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A third-order system of ordinary differential equations, modelling two predators
competing for a single prey species, is analysed in this paper. A delay term modelling
the delayed logistic growth of the prey is included. Fixed points of the system are
identified, and a linearized stability analysis is carried out. For some parameter
regime, there exists a continuum of equilibria and these equilibria may undergo a zip
bifurcation. The main results presented herein are that this zip bifurcation is
‘unsustainable’ for certain ranges of values of the time-delay parameter. Finally,
spatial diffusion is incorporated in the delay differential equation model, and it is
shown that the zip bifurcation remains unsustainable.

1. Introduction

In a recent study of a model describing the interactions of two predator species
competing for one prey [6], under certain natural assumptions, it was observed
that the system admits a one-dimensional continuum of equilibria, leading to what
is described as a zip bifurcation phenomenon. In this model, a predator that has
relatively low growth rate and survives at low carrying capacity K is identified as a
K-strategist, while the other predator, which exhibits high growth rate, is identified
as an r-strategist. Clearly, the model is not structurally stable. However, it serves
as an illustration of the intuitively evident fact that at low values of the carrying
capacity K both predators might survive, but as K grows the K-strategist loses
ground and only the r-strategist may survive with the prey. Subsequently, a whole
class of models that show this phenomenon were proposed and analysed in the
literature (see [2, 10, 11, 13, 18]). Interestingly enough, in all the above studies the
zip bifurcation is sustainable even in the presence of diffusion. Also, as observed in
the earlier studies, for low values of the carrying capacity K both predators may
coexist with the prey, but if K increases only the r-strategist may survive. This
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fact may seem against the biological considerations, as coexistence of species is a
common phenomenon. Thus, a switch in the stability behaviour of the continuum of
the equilibria is highly desirable, as it will facilitate coexistence among the species,
especially when the K-strategist loses ground. Also, time delays are natural in any
biological process. Accordingly, in this paper we consider the system of ordinary
differential equations involving a discrete time delay given by

S′(t) = γ

(
1 − S(t − τ)

K

)
S(t) − m1

S(t)
a1 + S(t)

x1(t) − m2
S(t)

a2 + S(t)
x2(t),

x′
1(t) =

m1S(t)
a1 + S(t)

x1(t) − d1x1(t),

x′
2(t) =

m2S(t)
a2 + S(t)

x2(t) − d2x2(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)

as a model to describe the dynamical interactions of two predators competing for
a single regenerating resource. In (1.1) x1, x2 and S are the population sizes of the
two predators and a single prey species, respectively. In this model K > 0 denotes
the carrying capacity of the environment with respect to the prey, γ > 0 is the
intrinsic growth rate of the prey, mi, di, ai for i = 1, 2 are non-negative parameters
and represent the maximum birth rate, the death rate and the ‘half saturation
constant’, respectively, of the ith predator. The predator functional response is
saturating according to Michaelis–Menten kinetics.

A delayed logistic growth of prey is assumed when no predators are present and
τ � 0 represents the time delay. It has been suggested by Hutchinson that a delay
logistic equation (the first equation of (1.1) when x1 = x2 = 0) can be used to
model the dynamics of a population growing towards a saturation level K with
a constant reproduction rate γ. The term (1 − S(t − τ)/K) denotes a density-
dependent feedback mechanism, which takes τ units of time to respond to changes
in the population density represented by S in this equation. There are a number
of articles on these delayed single species population models (see [15, 17] and the
references therein).

The model (1.1) when τ = 0 has been a focus of extensive investigations in
the last few years and there is a large literature on this subject. For a detailed
account of these results we refer the reader to [19]. In [6, 7] Farkas observed that
at low values of the carrying capacity K of the ecosystem (1.1), when τ = 0 with
respect to the prey, a line of equilibria exists, which is an attractor of the system
representing stable coexistence of the three species. If K is increased, the equi-
libria are continuously destabilized, and above a certain value of K the system
has no stable equilibria representing coexistence. In [18], Sáez et al . considered a
three-dimensional competition model with a generalized Holling type III functional
response and established that the system admits a one-dimensional continuum of
equilibria leading to zip bifurcation. In subsequent studies, variants of these models,
with and without diffusion, have been studied by several researchers and in all these
situations the occurrence of the phenomenon of zip bifurcation has been confirmed
(see [6–10,12,13]).

This paper has the following structure. In § 2 we discuss the equilibria and local
stability analysis following the linearization procedure. In § 3 we study the linearized
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problem and establish conditions for the unsustainability of zip bifurcation in the
model. Generally, diffusion is a process that helps maintain the state of dynamics
of a system. In § 4 we consider a model where time delays render the zip bifurcation
unsustainable, and the effect of the introduction of diffusion in such time-delay
models. A discussion follows in § 5.

2. Equilibria and local stability analysis

In this section, we determine the equilibria of system (1.1) and study the local
stability analysis. The equilibria of (1.1) satisfy the equations

γ

(
1 − S(t − τ)

K

)
S(t) − m1

S(t)
a1 + S(t)

x1(t) − m2
S(t)

a2 + S(t)
x2(t) = 0,

m1S(t)
a1 + S(t)

x1(t) − d1x1(t) = 0,

m2S(t)
a2 + S(t)

x2(t) − d2x2(t) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Following the arguments given in [6,7,12,13], we conclude that the equilibria of (1.1)
are

(S, x1, x2) = (0, 0, 0), (S, x1, x2) = (K, 0, 0)

and the points on the straight line segment

LK =
{

(S, x1, x2) ∈ R
3; S = λ, x1 � 0, x2 � 0 and

m1
S

a1 + S
x1 + m2

S

a2 + S
x2 = γ

(
1 − λ

K

)}
(2.2)

in the positive octant of (S, x1, x2)-space, provided we assume that

mi > di for i = 1, 2 and
a1d1

m1 − d1
=

a2d2

m2 − d2
. (2.3)

With the previous hypotheses and the notation

λ =
a1d1

m1 − d1
=

a2d2

m2 − d2
,

system (1.1) can be written as

S′(t) = γ

(
1 − S(t − τ)

K

)
S(t) − m1

S(t)
a1 + S(t)

x1(t) − m2
S(t)

a2 + S(t)
x2(t),

x′
1(t) = β1

S(t) − λ

a1 + S(t)
x1(t),

x′
2(t) = β2

S(t) − λ

a2 + S(t)
x2(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where βi = mi − di, i = 1, 2.
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In what follows, we assume that (2.3) holds. The numbers a1d1/(m1 − d1) and
a2d2/(m2 − d2) correspond to the threshold quantities of the prey species for the
predators x1 and x2, respectively. If a1d1/(m1 − d1) �= a2d2/(m2 − d2), it follows
that (2.1) has only the axial equilibria given by (S, x1, x2) = (0, 0, 0), (S, x1, x2) =
(K, 0, 0).

We now study the stability of the equilibria for system (1.1), that is, (S, x1, x2) =
(0, 0, 0), (S, x1, x2) = (K, 0, 0) and equilibria on LK and of the set LK , where
λ = a1d1/(m1−d1) = a2d2/(m2−d2). To study the local stability of those equilibria,
we let E = (S∗, x∗

1, x
∗
2) be an equilibrium solution of system (2.4).

The variational system of (2.4) corresponding to E is given by⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦

′

=

⎡
⎢⎢⎢⎢⎢⎢⎣

γ − γ

K
S∗ − m1a1

(a1 + S∗)2
x∗

1 − m2a2

(a2 + S∗)2
x∗

2 − m1

a1 + S∗ S∗ − m2

a2 + S∗ S∗

β1a1

(a1 + S∗)2
x∗

1 +
β1λ

(a1 + S∗)2
x∗

1 β1
S∗ − λ

a1 + S∗ 0

β2a2

(a2 + S∗)2
x∗

2 +
β2λ

(a2 + S∗)2
x∗

2 0 β2
S∗ − λ

a2 + S∗

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦ +

⎡
⎢⎣

− γ

K
S∗ 0 0

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎣ S(t − τ)

x1(t − τ)
x2(t − τ)

⎤
⎦ . (2.5)

For the equilibrium E = (0, 0, 0), we have from (2.5) that

⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦

′

=

⎡
⎢⎢⎢⎣

γ 0 0

0 −β1
λ

a1
0

0 0 −β2
λ

a2

⎤
⎥⎥⎥⎦

⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦ +

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ S(t − τ)

x1(t − τ)
x2(t − τ)

⎤
⎦ . (2.6)

The characteristic equation associated with (2.6) is given by

(µ − γ)
(

µ + β1
λ

a1

)(
µ + β2

λ

a2

)
= 0,

and it is easy to see that the equilibrium is unstable, since γ is a positive root of
the above equation.

