.3)

Qp =
{
γ [θ(h, u, ψ)− θc(h, ψ)]3/2 , if θ > θc,

0, otherwise,
(4.5)

where Qp is a particle-scale non-dimensionalisation such that Qp = Q̃/(d̃ũp) and γ

is a constant that dictates the flux strength. For example, γ = 8 sets the well-known
Meyer-Peter & Müller formula (Meyer-Peter & Müller 1948). The corresponding
flow-scale non-dimensionalisation, as used in (3.3d) and given by (3.2i), is Q =
Qpd̃ũp/(h̃0ũ0) = Qpd3/2(ρs/ρf − 1)1/2/Fr.
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ρ̃s/ρ̃f ψ̃b Cd d μ1 μ2 β ε θ∗
c ws

2 0.65 0.01 0.01 0.1 0.4 0.1 0.01 0.05 1

Table 1. Illustrative model parameters. Except where otherwise stated, all results in § 4 assume these values.
Definitions for these parameters may be found in (2.2), (2.3b), (4.1)–(4.4) and the accompanying text in each
case.

Finally, the basal velocity closure dictates the characteristic downslope flow speed at the
bed, during particle entrainment. Where needed, we assume that it can be modelled by a
turbulent friction velocity of the form

ũb =
√
τ̃/ρ̃. (4.6)

A large number of free parameters are involved in specifying these various model
closures. Therefore, we choose to fix some illustrative values, as listed in table 1, making it
clear whenever we deviate from these defaults. An investigation of other parameter choices
indicated that our observations below are qualitatively robust to variations in these values.

4.2. Existence of steady layers
We are now in a position to assess when uniform flowing layers can exist in equilibrium.
This is dictated by the steady balances in (3.1a,b), which we recall enforce that drag
balances the downslope component of gravitational forcing and that there is no net material
transfer between the flow and the bed. Note that these conditions are independent of
whether there is a bed load or not. To begin with, we concentrate on the stress balance
and assume that mass transfer with the bulk is negligible (Γ → 0), thereby automatically
satisfying (3.1b). Substituting our mixed drag law (4.1) into (3.1a), non-dimensionalising
and rearranging gives the following condition for existence of a steady layer of solid
fraction ψ0:

tanφ − (1 − ψ0)CdFr2 = ψ0μ(dFr). (4.7)

In the dilute limit, ψ0 → 0, where drag is purely fluid like, this equation selects a unique
Froude number, Fr = √

tanφ/Cd. Such states become unstable when Fr > 2 (Jeffreys
1925). Conversely, in the concentrated limit, ψ0 → 1, where drag is purely granular,
steady layers adopt a unique inertial number, given by I0 ≡ dFr = μ−1(tanφ). Since
μ1 < μ(I) < μ2, only a range of slope angles (between arctanμ1 and arctanμ2) are
permitted. The threshold for linear instability in this case does not depend on μ and was
computed by Forterre & Pouliquen (2003) to be Fr > 2/3.

For intermediate values of ψ0, since the left-hand hand side in (4.7) is a decreasing
function of Fr and unbounded below, the steady drag balance may be satisfied as long as
tanφ ≥ ψ0μ1. The effect of the Chézy drag term thereby relaxes the limits on existence
imposed by the granular law. Steady layers that are more dilute can exist in mobile
equilibrium at shallower slope angles, i.e., down to arctan(ψ0μ1), while steep steady flows
(tanφ → ∞) may always be maintained at a suitably high Fr, since the turbulent drag,
CdFr2, is not bounded above. However, note that such solutions are not necessarily stable.
Indeed, the stability threshold for these flows may be readily computed using Trowbridge’s
criterion (3.10). After non-dimensionalising (4.1) and differentiating, one sees that τu0 =
[2(1 − ψ0)CdFr2 + ψ0μ

′Iu0] cotφ, where μ′ = ∂μ/∂I|I=I0 and Iu0 = ∂I/∂u|h,u=1 =
dFr. Likewise, τh0 = ψ0[μ(dFr)+ μ′(dFr)Ih0] cotφ, with Ih0 = ∂I/∂h|h,u=1 = −3

2 dFr.
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Figure 3. Existence of steady layers for our mixed drag formulation (4.1), without morphodynamics. Dashed
lines show the existence of steady flows at fixed slope angles as labelled, with the lowest red dashed
line indicating the minimum slope angle φ = arctan(ψ0μ1). Filled contours show maximum values of the
non-dimensional linear growth rates given in (3.8). Stable (blue) and unstable (red) regions are separated by
the neutral stability boundary (4.8) plotted in solid black. Successive panes represent increasing solid fractions
ψ0 from left to right as follows: (a) 0.2, (b) 0.5 and (c) 0.8.

On substituting these expressions into (3.10) and rearranging, one sees that these states are
unstable when

(1 − ψ0)Cd(Fr − 2)+ ψ0dμ′(3/2 − 1/Fr) > 0. (4.8)

Note that this criterion smoothly interpolates between the Fr = 2 and Fr = 2/3 thresholds
for the special cases of purely fluid (ψ0 = 0) and granular (ψ0 = 1) flows.

We summarise the existence of non-erosive layers subject to the drag law (4.1) in
figure 3. Dashed contours trace out the unidimensional family of steady layers for each
slope angle, across (d,Fr)-parameter space, computed from (4.7), with the three panes
corresponding to different fixed solid fractions, ψ0 = 0.2, 0.5 and 0.8, from left to
right. The minimum slope angles for steady flows (dashed red contours) follow the line
Fr = 0. Red and blue filled contours show the asymptotic growing and decaying growth
rates of perturbations respectively, computed by substituting τu0 and τh0 from above into
the limiting formula given earlier in (3.9). These are separated by the neutral stability
boundary (4.8), which is displayed in solid black. When d � 1 (small particles, relative
to the flow depth), the drag is dominated by the Chézy term. In this regime, which covers
most physically realisable grain sizes, growth rates are essentially independent of d and
the stability boundary is Fr ≈ 2. Increasing d outside this region leads to less stable
flows and lowers the stability boundary. Increasing the solid fraction generally leads to
less severe growth rates, but decreases the range of slope angles that permit stable steady
flows (through increasing the minimum slope angle). We find the qualitative properties of
this plot to be largely insensitive to our specific choices of Cd, μ1, μ2 and β whose values
were given in table 1.

When the morphodynamics is non-negligible, steady flows must also satisfy (3.1b).
That is, erosion and deposition must be everywhere in balance, Ep(h, u, ψ) = Dp(ψ).
This condition dictates the solid fractions where mass transfer can be in equilibrium.
Despite our efforts to obtain simple closures in (4.3) and (4.4), it is a complex nonlinear
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Figure 4. Example deposition and erosion closures, as functions of the solid fraction ψ . Steady flows occur
where Dp and Ep intersect. There are three cases: (a) two steady states, one dilute and one concentrated (Fr =
0.75); (b) a single steady state where Ep is tangent to Dp (Fr ≈ 2.63); (c) erosion always exceeds deposition
(no steady states) (Fr = 3.25).

equation that depends on many physical parameters. Nevertheless, we can determine some
generic properties of solutions.

