
Environment and Development Economics 12: 627–652 C© 2007 Cambridge University Press
doi:10.1017/S1355770X07003816 Printed in the United Kingdom

Optimal disease eradication

SCOTT BARRETT
School of Advanced International Studies, Johns Hopkins University,
1619 Massachusetts Avenue NW, Washington, DC 20036-1984 USA.
Tel: (202) 663-5761. Fax (202) 663-5769. Email: sbarrett@jhu.edu

MICHAEL HOEL
Department of Economics, University of Oslo, P.O. Box 1095 Blindern,
N-0317 Oslo, Norway. Tel: 47 22858387. Fax 47 22855035. Email:
michael.hoel@econ.uio.no

ABSTRACT. Using a dynamic model of the control of an infectious disease, we derive
the conditions under which eradication will be optimal. When eradication is feasible, the
optimal program requires either a low vaccination rate or eradication. A high vaccination
rate is never optimal. Under special conditions, the results are especially stark: the optimal
policy is either not to vaccinate at all or to eradicate. Our analysis yields a cost–benefit
rule for eradication, which we apply to the current initiative to eradicate polio.

1. Introduction
The eradication of an infectious disease is an extreme – indeed, a singularly
ambitious – policy goal. It is to be contrasted with a policy of control, which
reduces incidence below the competitive level but not to zero, and a policy
of elimination, which cannot stop disease imports but which can prevent a
local epidemic. It is a goal that has been tried before (hookworm, yellow
fever, yaws, malaria), but achieved only once (smallpox). It is a goal that is
being attempted again now (poliomyelitis, dracunculiasis), and for which
there exists a long wish list of future candidates (among them, mumps,
rubella, lymphatic filariasis, cysticercosis, and measles).

Why eradicate? Suppose that a disease can be controlled – say, by means
of vaccination. Suppose as well that the disease is already being controlled,
and at a very high level – so high, in fact, that a slight increase in the
vaccination rate would cause the disease to be eradicated. Eradication
would increase costs in the short run, and prevent a few additional
infections. But in making the pathogen disappear, eradication would also
avoid the need ever to vaccinate in the future: a huge ‘dividend’. A very
high level of control will therefore never be optimal. Intuitively, the optimal
policy will require no control, a modest level of control, or eradication. In
this paper, we develop this intuition formally.

A disease can only be eradicated if it is eliminated everywhere in nature.
Hence, our analysis applies to two kinds of situations: at the global level
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and at the level of the nation state after every other country has already
eliminated the disease. If countries were symmetric, it might seem that
the calculus of eradication would be the same for both of these situations.
Barrett (2003), however, shows that, depending on the costs and benefits
facing the ‘last’ country, global disease eradication – a global public
good – may be either a coordination (weakest link) game or a prisoners’
dilemma.1 Though Barrett (2003) exposes the underlying incentive problem,
his analysis relies on a static framework in which eradication is assumed to
be instantaneous – an outcome that may not be optimal (or even feasible).
Our paper focuses on the dynamics of eradication, solving explicitly for the
conditions under which eradication (whether at the level of the globe or the
‘last’ country) will be optimal.2

Our approach is to solve a central planner’s problem, where it is
assumed that the planner can choose a sequence of vaccination rates
directly. We ignore behavior in our model, either of individuals or
of states acting independently. Our approach is thus more consistent
with the optimal growth literature than with the emerging literature of
economic epidemiology. Our interest is not in positive analysis or incentive
mechanisms. It is in deriving a cost–benefit rule for eradication.3

Our approach is thus to be contrasted with Geoffard and Philipson (1997),
who also develop a dynamic model of the economics of disease eradication,
but with a focus on the positive analysis of public vaccination policy being
(partially) crowded out by market behavior (under the assumption that
the private demand for vaccination increases with prevalence). In contrast
to our paper, Geoffard and Philipson (1997) do not solve explicitly for
the conditions under which eradication is socially optimal, let alone the
optimal path to eradication. Indeed, in their model, eradication can only be
achieved in the limit as time goes to infinity (their analysis only compares
steady states).

Our paper is closer in approach to Goldman and Lightwood (2002). In a
model in which people are either susceptible or infected (never immune),
and in which the control is treatment rather than vaccination, Goldman
and Lightwood derive the conditions under which asymptotic eradication
is an optimal steady state. Moreover, they show that the initial infection
rate determines whether asymptotic eradication is optimal – a result also
demonstrated here (see section 4.3). However, there is no dividend to erad-
ication in the Goldman–Lightwood framework, the focus of our inquiry.

1 Of course, eradication could also be globally inefficient or it could be in every
country’s interests to eliminate the disease unilaterally. Neither of these possible
cases is economically interesting. In a related paper, Cooper (1989) examines
international cooperation in the control of cholera and the eradication of smallpox,
arguing that successful cooperation hinges on whether knowledge of cause and
effect exists. Our analysis, and the literature summarized in this section, presumes
such knowledge.

2 Indeed, we shall show that, for the case of linear costs – the case actually studied
by Barrett (2003) – it will be optimal to eradicate instantaneously, if allowed by
the feasibility constraints.

3 Olson and Roy (2003) develop cost–benefit rules for eradicating an invasive
species – a situation that does not involve any health-related interactions with
humans.
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Such a dividend can only be realized if eradication is achieved in finite time.
As noted by Gersovitz (2003), ‘An important question would be whether
settling for an internal steady state with positive infection is dominated by
a push for eradication in finite time.’ We address this question directly.4

The dividend from eradication can be enormous. According to Fenner
et al. (1988), the annual global benefit of smallpox eradication was about
$1.35 billion (using 1967 as a base year), while the total cost of eliminating
smallpox from the remaining endemic countries was about $300 million.
Assuming a 3 per cent discount rate, the benefit–cost ratio for smallpox
eradication was thus about 150:1. Taking into account only the incremental
costs needed to eliminate smallpox from the remaining endemic countries
($100 million), the benefit–cost ratio was even higher: about 450:1. Smallpox
eradication was thus an astonishingly good deal for the world. It was
also a good deal for individual countries. The United States saved about
$150 million annually because of smallpox eradication (Fenner et al., 1988),
mainly in the form of avoided vaccination costs. Again, using a 3 per cent
discount rate, the eradication dividend to the United States alone was about
$5 billion, a small fraction of the (essentially, one-time) cost of eradication.
Developing countries also gained hugely from the eradication effort. India,
for example, gained more than the US (Fenner et al., 1988).