When E = (K, 0, 0) we have that

⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦

′

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − m1K

a1 + K
− m2K

a2 + K

0 β1
K − λ

a1 + K
0

0 0 β2
K − λ

a2 + K

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ S(t)

x1(t)
x2(t)

⎤
⎦ +

⎡
⎣−γ 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ S(t − τ)

x1(t − τ)
x2(t − τ)

⎤
⎦ .

(2.7)
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Thus, the characteristic equation of (2.7) is given by

(µ + γe−µτ )
(

β1
K − λ

a1 + K
− µ

)(
β2

K − λ

a2 + K
− µ

)
= 0,

or, equivalently,
µ3 + αµ2 + βµ = He−µτ [µ2 + αµ + β], (2.8)

where

a = β1
K − λ

a1 + K
, b = β2

K − λ

a2 + K
, α = −(a + b), β = ab and H = −γ. (2.9)

We can write (2.8) in the form

P (µ) + e−µτQ(µ) = 0,

where P (µ) = µ3 + αµ2 + βµ and Q(µ) = −H(µ2 + αµ + β).
We now set µ = δ + iν in (2.8). Separating real and imaginary parts, we have

that

δ3 − 3δν2 + α(δ2 − ν2) + βδ

= He−δτ [(β + αδ + δ2 − ν2) cos(ντ) + (αν + 2δν) sin(ντ)],

− ν3 + 3δ2ν + 2αδν + βν

= He−δτ [(2δν + αν) cos(ντ) − (δ2 − ν2 + αδ + β) sin(ντ)].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.10)

Remark 2.1. It is important to note that when τ = 0 both predator species may
survive only if 0 < λ < K (see [6]). Hence, when τ = 0 it is easy to see that E
is unstable for system (1.1) since the characteristic equation associated with the
linearized system of (1.1) has two positive roots (see [6] for details). Clearly, all
these characteristic roots will continue to have positive real parts for sufficiently
small τ > 0.

We now study the possibility of a stability switch for E, examining the sign of
the derivative of the real parts of the eigenvalues associated with the characteristic
equation (2.8) with respect to τ , as the roots cross zero. That is, we analyse dδ(τ̂)/dτ
where δ(τ̂) = 0. If the derivative is positive (negative), then clearly stabilization
(destabilization) cannot take place at that value of τ̂ (see [14]).

At τ = τ̂ , µ(τ̂) = δ(τ̂) + iν̂(τ̂) = iν̂(τ̂) since δ(τ̂) = 0, and (2.10) becomes

αν̂2 = H(ν̂2 − β) cos(ν̂τ̂) − Hαν̂ sin(ν̂τ̂),

−ν̂3 + βν̂ = Hαν̂ cos(ν̂τ̂) + H(ν̂2 − β) sin(ν̂τ̂).

}
(2.11)

Squaring and adding the equations in (2.11), we have that

ν6 + (α2 − 2β − H2)ν4 + (β2 + 2H2β − H2α2)ν2 − H2β2 = 0. (2.12)

Differentiating system (2.10) with respect to τ , substituting τ = τ̂ , δ = 0, ν = ν̂
and using (2.11), we get the equations for dδ(τ̂)/dτ and dν(τ̂)/dτ as

A
dδ

dτ
(τ̂) + B

dν

dτ
(τ̂) = C,

−B
dδ

dτ
(τ̂) + A

dν

dτ
(τ̂) = D,

⎫⎪⎪⎬
⎪⎪⎭ (2.13)
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where
A = −3ν̂2 + β − τ̂αν̂2 − Hα cos(ν̂τ̂) − 2Hν̂ sin(ν̂τ̂),

B = −2αν̂ + 2Hν̂ cos(ν̂τ̂) + τ̂(ν̂3 − βν̂) − Hα sin(ν̂τ̂),

C = ν̂(−ν̂3 + βν̂),

D = αν̂3.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.14)

Solving the equations in (2.13), we get that

dδ

dτ
(τ̂) =

AC − BD

A2 + B2 (2.15)

and the sign of dδ(τ̂)/dτ depends upon the sign of AC − BD. From (2.14), after
some simplifications, we obtain

AC − BD = ν̂2(3ν̂4 − 4βν̂ + β + 2αν̂2 − H2α2 − 2ν̂2H2 + 2H2β).

So, stabilization (destabilization) cannot take place if AC−BD > 0 (AC−BD < 0).
Let

F (z) = z3 + (α2 − 2β − H2)z2 + (β2 + 2H2β − H2α2)z − H2β2,

which is the left-hand side of (2.12) with ν̂2 = z. Then, F (ν̂2) = 0 and we note that

dF

dz
(ν̂2) =

A2 + B2

ν̂2

dµ

dτ
(τ̂).

We write F (z) as
F (z) = z3 + A1z

2 + A2z + A3, (2.16)

where
A1 = α2 − 2β − H2,

A2 = β2 + 2H2β − H2α2,

A3 = −H2β2.

⎫⎪⎬
⎪⎭ (2.17)

We note that the real roots of (2.12), which are precisely the positive roots of (2.16),
are of interest to us, as these roots determine the change in the stability of E.

Note that from (2.9) we have that

A1 = β2
1

(K − λ)2

(a1 + K)2
+ β2

2
(K − λ)2

(a2 + K)2
− γ,

A2 = β2
1β2

2
(K − λ)4

(a1 + K)2(a2 + K)2
− γ2

(
β2

1
(K − λ)2

(a1 + K)2
+ β2

2
(K − λ)2

(a2 + K)2

)
,

A3 = −γ2β2
1β2

2
(K − λ)4

(a1 + K)2(a2 + K)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

Letting
N = 18A1A2A3 − 4A3

1A3 + A2
1A

2
2 − 4A3

2 − 27A2
3,
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we observe that A3 < 0. Thus, using Descartes’s rule of signs, we see that (2.16)
has one positive root if any of the following conditions holds:

(H1) (i) A1 � 0, A2 � 0,

(ii) A1 � 0, A2 � 0,

(iii) A1 � 0, A2 � 0,

(iv) A1 < 0, A2 > 0 and N < 0.

We observe that (2.16) has three positive roots if any of the following conditions
holds:

(H2) A1 < 0, A2 > 0 and N > 0.

We summarize the above discussion in the following theorem.

Theorem 2.2.

(i) Assume that the conditions in (H1) hold. If the equilibrium E = (K, 0, 0) is
unstable for τ = 0, then it remains unstable for all τ � 0.

(ii) Assume that the conditions in (H2) hold. Then, stability of E = (K, 0, 0)
cannot be preserved. As τ increases, stability switches may occur and, fur-
thermore, there exists a τ∗ such that E is unstable for all τ > τ∗. As τ varies
from 0 to τ∗, at most a finite number of stability switches may occur.

