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Abstract
We determine the asymptotics of the number of independent sets of size �β2d−1� in the discrete hyper-
cube Qd = {0, 1}d for any fixed β ∈ (0, 1) as d → ∞, extending a result of Galvin for β ∈ (1− 1/

√
2, 1).

Moreover, we prove a multivariate local central limit theorem for structural features of independent sets
in Qd drawn according to the hard-core model at any fixed fugacity λ > 0. In proving these results we
develop several general tools for performing combinatorial enumeration using polymer models and the
cluster expansion from statistical physics along with local central limit theorems.
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1. Introduction
Let Qd be the discrete hypercube: the graph with vertex set {0, 1}d in which two vectors are joined
by an edge if they differ in exactly one coordinate. An independent set is a set of vertices that con-
tains no edge. Let I(Qd) be the set of independent sets ofQd and let i(Qd)= |I(Qd)| be the number
of independent sets of the hypercube. The vertices ofQd can be divided into two sets, those whose
coordinates sum to an even number and those whose coordinates sum to an odd number. This
partition shows that Qd is a bipartite graph. We let N:= 2d−1 be the number of even (or odd) ver-
tices of Qd. A trivial lower bound on i(Qd) is 2 · 2N − 1 obtained by considering independent sets
of only even or only odd vertices. A better lower bound is obtained by considering independent
sets with an arbitrary (but constant) number of ‘defect’ vertices on one side of the bipartition. This
increases the lower bound by a factor

√
e. Korshunov and Sapozhenko showed that this gives the

correct asymptotics for i(Qd) as d → ∞ [16].

Theorem 1 (Korshunov and Sapozhenko). As d → ∞,
i(Qd)=

(
2
√
e+ o(1)

)
2N .

Galvin later studied weighted independent sets in the hypercube. For λ ≥ 0, define the
independence polynomial of Qd,

ZQd (λ)=
∑

I∈I(Qd)
λ|I| .
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Taking λ = 1 recovers i(Qd). In what follows we will drop Qd from the notation, writing Z(λ) and
I for ZQd (λ) and I(Qd).

The independence polynomial Z(λ) is also the partition function of the hard-coremodel onQd:
the probability distribution μλ on I defined by μλ(I)= λ|I|/Z(λ). By generalising Sapozhenko’s
alternative proof of Theorem 1 in [20], Galvin found the asymptotics for Z(λ) for λ >

√
2− 1 [10]

(as well as the asymptotics of log Z(λ) for λ = �( log d/d1/3)).

Theorem 2 (Galvin) For λ >
√
2− 1,

Z(λ)= (2+ o(1))(1+ λ)N exp

[
λN
(

1
1+ λ

)d]

as d → ∞.

Analogously to Theorem 1, the trivial lower bound for Z(λ) is 2(1+ λ)N − 1, and the asymp-
totic formula in Theorem 2 includes the contribution from independent sets with a constant
number of defect vertices, captured by the exponential factor.

Galvin also studied the typical structure of the defect vertices under the probability distribution
μλ. Formally, given an independent set I ∈ I , if |I ∩O| ≤ |I ∩ E |, we refer to the elements of I ∩O
as the defect vertices of I; otherwise we say that I ∩ E is the set of defect vertices. A natural way to
describe the structure of a set S⊂O, E is to describe the graphQ2

d[S] whereQ
2
d denotes the square

of Qd. Given an independent set I with defect vertices S, we refer to the connected components of
Q2
d[S] as the defects of I. Galvin showed that for λ >

√
2− 1, all but a vanishing fraction of Z(λ)

comes from independent sets with defects of size at most 1.
Recently, the first two authors found the asymptotics of Z(λ) for all fixed λ > 0 [15]. The

asymptotic formula takes into account defects of arbitrary, but constant size. The smaller λ is,
the larger the size of defects that must be considered.

Theorem 3 (Jenssen and Perkins) There is a sequence of polynomials Rj(d, λ), j ∈N, such that for
any fixed t ≥ 1 and λ > 21/t − 1,

Z(λ)= (2+ o(1))(1+ λ)N exp

⎡
⎣N t−1∑

j=1
Rj(d, λ)(1+ λ)−dj

⎤
⎦

as d → ∞. Moreover the coefficients of the polynomial Rj can be computed in time eO(j log j).

In particular, R1 = λ, recovering the formula in Theorem 2.
Given these results it is natural to ask for the asymptotics of im(Qd), the number of independent

sets of size m in Qd. There is a trivial lower bound of im(Qd)≥ 2
(N
m
)
, obtained by considering

independent sets composed entirely of even or odd vertices, but depending on how largem is, we
may need to take into account independent sets of sizem with defects up to a given size.

Galvin [11] gave the asymptotics of im(Qd) in the range for which almost all independent sets
of sizem contain defects of size at most 1.

Theorem 4. (Galvin) Fix β ∈ (1− 1/
√
2, 1) and let λ = β

1−β
. Then

i�βN�(Qd)= (2+ o(1))
(

N
�βN�
)
exp

[
λN
(

1
1+ λ

)d]
. (1)

as d → ∞.

Note that the asymptotic formula (1) consists of the trivial lower bound 2
( N
�βN�
)
multiplied

by the same exponential correction factor in the asymptotic formula for Z(λ) in the range λ >√
2− 1.
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We show that a similar, but more complicated, formula holds for all β > 0. In particular,
when β < 1− 1/

√
2 the formula is not simply the trivial bound multiplied by the appropriate

exponential correction factor from Theorem 3. We explain below where the extra complexity
arises.

Theorem 5. There is a sequence of rational functions Pj(d, β), j ∈N, such that so that for any fixed
t ≥ 1 and β ∈ (1− 2−1/t , 1),

i�βN�(Qd)= (2+ o(1))
(

N
�βN�
)
exp

⎡
⎣N t−1∑

j=1
Pj(d, β) · (1− β)jd

⎤
⎦ (2)

as d → ∞. Moreover the coefficients of Pj can be computed in time eO(j log j).

For small values of j the functions Pj can be computed by hand. For example, P1 = β
1−β

, and
taking t = 2 in Theorem 5 recovers Galvin’s Theorem 4. A more involved calculation carried out
in Section 3 yields

P2 = 2(β − 1)3β − d(d − 1)(β − 2)β3

4(1− β)4
− β(1− dβ)2

2(1− β)3
.