We first consider the system parameters to be fixed (but arbitrary) and suppose that the
flow is in uniform steady balance with its drag (so h = u = 1), leaving Dp and Ep functions
of ψ only. We also assume that θ > θc, so that there is some particle entrainment. Then,
in particular, Ep(0) > 0 and Ep(1) > 0. Conversely, the deposition rate curve (4.4) always
obeys Dp(0) = Dp(1) = 0. Therefore, since Ep − Dp > 0 for both ψ = 0 and 1, either:
(a) there exist an even number of coexistent steady flows with different solid fractions, (b)
erosion balances deposition exactly at a turning point in Ep − Dp or (c) erosion always
exceeds deposition. We visualise these three cases in figure 4, where we plot Dp(ψ) and
Ep(ψ) at different values of Fr, using the illustrative model parameters of table 1. Aside
from where explicitly stated otherwise, these parameters are fixed for the remainder of
this section. Note that our choice of Dp does not depend on Fr, while the Froude number
dependence of Ep enters through the basal drag term in the Shields number.

Case (a), where there are multiple steady flows, occurs at lower Fr numbers. Here,
erosion increases with solids concentration, intersecting the deposition curve at two points.
This leads to two corresponding steady flows: one dilute and one relatively concentrated.
Additional intersections (leading to three or more steady flows) are a possibility, but would
require a very particular erosion curve. Physical intuition suggests that the dilute solution
is stable, since perturbations in either direction cause negative feedback: decreasing ψ
away from this state leads to Ep > Dp, while increasing ψ leads to Ep < Dp. Likewise,
the concentrated solution (at ψ ≈ 0.94 in figure 4) invites either runaway deposition
(if ψ decreases) or runaway erosion (if ψ increases). This process suggests a possible
mechanism underlying sediment distribution in debris flows, which commonly feature an
unsteady highly concentrated front trailed by a steady dilute layer (Pierson 1986; Hungr
2000; Ancey 2001). As Fr increases in figure 4, the pair of steady flows coalesces at a
single point; this is case (b). Beyond this point, no steady solutions exist, case (c). Here,
erosion everywhere exceeds deposition. Uniform layers in this case can never be truly
steady, since they can only satisfy one of (3.1a,b). If the drag is ever in equilibrium with
gravitational forces, then net entrainment injects material into the flow.
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4.3. Global morphodynamic modes
The instability mechanism identified in figure 4 is purely morphodynamic and depends
on a straightforward criterion: states are unstable to this mode if Γψ0 > 0. The process
is fundamentally an instability to uniform perturbations in flow concentration, though
since there is no intrinsic dependence upon spatial gradients we might anticipate that
it manifests as a destabilising feature at all wavenumbers. However, this picture is a
simplification, since it omits feedbacks from the other flow fields. The full situation for
uniform disturbances is contained within our analysis of zero-wavenumber perturbations
in § 3.2.1, where we computed the general growth rates of the four different linear stability
modes for k = 0, two of which are always neutrally stable. As discussed earlier, if the
approximation of small Γu0 can be made, the two remaining modes may be understood
simply: one is inherited from the hydrodynamic stability problem, the other contains
morphodynamic feedbacks. Their growth rates are given in (3.15a,b). The morphodynamic
rate in (3.15b) may by understood as a competition between two mechanisms for growth
in h and ψ . The process for ψ (when Γψ0 > 0) has already been outlined. If Γh0 > 0,
then a small increase in the steady layer height leads to net entrainment which, via (3.3a),
enhances growth in h in turn. Likewise, a small decrease in h would cause the depth to
decrease away from its steady value. Conversely, if Γh0 < 0, then this term is stabilising.
If Γh0 is negligible with respect to Γψ0(1 − ψ0), then the morphodynamic mode has
approximate growth rate σ ∗

m, defined by

σ ∗
m = Γψ0(1 − ψ0). (4.9)

In this case, stability is only governed by the mechanism for concentration growth
encapsulated by figure 4.

The accuracy of the above physical picture depends on the reliability of the
approximations made in reaching (3.15a,b) and (4.9). These estimates are plausible
(especially at lower ψ0), since we might expect the relative steepness of the hindered
settling curve (plotted in figure 4) to be more significant than gradients in Ep, which are
solely responsible for dictating Γh0 , Γu0 and depend on the small parameters ε and Cd.

For a more detailed analysis, in figures 5(a) and 5(b) we show both non-zero branches
of the exact growth rates σ (solid lines) for global disturbances (which are purely real),
as given in (3.13a)–(3.14b), for (a) dilute and (b) concentrated states. On the same axes,
we plot both approximations to the rates: the more general formulae from (3.15a,b), which
we denote σa (dashed lines), and the cruder approximation to the morphodynamic mode
rate σ ∗

m (yellow circles), made above in (4.9). For the dilute states, we confirm that σ < 0
across the range where steady layers exist (0.22 � Fr � 2.62). Moreover, both branches
of σ are well approximated by σa for Fr � 1.5, and σ ∗

m lies very close to its corresponding
branch of σa, indicating that Γψ0 is indeed primarily responsible for setting the sign of
σ in this case. At higher Fr, the approximating curves are less accurate. However, this is
to be expected. Whereas at low Fr, the dilute solutions have ψ0 ≈ 0, which is where the
hindered settling curve is at its steepest (and consequently where |Γψ0 | can be considered
large compared with other derivatives of Γ ), for higher Fr states have higher ψ0 and the
approximations of negligible |Γh0 | and |Γu0 | gradually break down as ψ0 approaches the
turning point in Dp (see figure 4). However, we note that throughout, σ ∗

m lies close to σa
since |Γh0 | is small for dilute states. Furthermore, we need only be strictly concerned with
Fr � 1, since outside this regime layers are susceptible to high-wavenumber instabilities.

By contrast, the approximations to the growth rates for the concentrated solutions,
in figure 5(b), are not especially good, as highlighted by the figure inset. Therefore,
Γu0 cannot be neglected here. Unfortunately, while perturbations in h and ψ and their
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Figure 5. Growth rates for uniform (k = 0) perturbations as a function of Fr, for the (a) dilute and (b)
concentrated steady solution families identified in figure 4. Solid curves show the two non-zero branches of
the exact growth rate σ , computed from the formulae in (3.13b)–(3.14b). The signs given in the legend indicate
the branch, according to the sign of ±√

sc in (3.13b). Also plotted are two approximations to the exact rates, σa
(dashed lines), as defined in (3.15), and σ ∗

m (yellow circles), as defined in (4.9).

respective feedbacks may be understood in simple physical terms, this is not easy to
do in general for u, due to the many interacting contributions to momentum present in
the governing equations. However, in this particular case, we note that the intuition that
concentrated steady states are typically unstable is borne out, meaning that the feedbacks
omitted in making the approximation σa are not stabilising on aggregate. In fact, this is
guaranteed, since the pair of steady states in figure 4 arises in a saddle-node bifurcation
as Fr is decreased from infinity. This implies that, since the dilute flow is stable, the
concentrated flow must have at least one unstable direction.