We now study the stability of the equilibria E = (λ, ξ1, ξ2) on LK . Observe that,
in view of (2.2), we have that

γ

(
1 − λ

K

)
−

2∑
i=1

mia1

(ai + λ)2
ξi =

2∑
i=1

mia1

ai + λ
ξi −

2∑
i=1

mia1

(ai + λ)2
ξi = λ

2∑
i=1

mi

(ai + λ)2
ξi,

and hence the characteristic equation associated with (2.5) at (λ, ξ1, ξ2) is given by∣∣∣∣∣∣∣∣∣∣∣∣∣

µ − λ
2∑

i=1

mi

(ai + λ)2
ξi +

γλ

K
e−τµ m1λ

a1 + λ

m2λ

a2 + λ

− β1ξ1

a1 + λ
µ 0

− β2ξ2

a2 + λ
0 µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus, the characteristic polynomial is given by

P (µ) = µ

[
µ2 − λ

2∑
i=1

mi

(ai + λ)2
ξiµ + λ

2∑
i=1

miβi

(ai + λ)2
ξi +

λγ

K
e−µτµ

]
. (2.19)

We defer the study of the stability of the equilibria on the line LK and of the set
LK where λ = a1d1/(m1 − d1) = a2d2/(m2 − d2) to the next section.
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3. Stability analysis of non-isolated equilibria

In this section we discuss the stability analysis of the non-isolated equilibria, which
in the present case lie on the line LK . We first discuss the case for τ = 0 in
system (1.1). For τ = 0, system (1.1) reduces to

Ṡ = γ

(
1 − S

K

)
S − m1

S

a1 + S
x1 − m2

S

a2 + S
x2,

ẋ1 = m1
S

a1 + S
x1 − d1x1,

ẋ2 = m2
S

a2 + S
x2 − d2x2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.1)

The system (3.1) describes the competition of an ‘r-strategist’ and a ‘K-strategist’
for a single regenerating prey species. We note that an r-strategist is a species
that tries to ensure its survival by having a relatively high growth rate and a K-
strategist is a species that consumes less, has a lower growth rate and is able to
raise its offspring on a scarce supply of food. The parameters in (3.1) have the
same meaning as in (1.1). In the following we present a very brief summary of
the results in [6] for system (3.1). System (3.1) admits the following equilibria:
(S, x1, x2) = (0, 0, 0), (S, x1, x2) = (K, 0, 0) and the points on the straight line LK .
It is easy to see that the trivial equilibria (0, 0, 0) and (K, 0, 0) are unstable provided
that 0 < λ < K (see [6,8] for details). It is clear that all equilibria on LK are stable
for all K that satisfy the inequality λ < K � a2 + 2λ. This means that if food is
scarce, both the r- and K-strategists may live together in the long run in a steady
state that depends on the initial values of the species. When a2 +2λ < K < a1 +2λ
(i.e. when a1 > a2) the family of equilibria on the line LK undergoes a split and a
part of LK is unstable, that is, there exists a point (λ, ξ1(K), ξ2(K)) on LK such
that the equilibria on

LU = {(λ, ξ1, ξ2) on LK : ξ1 < ξ1(K)}

are unstable for the flow of (3.1), and the equilibria on

LS = {(λ, ξ1, ξ2) on LK : ξ1 > ξ1(K)}

are stable. The point (ξ1(K), ξ2(K)) is obtained by solving the system

m1ξ1

a1 + λ
+

m2ξ2

a2 + λ
=

γ(K − λ)
K

,

m1ξ1

(a1 + λ)2
+

m2ξ2

(a2 + λ)2
=

γ

K
.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

As K takes on the value a1 + 2λ, the equilibrium that exists in the (S, x1)-plane
is stable, while all other equilibria on LK lose stability. When K > a1 + 2λ all
equilibria on LK become unstable.

Note that as K increases from a2 + 2λ to a1 + 2λ the point (λ, ξ1(K), ξ2(K))
moves along LK continuously from (λ, 0, ξ2(K)) to (λ, ξ1(K), 0), so the points left
behind become unstable. This phenomenon has been termed zip bifurcation (see [6,
8]). From the point of view of the competition, as the quantity of available food
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increases, the K-strategist loses ground and those equilibria where the relative
growth of the K-strategist is high compared with the growth of the r-strategist are
the first to be destabilized. When K reaches the value a1 +2λ all interior equilibria
become destabilized and the only stable equilibrium remaining is the endpoint of
L in the (S, x1)-plane. This means that at this value of the carrying capacity the
K-strategist dies out. One may prove that if K is increased further, then even the
equilibrium in the (S, x1)-plane gets destabilized, but the prey and the r-strategist
continue to coexist in a periodic manner due to the occurrence of Andronov–Hopf
bifurcation.

It is interesting to observe that the line LK (grey line in figure 1) represents the
line of non-isolated equilibria in the positive octant of R

3. This line connects the
points PK in the (S, x2)-plane and QK in the (S, x1)-plane. Note that there exists
a point MK on LK with the property that the equilibria on LK between PK and
MK are unstable, while those between MK and QK are stable in the case where
a1 > a2, or vice versa in the case where a1 < a2 (figure 1(a)).

Also, when a1 = a2 it is clear that all equilibria on LK are stable for all K that
satisfy the inequality λ < K � a2 + 2λ. Furthermore, when K crosses a + 2λ all
equilibria on LK lose stability, and at K = a + 2λ the segment LK bifurcates into
a cylinder, that is, there exists a δ > 0 such that, for a + 2λ < K < a + 2λ + δ,
system (3.1) has an invariant topological cylinder C that is the union of closed paths
and is an attractor of the system. Furthermore, it has a ‘neighbourhood’ in which
the trajectories with initial condition in this ‘neighbourhood’ tend to C as t tends
to ∞ (figure 1(b)). In other words, we observe that the zip bifurcation that shows
up for all a1 �= a2 vanishes when a1 = a2. This is an interesting scenario in the
dynamics of system (3.1), and henceforth we term this phenomenon a degenerate
zip bifurcation.

We simulate system (3.1) with the following values of the parameters (figure 2(a)):
m1 = 0.6, m2 = 0.7, d1 = 0.3, d2 = 0.2, β1 = 0.3, β2 = 0.5, γ = 0.8, a1 = 0.16,
a2 = 0.4, λ = 0.16 and K = 0.6. Clearly, figure 2(a) explains the occurrence
of zip bifurcation of the equilibria on the line LK with the unstable part initiat-
ing near the (S, x1)-plane, and also on the line LK (the straight grey line) and
directed towards the (S, x2)-plane with the stable part lying near this plane. We
note that the transition from instability to stability occurs at (λ, ξ1(K), ξ2(K)) =
(0.16, 0.1137777778, 0.2986666667) on LK .

Similarly, choosing the parameter values m1 = 0.6, m2 = 0.7, d1 = 0.2, d2 = 0.4,
β1 = 0.4, β2 = 0.3, γ = 0.8, a1 = 0.8, a2 = 0.4, λ = 0.4 and K = 1.35 leads
to figure 2(b), which explains the occurrence of zip bifurcation of the equilibria
on the line LK with stable part initiating near the (S, x1)-plane, and also on the
line LK (the straight grey line) and directed towards the (S, x2)-plane with the
unstable part lying near this plane. We note that the transition from instability
to stability occurs at (λ, ξ1(K), ξ2(K)) = (0.3, 0.4909090909, 0.2545454546) on LK

(figure 2(b)).
In what follows, we consider model (1.1) in the case τ �= 0. The characteristic

equation associated with (2.5) at (λ, ξ1, ξ2) ∈ LK is given by

µ

[
µ2 − λ

2∑
i=1

mi

(ai + λ)2
ξiµ + λ

2∑
i=1

miβi

(ai + λ)2
ξi +

λγ

K
e−µτµ

]
= 0
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Figure 1. (a) Zip bifurcation for the case a1 �= a2: the part of LK between PK and MK

is unstable and that between MK and QK is stable if a1 > a2, or vice versa if a1 < a2.
(b) Degenerate zip bifurcation for the case a1 = a2: in this case a + 2λ < K < a + 2λ + δ
and all equilibria on LK are unstable with an invariant topological cylinder around LK ,
which is a local attractor for system (3.1).
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Figure 2. Phase portrait where (a) the grey curve is an unstable orbit initiating near the
(S, x1)-plane and the line LK , directed towards the (S, x2)-plane with the stable part
lying in it, and the black curve is a stable orbit initiating near the (S, x2)-plane and the
line LK , directed towards the (S, x1)-plane with the unstable part lying in it, and (b) the
phase portrait has the same meaning as in (a), but with directions reversed.

or, equivalently,
µ[µ2 − aµ + c + be−µτµ] = 0, (3.3)

where

a = λ

2∑
i=1

mi

(ai + λ)2
ξi, b =

λγ

K
and c = λ

2∑
i=1

miβi

(ai + λ)2
ξi.

We now study the stability of the equilibria (λ, ξ1, ξ2) on LK for a fixed K in the
interval (a2 + 2λ, a2 + 2λ). In this case, the family of equilibria on LK undergoes a
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split and there exists a point (λ, ξ1(K), ξ2(K)) on LK such that the equilibria on
LU are unstable for the flow of (3.1) and the equilibria on LS are stable in view
of the case when τ = 0. It is important to observe that, for τ = 0, an equilibrium
point is stable (respectively, unstable) for the flow of system (3.1) if the following
condition is satisfied (see [6, p. 1301]):

a + b > 0 (respectively, a + b < 0). (3.4)

In the remainder of this section, we confine ourselves to the study of the possible
stability switches for those equilibria (λ, ξ1, ξ2) on LU or LS when τ varies, since a
stability switch leads to the unsustainability of the zip bifurcation for system (1.1).