Smallpox was the ideal candidate for eradication: there were no long-term
carriers; smallpox survivors were immune for life; infected persons were
easily detected; and only persons showing symptoms (probably) could
transmit the disease. Moreover, the disease was only mildly infectious
(relative to some other diseases; that is, the disease could be eliminated by
mass vaccinating ‘only’ 80 per cent of a population), and the vaccine was
relatively inexpensive (a single injection offered effective immunization).
Being a live vaccine, immunization was risky, so that the rich countries had
a strong incentive to eradicate. Poor countries also had a strong incentive
to eradicate, for while vaccination levels were low in most poor countries
before the eradication effort got underway, smallpox killed around a third
of all infected individuals.5

Unfortunately, the eradication of other diseases is likely to be more
difficult and less attractive in benefit–cost terms. For example, though
measles kills about three-quarters of a million children every year in
developing countries, in rich countries, where the disease has been
eliminated, the measles vaccine is given as part of a combined vaccine
(measles–mumps–rubella or MMR) and the savings from eliminating just
the measles component may be relatively small.6 As well, measles is more

4 Related papers on the economics of vaccination, but not eradication, include Brito
et al. (1991), Geoffard and Philipson (1996), Francis (1997), Gersovitz (2003), and
Gersovitz and Hammer (2004).

5 Despite these advantages, the effort to eradicate smallpox, and so to supply a
global public good, came close to failing for lack of resources. See Barrett (2006)
for an analysis.

6 Estimates of the savings from measles eradication vary. According to Miller et al.
(1998), the net benefits of measles eradication to the US would be between $500
million and $4 billion (1997 dollars). Savings estimates by Carabin and Edmunds
(2003) are in the range of $10 million and $623 million for a selection of rich
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infectious than smallpox, and eradication would require vaccination (in
multiple doses) of a very high proportion of the population (probably 95
per cent or greater) – a problem if marginal costs increased in the vaccination
rate. As explained in section 7, polio eradication also faces huge technical
and biological challenges, even though the current campaign has already
eliminated the disease from most parts of the world.

The threat of bioterrorism further weakens the economic case for
eradication. Countries may now feel the need to continue to vaccinate,
even if at a relatively low level (Carabin and Edmunds, 2003, for example,
assume that vaccination for measles would be reduced but not stopped
even after eradication), or to stockpile vaccine, and prepare for emergency
distribution in the event of an attack (the approach being by a number
of countries, including the United States, with respect to smallpox). These
kinds of measures shrink the eradication dividend, while probably having
no effect on the economics of control.7

In summary, the economic calculus for eradication of the most favorable
remaining candidate diseases is likely to be more finely balanced than for
smallpox – meaning that the framework used for benefit–cost analysis needs
to be more carefully specified. Our paper is a contribution to this effort. We
derive a cost–benefit rule for optimal eradication, and demonstrate its utility
by applying it to the current global initiative to eradicate polio.

Our paper progresses as follows. Section 2 develops the epidemiological
model that describes how eradication might be achieved in finite time, and
section 3 specifies our economic model of eradication. Section 4 solves for
the optimal eradication policy, and sections 5 and 6 analyze special cases.
Section 7 applies our framework to the current effort to eradicate polio.
Section 8 summarizes our main results.

2. Epidemiology
We take as our starting point Anderson and May’s (1991) model of the
dynamics of immunization, a standard in the epidemiology literature8

ẋ(t) = m − [m + λ(t)]x(t) − p(t), (1)

λ̇(t) = (v + m)λ(t)(R0x(t) − 1), (2)

countries (Canada, Denmark, Finland, the Netherlands, Spain, Sweden, and the
United Kingdom). One reason for the lower savings estimated by Carabin and
Edmunds (2003) is the assumption that vaccination at some level would need to
continue even after the wild virus had been eradicated because of the threat of
bioterrorism – an issue discussed in the next paragraph.

7 The rich countries would presumably be the target of a bioterrorist attack, but the
rich countries are likely to eliminate candidate diseases for eradication unilaterally,
making further measures to defend against a bioterrorist attack unnecessary.

8 See, in particular, equations (7.1) and (7.2) in Anderson and May (1991: 145). Note
that our equations (1) and (2) differ from these equations in two ways. First, our
equation (2) corrects for a typo in Anderson and May’s equation (7.2), which
should be the same as their equation (6.6) on p. 123. Second, Anderson and May’s
equation (7.1) assumes that only newborns are vaccinated. We assume that any
and all susceptible persons may be vaccinated, not just newborns.
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where x(t) is the fraction of the population that is susceptible, λ(t) is the force
of infection (the rate at which susceptible individuals become infected), and
p(t) represents the overall rate of vaccination (only susceptible individuals
are vaccinated). This dynamical system assumes that population is constant
(births equal deaths; we normalize by setting population equal to one),
with m representing both the birth and mortality rate. It also assumes (as
is customary in epidemiological modeling) that the disease is non-lethal.
The parameter v represents the rate at which infected individuals become
immune. Finally, R0 is the basic reproductive rate of the microparasite (for
a disease to spread, it is essential that R0 > 1). A brief explanation is given
in Appendix A.

For our purposes, this system of differential equations poses a problem:
If the system (1)–(2) begins at λ(t) > 0, it can only converge to λ(t) = 0 as
t → ∞. This wouldn’t matter if we only needed to study steady states.
However, as noted in the introduction, the reason for pursuing a policy
of eradication, rather than of high control, is to reap the benefits of not
having to vaccinate post-eradication. If the aim is to study the optimality of
eradication, the dynamics must permit eradication in finite time.9

Just how to model this is not so obvious. To Gersovitz (2003), moving
‘away from the no-eradication property of the model would require a more
cumbersome model of finite lives’. Our approach is much simpler. We solve
for the steady state, λ∞ = m(R0 − 1) − pR0, and assume that the dynamics
can be represented by an adjustment equation

λ̇(t) = σ [m(R0 − 1) − p(t)R0 − λ(t)] (3)

for λ(t) > 0, where σ is the speed of adjustment parameter.10 Conveniently,
(3) captures (almost) everything we need in a single equation. For our
purposes, x(t) is not of direct importance. x(t) is only important insofar as
it affects λ(t), and this effect is reflected in (3). Even more importantly, (3)
allows eradication to be achieved in finite time. It therefore allows us to
evaluate the conditions under which eradication will be optimal.

The differences between equations (1)–(2) and (3) need to be underlined.
We know (1)–(2) is inappropriate for evaluating eradication. But (3) also
behaves differently than (1)–(2) when λ(t) is high. Equations (1)–(2) imply
that a small increase in the vaccination rate will reduce the force of infection
by more when λ is high than when λ is low (for a given value of x).
In epidemiological terms, the number of follow-on infections prevented
by a single vaccination increases with the force of infection. Our use
of equation (3) fixes this effect. In economic terms, equation (3) makes
the marginal benefit of vaccination independent of the vaccination level.
When comparing a policy of high control versus eradication, use of (3)
will not distort matters very much. The simplification matters more when
comparing a policy of low control versus eradication. This is especially
important for our linear model, presented in section 5, and we discuss

9 We need hardly add that smallpox was eradicated, and in a period of just ten years.
Empirically, (1)–(2) is invalid, at least for small λ.

10 In Appendix A we discuss how the size of σ relates to the parameters in the
original Anderson and May (1991) model.
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this assumption again in this section.11 However, it is as well to note that
eradication will not normally be contemplated unless and until λ(t) is low.
When the goal of eradicating smallpox was announced, the disease had
already been eliminated in all industrialized countries; it remained endemic
only in 59 developing countries. Similarly, the poliomyelitis eradication
initiative was only launched after the disease had been eliminated in all of
the Americas in addition to all industrialized countries. The main reason for
this is that eradication must be demonstrated to be feasible before a policy
to eradicate can be contemplated.