4.4. Linear growth rates for general wavenumbers
Instability to uniform disturbances is not the only feature introduced by the presence of
morphodynamics, as our earlier analysis in § 3.2 indicates, since states are also vulnerable
to the high-wavenumber instability near unit Froude number. Therefore, we broaden
the discussion to incorporate the full linear stability problem. We begin by numerically
solving the eigenproblem in (3.5) using our chosen model closures, over a range of finite
wavenumbers. Each of the four eigenmodes in the problem possesses a linear growth rate
continuously parametrised by k. As in § 3.2.2, we label the modes I–IV according to the
ordering of their asymptotes used in (3.22a–d). Recall that in the high-k regime, modes
I and II are analogues to the modes of the purely hydraulic stability problem, whereas
III and IV are additional morphodynamic modes that, involve perturbations in the solid
fraction and bed surface respectively.

We denote the growth rates of each mode, indexed by wavenumber as σn(k) for n =
1, . . . , 4. In figure 6(a) we plot maxn Re(σn) versus k, for states on the dilute solution
branch. Additionally, we plot their limiting high-k growth rates, taken from the maxima
of the four expressions derived in (3.22a–d), in dotted grey. Each curve passes through
the origin, since the maximum growth at k = 0 is given by the neutral modes for these
states. The Fr = 0.5 and 0.75 solutions are stable to all perturbations, just as they would
be in the non-erosive case, with the latter solution being more strongly damped. The Fr =
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Figure 6. Perturbation growth rates for morphodynamic states as functions of wavenumber in the
unregularised problem (ν = 0). The curves were computed by taking the maximum real part of the four normal
mode growth rates arising from (3.5), across a range of wavenumbers k, for states on the (a) dilute and (b)
concentrated solution branches identified in figure 4. The Froude numbers are Fr = 0.5 (orange), 0.75 (blue),
1.25 (olive), 2 (teal). High-k asymptotes, computed from maxima of the four expressions (3.22a–d), are plotted
in dotted grey.

1.25 curve is stable to long-wavelength disturbances and becomes unstable at k ≈ 6. Its
maximum over all k is given by its asymptotic value, to which it converges more slowly
than the other curves. This solution would be stable in the non-erosive case: given the same
solid fraction (ψ0 ≈ 0.02), according to (4.8), non-erosive states turn unstable at Fr ≈
1.98. The Fr = 2 state is stable for a narrower range of wavelengths, becoming unstable at
k ≈ 3. This state (which hasψ0 ≈ 0.1) would also be unstable in the non-erosive situation.
Its asymptotic growth rate is lower than the Fr = 1.25 curve, which we shall see shortly
is because it lies further from the Fr = 1 singularities present in (3.22b,d). Aside from
a narrow interval (k � 1.5) at small k in the Fr = 2 case where mode I dominates (not
visible at this scale), each of these maximum growth rates for dilute states are everywhere
given by the growth of the morphodynamic mode IV.

In figure 6(b), we plot the corresponding maximum growth rate curves for the
concentrated solution branch. These match the intuition from § 4.3, that concentrated states
should be everywhere unstable (since we expect the basic global instability mechanism
to persist regardless of k). Growth at k = 0 is a local maximum for each Fr and the
corresponding instability is due to mode III, which dominates over all k for Fr = 0.5,
0.75 and Fr = 2. (The two lower Fr growth rate curves turn sharply at k ≈ 0.025 and
0.075 respectively, but are nevertheless smooth, as indicated on the inset.) Conversely, the
Fr = 1.25 curve is formed by a crossing of growth rates for modes III and IV, the latter
of which is neutral at k = 0. The crossing point (at k ≈ 1.6) is shown in an inset, with the
subdominant portions of the mode III and IV curves also included (dashed lines).

The variations of the modes as functions of Froude number are encapsulated in figure 7.
Here, we plot the asymptotic (k 	 1) growth rates λ0,i, given in (3.22a–d), for i = 1, . . . 4,
with dashed lines. Their maximum for each Fr is overlaid as a solid line. With filled circles,
we plot the maximum growth rate over all k. Therefore, any discrepancy between the solid
lines and circles indicates that maximal growth is attained at some finite wavenumber.
Figure 7(a) presents the data for the dilute solutions. At low Fr, solutions are stable and
the maximum possible growth is zero, due to the (k = 0) neutral modes. The asymptotic
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Figure 7. The maximum of the high-wavenumber asymptotic growth rates, maxi λ0,i, plotted with solid curves
as a function of Fr, for the (a) dilute and (b) concentrated solution branches. With dashed lines we plot the
individual λ0,i(Fr) curves, as labelled for i = 1, . . . , 4. Also plotted (filled circles) are the maximum growth
rates of the corresponding solutions, over all wavenumbers, i.e. maxk,n Re[σn(k)].

growth rate is dictated by the mode IV curve, which is briefly surpassed by mode I at
Fr ≈ 0.85, before growth is dominated by the singular behaviour of modes II (for Fr < 1)
and IV (for Fr > 1), which diverge at Fr = 1 with opposite sign. This induces instability at
Fr ≈ 0.9. For all higher Froude numbers, the solutions remain unstable, even though they
would be sufficiently dilute to remain stable well past Fr = 1 if morphodynamic effects
were neglected. We also note that the asymptotic rate correctly identifies the onset of
instability and matches the maximum rate thereafter, thereby justifying the focus on short
wavelengths in our analysis.

The corresponding curves for the concentrated solution branch are shown in figure 7(b).
As expected, this also features a singularity at Fr = 1 and is everywhere unstable. The
maximum growth rates (filled circles) exactly match the corresponding asymptotic limits,
except at low Froude number (Fr � 0.85), where growth at k = 0 is slightly larger than
in the k 	 1 regime, as we saw in figure 6(b). Mode III is always unstable and dominates
the other modes over a large region. Near the singularity it is surpassed by modes II (for
Fr < 1) and IV (for Fr > 1) and it is briefly surpassed again by mode IV near Fr � 2.6,
where the dilute and concentrated solution branches coalesce.

4.5. Effect of bed erodibility
In addition to the singularity introduced at unit Froude number, a further effect of the
morphodynamics on dilute states may by identified in figure 7(a). In the limit of weak
sediment entrainment, ε → 0, mode I must turn unstable at Fr = 2, due to the classical
roll-wave instability for Chézy bottom drag (Jeffreys 1925). Conversely, in the regime of
figure 7 (ε = 0.01), this mode remains stable throughout the range of Fr where steady
states exist (0.22 � Fr � 2.62). Unstable growth only occurs for mode IV.