Equation (3.3) for τ �= 0 has infinitely many roots. By Rouche’s theorem and
continuity in τ , the expression in the brackets of (3.3) has roots with negative real
parts if and only if no pure imaginary root exists. Therefore, to obtain a stability
switch one needs to have a pure imaginary root for

G(µ, τ) = µ2 − aµ + c + be−µτµ = 0. (3.5)

In the following, we investigate the existence of pure imaginary roots µ = iω (ω > 0)
for (3.5).

Defining

P1(µ) = µ2 − aµ + c (3.6)

and

Q1(µ) = bµ, (3.7)

the characteristic equation (3.5) is equivalent to

P1(µ) + Q1(µ)e−µτ = 0. (3.8)

We now have the following.

Proposition 3.1. The functions P1(µ) and Q1(µ) are analytic functions of µ in
a right half-plane Re z > −δ, δ > 0, and satisfy the following.

(i) P1(0) + Q1(0) = c �= 0, that is, µ = 0 is not a root of the characteristic
equation (3.8).

(ii) If µ = iω, ω > 0, then

P1(iω) + Q1(iω) �= 0, τ ∈ R. (3.9)

This implies that P1(µ) and Q1(µ) have no common imaginary roots.

(iii) We have that

lim sup
{∣∣∣∣Q1(µ)

P1(µ)

∣∣∣∣; |µ| → ∞, Re µ � 0
}

< 1,

that is, there are no roots bifurcating from infinity.
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Proof. Clearly, the functions P1(µ) and Q1(µ), being polynomials, are analytic func-
tion of µ. Thus, part (i) of the proposition is obvious.

To prove part (ii), note that P1(iω) + Q1(iω) = ω2 − c + i[b − a]ω �= 0. Evidently,
(λ, ξ1, ξ2) is stable (unstable) in view of (3.4).

To prove part (iii), observe that

|Q1(µ)|
|P1(µ)| =

|bµ|
|µ2 − aµ + c| =

|b|
|µ − a + c/µ| � |b|

|µ| − |a| − |c/µ|

for |µ| large. So, |Q1(µ)|/|P1(µ)| → 0 when |µ| → ∞ and Re µ � 0.

Define the auxiliary function F (ω) = |P1(iω)|2 − |Q1(iω)|2, that is,

F (ω) = ω4 − [b2 + 2c − a2]ω2 + c2. (3.10)

Observe that F (ω) = 0 has at most a finite number of real zeros, so there are only
a finite number of ‘places’ for roots to cross the imaginary axis.

From now on, we drop the index 1 from P1 and Q1; furthermore, we denote by
PR, QR the real parts of P and Q, respectively, and by PI, QI the imaginary parts
of P and Q, respectively.

A necessary condition for the change in stability of each equilibrium (λ, ξ1, ξ2)
on LK is the existence of ω0 > 0 such that F (ω0) = 0.

We examine the possibility that µ = iω (ω > 0) is a root of the characteristic
equation (3.5). Observe that ω is a root of (3.5) if and only if |P (iω)| = |Q(iω)| and

sin(ωτ) =
PI(iω)QR(iω) − PR(iω)QI(iω)

|Q(iω)|2 ,

cos(ωτ) = −PI(iω)QI(iω) + PR(iω)QR(iω)
|Q(iω)|2 ,

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

where P (iω) = PR(iω)+ iPI(iω), Q(iω) = QI(iω)+ iQI(iω) and |Q(iω)|2 �= 0 in view
of assumption (ii) of proposition 3.1 (since G(iω, τ) = Q(iω, τ) = 0 together imply
that P (iω, τ) = 0). Equation (3.11) can be written in the equivalent form as

sin(ωτ) =
ω2 − c

ωb
, cos(ωτ) =

a

b
. (3.12)

If ω satisfies (3.12), and consequently (3.5), then ω must satisfy

|P (iω)|2 = |Q(iω)|2, (3.13)

that is, ω must be a positive root of

F (ω) = |P (iω)|2 − |Q(iω)|2 = 0. (3.14)

The zeros of F (ω) are roots of the equation

ω4 − [b2 + 2c − a2]ω2 + c2 = 0

and are given by

ω2
− = 1

2 [(b2 + 2c − a2) −
√

(b2 + 2c − a2)2 − 4c2],

ω2
+ = 1

2 [(b2 + 2c − a2) +
√

(b2 + 2c − a2)2 − 4c2].

}
(3.15)
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We now have the following.

Proposition 3.2. The number of different imaginary roots of (3.5) with positive
(negative) imaginary parts can be zero, one or two only.

Proof. If a2 = b2, the equation F (ω) = 0 has only one positive root. But this is
not possible since we are considering equilibria on LU or on LS, which implies that
a2 + b2 �= 0.

On the other hand, the following cases arise.

(I) Since 4c2 > 0, the equation F (ω) = 0 has two positive roots ω− and ω+, with
0 < ω− < ω+, provided that the following inequalities hold:

(i) b2 + 2c − a2 > 0,
(ii) (b2 + 2c − a2)2 > 4c2.

In this case, (3.5) has two imaginary roots.

(II) The equation F (ω) = 0 has two negative roots, ω− < ω+ < 0, provided that
the following conditions are true:

(i) b2 + 2c − a2 < 0,
(ii) (b2 + 2c − a2)2 > 4c2.

In this case, (3.5) has no imaginary roots with positive imaginary part.

(III) The equation F (ω) = 0 has no roots if the following condition holds:

(b2 + 2c − a2)2 < 4c2.

In this case, (3.5) has no imaginary roots.

Thus, applying [17, theorem 3.1, p. 77], we have the following.

Theorem 3.3. The number of different imaginary roots with positive (negative)
imaginary parts of (3.5) can be zero, one or two only.

(I) If there are no such roots, then the stability of each equilibrium (λ, ξ1, ξ2) on
LK does not switch for any τ � 0.

(II) If there is one imaginary root of (3.5) with positive imaginary part, an unstable
solution (λ, ξ1, ξ2) on LK never becomes stable for any τ � 0. If the solution
is asymptotically stable for τ = 0, then there exists a τ0 > 0 such that for all
τ < τ0 this solution is uniformly asymptotically stable, and is unstable for all
τ > τ0.

(III) If there are two imaginary roots with positive imaginary part, ω+, ω−, such
that 0 < ω− < ω+, then the stability of each equilibrium (λ, ξ1, ξ2) on LK

can change at most a finite number of times, as τ increases, and eventually
becomes unstable.

Proof. Since the first statement is proved in proposition 3.2 we need only prove the
statements (II) and (III).
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(I) Observe that if condition (III)(ii) of proposition 3.2 is satisfied, then (3.5) has no
imaginary roots. Hence, there is no switch in stability of any equilibrium (λ, ξ1, ξ2)
on LK .

(II) Note that if a2 = b2, then, from proposition 3.2, (3.5) has only one imaginary
root µ = iω0, where ω0 is the only positive root of (3.10); therefore, the only crossing
of the imaginary axis at iω0 is from the left to the right as τ increases and passes
through τ0, where

τ0 =
1
ω0

tan−1
(

ω2
0 − c

ω0a

)
.

Clearly, this is not possible since a �= b.

(III) Finally, from (I)(i) and (I)(ii) of proposition 3.2, the equation F (ω) = 0 has
two positive real roots, such that 0 < ω− < ω+ only if conditions given in (I)(i)
and (I)(ii) are satisfied. Therefore, (3.5) has two pure imaginary roots µ = iω− and
µ = iω+. Thus, in view of [17, theorem 3.1, p. 77] the stability of each equilibrium
point (λ, ξ1, ξ2) on LK can change at most a finite number of times as τ increases,
and eventually becomes unstable.

We now present a few corollaries of theorem 3.3.

Corollary 3.4. Suppose that E = (λ, ξ1, ξ2) on LK is an equilibrium point of
system (1.1) or, equivalently, of system (3.1). The following statements then hold.

(i) If E is stable (or unstable) for system (1.1) when τ = 0, then stability switches
may not occur for all τ � 0.