Before presenting our economic model, one further adjustment is
required. Our main interest lies not in λ(t) but in the proportion of the
population that is infected under a control program. Denote this proportion
y(t). Assuming homogenous mixing, λ(t) will be proportional to y(t)
(Anderson and May, 1991). In particular, we can write λ(t) = βy(t) where β

is a transmission parameter. We can thus rewrite (3) as

ẏ(t) = σ [R̃0(K − p(t)) − y(t)], (4)

where R̃0 ≡ R0/β and K ≡ m(1 − 1
R0

). Note that, since R0 > 1 by assumption,
K must be strictly positive. Note as well that K is proportional to (1 − 1/R0):
a familiar term in the epidemiology literature; the critical proportion of the
population that must be immunized in order for the disease to be eradicated
(Anderson and May, 1991: 87).

3. The optimization problem
The socially efficient vaccination program maximizes the objective
function

W =
T∫

0

e−rt[−c(p(t)) − by(t)] dt, (5)

where by(t) is the social cost at time t of having a proportion y(t) of the
population infected (b, a parameter, is thus the per unit social cost of
infection), c(p(t)) is the social cost at time t of vaccinating susceptible persons
at rate p(t) per unit of time (e.g., per year), r is the rate of time discount, and
T is the length of the vaccination program, which may be finite or infinite.
If the disease is eradicated, T will be finite, and the integral of social welfare
from T to infinity will be zero and so can be ignored.

We assume that c(0) = 0 and that c(p) is strictly increasing and strictly
convex. In sections 5 and 6 we consider special cases of linear and quadratic
costs, respectively. Note that c(p) includes more than just the costs of vaccine
and of administering the vaccine. It also includes the costs of any side
effects. The latter cost can be significant. For every million people given the

11 We note here, however, that our approach can be shown to be robust even in this
context. Assuming constant marginal costs, as in our linear model, but using (1)–
(2) while assuming that eradication is achieved only when λ(t) falls below some
critical level, ε, Kenea Mideksa (2005) obtains results very similar to our own, even
when ε is very small.
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smallpox vaccine, for example, a few will die and many others will suffer
severe reactions. Similarly, and as explained in section 7, the oral polio
vaccine can cause paralysis in a very small percentage of cases. Worse, it
can circulate in the community, infecting other susceptible persons. When
a disease is prevalent, these associated effects are little noticed, but when
control becomes very high, they become more prominent.

The government’s problem is to maximize (5) subject to (4) and the
additional constraints

p(t) ≥ 0, (6)

y(t) ≥ 0, (7)

y(0) > 0 given, (8)

and

y(T) = 0. (9)

Except where stated otherwise, we shall assume y(0) = R̃0 K . This is the
steady state stock of infections when p = 0 (see equation (4)).

Equation (9) is of particular interest. It says that, once the disease is
eradicated, there will be no more infections – and, therefore, no further need
to vaccinate. The time T at which eradication is achieved is endogenous,
determined as part of the solution to the optimization problem. As noted
before, T may be infinite, implying that it is not optimal to eradicate
the disease. In our formal mathematical treatment, however, it will prove
convenient to assume that T is finite, i.e. that the choice of T is restricted to
T∈ [0, τ ], where τ is very large (e.g., 5 million years). If we find that T = τ

is optimal, this can be interpreted as saying that T is infinite.

4. The optimal policy
Taking the shadow price α(t) associated with (4) to be positive, the current
value Hamiltonian may be written as

H = −c(p(t)) − by(t) − α(t)σ [R̃0(K − p(t)) − y(t)]. (10)

Along the optimal program, the shadow price α(t) obeys the following
differential equation (dropping the time argument when this causes no
confusion)

α̇ = rα + ∂ H
∂y

= (r + σ )α − b. (11)

At any point in time, p(t) maximizes the Hamiltonian. For p(t) positive,
maximization requires

c ′(p) = σ R̃0α. (12)

Along the optimal program, vaccination should be chosen at each instant in
time such that marginal cost equals marginal benefit – the latter being
equal to the shadow value on infections, α, times the change in the
number of infections attributable to a small change in the vaccination rate.
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Equation (12) defines an increasing function, p(α), for α ≥ c′(0)/σ R̃0. For
α ≤ c ′(0)/σ R̃0, the constraint p(α) = 0 applies.

From (4) and (12) we have

y = R̃0(K − p(α)) for ẏ = 0 (13)

and

α = b
r + σ

for α̇ = 0 (14)

In y − α space, the α̇ = 0 line is horizontal, whereas the ẏ = 0 line intersects
the a-axis at p(α) = K, decreases until α = c′(0)/σ R̃0, and then becomes
vertical at y = R̃0 K . Denote the intercept of the ẏ = 0 line α0. Setting p = K,
(12) gives

α0 = c ′(K )
σ R̃0

. (15)

There are two qualitatively different cases to consider. In the first, the α̇ = 0
line lies above the ẏ = 0 line. In the second, these lines intersect in the
interior. When solving both cases, we start by analyzing the optimal solution
assuming that T is given. Later we solve for the optimal value of T.

4.1 Case 1
We first consider the case where the α̇ = 0 line lies above the ẏ = 0 line,
i.e. where a, defined by (14), is higher than a0, defined by (15). Rearranging
gives

bσ R̃0

r + σ
≥ c ′(K ). (16)

Before proceeding with the mathematics, consider the economic
implications of this condition. Begin at t = 0 with y > 0 given. Now, set
p = K and hold the vaccination rate at this level indefinitely. The marginal
cost of this vaccination policy (at every moment in time) is given by the
right-hand side of (16). From (4) we know that pursuit of this policy implies
y → 0 as t → τ (recall that τ is very, very large). Equation (4) also tells us that
the instantaneous effect of the policy is to reduce the number of infections
by σ R̃0. Each infection saved yields a social benefit, b, and so the marginal,
instantaneous benefit of this vaccination policy is bσ R̃0. The full marginal
benefit is larger, however, because the effect of vaccination is long lasting.
From (4) we know that, when p = K, ẏ/y = −σ . Hence, the infections saved
by this policy (at each instant in time) degrade at constant rate σ . Of course,
the economic benefit is also discounted (at rate r). The marginal benefit of
following this policy at each instant in time is thus

∫ T
0 bσ R̃0e−(r+σ )tdt. As

already noted, pursuit of this policy eradicates the disease only in the limit
(that is, the disease is not eradicated). Solving the integral (for T → τ , which
is close to ∞) yields the LHS of (16): the present value marginal benefit of
vaccination for this policy.