We observe the effect of increasing ε from a weakly erodible regime by reproducing
the figure 7(a) plot for dilute states at various values of ε, in figure 8. The other
model parameters remain as stated in table 1. Beginning with the case of small ε =
3 × 10−4, in figure 8(a), the signature of hydraulic roll-wave instability is clear. Mode
I becomes unstable at a Froude number just above 2 and immediately dominates over the
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Figure 8. Effect of the bed erodibility ε on the growth rates of the unstable modes, showing the suppression of
mode I (associated with roll-wave instability) as ε increases. Panels (a,c,e) show maximum asymptotic growth
rates (maxi λ0,i) as a function of Fr for dilute states (solid blue) and individual λ0,i(Fr) curves (grey dashed),
as labelled. Maximum growth rates over all wavenumbers are plotted with blue circles (as in figure 7, which
shows the ε = 0.01 case). Panels (b,d, f ) show the growth rates σn(k) of individual modes in dashed lines, as
labelled, for Fr = 2.6 (green) and Fr = 3.2 (orange). The maxima of these curves are overlaid as solid lines.
The erodibility values for each row are (a,b) ε = 3 × 10−4, (c,d) ε = 3 × 10−3 and (e,f ) ε = 6 × 10−3.

morphodynamic mode. Outside the singular point Fr = 1, the high-k growth rate of the
latter mode (IV) is O(ε), which may be confirmed by consulting the formula derived in
(3.22d) and the closure for entrainment in (4.3). Consequently, there is a narrowing of the
effective influence of the singularity, relative to the picture in figure 7(a), and away from
this region, mode IV is only very weakly unstable. In figure 8(b), we plot Re(σn) as a
function of k for modes I and IV at Fr = 2.6 (green) and 3.2 (orange). Both curves for
mode I are close to the corresponding unstable growth rates in the limiting case ε → 0
with purely Chézy drag, which asymptote to exactly 0.3 and 0.6 respectively, by (3.9).

We increase ε by an order of magnitude in figure 8(c–f ). When ε = 3 × 10−3, growth
in the 1 < Fr � 2.3 range is now dominated by the morphodynamic mode and λ0,1 has
substantially decreased, remaining negative until Fr ≈ 2.56. However, Re(σ1) no longer
attains its maximum in the high-k limit. Indeed, when Fr � 2.3, the most significant
growth comes from mode I at finite k, as evidenced by figure 8(c). By comparing the
Re(σ1) curves in figure 8(d) with their counterparts in figure 8(b) we see that growth of
mode I is suppressed in the short-wavelength regime as ε increases. On proceeding to
ε = 6 × 10−3, these trends continue. The plots in figure 8(e, f ) show that growth of the
morphodynamic mode dominates over the range 1 < Fr � 2.8, before being surpassed
by mode I growth at low k. Interestingly, mode I is now only unstable across a limited
band of wavelengths. Numerical inspection at indicates that at finite k, away from their
asymptotic limiting expressions in (3.19), each eigenmode contains components of all the
flow variables h, u, ψ and b. Therefore, at high enough ε, there are no ‘purely hydraulic’
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instabilities, including classical roll waves. However, this does not prohibit the existence
of roll waves that are intrinsically coupled with the bed and concentration dynamics.

Due to the complexity of the analytic expression for λ0,1, given in (3.22a) and (3.23)
it is difficult to appreciate directly why mode I ultimately becomes suppressed when
morphodynamic effects are significant. Instead, we can look at a simplified case, where
the drag function is purely fluid like, τ̃ = τ̃f = Cdρ̃ũ2, and the bottom friction velocity ũb
is neglected. Then, τh0 = Γh0 = υ0 = 0, τu0 = 2 and (3.22a) simplifies to

λ0,1 = Fr − 2
2

+ Γu0

4Fr(Fr + 1)
[(1 − ρb)(Fr − 1)− 2ρbFr] . (4.10)

The first term in this expression stems from the hydraulic limit and yields the correct
stability threshold in that case (Fr = 2). Provided that both Fr > 1 and ρb > 1 (i.e., the
bed density exceeds the bulk density), the second term is strictly negative. Moreover, on
referring back to the mass transfer closures (4.3) and (4.4), we see that it is proportional to
ε. Therefore, greater erodibility decreases λ0,1 and correspondingly increases the stability
threshold for mode I.

In the next two subsections, we investigate the effect of eddy viscosity and bed load on
linear growth rates in the morphodynamically dominated regime. We do not independently
investigate varying ε in these cases. However, our numerical observations indicate that,
away from Fr = 1, its essential effect is preserved. Namely, that as ε increases from
a negligible value, the O(ε) bed mode (IV) growth rates become larger and there is a
corresponding suppression of mode I.

4.6. Effect of eddy viscosity
Figure 9 demonstrates the effect of the eddy viscosity term studied in § 3.3. The size of the
parameter ν sets the scale over which diffusive effects are important. If chosen sufficiently
small, the term only influences the high-k regime. In figure 9(a), we plot maximum
normal mode growth rates for dilute solutions with Fr = 0.5, 1.5, ε = 0.01, ν = 10−4

(solid lines) and compare these with the corresponding rates for the unregularised system,
ν = 0 (dashed lines). At low k (including 0 ≤ k < 10, not shown), the growth rates
are essentially unchanged by the presence of the dissipative term. Then, at higher k,
both rates for the regularised problem converge to exactly zero, where they remain in
the high-k limit. These may be compared with the analytical formulae in (3.40a–c).
Computing them for our particular parameters confirms that both cases are dominated
by the asymptote σ = 0 + O(k−1), corresponding to perturbations of the bed (3.40b).
For the Fr = 0.5 case, the growth rate increases when it approaches this limit at high
k. However, note that since it approaches zero from below, this does not affect flow
stability. Therefore, we conclude that, away from the singularity at Fr = 1, the addition
of the diffusive term succeeds in damping out short-wavelength disturbances without
affecting the system outside the asymptotic regime. The behaviour at Fr = 1 is shown
in figure 9(b) and confirms the successful regularisation of the growth rate singularity.
While the unregularised rate diverges like ∼k1/2 (as shown in § 3.2.2), when ν = 10−4 it
decays to zero within 0 ≤ k � 103. It reaches a maximum growth rate of approximately 2,
around 3–6 times the magnitude of unregularised growth rates either side of the singularity
at Fr = 0.75 and 1.25, plotted in figure 6(a).