By Theorem 5 this gives an explicit asymptotic formula for i�βN�(Qd) for β > 1− 2−1/3:

i�βN�(Qd)∼ 2
(

N
�βN�
)
exp
[
N

β

1− β
(1− β)d

+N
(
2(β − 1)3β − d(d − 1)(β − 2)β3

4(1− β)4
− β(1− dβ)2

2(1− β)3

)
(1− β)2d

]
.

In principle, one can continue to compute P3, P4, . . . and obtain explicit asymptotics for any
fixed β . More generally, the results of [15] and of this paper hold formuch smaller λ and β , tending
to 0 as d → ∞, as long as λ ≥ C log d/d1/3 and β > C log d/d1/3 for an absolute constant C. In
this case, however, the asymptotic formulas in Theorems 3 and 5 become series with a number
of terms that grows with d. These series can be used to give an algorithm to approximate Z(λ)
and i�βN�(Qd) up to a (1+ ε) multiplicative factor in time polynomial in 1/ε and N (an FPTAS
in the language of approximate counting; see e.g. [14] for such an algorithm for independent
sets in expander graphs). This raises an interesting question of what it means to determine the
asymptotics of a sequence f (d) as d → ∞. Evaluating a closed-form expression involving, say,
exponentials or logarithms, might also involve truncating a power series, and so in a sense an
algorithmic definition is natural. We do not pursue this further here and instead stick with β

constant.
The proof of Theorem 5 makes use of the following simple yet useful identity. Let Im = {I ∈

I :|I| =m} so that im(Qd)= |Im|. Form ∈N and λ > 0,

im(Qd)= Z(λ)
λm

μλ(Im) . (3)

In fact this formula follows from the definition of μλ and so holds for any graph, not just Qd. To
use (3) along with Theorem 3 to derive asymptotics for im(Qd), we must compute the asymptotics
of μλ(Im). The feasibility of doing this depends very much onm and the choice of λ. By choosing
λ so that the expected size of an independent set drawn from μλ is approximately m, we can
compute the asymptotics ofμλ(Im) using a local central limit theorem. In practice, we do not work
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with the hard-core model directly, but with an approximating measure derived from a polymer
model which describes the distribution on defects in an independent set from the hard-coremodel
(see Section 2). This polymer model was introduced in [15].

In the next theorem we give an expansion in (1− β)d for a value of the fugacity λ for which the
expected size of I, a random sample from the hard-core model, is close to �βN�. By expanding the
formula (5) below and combining this with (4) we obtain Theorem 5.

Theorem 6 There exists a sequence of rational functions Bj(d, β), j ∈N, such that the coefficients of
Bj can be computed in time eO(j log j) and the following holds. Fix β ∈ (0, 1) and let t ≥ 1 be such that
β > 1− 2−1/t . Then with

λβ = β

1− β
+

t−1∑
j=1

Bj(d, β) · (1− β)jd (4)

we have

i�βN�(Qd)= 1+ o(1)√
2πNβ(1− β)

Z(λβ)
λ

�βN�
β

(5)

as d → ∞. Moreover, ∣∣Eλβ |I| − �βN�∣∣= o(N1/2) .

In [15] the authors prove a multivariate central limit theorem for the number of defects of
different types in the polymer model. In Section 4, we establish a multivariate local central limit
theorem for this polymer model which allows us to refine Theorems 5 and 6 further still. Given a
defect S, we define the type of S to be the isomorphism class of the graph Q2

d[S]. For a given defect
type T, we let XT be the random variable that counts the number of defects of type T in a sample
from the hard-core model on Qd. We letmT =EλXT .

Given a collection T of types and vector of non-negative integers k= (kT)T∈T , let im,x(Qd)
denote the number of independent sets in Qd of size m with exactly kT defects of type T for all
T ∈ T .

Theorem 7 Fix β ∈ (0, 1) and let λ = λβ be as in Theorem 6. Let T1 be the set of defect types T such
that mT → ρT for some constant ρT > 0 as d → ∞ and T2 the set of defect types T so that mT → ∞.
Let (kT)T∈T1 be a vector of fixed non-negative integers and let (kT)T∈T2 be such that kT = �mT + sT�
where |sT | =O(√mT) for all T ∈ T2. Let k= (kT)T∈T1∪T2 . Then

i�βN�,k(Qd)= 1+ o(1)√
2πNβ(1− β)

Z(λβ)
λ

�βN�
β

∏
T∈T1

ρ
kT
T e−ρT

(kT)!
∏
T∈T2

e−
s2T
2mT√

2πmT
(6)

as d → ∞.

This formula matches that of (5) with additional factors corresponding to Poisson probabilities
(for T ∈ T1) and local central limit theorem probabilities (for T ∈ T2).

1.1 Methods: maximum entropy, statistical mechanics and local central limit theorems
Themethods we use here combine several different probabilistic tools, including abstract polymer
models and the cluster expansion, large deviations and local central limit theorems. Counting
independent sets in the hypercube is a canonical combinatorial enumeration problem, and so we
hope this provides a template for using this combination of tools in other combinatorial problems.
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There is a long history of using local central limit theorems in combinatorics, with many exam-
ples in analytic combinatorics and the study of integer partitions (see e.g. [7,17–19]) as well as the
enumeration of contingency tables [4] and graphs with prescribed degree sequences (e.g. [5,12]).
Here we show that local central limit theorems work very well in combination with two tools from
statistical physics, polymer models and the cluster expansion, which have been used recently in
combinatorial enumeration [2,13,15].

The connection between these methods starts with a general approach to counting via proba-
bility and the principle of maximum entropy which is laid out explicitly by Barvinok and Hartigan
in [3] (and later discussed in [17]), but appears implicitly in other enumerations methods, such
as the circle method (see [12] for an explanation of these connections). The main idea is that to
count a subset of objects defined by a number of constraints, one considers the maximum entropy
distribution on the larger set that satisfies the constraints in expectation. The size of the subset
can then be expressed as the exponential of the entropy of this distribution times the probabil-
ity that a random object drawn from this distribution satisfies the constraints. In the example of
enumerating integer partitions, these maximum entropy distributions take the form of sequences
of independent geometric random variables with different means [1,9], and asymptotic enumera-
tion can be accomplished by solving a convex optimisation problem to find these means and then
proving a local central limit theorem for linear combinations of independent geometric random
variables [7,17–19].