Inequality (16) is a kind of reference condition. For consider a small
deviation in the policy described above. Suppose in particular that at some
date the vaccination rate is increased very slightly above p = K for a very
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Figure 1. Eradication in finite time

short period of time and then set equal to K again. The cost of this one-
time deviation will be approximately equal to the RHS of (16). The benefit,
however, will strictly exceed the LHS of (16) because this tiny, one-time
increase in vaccination will cause the disease to be eradicated in finite time.
Hence, (16) is only a sufficient condition for eradication to be optimal (see
Appendix B). It is not necessary.12

Case 1 is illustrated in figure 1. The optimal development of y(t) and α(t)
(and thus of p(t)) depends on the exogenously given value of T. We have
drawn trajectories for three different values of T. For each trajectory we
have assumed that y(0) = R̃0 K (this gives the steady state value of y when
p = 0). The top trajectory in figure 1 is for a ‘small’ T, denoted T1. Along
this trajectory, p(t) increases over time. The middle trajectory is for a value
of T which implies that p(t) must be constant over time. Finally, the bottom
trajectory is for a ‘large’ T, denoted T2. Along this trajectory, p(t) declines
over time. For y(0) given, as the value of T increases, the terminal value
of the shadow price, α(T), falls. It approaches α0 as T approaches infinity
(strictly speaking, τ ).

As shown in Appendix B, α∗ > α0. So, if we can find a trajectory for (y(t),
α(t)) satisfying the differential equations (4) and (11), starting at (y(0), α(0))
where y(0) is given by (8) and ending at (0, α∗) at some time point T, then
this T, denoted T∗, is the optimal end point. The optimal trajectory in figure
1 is thus the one that terminates at α(T) = α∗. All three of the paths shown
in figure 1 are potential candidates. Which trajectory is optimal depends on
the value of α∗, and thus on the factors that determine α∗ (see Appendix B).

12 Intuitively, eradication implies that the infections saved from a policy deviation
do not degrade. Hence, it might seem that a necessary condition for eradication
to be optimal should be given by (16) but with σ removed from the denominator.
We are unable to prove this for the general model, but our analyses in sections 5
and 6 of two special cases confirm this intuition.
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Figure 2. Vaccination increasing over time prior to eradication

Figure 3. Positive vaccination forever

4.2 Case 2
Assume now that the inequality in (16) is reversed. Since (16) is a sufficient
condition for eradication to be optimal, we should expect that, for Case 2,
eradication may or may not be optimal. We confirm this intuition below.

Case 2 is illustrated in figures 2 and 3. Figure 2 assumes that there exists
a trajectory for (y(t), α(t)), starting at (y(0), α(0)), where y(0) = R̃0 K and
α(0) > b/(r + σ ), and ending at (0, α∗) at t = T∗. This case is thus similar to
Case 1. The only difference is that we can now be sure that p(t) increases
over time.

It is also possible that all trajectories starting at y(0) = R̃0 K and α(0) >

b/(r + σ ) reach y = 0 at a value of α that exceeds α∗. Under these conditions,
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no trajectory of the type illustrated in figure 2 will exist, and eradication in
finite time will not be optimal.

However, there will always exist an unstable stationary point (y∞,
b/(r+σ )), where

y∞ = R̃0

[
K − p

(
b

r + σ

)]
. (17)

The trajectory starting at this point and moving in a northwest direction
intersects the α-axis at a point labeled α∞ in figure 3. If a trajectory of
the type drawn in figure 2 does not exist, we have α∞ >α∗. Under these
conditions, and taking y(0) = R̃0 K , we have α(T) > α∞ > α∗ for all T ∈ [0, τ ].
This means that p(T) > p∗ for all T ∈ [0, τ ]. From Appendix B it follows that
H(T) > 0 for all T ∈ [0, τ ]. The optimal end point, therefore, is τ (in practical
terms, infinity).13 The optimal solution is to set p(t) = b/(r + σ )∀t, arriving
at y∞ asymptotically.14 That is, the disease is controlled but not eradicated.
It is clear from figure 3 that p will be smaller, and y∞ closer to y(0) = R̃0 K ,
the smaller is b/(r + σ ) and the larger is c′(0)/σ R̃0. If the marginal cost
of vaccination exceeds the social marginal benefit when p = 0 – that is, if
c ′(0) > bσ R̃0/(r + σ ) – then the optimal policy will be to set p = 0 always
(technically, before τ is reached), unless eradication in finite time is optimal.

To sum up, we have thus far established a sufficient condition for
eradication to be optimal, and we have characterized the other possible
qualitative solutions. To derive more specific results – in particular, a
necessary and sufficient condition for eradication to be optimal – we will
have to work with explicit cost functions. We turn to this task in sections 5–
6, but first it will prove helpful to consider the effect of the initial conditions
on the results developed thus far.

4.3 Initial conditions
To this point we have assumed that the starting value of y is given by y’s
stationary value when p = 0 – that is, R̃0 K . What would be the optimal
policy at an early stage of a new disease when the initial infection rate is
substantially below R̃0 K ?

Plainly, if eradication were optimal when y(0) = R̃0 K , then it will also be
optimal when y(0) < R̃0 K . Indeed, the optimal program will require that
vaccination proceed along the same optimal trajectory as derived above
(that is, the optimal trajectory corresponding to the starting value y(0) =
R̃0 K ). The only difference is that, since the starting value of y is different, the
starting value of p must also be different. Our analysis thus applies equally
well to a situation in which a disease has been controlled previously as to a
situation in which a disease has not been controlled at all.

The initial conditions only really matter when eradication would not be
optimal for y(0) = R̃0 K . If y(0) is small enough (relative to y∞), then it can
be shown that eradication will be optimal. This possibility is illustrated in

13 See e.g. Theorem 1 in Seierstad (1988).
14 Strictly speaking, since τ is finite, the trajectory lies infinitesimally above the

trajectory going from (R̃0 K , b/(r + σ )) to (0, α∞) via (α∞, b/(r+σ )), lying close to
the latter point most of the time.
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Figure 4. Eradication only if the initial rate of infection is sufficiently low

figure 4, which differs from figure 3 only with respect to the initial condition.
For the starting values (y(0), α(0)) in figure 4, the trajectory reaches (0, α∗),
and so it is optimal to eradicate the disease at some time T∗ < τ . The reason
that eradication will be optimal when the initial rate of infection is low is
not that fewer people need to be vaccinated at any given time.15 The reason
is that people need be vaccinated for a shorter period of time.

Initial conditions are important in two different situations. The first
concerns an emerging infectious disease. SARS (severe acute respiratory
syndrome), we now know, emerged in late 2002 in China. In March 2003, the
World Health Organization issued a global alert, and countries immediately
began taking measures to control the disease. Some scientists argued that
this was not enough, however, that the opportunity to eradicate the disease
should be seized before SARS had a chance to become established. As Burke
(2003) put it, ‘epidemic-control efforts should not simply be maintained, but
doubled, and redoubled again’. The epidemiological rationale for moving
quickly was that there existed but a short window during which SARS
could be readily distinguished from influenza. Wait too long, or act too

15 In our model, control is achieved by means of mass vaccination. Only in a model
with heterogeneous mixing would a strategy like ‘ring vaccination’ work, making
it possible to isolate infected persons and to vaccinate only those susceptible
persons who came into contact with infected individuals before quarantine. Boily
et al. (2002) provide a related analysis of HIV epidemic phases. They show that,
in an early phase of an HIV epidemic, robust intervention targeted at a high-risk
group (a situation, therefore, involving heterogeneous mixing) can (theoretically)
eradicate the disease, whereas efforts spent protecting the broader population
require indefinite intervention. Also somewhat related to this point, Olson and
Roy (2003) show that the economics of eradicating an invasive species may depend
on the scale of the original invasion.
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passively, and eradication might cease to be feasible. This paper points to a
further rationale: While a short, sharp response may be optimal at the early
stage of the disease, a sustained effort at eradication may not be optimal
after the disease has become established.16

The second situation concerns endemic diseases. As noted previously,
eradication of these diseases never proceeds unless and until eradication
can be shown to be feasible. This means that global incidence will already
be reduced to a relatively low level before an eradication goal will be
contemplated. Our analysis indicates that, the greater is the number of
countries that eliminate a disease unilaterally, the more attractive will be
the economics of eradication.