Figure 10 shows the effect of regularisation on concentrated states. In these plots we
include additional detail, plotting the growth rates for all four modes. Dashed lines show
curves with ν = 0; dotted lines show the corresponding rates with ν = 10−4. We label
these I–IV by numerically computing the asymptotic rates (3.22a–d) and (3.27) for the
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Figure 9. Effect of the eddy viscosity regularisation term on maximum growth rates. Curves for the dilute
solution branch are shown with ν = 0 (dashed) and 10−4 (solid). The Froude numbers are: (a) Fr = 0.5
(orange) and 1.5 (red); (b) Fr = 1 (purple).
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Figure 10. Individual growth rates as a function of k for concentrated steady states. The curves are labelled
I–IV according to their corresponding linear stability modes in the ν = 0 analysis of § 3.2.2. Unregularised
rates are plotted with dashed grey lines; regularised rates (ν = 10−4) with dotted lines. The maximum over all
curves in the ν = 10−4 case is overlaid as a solid line. The Froude numbers are (a) 0.5 and (b) 1.

unregularised system, which match the corresponding regularised rates at lower k. The
case of Fr = 0.5, away from the singularity is given in figure 10(a). Both hydrodynamic
modes (I and II) are severely damped at high k. On checking these curves against the
asymptotic rates in (3.40a–c), we find that mode I corresponds to (3.40a), scaling as ∼ −k2

asymptotically, while mode II eventually converges to λ− ≈ −4 × 104 = −1/νFr2 in this
case (outside the range of the figure axes). The mode IV rate increases as k increases,
eventually asymptoting to 0. Finally, as argued in § 3.3, mode III, which asymptotes to
λ+ (≈ 0.015), is not much affected by the eddy viscosity term, provided that ν is small
relative to the other terms in (3.38). The situation at the Fr = 1 singularity for concentrated
states is shown in figure 10(b). When ν = 0, the mode II and IV growth rates can be seen
diverging to −∞ and +∞ respectively as k → ∞. As established in § 3.2.2, these scale
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like ∼ ± k1/2, asymptotically – while modes I and III converge to λ0,1 (≈ 0.04) and λ0,3
(≈ 0.07) respectively. With the addition of regularisation, the modes qualitatively mirror
the Fr = 0.5 case: the hydraulic modes are strongly damped, while mode IV no longer
diverges and decays to zero, being eventually surpassed by mode III which is essentially
unaffected by the eddy viscosity.

We have briefly experimented with introducing an additional diffusive term to the solid
mass transport equation. This takes the form (∂/∂x)(κh(∂ψ/∂x)) and is added to the
right-hand side of (3.3b), thereby contributing an additional non-zero term D23 = κ to
the matrix D in the linear stability eigenproblem (3.28). The free parameter κ = κ̃/(ũ0 l̃0),
where κ̃ is a (constant) characteristic sediment diffusivity sometimes included in models
(e.g. Balmforth & Vakil 2012; Bohorquez & Ancey 2015). Its inclusion is consistent
with the basic physics of sediment transport. However, the effect on the growth rates
is modest, for the values explored (10−3 < κ < 10−5), effectively serving only to damp
mode III at high wavenumbers. Consequently, figure 9 is unaffected, while the maximum
unstable growth in figure 10 ultimately rolls off at high k, with the roll-off being more
severe for larger values of κ . Therefore, in the context of simple shallow-flow modelling,
sediment diffusion, combined with momentum diffusion via eddy viscosity, could serve as
an unobtrusive way to prevent instabilities from developing over unphysically short length
scales.

We now examine the effect of varying ν. Figure 11 shows the reduction of growth rate
at the Fr = 1 singularity as ν is increased over three orders of magnitude for both the
(a) dilute and (b) concentrated solution branches. At ν = 10−4, the maximum growth is
curtailed only in a relatively small neighbourhood of Fr = 1. Consequently, growth still
peaks sharply in this region and elsewhere follows the asymptotic rate for the ν = 0 case
(solid curves). Increasing ν smooths over the signature of the singularity: its (diminished)
influence is clear at ν = 10−3, but by ν = 10−2 there is only a residual trace of it. For the
larger values of ν, growth largely fails to reach the asymptotic rates at all. We note also that
increasing ν increases both the Froude number at which maximum growth occurs and, in
the case of dilute states, the onset of instability.

A constant eddy viscosity is a crude parametrisation of the effects of turbulent
dissipation. Consequently, studies of non-erosive shallow layers have typically treated
selection of ν (when included) as a means to an end – either to smooth over hydraulic
jumps in flow profiles, or to constrain instabilities to within a bounded spectrum (Needham
& Merkin 1984; Hwang & Chang 1987; Balmforth & Mandre 2004). Provided ν is
sufficiently small, this is reasonable since roll-wave onset and development tends to be
largely insensitive to the exact magnitude of the dissipation term (Chang, Demekhin
& Kalaidin 2000). However, figure 11 suggests this is not the case when the evolution
of the bed is accounted for. Here, the size of ν necessarily dictates the severity of
the morphodynamic instability. A plausible range for ν can be ascertained as follows.
Suppose that dissipation acts over length and time scales set by shearing within the
turbulent boundary layer. Then we may anticipate ν̃ ∼ ũ∗h̃, where ũ∗ is the basal friction
velocity, equivalent to the closure used for ũb, given in (4.6). For a dilute steady
state flow, ũ∗ ≈ ũ0

√
Cd. In our dimensionless units, ν = ν̃g sinφ/ũ3

0 = ν̃ tanφ/(h̃0ũ0Fr2)

and (since tanφ ≈ CdFr2 in the dilute regime) therefore ν ∼ C3/2
d . With our chosen

drag coefficient, this yields ν ∼ 10−3. After accounting for potential deviations from this
rough order-of-magnitude estimate and especially the ways in which suspended sediment
may suppress turbulent fluctuations, it is difficult to rule out any of the scenarios in
figure 11 with confidence. However, it is at least reasonable to conclude that diffusive
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Figure 11. Effect of eddy viscosity size on the severity of morphodynamic instability. Solid curves show the
maximum asymptotic growth rates for the unregularised system (as shown previously in figure 7), near the
Fr = 1 singularity, for (a) dilute and (b) concentrated steady states. Dotted curves show the maximum growth
rates over all wavenumbers and all four modes, for various ν, as labelled.

effects are neither negligible, nor likely to completely quash unstable growth near unit
Froude number in morphodynamic shallow-flow models.

4.7. Effect of bed load
In § 3.4, we showed that the inclusion of a bed load flux Q also prevents ill posedness,
provided that the constraint (3.45) is satisfied. It does so by altering the system
characteristics, thereby avoiding a resonance between modes II and IV at Fr = 1 that
otherwise leads to unbounded linear growth. In fluvial settings, the physical basis for such
terms is well established (see e.g. Gomez 1991) and similar analyses to ours have noted
the role it plays in ensuring strict hyperbolicity of models (Cordier et al. 2011; Stecca et al.
2014; Chavarrías et al. 2018, 2019). In more severely concentrated situations, such as debris
and purely granular flows, the case for a bed load is less clear since it may not be possible
to distinguish between grains crawling along the bed surface and grains in suspension.
Therefore, bed load fluxes are not typically included in numerical models of these flows.
However, since bed load dictates the characteristic wave speed of the bed surface, it may
nonetheless have a role to play in these settings that is not currently appreciated.