This approach naturally leads to considering statistical physics models. For example, the maxi-
mum entropy distribution over independent sets in a graph with a givenmean size is the hard-core
model. The entropy of the hard-core model is the log partition functionminus the expected size of
an independent set: H(μλ)= log Z(λ)− log λ ·Eμ|I|, and so the enumeration problem for inde-
pendent sets of a given size reduces to computing log Z and computing μλ(Ik) (via, say, a local
central limit theorem) as described above.

The complication is that the quantities of interest (say, the size of an independent set from the
hard-core model) can no longer be written as the sum of independent random variables. When
interactions are weak enough (or density small enough) correlations between vertices decay expo-
nentially in distance and methods like the cluster expansion can be used to prove both central
limit theorems and local central limit theorem. This type of result is closely related to the con-
cept of equivalence of ensembles between the grand canonical ensemble (fixed mean energy) and
the canonical ensemble (fixed energy). For instance, Dobrushin and Tirozzi showed that for spin
models with finite-range interactions on Z

d, a central limit theorem implies a local central limit
theorem [8] (see also [6] for an extension to long-range interactions).

What we do here is prove local central limit theorems conditioned on a phase in the strong
interaction, phase coexistence regime. This, in combination with using polymer models and the
cluster expansion to find the asymptotics of Z(λ), allows us to enumerate independent sets of a
given size and structure.

In Section 2, we recall the even and odd polymer models introduced in [15], and state and
extend some of the probabilistic estimates proved there.

In Section 3 we prove Theorems 5 and 6, finding an expansion for a fugacity λβ so that the
expected size of an independent set is sufficiently close to �βN� that a local central limit theorem
will allow us to compute asymptotics.

In Section 4 we show how local central limit theorems for polymer models follow from
sufficiently fast convergence of the cluster expansion.

Finally in Section 5 we combine the above results to prove Theorem 7.

2. The even and odd polymer models
Let E ⊂V(Qd) be the set of even vertices of the hypercube, those whose coordinates sum to
an even number, and let O ⊂V(Qd) be the odd vertices. Note that Qd is a bipartite graph with
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bipartition (E ,O) and that |E | = |O| =N:= 2d−1. A key insight of [15] is that, for λ not too
small, the hard-core measure μQd ,λ can be closely approximated by a random perturbation of
a random subset of either O or E . The random perturbation takes the form of a polymer model
with convergent cluster expansion, two notions that we introduce now.

For a set S⊆O (and analogously for S⊆ E), let |S| denote the number of vertices of S, N(S) be
the set of neighbours of S and [S]= {v ∈O :N(v)⊆N(S)} the bipartite closure of S. We call a set
S⊆O an odd polymer if (i) the subgraph of Qd induced by the vertex set S∪N(S) is connected
and (ii) |[S]| ≤N/2. We let PO denote the set of all odd polymers. The weight of an odd polymer
S is

w(S)= λ|S|

(1+ λ)|N(S)| . (7)

We say that two odd polymers S1 and S2 are compatible and write S1 ∼ S2, if the graph distance
between S1, S2 isQd is > 2. We let �O denote the set of all collections of mutually compatible odd
polymers and define the following Gibbs measure on �O : for � ∈ �O ,

νO(�)=
∏

S∈� w(S)

O

where 
O =
∑

�∈�O

∏
S∈�

w(S)

is the odd polymer model partition function. Using νO we define a measure μO,λ on independent
sets in Qd.

Definition 8 Let μO,λ be the measure on I defined by the following two-step process:

1. Choose a polymer configuration � ∈ �O from νO and assign all vertices of ∪S∈�S to be
occupied.

2. For each vertex v in E that is not blocked by an occupied vertex in O, include v in the
independent set independently with probability λ

1+λ
.

Let ZO(λ)= (1+ λ)N
O , the independence polynomial of Qd restricted to independent sets
achievable in the odd polymer model; that is, those for which μO,λ assigns positive probability.

We think of Step 1 in Definition 8 as a perturbation of the ‘ground state’ measure that simply
selects a p-random subset of E with p= λ/(1+ λ). The polymer configuration chosen in Step 1 will
be typically small and so this process typically returns an independent set that is highly unbalanced
with the majority of vertices even. We define even polymers, the even polymer model partition
function 
E , and measures νE , μE ,λ analogously. It was shown in [15] that for λ > C log d/d1/3,
the hard-core measure μQd ,λ can be closely approximated by the mixture 1

2μO,λ + 1
2μE ,λ.

Theorem 9 ([15]) For λ ≥ C log d/d1/3, we have∣∣log Z(λ)− log [2ZO(λ)]
∣∣=O
(
exp (−N/d4)

)
. (8)

Moreover, letting μ̂λ = 1
2μO,λ + 1

2μE ,λ, we have

‖μλ − μ̂λ‖TV =O
(
exp (−N/d4)

)
.

Finally, with probability at least 1−O( exp (−N/d4)) any defect vertices of I drawn from μO,λ are
on the odd side of the bipartition; that is, the defects are the polymers of the polymer configuration.

The lower bound on λ in Theorem 9 is an artefact of Sapozhenko’s graph container method
as implemented by Galvin [10]. Theorem 9 quite possibly remains true for λ = �̃(1/d) though
proving this would require significant new ideas.
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The power of Theorem 9 stems from the fact that the even and odd polymer models admit
convergent cluster expansions allowing for a detailed understanding of the measures μO,λ,μE ,λ.
Let us now introduce the cluster expansion formally.

For a tuple � of odd polymers, the incompatibility graph, H(�), is the graph with vertex set �

and an edge between any two incompatible polymers. An odd cluster � is an ordered tuple of even
polymers so that H(�) is connected. The size of a cluster � is ‖�‖ =∑S∈� |S|. Let C be the set of
all odd clusters. For a cluster � we define

w(�)= φ(H(�))
∏
S∈�

w(S) ,

where φ(H) is the Ursell function of a graph H, defined by

φ(H)= 1
|V(H)|!