5. The special case of a linear cost function
To get sharper results, it will prove useful to consider the case of a linear
cost function. Specifically, let

c(p) = cp, (18)

where c is a positive parameter. To get a mathematically meaningful solution
to our maximization problem, we assume instead of (6) that

p(t) ∈ [0, P], (19)

where P is some large value (certainly large enough to make eradication
possible). We shall in particular consider the limiting case in which P → ∞.

Instead of (12) we now get

p(t) = 0 for α(t) <
c

σ R̃ 0
,

p(t) = P for α(t) >
c

σ R̃0
. (20)

The optimal vaccination program thus reaches the optimal steady state
infection rate as quickly as possible. This result is not very surprising; we
should expect to obtain a most rapid approach solution for the linear model.
What is more surprising, however, is that, for the linear model, there are
only two optimal steady states. It is optimal either not to vaccinate at all
or to eradicate. A policy of disease control (short of eradication) is never
optimal.

What is the reason for this result? Recall from section 2 that our
simplification of the dynamics implies a constant marginal benefit of
vaccination for any level of control short of eradication. With the linear
model, marginal costs are also constant. Hence, if it is better to vaccinate
many persons than one fewer, then it must also be better to vaccinate
one person than none. We know that eradication is better than a policy
of vaccinating many persons. For the linear model, therefore, eradication
must also be better than a policy of vaccinating even one person. However,

16 As well, for SARS the total effort required to isolate all infected individuals would
be lower at any given time at an early stage of the disease than after the disease
has become established. For a discussion of whether SARS is now eradicated, see
Enserink (2003).
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Figure 5. Linear cost function and “high” costs, implying no vaccination

eradication need not be welfare superior to a policy of zero control. Hence,
with the linear model, only one of two extreme outcomes will be optimal:
eradication or no control. It is important to emphasize that this result follows
not only from the assumption about costs, but also from the way in which
we have represented the dynamics of infection, as noted in section 2. Even
with linear costs, positive vaccination short of eradication may be optimal
if the number of follow-on infections prevented by each vaccination were
decreasing in the vaccination rate.

When a0 < b/(r+s), the linear model yields an outcome qualitatively
identical to the general model: eradication is optimal. The only noteworthy
difference is that, for the linear model, eradication is achieved immediately
for the limiting case of P → ∞.

The more interesting case, drawn in figure 5, arises when a◦ > b/(r+σ ).
As was shown for the general case (see figure 3), we now have an unstable
stationary point (y∞, b/(r+σ )). The difference is that, for the linear model,
y∞ will always equal y(0) = R0 K ; partial control is never optimal. The tra-
jectory rising from this point intersects the α-axis at α∞. Assume first that α∞
< α∗ (we have not illustrated this case). Then there will exist a trajectory for
(y(t), α(t)) starting at (y(0), α(0)), where y(0) = R̃0 K and α(0) > b/(r+σ ), and
ending at (0, α∗) at t = T∗. This solution is akin to the general case shown in
figure 2. For the linear model, p(t) = P for all t∈ [0, T∗]. For the case illustrated
in figure 5, α∞ >α∗. Given y(0) = R̃0 K , α(T) >α∞ > α∗ for all T ∈ [0, τ ]. It
is easily verified (from equations (B1) and (20)) that this implies H(T) > 0
for all T ∈ [0, τ ]. The optimal end point is therefore τ – in practical terms,
infinity. 17 The optimal policy is never to vaccinate (strictly speaking, when
τ is finite, we should have p(t) = 0 until just before τ , after which p(t) = P).

17 See Theorem 1 in Seierstad (1988).
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The limiting case of P → ∞ yields a particularly useful result (the proof
is given in Appendix C): For the linear model, and taking P → ∞, eradication
is optimal if and only if

c < bσ R̃0/r . (21)

Moreover, if condition (21) holds, and if a policy of setting P → ∞ is feasible, then
eradication should be achieved instantaneously.18

6. The special case of a quadratic cost function
For the general model, three qualitatively different outcomes may be
optimal: no vaccination, control short of eradication, and eradication. With
a linear cost function, only the two extreme outcomes of no vaccination and
eradication may be optimal. For the quadratic cost function considered in
this section (in which marginal cost is near zero for the first vaccination),
it will be optimal either to eradicate the disease or to control it at some
positive level; the outcome of no vaccination will not be optimal. Our aim
here is thus to derive conditions under which it will be optimal to eradicate
rather than to control a disease.

The cost function is

c(p) = g
2

p2, (22)

where g > 0, giving a marginal cost c’(p) = gp. For the general model, we
were only able to derive a sufficient condition for eradication to be optimal.
For this specific quadratic function, however, we can give a necessary
and sufficient condition. Appendix D derives explicit solutions for the
differential equations (4) and (11), and solves for the conditions under which
an optimal trajectory leading to (0, α∗) exists. These calculations imply that:
For the quadratic model, eradication is optimal if and only if

gK <
bσ R̃0

r
. (23)

This condition is very similar to the condition for eradication for the case of
a constant unit cost (see section 5). The only difference is that the relevant
vaccination cost now is not the unit cost (constant for all vaccination rates),
but the marginal cost at the minimum vaccination level necessary to achieve
eradication (i.e., K; see (4)).

It is significant that the optimality condition for eradication should
depend on this marginal cost, because the literature on vaccination routinely
assumes (implicitly, at least) constant average costs. When R0 is large, K will
be large: a sizable proportion of the population must be vaccinated in order
to reduce incidence to zero. Expanding coverage, however, is costly. It means
reaching people in remote areas, the homeless, people with compromised

18 It is interesting to compare this result with the corresponding condition given in
Barrett (2003). Setting n = α = 1 and pu = 0 in Barrett’s equation (7) gives the
result that eradication is optimal if b R0/r ≥ c. This is equivalent to the condition
given above once we set σ = β = 1. In Barrett’s (2003) model pu need not equal
zero because the social benefit of vaccination is non-linear in the vaccination rate.

https://doi.org/10.1017/S1355770X07003816 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X07003816


642 Scott Barrett and Michael Hoel

immune systems, and people with religious objections to vaccination. The
marginal cost of eradication can be substantially greater than the average
cost.