We shall consider the effect of bed load separately from eddy viscosity by resetting
ν = 0 and employing the flux closure in (4.5). Although the effect on concentrated
steady states was briefly investigated, the conclusions did not differ substantially from the
relatively dilute case, whose results we report below. In figure 12(a), we plot the maximum
growth rates over all modes and wavenumbers as a function of Fr for various values of the
bed load flux strength γ , increasing from zero (solid blue) to γ = 1, 5 and 10 (dotted). The
plot may be compared with figure 11(a) and shares the same essential features. This should
not be surprising: relatively small values of γ do not displace the system characteristics
λ1 far from their resonant values, while larger values push them far apart, leaving little
trace of the Fr = 1 singularity. We observe this directly in figure 12(b), which plots λ1(Fr)
for each γ , as labelled (solid and dotted lines), using the same horizontal axes. These
curves are obtained by numerically solving (3.17). The solid lines are the characteristics
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λ1 = 1 − Fr−1 (mode II) and λ1 = 0 (mode IV) of the system without bed load, as derived
in (3.18). As γ increases from zero, the curves diverge from the singular intersection
point of these two characteristics. Typical values of γ from the fluvial literature are
O(10) (see e.g. Cordier et al. 2011), around the upper end of the range considered here.
In this regime, growth rates are relatively modest and the onset of instability notably
increases with γ , reaching Fr ≈ 1.15, when γ = 10. Where solutions are unstable, we
also plot, in figure 12(b), points along cmax(Fr), which we define here to be the wave
speed c = −Im(σ )/k of the dominant unstable mode at its most unstable wavenumber,
i.e., the mode (for each γ ) whose corresponding growth rates are in figure 12(a). Each
set of points lies exactly on its corresponding characteristic curve. This is because, in this
case, the maximum growth at each Fr occurs in the high-k regime and c → λ1 as k → ∞.
Furthermore, we note that since cmax < 0 for γ > 0, dominant perturbations travel upslope
(and do so more rapidly if the bed load strength is larger). When γ = 10, the picture in
figure 12(a,b) shares traits with some fluvial systems – there is neither ill posedness, nor
severely accentuated growth near unit Froude number, and the morphodynamics drives
slowly upstream-migrating bedforms (see e.g. Colombini & Stocchino 2008; Seminara
2010). It is tempting to think of the morphodynamic processes in this regime as being
essentially ‘bed load dominant’. However, pure bed load formulations do not feature
instabilities near Fr = 1 (Lanzoni et al. 2006). Indeed, we have checked that decreasing
ε to 10−4 (and retaining γ = 10), removes the morphodynamic instability in our model,
which then remains stable until the threshold for roll waves, near Fr = 2. Therefore, the
bulk mass transfer term (i.e., suspended load) plays a role in sustaining the instabilities
of figure 12(a).

Furthermore, even if γ is large enough that the characteristics are well separated,
it is possible to see the influence of the Fr = 1 singularity if we move to a regime
where suspended load is enhanced. In figure 12(c), we fix γ = 8, ε = 6 × 10−3 and
plot maximum growth rate curves, in the vein of figure 12(a), for different d = 0.01,
5 × 10−3 and 10−3. Also shown for reference is the singular high-k growth curve (solid
blue), for d = 10−3 and no bed load. Note that these curves may only be plotted for
Fr where steady flows exist and this range shrinks as d decreases. (This is because
smaller particles are more easily eroded, meaning that the unsteady scenario of figure 4,
where erosion always exceeds deposition, occurs at lower Fr.) The trend of figure 12(c)
shows that decreasing particle size leads to more severe growth near Fr = 1, with the
d = 10−3, γ = 8 case (dotted green) inheriting a severe instability in this region. The
corresponding characteristics, plotted in figure 12(d) below, are not greatly affected by
changes in d. Therefore, enhanced growth around unit Froude number cannot be due to
near intersection of characteristics in this case. Without simple analytical expressions
for the growth rates when Q /= 0, it is difficult to pin down exactly why small d has
this effect. However, we note that since our closures for erosion and bed load, given
in (4.3) and (4.5) respectively, have similar dependencies on the excess shear stress,
it is straightforward to see for any given Fr, that Q/E ∝ dγ /ε. Therefore, smaller d
implies that the magnitude of bed load is diminished, relative to the suspended load
dynamics.

Finally, just as we saw in figure 12(b), we note that for the d = 10−3 and d = 5 ×
10−3 case, cmax (filled circles) lies exactly on the characteristic curves corresponding
to slowly upstream-propagating disturbances. However, for the d = 0.01 branch, this
mode is only dominant for Froude numbers up to approximately 2.4, where the rapidly
downstream-propagating perturbations of mode I become the most unstable. This is
marked in figure 12(c) by a steepening of the maximum growth rate curve and may be
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Figure 12. Effect of a bed load flux term on linear growth rates and the corresponding instabilities. Panel
(a) shows curves of maximum growth rate over all modes and wavenumbers as a function of Fr (dotted), for
ε = 0.01, d = 0.01 and various γ = 1, 5 and 10 as labelled. Also shown for reference, is the analytical curve
of maximum growth rate at high wavenumber (solid blue), for γ = 0. In (b) we plot the system characteristics
λ1(Fr) with a solid blue line for γ = 0 and dotted lines for the γ > 0 cases. In the unstable regions, we also
plot the corresponding wave speed cmax(Fr) of the dominant unstable mode at its most unstable wavenumber
(filled circles). Panel (c) shows maximum growth rate curves, as in (a), for ε = 6 × 10−3, γ = 8 and various
d = 10−3 (green dotted), 5 × 10−3 (orange dotted), 10−2 (black dotted). The reference curve maxi λ0,i (solid
blue) is plotted for γ = 0 and d = 10−3. In (d), the characteristics (solid and dotted lines for γ = 0 and γ = 8
respectively) and cmax(Fr) (filled circles) are plotted using the same colour scheme as (c), with labels I–IV to
indicate the corresponding eigenmodes.

compared to the curves in figure 8(a–d), which depict an analogous transition between
modes IV and I in the Q = 0 setting. The latter mode is related to hydraulic roll-wave
instability, as discussed in § 4.5. Note that in this region (Fr � 2.4), cmax does not precisely
follow the mode I characteristic. This is because, as in figure 8, maximum growth occurs
at finite k, rather than in the asymptotic regime where disturbance wave speeds are given
exactly by the characteristics.