∑
A⊆E(H)

spanning, connected

(− 1)|A| . (9)

The cluster expansion is the formal infinite series

log
O =
∑
�∈C

w(�) . (10)

We define the cluster expansion of log
E analogously and note that by symmetry the expansions
are identical.

In light of Theorem 9, throughout this section will we assume that λ ≥ C log d/d1/3. We will
also assume that λ =O(1) as d → ∞. The following result from [15] shows that for such λ the
cluster expansion converges, we have good tail bounds on the expansion, and the terms of the
cluster expansion can be efficiently computed. We say that a polynomial is computable in time t,
if its coefficients can be computed in time t.

Theorem 10 For fixed k≥ 1,
∑
�∈C‖�‖≥k

|w(�)| =O

(
2dd2(k−1)

(1+ λ)dk

)

and ∑
�∈C‖�‖=k

w(�)=N · Rk(λ, d)(1+ λ)−kd (11)

where Rk is a polynomial in d and λ of degree at most 2k in d and of degree at most 3k2 in λ.
Moreover Rk is computable in time eO(k log k). In particular,

log
O =N
k∑

j=1
Rj(λ, d)(1+ λ)−jd +O

(
2dd2k

(1+ λ)d(k+1)

)
.

We note that Theorem 3 follows in [15] from Theorems 9 and 10.
It will also be useful to record the following slightly strengthened tail bound on the clus-

ter expansion. The following lemma is essentially contained in [15], though it does not appear
explicitly and so we provide the details.

Lemma 11 For t, � ≥ 1 fixed,
∑
�∈C‖�‖≥t

|w(�)|‖�‖� =O

(
2dd2(t−1)

(1+ λ)dt

)
.
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Proof. In [15] (see Lemma 15) it is shown that∑
�∈C

|w(�)|eγ (d,‖�‖) ≤ 2d−1d−3/2 ,

where

γ (d, k)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log (1+ λ)(dk− 3k2)− 7k log d if k≤ d
10

d log (1+ λ)k
20

if
d
10

< k≤ d4

k
d3/2

if k> d4 .

Since eγ (d,k)/2 ≥ k� for all k and d sufficiently large, it follows that

∑
�∈C

|w(�)|‖�‖�eγ (d,‖�‖)/2 =O(2dd−3/2) .

Keeping only terms in the above inequality corresponding to clusters of size at least k we have∑
�∈C‖�‖≥k

|w(�)|‖�‖� ≤O(2dd−3/2e−γ (d,k)/2) . (12)

With t ≥ 0 fixed we have by Theorem 10 and (12) that∑
�∈C‖�‖≥t

|w(�)|‖�‖� =
∑
�∈C

t≤‖�‖<3t

|w(�)|‖�‖� +
∑
�∈C‖�‖≥3t

|w(�)|‖�‖�

=O

(
2dd2(t−1)

(1+ λ)dt

)
+O

(
2dd11t

(1+ λ)3dt/2

)

=O

(
2dd2(t−1)

(1+ λ)dt

)
.

Let � be a collection of compatible polymers sampled according to νO (the polymer measure at
Step 1 of Definition 8, the definition of μO,λ). We will use the above lemma to show that ‖�‖ and
|N(�)| obey a central limit theorem. Formally, we say a sequence of random variables (Xd) obeys a
central limit theorem if (Xd −EXd)/

√
var(Xd) converges to N(0,1) in distribution as d → ∞. To

prove this central limit theorem we will make use of a connection between the cluster expansion
and cumulant generating functions.

Recall the cumulant generating function of a random variable X, is ht(X)= logEetX . The �th
cumulant of X is defined by taking derivatives of ht(X) and evaluating at 0:

κ�(X)= ∂�ht(X)
∂t�

∣∣∣∣∣
t=0

.

In particular, κ1(X)=E(X) and κ2(X)= var(X). The cumulants of |N(�)| can be expressed in
terms of the cluster expansion as follows. Consider the odd polymer model with modified weights
wt(S)=w(S)et|N(S)| for t > 0 and let 
t denote the corresponding partition function. We then
have

ht(|N(�)|)= log
t − log
O .
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Applying the cluster expansion to log
t , taking derivatives, and evaluating at t = 0 shows that

κ�(|N(�)|)=
∑
�∈C

w(�)|N(�)|� . (13)

Similarly κ�(‖�‖)=∑�∈C w(�)‖�‖�.

Lemma 12 Let � be a collection of compatible polymers sampled according to νO . Then ‖�‖ and
|N(�)| both obey a central limit theorem.

Proof. We show that |N(�)| obeys a central limit theorem and the proof for ‖�‖ is identical.
Let Z = (|N(�)| −E|N(�)|)/√var(|N(�)|). To show that Z converges to N(0,1) in distribution,
it suffices to show that the cumulants of Z converge to the cumulants of a standard normal i.e. it
suffices to show that κ�(Z)→ 0 for � ≥ 3. Now by (13) and Lemma 11,

κ�(|N(�)|)=
∑
�∈C

w(�)|N(�)|� ≤ d�
∑
�∈C

w(�)‖�‖� =O

(
2dd�

(1+ λ)d

)
.

On the other hand, by (13) and Lemma 11 again we have

var(|N(�)|)=
∑
�∈C

w(�)|N(�)|2 ≥
∑
�∈C

w(�)‖�‖2 = 2d−1 λ

(1+ λ)d
+O

(
2dd2

(1+ λ)2d

)
.

It follows that if � ≥ 3 then

κ�(Z)= var(|N(�)|)−�/2κ�(|N(�)|)→ 0

as desired. �
Next we will use the cluster expansion to give bounds onEO,λ(|I|), the expected size of an inde-

pendent set sampled according to μO,λ. We begin by recording a useful expression for EO,λ(|I|)
in terms of the cluster expansion.

Lemma 13

EO,λ(|I|)= λ

1+ λ
N +
∑
�∈C

w(�)
(

‖�‖ − λ

1+ λ
|N(�)|

)
.

Proof. Note that for an independent set I such that μO,λ(I)> 0, we have

μO,λ(I)= λ|I|

ZO(λ)
= λ|I|

(1+ λ)N
O
.