7. Application to polio eradication
Our aim has been to characterize the optimal disease eradication program.
In the course of doing so we have derived cost–benefit rules for eradication.
In this section we apply these to the current effort to eradicate poliomyelitis.

The global polio eradication initiative – according to the World Health
Organization (2001: 1), ‘the largest public health initiative in history’ –
was launched in 1988 and was expected to have succeeded by now.
Problems encountered have slowed the progress of the initiative, and even if
transmission of wild polioviruses were to stop soon, it would take another
three years before the eradication effort could be certified. Even then, a
post-certification effort would be required. We describe this later in this
section.

Two cost–benefit studies (Bart et al., 1996; Khan and Ehreth, 2003) have
shown that polio eradication is economically attractive. However, both of
these studies are deficient in a number of respects (Miller et al., 2006).
Perhaps most importantly, neither of these studies compared eradication to
the alternative of optimal control. That is an advantage of our framework.

Two vaccines are used today – the oral live-attenuated polio vaccine
(OPV, developed by Albert Sabin) and the inactivated polio vaccine (IPV,
developed by Jonas Salk). Both have positive and negative features.

OPV is inexpensive and easy to administer; it stimulates local immunity
in the intestines, preventing spread of the disease; and when the vaccine
virus is shed in areas with poor hygiene and sanitation, it immunizes
the community. OPV also has one disadvantage: in a very small number
of cases, the vaccine can cause paralysis, either in vaccinated persons
(vaccine-associated paralytic polio or VAPP) or in susceptible individuals
in the community (circulating vaccine-derived polioviruses or cVDPV).
VAPP is especially problematic when vaccination coverage is high, for
then the risk of VAPP can exceed the risk of infection by the wild virus.
cVDPV, by contrast, is especially problematic when vaccination stops, for
then susceptible persons are vulnerable to infection by cVDPV. Through
mid-2005, cases of cVDPV have sparked polio outbreaks in six countries
(Aylward et al., 2005).

IPV is more expensive than OPV, does not prevent transmission by
vaccinated individuals, and does not spread immunity throughout the
community. However, IPV is a killed poliovirus, and so cannot cause polio
(VAPP). After polio had been eliminated from the United States, continued
use of OPV caused about 10 cases of VAPP a year – a small number, perhaps,
given the extent of vaccination coverage, but a sufficient risk to impel the
US recently to switch from OPV to IPV, despite the higher cost.19 Today, IPV

19 There are about 250–500 cases of VAPP worldwide every year (WHO, 2003: 16).
For a cost–benefit analysis of the decision by the US to discontinue OPV, see Miller
et al. (1996).
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is the vaccine of choice in rich countries, whereas poor countries continue
to use OPV.

A number of strategies have been contemplated for the polio endgame –
what to do after transmission of wild polioviruses has stopped and been
certified (Kew et al., 2005). Rich countries have essentially decided to
continue with IPV vaccination indefinitely. This is partly because of the risk
of a bioterrorist release, but it is also because of the risks associated with
the policy choices available to poor countries (described below). Given this
decision, rich countries will not benefit substantially from polio eradication.
The focus of our analysis is therefore on poor countries.

How can poor countries proceed from here? There are a few possibilities.
One is to continue high rates of OPV vaccination indefinitely. This would
reduce the risk of infection by cVDPV. It would also reduce the risk of
infection by persons with primary immunodeficiency syndromes – people
who can shed the virus for years (23 such persons, known as iVDPVs
have so far been identified worldwide; Kew et al., 2005: 606). However, this
approach would result in an increase in VAPP cases – and, of course, a
high economic cost of continuing to vaccinate for a disease that has been
‘eradicated’. It is unlikely that such a program could be sustained. A second
possibility would be for the poor countries to follow the rich and switch
to indefinite IPV vaccination. This would eliminate VAPP cases but would
be much more costly. A third possibility would be for poor countries to
choose independently when to stop using OPV. This, however, would pose
huge risks of cVDPVs spreading in the countries that stop vaccination
early. The final option considered here is for all countries still using OPV
to initiate a coordinated pulse campaign for mass vaccination, and then to
stop vaccination at the same time. This would reduce the risk of cVDPVs
spreading, but it would not eliminate that risk. The risk of infection by
iVDPVs would also remain, though so far no chronic shedders have been
identified as living in poor countries. Finally, there is always the risk of
polioviruses being introduced from samples held in medical laboratories, or
released by terrorists (polioviruses can be constructed from raw materials,
so that even safe containment cannot be sure to avoid a future release).

It is this last strategy that has been embraced by the World Health
Organization. It has the best chance of actually achieving eradication, but is
still risky. It may not even be politically achievable. If just one country
refuses to stop using OPV, the entire plan would have to be shelved.
And countries would also need to pledge not to use OPV in the event
of an outbreak occurring. The WHO’s plan is to build a large stockpile
of monovalent OPV (vaccines that can respond to individual types of
polio; there are three polioviruses), and to draw from this to suppress any
outbreaks. The stockpile must be large enough to supply an insurance
policy to all countries. Since OPV production will cease after eradication
is certified, the stockpile must permit mass vaccination for a period of
time long enough to allow OPV production to return to capacity. Finally,
of course, surveillance would need to be maintained ‘for the foreseeable
future’ (Kew et al., 2005: 622). Poliomyelitis is not an easy virus to detect
in a population, not least because it causes paralysis in only about one in
200 cases. In poor countries surveillance problems are magnified. As an
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illustration, polio was recently discovered in Sudan, more than three years
after the last case had been reported.

Our model cannot accommodate all of these complexities. It can,
however, uncover the basic economics. We turn to this now.

To know whether polio eradication is optimal, we need to ask if conditions
like (21) and (23) hold for polio. Let us see. Begin by considering the RHS
of these equations, since they are identical. From Appendix A (equation
(A.7)), we know that σ R̃0 can be approximated by m(R0 − 1)/(m + v). For
polio, R0 ≈ 6 (Anderson and May, 1991: 70). The infectious period for polio
lasts about 14–20 days (Anderson and May, 1991: 31), and the parameter v
is approximately equal to the inverse of this duration (Anderson and May,
1991: 125).20 Assuming that the duration of infection is 20 days, and taking
time units to be years, implies that v ≈ 18.25. Finally, we take it that m = 0.02
for poor countries, though our results will not be sensitive to this value.21

The parameter b represents the per person cost of infection, for the
infections acquired in a given year. Estimates are available of the lifetime
costs of paralysis due to polio (call this B), but these need to be adjusted for
two reasons. First, our model assumes that losses due to infection apply only
to the infectious period (about 20 days), and yet paralysis is long lasting.
Second, polio results in paralysis only in about one in 200 infections. Let n
denote the number of paralytic cases a year. The cost of polio infections is
then Bn. In our model, this is given by by. Hence we have Bn = by. Let N
denote the total number of infections in a year. Since our model assumes
that the cost of infection only applies to the infections period, we also have
N/v = y. Finally, n = N/200. Upon substituting in the relation Bn = by, we
get b = 0.09125B. For the moment, we shall not attach a value to B. Letting
the discount rate r be 3 per cent, the right-hand side of (21) and (23) reduces
to 0.0166B.