(ii) If E is stable for system (1.1) when τ = 0, we may have a τ0 > 0 such that
E loses its stability when τ passes through τ0.

(iii) If E is stable (or unstable) for system (1.1) when τ = 0, we may have a finite
number of stability switches for E as τ increases.

Proof. The proof is an immediate consequence of theorem 3.3.

Corollary 3.5. For any fixed K satisfying a2 + 2λ � K � a1 + 2λ there exists
an equilibrium point (λ, ξ1(K), ξ2(K)), which splits LK into two parts LU

K and LS
K

(one of which may be empty); for τ = 0, the equilibria of (1.1) on the set

LU
K = {(λ, ξ1, ξ2) on LK : ξ1 < ξ1(K)}

are unstable and the equilibria on the set

LS
K = {(λ, ξ1, ξ2) on LK : ξ1 > ξ1(K)}

are stable. Furthermore, depending on the values of the parameters of system (1.1),
the zip bifurcation phenomenon may or may not be preserved. In other words, the
zip bifurcation is unsustainable.

Proof. Suppose that corollary 3.4(i) holds. In this case the zip bifurcation phe-
nomenon is preserved, since for a2 + 2λ < K < a1 + 2λ neither the stable part nor
the unstable part of the line of equilibria LK changes for all τ � 0. On the other
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hand, if corollary 3.4(ii) holds, then the zip bifurcation is not sustained since for
a2 +2λ < K < a1 +2λ the unstable part of the line of equilibria LK remains unsta-
ble for all τ � 0, whereas the stable part becomes unstable for τ � τ0. Furthermore,
if corollary 3.4(iii) holds, a similar argument shows that the zip bifurcation is not
sustained and in this case the switch can be from instability to stability.

Remark 3.6. The above result is surprising since it shows that the zip bifurcation
phenomenon cannot be sustained in the presence of a discrete delay in system (3.1).
In [10,13] it was concluded that in a delay-free system the sustainability of the zip
bifurcation is achieved in the presence of diffusion.

Remark 3.7. From the results of § 3 we know that if a1 > a2 and λ < K < a2+2λ,
all points on LK are stable for system (3.1), and this means that both the r- and
K-strategists may coexist. If time delay is introduced in this system for a fixed K,
then, in view of corollary 3.4, there exists a τ0 > 0 such that for τ � τ0 all stable
points on LK become unstable. On the other hand, if K > a1 +2λ all points on LK

are unstable for system (3.1) and these points may become stable as τ increases
from zero. This means that if the delay increases, the r- and K-strategists may live
together again in the long run near a steady state, which is quite natural. Also,
if a1 > a2 and a2 + 2λ < K < a1 + 2λ, the family of equilibria for system (3.1)
on the line LK undergoes a split resulting in unstable and stable parts. In this
case, if time delay is introduced in the system for a fixed K, then corollary 3.4
guarantees that there exists a τ0 > 0 such that the stable part of LK may become
unstable for τ � τ0, and hence all points on LK are unstable. On the other hand,
the unstable part of LK may become stable as τ increases from zero, and hence
all points on LK are stable. This implies that if the time delay increases, the r-
and K-strategists may come back to live together again. Finally, we know that if
K = a1 + 2λ, then all interior equilibria are unstable for system (3.1) and the only
stable equilibrium is the endpoint of LK in the (S, x1)-plane, which means that at
this value of the carrying capacity the K-strategist dies out. However, increasing
τ from zero may yield that the unstable part of LK becomes stable, implying that
the r- and K-strategists may come back to coexistence again.

Theorem 3.8. Suppose that (3.5) has a pair of simple and conjugate pure imagi-
nary roots µ = ±iω(τ0), ω(τ0) real, for τ0 ∈ R, where

τ0 =
1
ω0

tan−1
(

ω2
0 − c

ω0a

)
. (3.16)

(i) If ω(τ0) = ω+(τ0), then

d
dτ

Re µ

∣∣∣∣
µ=ω+(τ0)

> 0,

since

2ω2
0 + a2 + b2 − 2c = 2b2 +

√
(b2 − a2)2 + 4c(b2 − a2) > 0.
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(i) If ω(τ0) = ω−(τ0), then

d
dτ

Re µ

∣∣∣∣
µ=ω+(τ0)

> 0 if b2 > 1
2

√
(b2 − a2)2 + 4c(b2 − a2)

and
d
dτ

Re µ

∣∣∣∣
µ=ω+(τ0)

< 0 if b2 < 1
2

√
(b2 − a2)2 + 4c(b2 − a2).

Proof. To calculate d Re µ/dτ , where µ(τ) = η(τ) + iω(τ), we use the implicit
function theorem to determine the derivative of the function µ(τ). Let µ = µ(τ)
and consider that G(µ, τ) = µ2 − aµ + c + be−µτµ. Thus, we have that

dµ

dτ
= −∂G(µ, τ)/∂τ

∂G(µ, τ)/∂µ
=

bµ(τ)2e−µ(τ)τ

(1 − µ(τ)τ)be−µ(τ)τ + 2µ(τ) − a
(3.17)

or, similarly,

dµ

dτ
=

bω2 cos(ωτ)(b cos(ωτ) − bτω sin(ωτ) − a)
(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

− bω2 sin(ωτ)(2ω − b sin(ωτ) − bτω cos(ωτ))
(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

+ i
[

bω2 cos(ωτ)(2ω − b sin(ωτ) − bτω cos(ωτ))
(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

− bω2 sin(ωτ)(b cos(ωτ) − bτω sin(ωτ) − a)
(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

]
.

(3.18)

Therefore,

η′(τ) =
bω2(b − a cos(ωτ) − 2ω sin(ωτ))

(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

=
(a2 + b2)/b − 2(c − ω2

0)/b

(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2

=
1
b

2ω2 + a2 + b2 − 2c

(b cos(ωτ) − bτω sin(ωτ) − a)2 + (2ω − b sin(ωτ) − bτω cos(ωτ))2
,

(3.19)

where the last equality follows from (3.12).
Using (3.15) in (3.19) we see that η′(τ0+) > 0, since

2ω2
0 + a2 + b2 − 2c = 2b2 +

√
(b2 − a2)2 + 4c(b2 − a2) > 0.

On the other hand, η′(τ0−) > 0 if

b2 > 1
2

√
(b2 − a2)2 + 4c(b2 − a2) (3.20)

and η′(τ0−) < 0 if
b2 < 1

2

√
(b2 − a2)2 + 4c(b2 − a2). (3.21)
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Remark 3.9. We can define the angle θ(τ) ∈ [0, 2π) as the solution of (3.12):

sin θ(τ) =
ω2 − c

ωb
, cos θ(τ) =

a

b
. (3.22)

Also, the relation between the arguments θ(τ) in (3.22) and τω(τ) in (3.12) must
be

τω(τ) = θ(τ) + 2nπ,

and then we obtain the following two sets of values of τ , for which there are imag-
inary roots:

τn,1 =
θ1

ω+
+

2nπ

ω+
and τn,2 =

θ2

ω−
+

2nπ

ω−
, (3.23)

with θ1, θ2 ∈ [0, 2π), n = 0, 1, 2, . . ..

Remark 3.10. In part (II) of theorem 3.3, only τ0,1 need be considered, since the
equilibrium (λ, ξ1, ξ2) on LK that is stable for τ = 0 remains stable up to τ0,1 and
is unstable thereafter.

Remark 3.11. In part (III) of theorem 3.3 if the equilibrium (λ, ξ1, ξ2) on LK is
stable for τ = 0, then it follows that τ0,1 < τ0,2, that is, the multiplicity of roots
with positive real parts cannot become negative, since η′(τ0) > 0.

Remark 3.12. With the notation τ0+ = τ0,1 and τ0− = τ0,2, if (3.5) has a pair of
simple and conjugate pure imaginary roots µ = ±iω(τ0±), ω(τ0±) real, at τ0± ∈ R,
then crossing from left to right as τ increases occurs at τ = τ0+ , and crossing from
right to left occurs at τ = τ0− , corresponding to ω− if inequality (3.20) (respectively,
for left to right, (3.21)) is satisfied, in view of [1, theorem 4.1, p. 1157]. Furthermore,
if we treat (λ, ξ1, ξ2) on LK as an isolated equilibrium, then each such equilibrium
in LK undergoes a Hopf-like bifurcation at τ0± .