It follows that

EO,λ(|I|)=
∑
I

|I|λ|I|

(1+ λ)N
O
= λ

d
dλ

log
(
(1+ λ)N
O

)= λ

1+ λ
N + λ( log
O)′ .

We expand log
O via the cluster expansion as in (10) (which converges absolutely by Theorem
10). Recalling that w(�)= φ(H(�))λ‖�‖(1+ λ)−|N(�)| for a cluster �, we have

EO,λ(|I|)= λ

1+ λ
N +
∑
�∈C

φ(H(�))
λ|�|((1+ λ)‖�‖ − λ|N(�)|)

(1+ λ)|N(�)|+1

= λ

1+ λ
N +
∑
�∈C

w(�)
(

‖�‖ − λ

1+ λ
|N(�)|

)
. �
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Corollary 14 For fixed k≥ 0,

EO,λ(|I|)= λ

1+ λ
N + λN

k∑
j=1

∂
∂λ
Rj(λ, d)

(1+ λ)jd
− jdRj(λ, d)

(1+ λ)jd+1 +O

(
2dd2k+1

(1+ λ)d(k+1)

)
.

Where the Rj(λ, d) are as in Theorem 10.

Proof. By Lemmas 11 and 13, noting that |N(�)| ≤ d‖�‖ for any cluster �, we have

EO,λ(|I|)= λ

1+ λ
N +
∑
�∈C‖�‖≤k

w(�)
(

‖�‖ − λ

1+ λ
|N(�)|

)
+O

(
2dd2k+1

(1+ λ)d(k+1)

)
.

The result follows by recalling the definition of Rj(λ, d) at (11) . �

3. Independent sets of a given size
Theorem 6 will follow from several lemmas. The first says that almost all independent sets of size
m= �βN� are accounted for by exactly one of the two polymer distributions. The second says that
if we find λβ so that the expected size of the independent set drawn fromμO,λβ

(as in Definition 8)
is close tom then we have an asymptotic formula for the number of independent sets of sizem in
terms of λβ and ZO(λβ). The third lemma gives an efficiently computable formula for a suitable
such λβ . We will then prove Theorem 5 by analysing expansions of log ZO(λβ) and log λβ in
powers of (1− β)d.

Let im(O) be the number of independent sets I of size m in Qd that are achievable in the odd
polymer model (i.e. μO,λ(I)> 0).

Lemma 15 For any β > 0,

i�βN�(Qd)= (2+ o(1))i�βN�(O)

as d → ∞.

Lemma 16 Fix β > 0. Suppose λ = λ(β , d) is such that∣∣EO,λ|I| − �βN�∣∣= o(N1/2) . (14)

Then

i�βN�(O)= (1+ o(1))
(1+ λ)ZO(λ)
λ�βN�√2πNλ

.

Lemma 17 There exists a sequence of rational functions Bj(d, β), j ∈N, such that Bj can be com-
puted in time eO(j log j) and the following holds. Fix t ≥ 1 and let r = �t/2� − 1. Suppose that
m= �βN� with β > 1− 2−1/t , then if

λβ = β

1− β
+

r∑
j=1

Bj(β , d)(1− β)jd , (15)

then ∣∣EO,λβ
|I| −m

∣∣= o(N1/2) .
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We prove Lemma 16 first, for which we need the following basic binomial local central limit
result.

Lemma 18 Fix p ∈ (0, 1) and suppose X ∼ Bin(n, p). Suppose n→ ∞ and k= o(
√
n), then

P(X = np+ k)= 1+ o(1)√
2πnp(1− p)

.

Proof of Lemma 16. Letm= �βN�. For any λ > 0, we have

im(O)= ZO(λ)
λm

PO,λ[|I| =m] ,

where the probability is with respect to the measure μO,λ. We therefore need to show that if λ

satisfies (14), then

PO,λ[|I| =m]= (1+ o(1))
1+ λ√
2πNλ

. (16)

By considering first the collection of polymers � chosen at Step 1 in the definition of μO,λ
(Definition 8), and then the probability that the correct number of additional vertices are chosen
at Step 2, we see that

PO,λ[|I| =m]=
∑

�∈�O

P [� = �] · P
[
Bin
(
N − |N(�)|, λ

1+ λ

)
=m− ‖�‖

]
, (17)

where we recall that �O denotes the set of all collections of mutually compatible odd polymers.
By the large deviation bound [15, Lemma 16] we have

P

[
|N(�)| ≥ 2N

d

]
=O( exp (−N/d4)) ,

and so we can condition on the event |N(�)| ≤ 2N
d throughout (17) and only change the resulting

probability by an additive factor of O( exp (−N/d4))= o(N−1/2). Under this conditioning, the
binomial probabilities in (17) are uniformly bounded by O(1/

√
N). To establish (16), it therefore

suffices to show that with high probability in the choice of �, the binomial probabilities in (17)
are in fact equal to (1+ o(1)) 1+λ√

2πNλ
. By Lemma 18, it suffices to show that with high probability

in the choice of � we have
λ

1+ λ
(N − |N(�)|) =m− ‖�‖ + o(N1/2) . (18)

Now, by our assumption on λ, (13) and Lemma 13,

m=EO,λ|I| + o(N1/2)=E‖�‖ + λ

1+ λ
(N −E|N(�)|) + o(N1/2) .

It follows that to show (18) holds whp with respect to �, it suffices to show that

P
[‖�‖ =E‖�‖ + o(N1/2)

]= 1+ o(1) , (19)

and similarly for |N(�)|. This is an immediate consequence of Lemma 12 and the fact that

E‖�‖ ≤E|N(�)| =
∑
�∈C

w(�)|N(�)| = o(N) , (20)

where we have used (13) and Lemma 11. �
Next we prove Lemma 15.
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Proof of Lemma 15. Let Im denote the set of all independent sets of size m in Qd. Then by
Theorem 9 (and the symmetry between even and odd) we have

∣∣μλ(Im)− μ̂λ(Im)
∣∣= ∣∣∣∣ im(Qd)λm

ZQd (λ)
− im(O)λm

ZO(λ)

∣∣∣∣=O
(
exp (−N/d4)

)
.