4.8. Summary
Finally, we return to the unregularised suspended load model and explore the
(d,Fr)-parameter space more broadly, by computing the steady states that can exist
and their linear stability, when the solid diameter d is varied over three decades. We
assume here that the non-dimensional settling speed is constant and unity (as in table 1)
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Figure 13. Existence and stability of uniform steady layers in the morphodynamic case. Plotted on two axes
are filled contours of scaled solid fraction ψ (shaded regions) for the (a) dilute and (b) concentrated solution
branches, over a representative range of d and Fr values. The region where steady erosive flows exist is outlined
by dotted black lines. Where no steady flows exist, the plot is left blank. The dilute states possesses a region
of stability; the corresponding neutral curve is shown as a solid black line in (a). Overlaid dashed contours
indicate lines of constant slope angle.

throughout, even though its dimensional counterpart w̃s varies considerably with the
particle size. This is reasonable for sufficiently large particles, since w̃s ≈ ũp, when
the particle Reynolds number is high. (This is straightforward to confirm from typical
empirical formulae for w̃s, see e.g. Cheng 1997; Soulsby 1997). Figure 13 summarises the
existence of (a) dilute and (b) concentrated steady flows across parameter space. Where
steady solutions exist, we contour them according to ψ0. Elsewhere, we leave the region
blank. Overlaid are contours showing lines of constant slope angle. Care must be taken
when interpreting this plot, since its values depend on the choice of parameters. However,
its qualitative characteristics are robust. The most striking observation is the separation
of the two states, which are either highly dilute or highly granular. This is clear from
considering the picture in figure 4. Solutions exist predominantly for higher d, where
erosion rates are typically smaller and may therefore balance deposition at higher Fr. As
Fr increases, keeping d fixed, eventually Ep > Dp and states can no longer be steady.
Bounding the region of existence from above is the unidimensional family of states of
type (b) in figure 4, where the dilute and concentrated branches coalesce. Consequently,
the dilute and concentrated states respectively possess greater and lesser solid fractions
close to this boundary than they do in the bulk of parameter space. On the dilute contour
map, figure 13(a), we also plot the neutral stability curve (solid black), below which states
are stable to both hydraulic and morphodynamic modes of disturbance. It is determined
(for our chosen closures) by the asymptotic growth rate λ0,2 (which diverges to +∞ at
Fr = 1) crossing zero. Therefore, we compute it by numerically solving f−(Fr) = 0, where
f− was given in (3.23). As indicated by figure 7(a), the upper stability limit lies just below
the line Fr = 1 for larger d values. At smaller d, the neutral line dips as it approaches
the existence boundary where solutions are more concentrated. For the parameters used
herein, the region of stability includes only extremely shallow grades (typically less than
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1◦). However, this is not unexpected, since fluid drag predominates and purely Chézy
layers turn supercritical (in this case) when φ = arctan(Cd) ≈ 0.6◦. Beneath the region
where stable dilute erosive flows exist is a region where flows are not sufficiently energetic
to entrain material, θ < θc, indicated by a dotted line. Here, only steady flows with zero
solid fraction exist. In the concentrated case, this region is only very narrow. Note that for
any d, the limiting solutions as Fr → 0 on this branch are static granular layers resting at
the neutral slope angle arctan(μ1) ≈ 5.7◦ [see (4.2) for the definition of μ1]. Such states
typically have high Shields numbers in excess of the constant part θ∗

c of the critical value
and consequently any increase in Fr from zero leads to entrainment. The remainder of
parameter space in the concentrated case features steady flows at a range of more severe
slope angles, all of which are unstable.

5. Discussion

This study considered the linear response of spatially uniform steady flows on constant
slopes to small disturbances, in a general class of morphodynamic shallow-layer models.
Our particular interest was situations where there is significant entrainment of bed material
(assumed to be a saturated mixture of monodisperse sediment) into the bulk of the
flow. We therefore focussed on obtaining results for models developed over the past two
decades to describe various highly erosive events such as violent dam failures, flash floods
and volcanic lahars. These models augment classical shallow-layer formulations used in
hydraulic engineering by accounting for density variations in the flowing mixture, the
dynamics of solid transport and the complex processes of exchange between bed and
bulk. While they do not typically include a separate bed load – a distinguished layer that
transports sediment along the bed surface (as depicted in figure 1), we included such a
term at various stages to connect our work with the wider literature on fluvial modelling.
Analysis was performed on a generic set of governing equations that may be adapted to
specific models by specifying (or omitting) particular closures.

When entrainment of bed material is significant, the stability picture becomes
substantially modified, compared with past hydraulic analyses (e.g. Trowbridge 1987), due
to the presence of two extra modes of instability and complicated coupling relationships
between hydraulic and morphodynamic feedbacks. For the suspended load model
(negligible bed load), we derived analytical formulae for the growth rates of normal mode
disturbances in the limits of low and high wavenumber k. Most importantly, we observed
that the bed evolution equation gives rise to a zero characteristic wave speed that inevitably
intersects with one of the hydraulic characteristics at Fr = 1, leading to singularities in
the asymptotic (high-k) linear growth rates, as observed in figure 7. Existence of these
singularities implies two important consequences. Firstly, that these models feature a
morphodynamic instability that occurs slightly below unit Froude number. Secondly, and
more seriously, that the governing equations are ill posed as initial value problems at
Fr = 1, since they permit spatial disturbances to grow arbitrarily rapidly in the limit
k → ∞.

Ill posedness is a critical problem for numerical simulations that must always be
addressed. However, efforts to solve such models may nonetheless yield plausible
results that match observed properties of real flows. This is because the effects of
numerical discretisation can make it difficult to identify ill posedness from isolated
results, since the length scales over which severe disturbances might develop and
grow are limited by spatial resolution. The key indication is that reference solutions
cannot be converged in an ill-posed system, since finer grid scales only serve to
make the discrete system increasingly sensitive to numerical errors (see Woodhouse
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et al. 2012, for an example of a resolution-dependent fingering instability in an
ill-posed granular flow model). Since erosional shallow-flow models with solids
transport are needed in critical applications such as hydraulic engineering and natural
hazard assessment, it is vital that their numerical solutions are robust. Consequently,
operational codes that simulate only the basic suspended load model should be
avoided.

In § 3.3, we proved that the inclusion of a simple turbulence closure (eddy viscosity)
suffices to remove ill posedness from the suspended load model. It is therefore tempting
to recommend that the equations should always be regularised with at least a small
amount of eddy viscosity. However, even a small amount of diffusion changes the
fundamental structure of the model equations and may make them more difficult to time
step in a numerical code. Nevertheless, at least one study (within our general framework)
includes this term (Simpson & Castelltort 2006). Moreover, we might anticipate that
other turbulence closures, or analogous diffusive terms such as those employed in recent
shallow granular flow models (Gray & Edwards 2014), similarly avoid ill posedness by
damping growth in the short-wave limit. As shown in § 4.6, the morphodynamic instability
near Fr = 1 persists when the model is regularised by eddy viscosity and its onset is
unaffected if the regularising term is small. However, figure 11 demonstrated that the
magnitude of the eddy viscosity has a significant impact on the severity of this instability.
Therefore, selection and calibration of a suitable diffusive closure is far from arbitrary,
since it could dictate whether instabilities are seen over the finite lifetime of a simulated
geophysical flow. A full investigation of such terms would require careful comparisons
with experimental or observed flows.