Remark 3.13. Observe that

τn+1,1 − τn,1 =
2π

ω+
<

2π

ω−
τn+1,2 − τn,2. (3.24)

Therefore, if the equilibrium (λ, ξ1, ξ2) on LK is stable for τ = 0, there can be only
a finite number of switches between stability and instability. However, there exists
a value of τ , say τ = τ̂ , such that at τ = τ̂ a stability switch occurs from stability
to instability, and for τ > τ̂ the solution remains unstable. On the other hand, if
the equilibrium (λ, ξ1, ξ2) on LK is unstable for τ = 0, then a similar argument as
before can be made. As τ increases, the multiplicity of roots for which Reµ > 0
increases by two whenever τ passes through a value τn,1, and decreases by two
whenever τ passes through a value τn,2.

Remark 3.14. When the equilibrium (λ, ξ1, ξ2) on LK is stable for τ = 0, k
switches from stability to instability, and vice versa, can occur when the parameters
satisfy the inequality

τ0,1 < τ0,2 < τ1,1 < · · · < τk−1,1 < τk−1,2 < τk,1 < τk+1,1 < τk,2 · · · ,
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or k switches from instability to stability, and vice versa, may occur when the
parameters are such that

τ0,2 < τ0,1 < τ1,2 < · · · < τk−1,2 < τk−1,1 < τk,1 < τk,2 · · · .

Remark 3.15. Consider system (1.1) restricted to the (S, x1)-plane, which we
denote by

Ω1 = {(S, x1, x2) ∈ R
3 | x2 = 0}.

Let E1 = (λ, ξ1, 0) on LK be an isolated equilibrium solution of system (2.4) on
Ω1. Note that (λ, ξ1, 0) satisfies the equation

m1a1

a1 + λ
ξ1 = γ

(
1 − λ

K

)
. (3.25)

In view of (3.25), the variational system that corresponds to (E1) is given by

[
S(t)
x1(t)

]′

=

⎡
⎢⎣

λ
m1

(a1 + λ)2
ξ1 − m1

a1 + λ
λ

β1ξ1

a1 + λ
0

⎤
⎥⎦[

S(t)
x1(t)

]
+

⎡
⎣− γ

K
λ 0

0 0

⎤
⎦[

S(t − τ)
x1(t − τ)

]

and the characteristic equation associated with the isolated equilibrium (E1) on
LK is

µ2 − λ
m1ξ1

(a1 + λ)2
µ + λ

m1β1ξ1

(a1 + λ)2
+

λγ

K
e−µτµ = 0

or, equivalently,
µ2 − aµ + c + be−µτµ = 0, (3.26)

in which
a = λ

m1ξ1

(a1 + λ)2
, b =

λγ

K
and c = λ

m1β1ξ1

(a1 + λ)2
.

Analysing (3.26), as has been done in § 4, one can obtain similar results for the
isolated equilibrium E1 = (λ, ξ1, 0) on LK . Accordingly, we may conclude that
the equilibrium E1 undergoes a Hopf bifurcation when τ increases and passes
through τ0± . Similar results can also be derived with respect to the equilibrium
E2 = (λ, 0, ξ2) on LK belonging to the set

Ω2 = {(S, x1, x2) ∈ R
3 | x1 = 0}.

The following simulations conducted in Matlab highlight the analytical results
obtained for system (1.1) in the case where the zip bifurcation is unsustainable.

We first present a few simulations that illustrate the dynamics of the time-delay
system (1.1). We choose the following values for the parameters in system (1.1):
m1 = 0.6, m2 = 0.3, d1 = 0.3, d2 = 0.2, β1 = 0.3, β2 = 0.1, γ = 46, a2 = 1,
a1 = 2, λ = 2 and K = 5.5. Using (3.16) and corollary 3.5, we find that the
stable equilibrium (λ, ξ1, ξ2) on the line LK is stable for all values of τ satisfying
0 � τ � τ1 = 0.04163939054 and is unstable for τ > τ1 (figure 3). This confirms the
unsustainability of the zip bifurcation when τ > τ1. It is clear from figure 3 that
τ = 0.03 (black line) represents the stable behaviour of S and that for τ = 0.04
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Figure 3. Unsustainable zip bifurcation.
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Figure 4. Hopf-like bifurcation: there exists an ε > 0 such that any solution (black line)
that stays in an ε-neighbourhood of the equilibrium line LK (grey line) for all positive or
negative times (or possibly both) converges to a single equilibrium on LK .

(grey line) S loses stability, since this value of τ is nearer to τ1. Also, for τ = 0.05
and 0.06, S increasingly tends towards instability (dotted and dash-dotted lines,
respectively).

Remark 3.16. We remark that, for τ = 0.01, the choice of m1 = 0.6, m2 = 0.7,
d1 = 0.3, d2 = 0.2, β1 = 0.3, β2 = 0.5, γ = 0.8, a1 = 0.16, a2 = 0.4, λ = 0.16
and K = 0.6 leads us to figure 4, in which all non-equilibrium trajectories starting
sufficiently close to the equilibrium line LK (grey line) are heteroclinic between
equilibria on opposite sides of (λ, ξ1(K), ξ2(K)). From figure 4 it is clear that Hopf
bifurcation takes place, that is, there exists an ε > 0 such that any solution (black
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line) that stays in an ε-neighbourhood of the equilibrium line LK (grey line) for
all positive or negative times (or possibly both) converges to a single equilibrium
on LK . This numerical experiment confirms the presence of another interesting
phenomenon not discussed earlier for this model. Accordingly we have the following.

Conjecture 3.17. In view of remark 3.16, we conjecture that for system (1.1)
when τ = 0.01 the equilibria on the line LK undergo a Hopf-type bifurcation. That
is, all non-equilibrium trajectories starting sufficiently close to Lk are heteroclinic
between the equilibria on the stable and unstable parts of LK .

In figure 4 we see that the orbits emanating from the unstable part of the line LK

move to the stable part. It appears that the K-strategist loses its ground during
the competition and this strengthens the survival of the r-strategist.

4. The model with diffusion

Spatial ecology addresses the fundamental effects of space on the dynamics of indi-
vidual species and on the structure, dynamics, diversity and stability of multi-
species communities. Essentially, this subject is designed to highlight the impor-
tance of space in the areas of stability, patterns of diversity, invasions, coexistence
and pattern generation. The mathematical formulation of the ideas dealing with the
spacial aspect of species leads to reaction–diffusion models. For a more interesting
account of various aspects and examples in population ecology we refer the reader
to [20]. We are particularly interested in the study of the stability of isolated equi-
librium populations, wherein we assume that the prey and predators are diffusing in
a domain Ω ⊂ R

N (N = 1, 2, 3), an open, connected and bounded set with smooth
boundary ∂Ω. So as to ensure that the equilibrium is isolated and corresponds to
that of the related ordinary differential equation model, we invoke the Neumann
boundary conditions. Due to the limited resources, the growth rate of population
will slow down, and the population may saturate to a maximum level. Thus, it
is natural to use a density-dependent growth rate per capita, that is, the logistic
growth rate. Other studies for this kind of model can be found in [3–5, 16, 21].
Together with the diffusion of the species, the reaction–diffusion model studied
in this section is represented by the following partial differential equation (PDE)
system:

∂S

∂t
(x, t) = δ0∆S(t, x) + γ

(
1 − S(t − τ, x)

K

)
S(t, x)

−
2∑

i=1

mifi(S(t, x))ui(t, x) on Ω × (0,∞),

∂ui

∂t
(x, t) = δi∆ui(t, x) + (mifi(S(t, x)) − di)ui(t, x),

i = 1, 2, on Ω × (0,∞),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where we assume that the functions S and ui satisfy the Neumann boundary con-
ditions

∂S

∂ν
= 0,

∂ui

∂ν
= 0, i = 1, 2, on ∂Ω × (0,∞), (4.2)
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ν = ν(x) denotes the outer unit normal to ∂Ω, ∆ =
∑N

j=1∂/∂xj is the Laplacian
operator, S is the population density of the prey, ui, i = 1, 2, are the population
densities of the ith predator competing for prey and δi > 0, i = 1, 2, are the
diffusion rates. Here, K represents the carrying capacity of the environment that
depends on the state x. In this case the environment is regarded as homogeneous.
The remaining parameters are the same as in system (1.1). Positivity and global
existence of the solutions for (4.1) and (4.2), when τ = 0, have been studied in [13].