By Theorem 9 again it follows that

|im(Qd)− (2+ o(1))im(O)| =O
(
exp (−N/d4)

) ZO(λ)
λm

.

It therefore suffices to show that there is a choice of λ such that im(O)λm
ZO(λ) is much larger than

exp (−N/d4). This follows from Lemma 16 by choosing λ satisfying (14). �
Next we prove Lemma 17. In the following, if P(x, y) is a polynomial in x, y, we write degx(P)

for the degree of P in x.

Proof of Lemma 17. Let r = �t/2� − 1 and set

λ = λβ = β

1− β
+

r∑
j=1

Bj(β , d)(1− β)jd ,

where the functions Bj are rational polynomials in β , d of constant degree (independent of d) to
be determined later. Let X:=∑r

j=1 Bj(β , d)(1− β)jd+1 and note that X = o(1). It will be useful to
note that for k=O(d),

(1+ λ)−k = (1− β)k

(1+ X)k
= (1− β)k

r∑
i=0

(−k
i

)
Xi +O

(
Xr+1) . (21)

In particular, since β > 1− 2−1/t ,

(1+ λ)−d(r+1) = (1+ o(1))(1− β)d(r+1) =O
(
e−cd · 2−d(r+1)/t

)
=O
(
e−cdN−1/2

)
, (22)

for some constant c> 0.
By Corollary 14 and Theorem 10,

EO,λ(|I|)=N
λ

1+ λ
+ λN

r∑
j=1

∂
∂λ
Rj(λ, d)

(1+ λ)jd
− jdRj(λ, d)

(1+ λ)jd+1 +O
(
N

d2r+1

(1+ λ)d(r+1)

)

= λ

1+ λ
N +N

r∑
j=1

Fj(λ, d)(1+ λ)−jd−1 + o
(
N1/2) , (23)

where the Fj are polynomials in λ, d with degd(Fj)≤ 2j+ 1 and degλ(Fj)≤ 3j2. Our goal is to show
that there exists an appropriate choice of B1, . . . , Br that makes this final expression (23) equal to
m+ o

(
N1/2).

Since degλ(Fj)≤ 3j2, and λ = (β + X)/(1− β) we may write

Fj(λ, d)= (1− β)−cjGj(β , d, X)
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for some non-negative integer cj ≤ 3j2 and Gj a polynomial in β , d, X such that degd(Gj)≤ 2j+ 1.
It follows by (21) that

λ

1+ λ
+

r∑
j=1

Fj(λ, d)(1+ λ)−jd−1 = (β + X)
r∑

i=0
(− X)i

+
r∑

j=1
Gj(β , d, X)(1− β)jd+1−cj

r∑
i=0

(−jd − 1
i

)
Xi +O(d3rXr+1) . (24)

We now recall that X =∑r
j=1 Bj(1− β)jd+1 and we expand this final expression as a polynomial

in (1− β)d. This yields

λ

1+ λ
+

r∑
j=1

Fj(λ, d)(1+ λ)−jd−1 = β +
r∑

j=1
Qj(β , d, B1, . . . , Br) · (1− β)jd +O(d3rXr+1) (25)

where Qj =Qj(β , d, B1, . . . , Br) is a rational function β , d, B1, . . . , Br with denominator (1− β)bj
for some bj ≤ 3j2 and with degd(Qj)≤ 2j+ 1. Moreover, by examining the expansion (24), we see
that Qj is linear in Bj where the coefficient of Bj is (1− β)2 (in particular the coefficient is non-
zero). It follows inductively that there is a choice of B1, . . . , Br such that Q1 = . . . =Qr = 0 where
Bj is a rational function of β , d of constant degree (depending on j but not d). With this choice of
B1, . . . , Br it follows from (23) and (25) that

EO,λ(|I|)= βN +O(Nd3rXr+1)= βN + o(N1/2) ,

where for the last bound we used that d3rXr+1 = dOr(1)(1− β)d(r+1) = o(N−1/2) by (22).
Finally we note that the above argument gives an algorithm for computing the Bj. Since the Rj,

and so also the Fj and Gj, can be computed in eO(j log j) time, we see that the Qj can be computed
in eO(j log j) time. The Bj can then be computed by solving j successive linear equations. �

To give a concrete example of the algorithm above in action, we pause for amoment to calculate
the rational function B1. Using the definition of R1 at (11), we see that R1 = λ. In the notation of
the proof of Theorem 17, it follows that F1 = λ + (1− d)λ2. Noting that λ = (β + X)/(1− β) we
have

F1 = (1− β)−2 [(1− β)(β + X)+ (1− d)(β + X)2
]

and so G1 = (1− β)(β + X)+ (1− d)(β + X)2 and c1 = 2. Recalling that X:=∑r
j=1 Bj(1−

β)jd+1 and examining the coefficient of (1− β)d in (24), we see that

Q1 = B1(1− β)2 + β(1− β)+ (1− d)β2

1− β
.

Solving Q1 = 0 yields

B1 = (dβ − 1)β
(1− β)3

. (26)

3.1 Proof of Theorem 6
Combining Lemmas 15, 16 and 17 gives us the proof of Theorem 6.

3.2 Proof of Theorem 5
Wenow prove Theorem 5. Given the formula (5) fromTheorem 6, we need to extract the binomial
coefficient

( N
�βN�
)
and expand the logarithm of what remains.

https://doi.org/10.1017/S0963548321000559 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000559


Combinatorics, Probability and Computing 715

Lemma 19 Fix β ∈ (0, 1). With λ0 = β
1−β

,(
N

�βN�
)

= (1+ o(1))
(1+ λ0)N

λ
�βN�
0
√
2πNβ(1− β)

as N → ∞.