The left-hand side of conditions (21) and (23) represent the marginal
costs of vaccination. Unfortunately, data are available only for average
costs. In poor countries, vaccination involves a combination of routine
and supplemental vaccination. Both are needed to ensure suppression of
infection in a population. Sangrujee et al. (2004) assume three doses of OPV
in routine immunization and two in supplemental vaccination for a total
cost of $.95. Khan and Ehreth (2003) use higher values for costs per dose,
implying a marginal vaccination cost of $4.16. There is an additional cost
to OPV vaccination: the risk of VAPP. According to Kew et al. (2005: 603),
the probability of VAPP is about 1:750,000 for the first dose of OPV, falling
sharply with subsequent doses. We let the total probability of VAPP be
1:750,000 per person vaccinated and value this at B.

20 Our model does not include a latent period, but for polio this is short – about
1–3 days (Anderson and May, 1991: 31). This means that a person who acquires
poliovirus ceases to be infectious after about 15–23 days.

21 Population growth rates for 1990–2003 in the six remaining polio-endemic
countries range from 1.7 per cent (India) to 3.3 per cent (Niger); for all low income
countries, population grew 2.0 per cent over the same period; see World Bank
(2005).
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Eradication is thus in the interests of poor countries provided
0.0166B > $.95 + B/750,000 or B > $58 using the low estimates for dosage
costs and 0.0166B > $4.16 + B/750,000 or B > $250 using the high estimates
for dosage costs. The literature does not offer estimates for B (the welfare
cost of paralytic polio). Khan and Ehreth (2003: 703) only give estimates of
medical care costs, assumed to equal $420 in poor countries. Taking this to
be a lower bound on B, our analysis to this point leads to two conclusions.
First, the risk of VAPP is quantitatively irrelevant to the decision to eradicate
(as explained previously, it was relevant to the decision by rich countries
to switch to IPV). Second, if achieving eradication were not subject to
uncertainty, and did not require follow-up measures after transmission of
wild polioviruses had been stopped, then the economics of polio eradication
would be favorable, even for poor countries.22

We know, however, that polio eradication is uncertain. There is a good
chance that transmission of wild polioviruses can be interrupted – and in
our model that would suffice to eradicate the disease. But polio eradication
is more complicated than that. According to Aylward et al. (2005), there is
a 65–90 per cent chance of at least one outbreak of cVDPV within a year of
OPV cessation. The recent spread of polio from northern Nigeria between
2003 and 2005 hints at the consequences of such an outbreak. In this case,
against a background of high immunization, wild polio spread throughout
sub-Saharan Africa, the Arab Gulf, and Asia. After OPV vaccination has
ceased, the pool of susceptible persons will increase dramatically, making
it likely that an outbreak in the post-eradication phase could spread even
more rapidly. Of course, this is why a stockpile of vaccine is needed – to
insure against such a risk, and to provide the assurance needed for countries
to agree to stop OPV vaccination. But maintaining such a stockpile is costly,
and cannot eliminate the risk of eradication failing – considerations that
are not reflected in our cost–benefit calculations. There is also a longer-term
risk of reintroduction by iVDPVs, from an IPV production facility, and by
terrorists. And our analysis has also not accounted for the substantial fixed
costs of eradication: the need to identify and secure all laboratory specimens
of polio, to carry out surveillance indefinitely, and to maintain a stockpile
of vaccine and the capacity to produce in the future, should the need arise.

8. Conclusions
Our analysis applies to infectious diseases for which eradication is
epidemiologically feasible. At a minimum, these include global diseases
like polio, measles, and rubella (Knobler et al., 2002) and tropical diseases
like dracunculiasis. We have shown that eradication, when feasible, will
often be preferable to control – and will always be preferable to high rates

22 This is from the perspective of cost–benefit analysis. We note that money spent
on polio eradication has an opportunity cost. Most analyses of health policies
focus on cost-effectiveness (see Jamison et al., 2006). Our analysis is unable to
determine whether health outcomes would improve if the money spent on polio
eradication was spent instead on other health interventions. For discussions about
the opportunity costs of polio eradication, see Taylor et al. (1997) and Sutter and
Cochi (1997).
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of control. We have also shown that rapid progress towards eradication will
usually be preferred. Only when vaccination costs increase substantially
with the rate of vaccination should a slower course be followed.

An implication of our analysis is that, when rich countries are observed
to set a high level of control, this can be taken to be an economic indicator of
eradication being possibly optimal as well as being technically achievable.
Plainly, if a country would eliminate a disease even when eradication is
infeasible (because of the risk of the disease being imported), then it would
certainly eradicate the disease if eradication were feasible – eradication
would cost no more than elimination but offer a huge dividend in avoided
future vaccination costs. For the poor countries, the calculus is likely
to be different, suggesting that achievement of an eradication goal may
require financial transfers. A full, global cost–benefit analysis is needed to
determine whether eradication is a good deal overall, but our optimality
conditions provide a basis for making a first assessment of the economics
of eradication versus control. We have demonstrated this in an application
to the current effort to eradicate polio.

We end with a final observation. It is routine in health economics to
rely on average benefit and cost estimates. For most policy analysis, this is
probably satisfactory. For eradication, it is not. Eradication is an extreme
goal, and our paper shows that our analysis of an eradication program needs
to begin from the perspective of where the program will end. Eradication
only succeeds if the last carrier of the disease is isolated, and the persons
with whom he or she may have come into contact are vaccinated. It is fitting
that our optimality rule should also focus on this last case.
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Appendix A
The relationship between our dynamic specification and the specification
used by AM (Anderson and May, 1991):

At any point in time, the proportion of the population that is susceptible
is x(t), while the proportion that is infected is y(t). The remaining proportion
of the population, 1 − x(t) − y(t), is immune.

The interpretation of (1) is that the gross increase in the proportion of
susceptibles is equal to the birth rate (m), while the gross reduction in the
proportion of susceptibles is the sum of those who die naturally (mx(t)),
those who become infected (λ(t)x(t)), and those who become immune due
to vaccination (p(t)).

In addition to equation (1), AM assume that the proportion of infected
persons develops according to

ẏ(t) = λ(t)x(t) − (v + m)y(t). (A1)

The interpretation of (A1) is that those who have become infected either die
naturally (my(t)) or recover into the immune class (vy(t)).

The ‘force of infection’, λ(t), is the per capita rate of acquisition of
the infection among susceptibles. In other words, λ(t)�t represents the
probability that a given susceptible host will become infected in a small time
interval �t. AM argue that with homogenous mixing, λ(t) = βy(t), where
β is a transmission parameter that depends on various epidemiological,
environmental, and social factors. Inserting λ(t) = βy(t) into (A1) and
defining the basic reproductive rate of the microparasite (according to ‘Type
II survival’; see AM: 75) by

R0 = β

v + m
, (A2)

we can rewrite (A1) as (2).
The differential equations (1) and (2) have a stationary state (for a constant

p) given by xµ = 1/R0 and λ∞ = m(R0 − 1) − pR0. Starting at the stationary
state, consider the effect of a small increase ε in the proportion of infecteds,
and a corresponding reduction in the proportion of susceptibles. Since λ(t) =
βy(t), this implies that λ increases by βε. Immediately after such an increase,
it is straightforward to see from (2) that we get

λ̇ = (v + m)λ∞ R0(−ε). (A3)

With the differential equation (3) we would instead get

λ̇ = −σβε. (A4)

Using (A2), it is clear that these two differential equations give the same
value for λ̇ if and only if

σ = λ∞ = m(R0 − 1) − pR0. (A5)

The RHS of (A5) depends on p, so that the value of λ̇ following from AM
and from (3) cannot be the same for all p. In the numerical application in
section 7 we let σ be determined by (A5) with p = 0, i.e.

