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Reinhard Kahle and Michael Rathjen, editors, Gentzen’s Centenary: The Quest for
Consistency, Springer, 2015.
Gerhard Gentzen, generally considered the first modern proof theorist, was born in 1909.

Gentzen’s Centenary is a volume of papers in his honor, conceived at the Leeds Symposium on
ProofTheory andConstructivism in 2009.One of the contributors,GrigoriMints, passed away
shortly before the volume was published, and the volume is also dedicated to his memory.
Gentzen is primarily associated with several proofs of one spectacular result, the consis-

tency of first-order arithmetic using transfinite induction up to the ordinal �0. The nineteen
papers in the volume are concerned, in one form or another, with this proof and its modern
consequences for the consistency of formal theories of arithmetic.
For most readers, the more interesting papers will be the less technical ones. One partic-

ularly interesting feature of the volume is that it represents a rare chance to reflect on the
development and history of Gentzen’s work, not just its modern consequences. We often
focus on the most recent, advanced, and streamlined arguments, but the authors took the
occasion of the centenary to look back in detail on the original form of Gentzen’s proof.
Gentzen originally worked out his proof of the consistency of arithmetic in late 1934

and submitted it to the Mathematische Annalen the following year. Other logicians, most
importantly Gödel, questioned whether the techniques (in particular, the use of induction
on well-founded trees) were properly finitistic. Gentzen’s response to this criticism was to
elaborate the transfinite recursion using ordinal numbers, leading him to identify the critical
role of the ordinal �0; this lead to Gentzen’s first consistency proof, published in 1936. Only
two years later, in 1938, Gentzen produced a modified and somewhat simpler proof; it is this
later proof which is usually referred to as Gentzen’s proof.
VonPlato’s contribution, in particular, is a rare example of an investigation of the history of

an individual proof.VonPlato recounts the order inwhichGentzen seems to have encountered
and then surmounted themost important obstacles, providing some insight into howhemight
have come to his ideas. The reader needs to understand the proof itself, and the issues around
it, quite well, but anyone with those prerequisites and interested in where a groundbreaking
proof like Gentzen’s could come from would appreciate the article.
Several other papers wrestle with features of Gentzen’s original proofs, asking what more

we might glean, or what might have been gleaned earlier, from Gentzen’s arguments rather
than later refinements. Buchholz gives a modern account of the most difficult part of the
first consistency proof, which may make that little-read paper more accessible. Tait discusses
in more detail the use of induction in Gentzen’s original paper, elaborating on the common
claim that Gentzen’s 1934 proof is repaired by the use of Brouwer’s Bar Theorem (a form of
induction on well-founded trees). Rathjen’s paper concerns itself, not with Gentzen’s result,
but withGoodstein’s: Goodstein related the ordinals below �0 to the termination ofGoodstein
sequences. Today Goodstein’s theorem—every Goodstein sequence terminates—is known to
be unprovable in Peano arithmetic, but this was not actually proven until Kirby and Paris’
work in the 1980s. Rathjen argues that Goodstein’s letters suggest that he was quite close to
proving some form of independence result from Peano arithmetic.
After Gentzen’s work, the natural question was to ask for an analogous proof of the

consistency of second-order arithmetic by transfinite induction up to some larger ordinal.
For many decades, the pursuit of such a result—the branch of proof theory known as ordinal
analysis—was central to the field. By the turn of the millennium that situation had changed,
in part because of the seeming intractability of further advances, at least in the original
direction of pushing directly towards analyses of stronger and stronger systems. As Mints
observed, “This used to be the main problem of proof theory, but it was too difficult, so
now it is not.” Instead attention shifted to the other branches of proof theory that had been
developed in the previous few decades.
The make-up of the volume reflects this change. Even in a volume devoted to Gentzen,

there is only one paper that represents a direct contribution to the ordinal analysis of strong
subsystems of analysis (Arai’s paper, part of an ongoing series working towards an analysis
of Π12-comprehension). Two other papers (one by Jäger and Probst and one byMints) reflect
a closely related line of research, giving refined analyses of relatively weak systems, in part
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motivated by the hope that a better understanding and new techniques for dealing with
weaker systems might make a return to the analysis of stronger systems more viable.
The other technical papers in the volume are still based on Gentzen’s techniques but apply

them to other areas of proof theory and logic. In the realm of pure proof theory,Meskens and
Weiermann investigate fast-growing functions in subsystems of Peano arithmetic, Oliva and
Powell give a game-theoretic version of Gödel’s Dialectica interpretation, Ferreira discusses
Spector’s consistency proof for analysis using higher order functionals, and Jervall discusses
tree representations of ordinals. Further from proof theory, Rathjen and Vizcaı́no look at
the connection to reverse mathematics, giving an equivalence between a reverse mathematics
system and the statement that a certain operation inspired by proof-theoretic ordinals maps
well-orderings to well-orderings, and Pohlers discusses so-called semiformal calculi (proof
systems where rules may have infinitely many premises), with a focus on applications outside
of proof theory.
The remaining papers in the volume consider the broader impact of Gentzen’s ideas.

Kahle’s contribution gives a survey of consistency results and how they have been viewed,
both historically since Gentzen’s work and across several subfields of modern logic. Detlefsen
discusses Gentzen’s own philosophical views, and Setzer considers the revision of Hilbert’s
original program to prove the consistency of mathematics in the context of modern proof
theory.
BecauseGentzen’s cut-elimination results for Peano arithmetic are so central to the volume,

even the less technical papers will be difficult to fully appreciate for readers who are not
comfortable with that proof. However it is difficult to imagine a more thorough investigation
of what that result means eighty years after its publication, both in the broad scope of its
consequences, the field it generated, and the way it transformed our understanding of what
consistency means in mathematics.

Henry Towsner

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19143, USA,
htowsner@math.upenn.edu.

Five papers on reverse mathematics and Ramsey-theoretic principles
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These five papers are all major advances in the reverse-mathematical and computability-

theoretic analysis of combinatorial principles related to Ramsey’s Theorem. Reverse mathe-
matics seeks to calibrate the strength of theorems provable in the theory Z2 of second-order
arithmetic. Typically, given such a theorem T , one endeavors to find a subsystem S of Z2
that is equivalent to T , in the sense that T is provable in S, but also each axiom of S is
provable from T over a weak base system. This base system is usually RCA0, which roughly
corresponds to the practice of computable mathematics (and hence lends the area a distinc-
tively computability-theoretic flavor). A celebrated phenomenon is that there are a few such
subsystems that suffice to classify many theorems across mathematics, most famously the
“big five” systems RCA0, WKL0, ACA0, ATR0, and Π11-CA0. Furthermore, these systems
are linearly ordered by strength.
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