Following the arguments of § 2, we may conclude that the constant solutions
of (4.1) and (4.2) are

(S, u1, u2) = (0, 0, 0), (S, u1, u2) = (K, 0, 0),

and the points on the straight line segment

LK =
{

(S, u1, u2) ∈ R
3; S = λ, u1 � 0, u2 � 0 and

m1
S

a1 + S
u1 + m2

S

a2 + S
u2 = γ

(
1 − λ

K

)}
(4.3)

in the positive octant of (S, u1, u2)-space are equilibria, provided we assume that

mi > di for i = 1, 2 and
a1d1

m1 − d1
=

a2d2

m2 − d2
.

To study the stability of these equilibria, let E = (S∗, u∗
1, u

∗
2) be a constant solution

of (4.1) and (4.2). Thus, the variational system of (4.1) and (4.2) corresponding to
E is given by

∂S(x, t)
∂t

= δ0∆S +
[
γ

(
1 − S∗

K

)
−

n∑
i=1

mi
ai

(ai + S∗)2
u∗

i

]
S(t, x)

−
2∑

i=1

miS
∗

ai + S∗ ui(t, x) − γλ

K
S(t − τ, x),

∂ui(x, t)
∂t

= δi∆ui +
βiu

∗
i

ai + S∗ ui(t, x), i = 1, 2, on Ω × (0,∞).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

Let 0 = µ0 < µ1 < µ2 < · · · → ∞ and {ψk}∞
k=0 be the eigenvalues and eigen-

functions, respectively, of the Laplacian operator in Ω with Neumann boundary
conditions on ∂Ω:

∆ψk = λkψk in Ω,

∂ψk

∂ν
= 0 on ∂Ω.

⎫⎬
⎭ (4.5)

Without loss of generality, we suppose that {ψk}∞
k=0 is an orthonormal basis for

L2(Ω).
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Let w = (S, u1, u2), let D = diag(δ0, δ1, δ2) and let J be the matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ
2∑

i=1

mi

(ai + S∗)2
u∗

i − γS∗

K
e−τν − m1S

∗

a1 + S∗ − m2S
∗

a2 + S∗

β1u
∗
1

a1 + S∗ 0 0

β2u
∗
2

a2 + S∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, (4.4) can be written as

∂w

∂t
= D∆w + Jw;

hence, the solution of (4.2) and (4.4) with initial condition w(·, 0) = w0 is given by

w(x, t) =
∞∑

k=0

e(J−µkD)t〈w0, ψk〉ψk(x), (4.6)

where

〈w0, ψk〉 =
∫

Ω

w0(x)ψk(x) dx.

It follows from the linearization principle that a ‘non-trivial’ homogeneous solu-
tion of (4.1) and (4.2) is asymptotically stable if all the eigenvalues of the matrix
J − µkD have negative real parts, and if there exists a k � 0 such that J − µkD
has an eigenvalue with positive real part, then the solution is unstable.

(1) At E = (0, 0, 0) the linearized system has the form

∂S(x, t)
∂t

= δ0∆S(t, x) + γS(t, x),

∂u1(x, t)
∂t

= δ1∆u1(t, x) − β1
λ

a1
u1(t, x),

∂u2(x, t)
∂t

= δ2∆u2(t, x) − β2
λ

a2
u2(t, x) on Ω × (0,∞),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

with boundary conditions (4.2).
Thus, the characteristic equation is given by

(ν − γ + µkδ0)
(

µ + β1
λ

a1
+ µkδ1

)(
µ + β1

λ

a1
+ µkδ2

)
= 0.

Note that for k = 0 we have µ0 = 0; therefore, system (4.4) has the same coefficient
matrix at (0, 0, 0) as system (2.5), which has an eigenvalue with positive real part.
Hence, the equilibrium (0, 0, 0) is unstable.
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(2) At E = (K, 0, 0) the linearized system has the form

∂S(x, t)
∂t

= δ0∆S(t, x) − m1K

a1 + K
u1(t, x) − m2K

a2 + K
u2(t, x) − γS(t − τ),

∂u1(x, t)
∂t

= δ1∆u1(t, x) + β1
K − λ

a1 + K
u1(t, x),

∂u2(x, t)
∂t

= δ2∆u2(t, x) + β2
K − λ

a2 + K
u2(t, x) on Ω × (0,∞),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

with boundary conditions (4.2).
Thus, the characteristic equation is given by

(υ + γe−υτ + µkδ0)
(

β1
K − λ

a1 + K
− µkδ1 − υ

)(
β2

K − λ

a2 + K
− µkδ2 − υ

)
= 0

or, equivalently,

υ3 + (α − µkδ0)υ2 + (β − αµkδ0)υ − µkδ0β = He−υτ [υ2 + αυ + β]. (4.9)

Now, proceeding as in § 2, we find the following coefficients for F (z) given by (2.16):

A1 = (α − µkδ0)2 − 2(β − αµkδ0) − H2,

A2 = (β − αµkδ0)2 + 2H2(β − αµkδ0) − H2(β − αµkδ0)2,

A3 = −µkδ0 − H2β2.

⎫⎪⎬
⎪⎭ (4.10)

Letting N = 18A1A2A3 − 4A3
1A3 + A2

1A
2
2 − 4A3

2 − 27A2
3, consider the following

hypotheses:

(H̄1) (i) A1 � 0, A2 � 0, A3 > 0,

(ii) A1 > 0, A2 < 0, A3 > 0 and κ > 2ρ3/2,

(iii) A1 � 0, A2 � 0,

(iv) A3 > 0 and N < 0,

here κ = 2A3
1 − 9A1A2 + 27A3 and ρ = A2

1 − 3A2. Note that (H̄1) gives conditions
for no change in the stability of E = (K, 0, 0), that is, if E is stable (unstable) at
τ = 0, then it remains stable (unstable) for all values of τ � 0 whenever (H̄1) holds.

Consider the following:

(H̄2) (i) A1 � 0, A2 � 0, A3 < 0,

(ii) A1 � 0, A2 � 0, A3 < 0,

(iii) A1 � 0, A2 � 0, A3 < 0,

(iv) A1 < 0, A2 > 0 and N < 0.

These conditions imply that, if E = (K, 0, 0) is unstable for any τ = τ∗ � 0, then
it will be unstable for all τ � τ∗.

Consider the equation

z3 + A1z
2 + A2z + A3 = 0,
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when N > 0 and any of the following conditions hold:

(H̄3) (i) A1 � 0, A2 < 0 and A3 > 0,
(ii) A1 < 0, A2 � 0 and A3 > 0,
(iii) A1 � 0, A2 � 0,
(iv) A1 < 0, A2 < 0 and A3 > 0 and

(H̄4) (i) A1 < 0, A2 < 0, A3 < 0 and N > 0.

If either (H̄3) or (H̄4) holds, following the arguments in [14], we see that the stability
of E = (K, 0, 0) cannot be preserved. Thus, we have the following theorem.

Theorem 4.1.

(i) Assume that the conditions in (H̄1) hold. If the equilibrium E = (K, 0, 0) is
stable (unstable) at τ = 0, then E remains stable (unstable) for all τ � 0.

(ii) Assume that the conditions in (H̄2) hold. Then E = (K, 0, 0) is unstable for
all τ � 0.

(iii) Assume that the conditions in either (H̄3) or (H̄4) hold. As τ increases, sta-
bility switches may occur.

(3) At E = (λ, ξ1, ξ2) on LK the linearized system has the form

∂S(x, t)
∂t

= δ0∆S +
[
γ

(
1 − λ

K

)
−

n∑
i=1

mi
ai

(ai + λ)2
ξi

]
S(t, x)

−
2∑

i=1

miλ

ai + λ
ui(t, x) − γλ

K
S(t − τ, x),

∂ui(x, t)
∂t

= δi∆ui +
βiξi

ai + λ
ui(t, x), i = 1, 2, on Ω × (0,∞),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)

with boundary conditions (4.2). In the following we study the stability of E =
(λ, ξ1, ξ2), when τ = 0 and τ > 0.