The proof follows from Stirling’s formula.
Proof of Theorem 5. Given Lemma 19, Theorems 3 and 6, we are left to compute coefficients

Pj = Pj(β , d), j≥ 1, so that for t ≥ 1 and β > 1− 2−1/t we have

log
(
1+ λβ

1+ λ0

)
− β log

λβ

λ0
+

t−1∑
j=1

Rj(d, λβ)(1+ λβ)−dj =
t−1∑
j=1

Pj · (1− β)jd + o(N−1) (27)

where λβ is given by (4). We proceed by expanding each term on the left-hand side of (27) as a
power series in (1− β)d. As in the proof of Lemma 17 we set X:=∑r

j=1 Bj(β , d)(1− β)jd+1 and
note that Xt = o(N−1) since β > 1− 2−1/t . It follows by Taylor expansion that

log
(
1+ λβ

1+ λ0

)
− β log

λβ

λ0
= log (1+ X)− β log (1+ X/β)

=
t−1∑
i=1

(− 1)1+i

i
(1− β1−i)Xi + o(N−1) . (28)

We now turn to the sum on the left-hand side of (27). Since Rj is a polynomial in λβ , d such that
degλβ

(Rj)≤ 3j2 and degd(Rj)≤ 2j and the fact that λβ = (β + X)/(1− β), we may write

Rj(λβ , d)= (1− β)−cjSj(β , d, X)

for some non-negative integer cj ≤ 3j2 and Sj a polynomial in β , d, X such that degd(Sj)≤ 2j. It
follows by (21) that

t∑
j=1

Rj(λβ , d)(1+ λβ)−dj =
t−1∑
j=1

Sj(β , d, X)(1− β)jd−cj
t−1∑
i=0

(−jd
i

)
Xi +O(d2tXt) . (29)

We note that O(d2tXt)=O(d3t(1− β)td)= o(N−1). To compute the Pj we simply sum (28) and
(29), expand the powers of X and collect the coefficients of (1− β)d, . . . , (1− β)(t−1)d . Finally
we note that since Rj, Sj and Bj can each be computed in time eO(j log j), Pj can be computed in time
eO(j log j). �

3.2.1 Computation of P1, P2
To illustrate the algorithm for computing the Pj in Theorem 5, we use it to compute P1 and P2.
First we note that in [15] it was shown that

R1 = λ and R2 = (2λ3 + λ4)d(d − 1)− 2λ
4

.

It follows that (using the notation of the proof of Theorem 5)

S1 = β + X and S2 = 1
2
(β − 1)3(X + β)− 1

4
d(d − 1)(β − X − 2)(X + β)3

and c1 = 1, c2 = 4. Now, to compute P1, P2 we compute the coefficients of (1− β)d, (1− β)2d in
the sum of (28) and (29). The coefficient of (1− β)d in (28) is 0 and in (29) it is β/(1− β) and so
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P1 = β

1− β
.

The coefficient of (1− β)2d in (28) is
1
2β

B21(1− β)3 .

The coefficient of (1− β)2d in (29) is

(1− dβ)B1 + (1− β)−4
(
1
2
(β − 1)3β − 1

4
d(d − 1)(β − 2)β3

)
.

Recalling (26), the formula for B1, and summing the above two expressions yields

P2 = 2(β − 1)3β − d(d − 1)(β − 2)β3

4(1− β)4
− β(1− dβ)2

2(1− β)3
.

4. Local central limit theorems for polymer models
In the odd polymer model, let T be a defect type and XT be the random variable counting the
number of defects of type T in a sample from μO,λ. Recall that mT =EXT and let σ 2

T = var(XT).
Moreover, let nT denote the number of polymers of type T and let wT denote the weight w(S)
(defined at (7)) of a representative polymer S of type T.

Throughout this section we assume that λ ≥ C log d/d1/3 as in Theorem 9 and probabilities
and expectations are with respect to the odd polymer model. The main result of this section is a
multivariate local central limit theorem for the number of polymers of different types, extending
the multivariate central limit theorem of [15, Theorem 6].

Theorem 20 Let T1 and T2 be two fixed sets of defect types so that for each T ∈ T1, mT → ρT for
some constant ρT > 0, and for each T ∈ T2, mT → ∞ as d → ∞. Let {kT}T∈T1 be a collection of
non-negative integers and let {kT}T∈T2 be such that kT = �mT + sT� where |sT | =O(√mT) for all
T ∈ T2. Then

P

⎛
⎝ ⋂

T∈T1∪T2
XT = kT

⎞
⎠= (1+ o(1))

∏
T∈T1

ρ
kT
T e−ρT

(kT)!
∏
T∈T2

e−
s2T
2mT√

2πmT
.

The probability in the theorem statement is with respect to the odd polymer model, but the
statement also holds for defects of an independent set drawn from the hard-core model on Qd via
Theorem 9.

Before we proceed it will be useful to recall a result from [15] on the cumulants of the random
variables XT . Recall that for a random variable X we use κk(X) to denote the kth cumulant of X.
The following result appears as Lemma 20 in [15].

Lemma 21 For a defect type T, let YT(�) denote the number of polymers of type T in the cluster �.
Then for any fixed k≥ 1,

κk(XT)=
∑
�∈C

w(�)YT(�)k = (1+ o(1))nTwT , (30)

and ∑
�∈C‖�‖>|T|

∣∣∣w(�)YT(�)k
∣∣∣= o(nTwT) . (31)
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Given a random vector X = (X1, . . . , Xq) ∈R
q its characteristic function is

ϕX(t)=Eei〈X,t〉

for t ∈R
q.

Lemma 22 Fix q ∈N and a list T1, . . . , Tq of defect types. Let X = (XT1 , . . . , XTq). There exists
c> 0 such that

|ϕX(t)| ≤ exp

{
−c

q∑
i=1

t2i nTiwTi

}
,

for all t ∈ [− π , π]q.

Proof. Given a cluster � ∈ C, let Y(�)= (YT1 (�), . . . , YTq(�)). Using the cluster expansion we
write

logEei〈t,X〉 =
∑
�∈C

w(�)ei〈t,Y(�)〉 −
∑
�∈C

w(�)

=
∑
�∈C

w(�)(ei〈t,Y(�)〉 − 1) .

Let

Mj =
{

� ∈ C:j=max{i:YTi(�)> 0},
q∑

i=1
YTi(�)> 1

}
.