σ = m(R0 − 1). (A6)
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Using (A2) and the definition of R̃0 given at the end of section 2, it follows
that

σ R̃0 = m
m + v

(R0 − 1). (A7)

Appendix B
The eradication date when eradication is optimal:

The value of the Hamiltonian at time T, denoted H(T), follows from (9)
and (10)

H(T) = −c(p(T)) − α(T)σ R̃0[K − p(T)]. (B1)

If we can find a T∗ such that H(T) ≥ 0 for T ≤ T∗ and H(T) ≤ 0 for T ≥ T∗,
then this will be an optimal solution to our optimization problem when T
is endogenous.23

Differentiating (B1), remembering that p(α) maximizes H, and using the
envelope theorem, we obtain

H′(T) = σ R0[p(T) − K ]
∂α(T)
∂T

(B2)

Since y(t) approaches zero at t = T, it follows from (13) that the term in
square brackets in (B2) is positive. Moreover, α(T) is decreasing in T (see
the discussion in section 4.1). From (B2) it therefore follows that H’(T) <

0. Hence, if we can find a value T∗ giving H(T∗) = 0, then this will be an
optimal solution to our optimization problem.

Using the notation pT = p(α(T)), and inserting (12) into (B2), gives

H(T) = −c(pT ) + [pT − K ]c ′(pT ). (B3)

The RHS of (B3) is increasing in pT for pT > p∗. For pT > p∗, as is the case in
figure 3, we therefore must have H(T) > 0.

The value of pT (denoted p∗) which makes H(T) = 0 is given by

c ′(p∗) = c(p∗)
p∗ − K

. (B4)

p∗ thus depends on both the cost function and K (that is, on m and R0).
The corresponding value of α, denoted α∗, is given by (see (12))

α∗ = c ′(p∗)
σ R0

. (B5)

The value of α∗ depends on the factors determining p∗ and on σ . Since
p∗ > K, it follows from (15) and (B5) that α∗ > α◦. Since all paths leading to
α∗ > α◦ result in eradication, it follows that inequality (16) is a sufficient
condition for eradication to be optimal, confirming the economic intuition
given in the paper.

23 See, e.g., Theorem 1 in Seierstad (1988). Notice that the Hamiltonian given by (10)
with p(α) inserted is linear, and thus concave, in y.
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Appendix C
Proof that, for P → ∞, if c > bσ R̃0/r , then the optimal policy is never to
vaccinate, whereas if c < bσ R̃0/r , then eradication is optimal:

The ẏ = 0 line in figure 5 is now horizontal as it meets the vertical axis at
α0 = c/σ R̃0. Inserting H(T∗) = 0 into (B1) gives the value of α(T∗), i.e. α∗:

α∗ = c P
σ R̃0(P − K )

. (C1)

As in the general case, α∗ > a◦. We also have α∗ → α0 as P → ∞.
Recall from (20) that it will either be optimal to do nothing or to vaccinate

at the maximum feasible rate. The payoff from not vaccinating is

Wdo nothing =
∞∫

0

e−rt[−by(0)]dt = −b
r

y(0). (C2)

The payoff from immediate eradication (implying T → 0) is

Weradication =
T∫

0

e−rt[−c P]dt = c PT. (C3)

As P → ∞, the term including P will dominate the other terms in (4), so
that

ẏ(t) = −σ R̃0 P , (C4)

which implies

y(T) = y(0) − σ R̃0 PT (C5)

or, since y(T) = 0

PT = y(0)
σ R̃0

. (C6)

Substitution into (C3) gives

Weradication =
T∫

0

e−rt[−a P]dt = −c
y(0)
σ R̃0

. (C7)

A comparison of (C7) and (C2) proves the result.

Appendix D
Proof that, for the quadratic model, eradication is optimal if and only if
gK < bσ R̃0/r :

For the quadratic case, the function p(α) defined by (12) gives

p(t) = σ R̃0

g
α(t). (D1)

https://doi.org/10.1017/S1355770X07003816 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X07003816


Environment and Development Economics 651

Moreover, it follows from (15), (B4), and (B5) that, for the present case

α0 = gK
σ R̃0

, (D2)

p∗ = 2K , (D3)

and

α∗ = 2gK
σ R̃0

. (D4)

Since c’(0) = 0, it is never optimal not to vaccinate. Moreover, we know from
(16) that, if

gK <
b

r + σ
σ R̃0, (D5)

then eradication will be optimal. The interesting case is when the inequality
in (D5) is reversed, in which case eradication may or may not be optimal.

Rather than derive conditions ensuring that α∗ > α∞, our approach is to
derive conditions under which an optimal path leading to (0, α∗) exists. To
do this, it is useful to rewrite differential equations (11) and (4) as functions
of the time variable h, which denotes the time remaining until T∗ is reached.
With this notation, (11) and (4) can be written as

α′(h) + (r + σ )α(h) = b, α(0) = α∗ (D6)

y′(h) − σ y(h) = Aα(h) + B, y(0) = 0, (D7)

where

A = (σ R̃0)2

g
(D8)

and

B = −σ R̃0 K . (D9)

Solving (D6) gives

α(h) =
(

α∗ − b
r + σ

)
e−(r+σ )h + b

r + σ
. (D10)

Inserting (D10) into (D7) and solving gives

y(h) = eσh(J1 + J2) − e−(r+σ )h J1 − J2, (D11)

where

J1 = A
(r + 2σ )

(
α∗ − b

(r + σ )

)
(D12)

and

J2 = Ab
σ (r + σ )

+ B
σ

. (D13)

For the situation described by figure 2, y(h) is positive (for h > 0) and
increasing as we travel backwards in time. By inspection of (D11), y(h)
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will be positive (for h > 0) if J1 + J2 > 0. Since y′(h) = σ eσh(J1 + J2) + (r +
σ )e−(r+σ )h J1, and since J1 is positive for the situation described by figure 2,
y(h) will be increasing if J1 + J2 > 0. Hence, for the kind of situation depicted
in figure 2, eradication will be optimal if and only if J1 + J2 > 0. Inserting A
and B from (D8) and (D9) into (D12) and (D13) we find

J1 + J2 > 0 ⇔ gK <
b
r
σ R̃0, (D14)

which is the condition given in (23). Finally, note that, if (23) holds then (D5)
will hold, confirming that (23) is the necessary and sufficient condition for
eradication to be optimal for the quadratic model.
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