The removal of ill posedness, through the introduction of eddy viscosity or bed
load flux (as in § 4.7 and discussed below), does not imply removal of the associated
morphodynamic instability that arises near Fr = 1. We have not speculated much about
the physics of this instability in the main body of the paper. It may be that it is a purely
artificial phenomenon, whose relevance disappears when models are properly calibrated
and include all physically important processes. However, in the extended analyses of
our illustrative closures, including the eddy viscosity and bed load terms, we were not
able to rule out the destabilising influence of the Fr = 1 singularity. Hence, both the
severity of its growth and its presence at modest Froude numbers (Fr � 1), make it
a feature that should be carefully considered when employing these models. Since the
morphodynamic instability exists essentially due to a resonance between the free surfaces
of the flow and the bed at short wavelengths, its early development should feature
rapid growth of fine scale structure in these fields. Indeed, the growth of mode IV is
typically dominant – its components in the asymptotic limit, given by the final vector
in (3.19), couple high frequency oscillations in h, u and b. To precisely confirm the
onset of this instability in a concentrated geophysical flow or a relevant experimental
set-up would be challenging. Moreover, while similar resonances have been studied in
morphodynamic potential flow models, the resulting instabilities were found to disappear
when more detailed physical models were employed (Coleman & Fenton 2000; Colombini
& Stocchino 2005). However, regardless of these uncertainties, a detailed understanding of
the morphodynamic instability is required in order to make properly informed modelling
decisions and may be used to guide future model development.

An important next step would be to investigate how the instability develops beyond the
linear regime. This could be assessed by conducting a careful nonlinear analysis in the
vein of Needham & Merkin (1984), or via carefully resolved numerical simulations of a
suitably regularised system. As observed in § 4.5, the associated suspended load dynamics
acts to suppress the growth rate of mode I, which is responsible for roll-wave instability in
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the hydraulic limit. On this basis, we speculate that the morphodynamic instability may not
ultimately cause the flow to roll up into large free-surface waves. Instead, it seems more
closely related to an upstream-propagating bedform instability discovered by Balmforth
& Vakil (2012) in a simplified model, where Γ is assumed to be negligible in all but
the bed equation and Q = 0. This formulation also suffers a singularity at Fr = 1, unless
turbulent momentum diffusion is included. The eddy viscosities used to regularise their
system were ν ∼ 10−2 to 10−1 – large enough to subdue any dramatic short-wave growth
arising from the singularity. However, when ν = 10−2, our formulation is nonetheless
morphodynamically unstable for all Fr � 1.05 (see figure 11). Moreover, an illustrative
numerical calculation (not shown) indicates that it is indeed the mode associated with
the bedform that turns unstable (consistent with the role of mode IV elsewhere), with
slow upstream-directed phase speed (e.g. c = −0.021 for the most unstable mode, when
Fr = 1.2). It seems reasonable to expect that lower effective turbulent viscosities will be
present in at least some natural morphodynamic systems. (See the discussion closing § 4.6
for an estimate of the range of ν.) Whether or not this leads to the more severe instabilities
predicted by some of our results remains to be established.

Bed load is an important physical process whose inclusion, via a flux term Q in the
basal dynamics equation (2.3c), modifies the characteristic wave speeds of the governing
equations. It therefore plays a key role in determining whether the model is strictly
hyperbolic (and consequently well posed) or not. This is already well appreciated in
models of river morphodynamics, where bed load fluxes are frequently employed and the
case for one or more sediment transport layers near the bed surface is experimentally
and observationally clear. Consequently, a number of recent studies have investigated
conditions for well posedness in these settings (Cordier et al. 2011; Stecca et al.
2014; Chavarrías et al. 2018, 2019). Conversely, models of shallow highly concentrated
suspensions rarely include a bed load, since these flows are typically feature an energetic
and well-mixed bulk. However, a better approach may be to consider flows on a continuum,
from a dilute bed load regime to highly concentrated suspensions. While increasing
Shields number causes more grains to be carried into suspension, it seems unreasonable to
conclude that Q ultimately shuts off and the bed characteristic becomes zero. Therefore,
it may always be prudent to include a bed flux term, in order to avoid potentially artificial
resonance between the hydraulic and morphodynamic modes. Such models could easily
be checked against the criterion derived in (3.45) to ensure that they are well posed.

An investigation of the effects of bed load with example model closures in § 4.7
demonstrated that its effect on growth rates is similar to that of eddy viscosity – it
mollifies the acute growth rates around the Fr = 1 singularity and increases the critical
Fr for instability. Our results in figure 12 suggest that both the severity and dominant
mode of instability are determined through competition between the morphodynamics of
the suspended and bed loads. Indeed, since morphodynamic instabilities are not present
near Fr = 1 in pure bed load models (Lanzoni et al. 2006), the effect of mass transfer
with the suspended load appears to be destabilising. The predicted instabilities in the
1 � Fr � 2 region migrate slowly upstream. This is in qualitative agreement with fluvial
models that do not employ the shallow-flow approximation (see amongst others, Engelund
1970; Colombini 2004; Colombini & Stocchino 2008; Seminara 2010). These models
capture a richer variety of pattern-forming instabilities than appear to be accessible
to shallow formulations, such as the formation of dunes for Fr < 1 and various other
features (Richards 1980; Seminara 2010; Colombini & Stocchino 2011). Nevertheless,
it is interesting that the combined (bed and suspended load) formulation exhibits some
morphodynamic instabilities.
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Finally, in § 4.2 we demonstrated, that steady morphodynamic layers (when they exist)
bifurcate into two coexistent states: dilute stable layers and concentrated unstable layers.
This is a basic physical idea that lies apart from issues of model consistency and is largely
independent of the model closures. In essence, the solutions arise due to the effects of
hindered settling, which render the deposition rate non-monotonic with respect to the
bulk solid fraction. This means that there are two possible sediment concentrations where
erosion exactly balances deposition. Above a certain threshold of Fr, both states cease to
exist, since erosion everywhere exceeds the maximal rate of deposition. For the most part,
simple physical arguments suffice to explain the stability of the two branches (see § 4.2
and 4.3), as we were able to confirm via careful analysis of the linear growth rates in § 4.3.
This general picture appears to accord with observations of natural flows. Both natural
and laboratory debris flows often propagate as an unsteady surge-like front followed
by a shallow stable layer of weaker sediment concentration, with this configuration
repeating during the flow (Davies et al. 1992; Zanuttigh & Lamberti 2007; Doyle et al.
2010). For instance, flows of volcanic debris (lahars) typically propagate as alternating
debris-rich pulses and relatively shallower and less concentrated (∼ 20 % by volume solids
concentration) layers (Pierson 2005; Doyle et al. 2010). Previous studies have used linear
stability analysis to explore the link between flow instabilities such as roll waves and the
development of pulses in debris flows (e.g. Zanuttigh & Lamberti 2007). Further study
including fully nonlinear analysis of morphodynamic shallow-layer models, is needed in
order to properly link the mechanisms in this paper with observations of natural flows and
provides an interesting opportunity for future research.
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