4.1. Stability of the equilibrium points in the case τ = 0

Note that in the case of no delay the corresponding PDE model with different
diffusion coefficients was first studied in [13], and it is described by the system

∂S

∂t
(x, t) = δ0∆S + γ

(
1 − S(t, x)

K

)
S(t, x) −

2∑
i=1

mifi(S(t, x))ui(t, x)

on Ω × (0,∞),
∂ui

∂t
(x, t) = δi∆ui + (mifi(S(t, x)) − di)ui, i = 1, 2, on Ω × (0,∞).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.12)

The characteristic polynomial Pk(ν) of J − µkD, where J is the Jacobian matrix
of (4.12) evaluated at E = (λ, ξ1, ξ2), is given by

Pk(ν) = ν3 + Ākν2 + B̄kν + C̄k, (4.13)
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where

Āk = µk(δ0 + δ1 + δ2) − ā,

B̄k = µ2
k(δ0δ1 + δ0δ2 + δ1δ2) − āµk(δ1 + δ2) − b̄d − ec̄,

C̄k = µ3
kδ0δ1δ2 − āµ2

kδ1δ2 − µk(ec̄δ1 + b̄dδ2),

ā = λ

2∑
i=1

miξi

(ai + λ)2
− γλ

K
, b̄ =

β1ξ1

a1 + λ
, c̄ =

β2ξ2

a2 + λ
,

d = − m1λ

a1 + λ
, e = − m2λ

a2 + λ
.

If λ < K < a2 + 2λ, ā < 0, b̄d < 0 and ec̄ < 0, then Āk > 0, B̄k > 0 and C̄k � 0
for all k � 0. Hence, the polynomial Pk(ν) is stable independently of the diffusion
matrix D = diag(δ0, δ1, δ2). The following result may be found in [13].

Theorem 4.2. Suppose that E is an equilibrium of (4.2)–(4.12) independent of x.
If E is stable for the flow of (3.1), then E is stable for the flow of (4.2)–(4.12)
independently of D = diag(δ0, δ1, δ2).

As a consequence, if λ < K < a2 + 2λ, the line of equilibrium points LK of (3.1)
is asymptotically stable for the flow of (4.2)–(4.12). If a2 + 2λ < K < a1 + 2λ, let
(ξ1(K), ξ2(K)) be the unique solution of the system consisting of [6, (3.1), (3.4)].
Then, the following theorem due to Ferreira and Oliveira [13] also holds.

Theorem 4.3. For any K satisfying a2 + 2λ � K � a1 + 2λ, the point given by
(λ, ξ1(K), ξ2(K)) splits LK into two parts LU

K and LS
K ; the equilibria of (4.2)–(4.12)

in the set
LU

K = {(λ, ξ1, ξ2) on LK : ξ1 < ξ1(K)}

are unstable, and those in the set

LS
K = {(λ, ξ1, ξ2) on LK : ξ1 > ξ1(K)}

are stable, independently of the diffusion matrix D = diag(δ0, δ1, δ2).

Therefore, the result given in theorem 4.2 shows that the zip bifurcation phe-
nomenon may be preserved by the introduction of a diagonal diffusion matrix D in
model (3.1), independent of the domain Ω.

4.2. Stability of the equilibrium points in the case τ �= 0

To study the stability of the equilibria on LK , we consider λ < K < a2 + 2λ,
with a fixed K. The quasi-polynomial for E has a similar structure to that given
by (4.13) for the case τ �= 0 and, accordingly, we have that

P (ν) = P̃3(ν, τ) + Q̃2(ν, τ)e−τν , (4.14)

where

P̃3(ν, τ) = Pk(ν) = ν3 + D̄kν2 + Ēkν + Ḡk (4.15)
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and

Q̃2(ν, τ) =
γλ

K
(ν2 + [δ1 + δ2]ν + δ1δ2µk) (4.16)

are analytic functions in the right half-plane and satisfy the following conditions:

(1) P̃3(0, τ) + Q̃2(0, τ) �= 0 for all τ ∈ R,

(2) If ν = iω, ω > 0, then P̃3(iω, τ) + Q̃2(iω, τ) �= 0, τ ∈ R,

(3) lim sup{|Q̃2(ν, τ)/P̃3(ν, τ)|; |ν| → ∞, Re ν � 0} < 1,

(4) F̃ (ω, τ) = |P̃3(iω, τ)|2 − |Q̃2(iω, τ)|2 has a finite number of zeros.

As we know from § 3, for a stability switch one needs to examine the existence of
real roots of the equation F̃ (ω, τ) = 0, in which

F̃ (ω, τ) = |P̃3(iω, τ)|2 − |Q̃2(iω, τ)|2

= ω6 +
(

D̄2
k − 2Ēk − γ2λ2

K2

)
ω4 +

[
Ēk + 2δ1δ2µk

γ2λ2

K2 − (δ1 + δ2)2
]
ω2

+ Ḡ2
k − γ2λ2

K2 δ2
1δ2

2µ2
k

= ω6 + Aω4 + Bω2 + C,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)
where

A = D̄2
k − 2Ēk − γ2λ2

K2 ,

B = Ēk + 2δ1δ2µk
γ2λ2

K2 − (δ1 + δ2)2,

C = Ḡ2
k − γ2λ2

K2 δ2
1δ2

2µ2
k.

Applying the change of variable z = ω2, we can write (4.17) in the form

F̃ (z, τ) = z3 + Az2 + Bz + C. (4.18)

Then, to obtain a stability switch one has to examine the existence of positive real
roots of the equation F (z, τ) = 0. A stability switch may occur only if F̃ (z, τ) has
a positive real root.

Proceeding again as in § 2 and defining the coefficients for F (z) as

A1 = A, A2 = B, A3 = C,

we have the following.

Theorem 4.4.

(i) Assume that the conditions in (H̄1) hold. If the equilibrium E is stable (unsta-
ble) at τ = 0, then E remains stable (unstable) for all τ � 0.

(ii) Assume that the conditions in (H̄2) hold. Then E is unstable for all τ � 0.

(iii) Assume that the conditions in either (H̄3) or (H̄4) hold. As τ increases, sta-
bility switches may occur.
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Remark 4.5. Note that if theorem 4.4(i) holds, then the zip bifurcation phe-
nomenon sustains. On the other hand, if (iii) holds, the phenomenon may not
sustain.

5. Discussion

We have studied a three-dimensional predator–prey model in which two predator
species compete for a single prey. In the absence of predation the prey species
population follows logistic growth dynamics with carrying capacity K. A discrete
delay is considered for the predator population. The functional responses of the
predators are of Holling II type, that is, the increase in the prey population leads
to an increase in the predator efficiency for relatively low prey abundance.

It is observed that, in the absence of time delay, the trivial equilibrium is unsta-
ble, whereas the non-trivial isolated equilibrium is stable for a certain range of
values of the carrying capacity, and for other values it is unstable. Furthermore,
there exists a continuum of equilibria in the interior of the positive octant that
exhibit the phenomenon of zip bifurcation. Now, for the time-delay model, the triv-
ial equilibrium is unstable, and the non-trivial isolated equilibrium may change its
stability depending on the value of the delay parameter and the carrying capacity.
There also exists a continuum of equilibria in the interior of the positive octant,
and it is observed that though these equilibria undergo a zip bifurcation, surpris-
ingly, the zip bifurcation is unsustainable. More interestingly, even the introduction
of diffusion in the time-delay model does not change the unsustainability of this
kind of zip bifurcation. The numerical studies of the delay model reveal that the
non-isolated interior equilibria, for certain specific values of the parameters of the
model, undergo a Hopf-like bifurcation. However, this fact remains to be estab-
lished from a mathematical point of view. This is an interesting phenomenon and
needs more intensive scrutiny. Our assumptions create an abstract ideal situation in
which two predators of equal prey thresholds compete, one achieving this threshold
by being an r-strategist and the other by being a K-strategist. Also, bifurcation
of a stable periodic solution representing coexistence can be established using our
assumptions. The situation with regard to the presence of non-isolated equilibria
may be viewed as a consequence of overfeeding of the species (not necessarily due to
competition), leading to the suspension of all biological activities, which, of course,
is justifiable in reality.

In the real world a number of factors will confound understanding of the inter-
actions among the competing species; simplified models such as the one presented
in this paper may seem like a toy model. However, the present study shows that
even simplified models exhibit rich and complicated dynamics. From this point of
view, the present study provides scope for the development of increasingly realistic
models.
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