Then,

Re logEei〈t,X〉 =
∑
�∈C

w(�)( cos (〈t, Y(�)〉)− 1)

=
q∑

i=1
nTiwTi( cos (ti)− 1)+

q∑
j=1

∑
�∈Mj

w(�)( cos (〈t, Y(�)〉)− 1)

≤ −1
5

q∑
i=1

t2i nTiwTi +
q∑

j=1

∑
�∈Mj

|w(�)|〈t, Y(�)〉2

≤ −1
5

q∑
i=1

t2i nTiwTi +
q∑

j=1

∑
�∈Mj

|w(�)|j
j∑

i=1
t2i YTi(�)

2

≤ −1
5

q∑
i=1

t2i nTiwTi +
q∑

i=1
t2i o(nTiwTi)

where for the first inequality we used that−t2 ≤ cos (t)− 1≤ −t2/5 for t ∈ [− π , π]. For the next
inequality we used Cauchy–Schwarz, and for the final inequality we used Lemma 21. �

Proof of Theorem 20. Let T1 = {T1, . . . , Tp}, T2 = {Tp+1, . . . , Tq} and T = T1 ∪ T2. Let Xi =
XTi ,mi =mTi , σi = σTi , ki = kTi for i ∈ [q]. Let X = (X1, . . . , Xq) and let

X̃ =
(
X1, . . . , Xp,

Xp+1 −mp+1

σp+1
, . . . ,

Xq −mq

σq

)
.
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By Fourier inversion,

P

(⋂
T∈T

XT = kT

)
= 1

(2π)q

∫
[−π ,π]q

ϕX(t) · e−i〈t,k〉 dt .

Making the substitution ti = xi for i ∈ [p] and ti = xi/σi for i> p, we have

P

(⋂
T∈T

XT = kT

)
= 1

(2π)q
∏
i>p

σ−1
i

∫
B1

∫
B2

ϕX̃(x)g(x)dxq . . . dx1 (32)

where B1 = [− π , π]p, B2 = [− πσp+1, πσp+1]× . . . × [− πσq, πσq] and

g(x)= exp

⎧⎨
⎩i
∑
j>p

xj
mj − kj

σj
− i
∑
j≤p

xjkj

⎫⎬
⎭ .

Let Y = (Y1, . . . , Yq) where Yi ∼ Po(ρi) for i ∈ [p], Yi ∼N(0, 1) for i> p, and Y1, . . . , Yq are
jointly independent. Then by Fourier inversion, we have the identity:

1
(2π)q

∫
B1

∫
Rq−p

ϕY (x)g(x)dxq . . . dx1 =
∏
T∈T1

ρ
kT
T e−ρT

(kT)!
∏
T∈T2

e
− (kT−mT )

2

2σ2T√
2π

.

By (32) (noting thatmi = (1+ o(1))σ 2
i by Lemma 21), it therefore suffices to show that∫

B1

∫
B2

ϕX̃(x)g(x)dxq . . . dx1 =
∫
B1

∫
Rq−p

ϕY (x)g(x)dxq . . . dx1 + o(1) .

Since,mi → ∞ for i> p, Lemma 21 implies that σi → ∞ for i> p also. It follows that∫
B1

∫
Rq−p\B2

ϕY (x)g(x)dxq . . . dx1 = o(1)

and so it suffices to show that∫
B1

∫
B2

|ϕX̃(x)− ϕY (x)|dxq . . . dx1 = o(1) .

In [15, Theorem 6] it was shown that X̃ converges to Y in distribution and so ϕX̃ → ϕY point-
wise. It therefore suffices, by dominated convergence, to show that |ϕX̃(x)− ϕY (x)| is bounded by
an integrable function. By Lemmas 21 and 22,

|ϕX̃(x)| = |ϕX(x1, . . . , xp, xp+1/σp+1, . . . , xq/σq)| ≤ e−�(
∑q

i=1 x
2
i ) .

We have a similar bound for |ϕY (x)| and so we are done. �

5. Independent sets of a given size and structure
Here we prove Theorem 7. Recall that for a set of defect types T and a vector of integers x=
(xT)T∈T , we let im,x(Qd) denote the number of independent sets in Qd of size m with exactly xT
defects of type T for each T ∈ T .

We use the following identity, an easy extension of (3). For any λ > 0,

im,x(Qd)= Z(λ)
λm

Pλ [|I| =m, (XT)T∈T = x] , (33)
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where XT be the random variable counting the number of defects of type T in a sample from μλ.
Theorem 7 follows immediately from (33), Theorem 6 and the following lemma.

Lemma 23 Fix λ > 0 and let m=m(d) be such that that |Eλ|I| −m| = o(N1/2). Let T1, T2 be the
sets of defect types such that mT → ρT for some fixed ρT > 0 as d → ∞ for all T ∈ T1 and mT → ∞
for all T ∈ T2. Let (kT)T∈T1 be a vector of fixed non-negative integers and let (kT)T∈T2 be such that
kT = �mT + sT� where |sT | =O(√mT) for all T ∈ T2. Let x= (kT)T∈T1∪T2 . Then

Pλ

[|I| =m, (XT)T∈T1∪T2 = x
]= (1+ o(1))Pλ[|I| =m]

∏
T∈T1

ρ
kT
T e−ρT

(kT)!
∏
T∈T2

e−
s2T
2mT√

2πmT
.

Proof. Using Theorems 9 and 20, it is enough to show that

PO,λ
[
|I| =m

∣∣∣(XT)T∈T1∪T2 = x
]
= (1+ o(1))PO,λ [|I| =m] ,

where the above probabilities are with respect to μO,λ and XT is now the random variable count-
ing the number of defects of type T in a sample from μO,λ. Let � be the random collection of
compatible polymers chosen at Step 1 in the definition of μO,λ (Definition 8) and let � be a fixed
collection of compatible polymers such that

‖�‖ = E[‖�‖]+ o(N1/2) (34)

and
|N(�)| = E[|N(�)|]+ o(N1/2). (35)

Then the proof of Lemma 16 gives us that

PO,λ
[
|I| =m

∣∣∣� = �
]
= (1+ o(1))PO,λ [|I| =m]

and so in particular, if � is also consistent with x (i.e. � has precisely kT polymers of type T for all
T ∈ T1 ∪ T2),

PO,λ
[
|I| =m

∣∣∣(XT)T∈T1∪T2 = x, � = �
]
= (1+ o(1))PO,λ [|I| =m] .

Finally, Lemma 12 gives us that (34) and (35) both hold with probability 1− o(1), completing the
proof. �
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