LEFT MAXIMAL AND STRONGLY RIGHT MAXIMAL IDEMPOTENTS IN G^*

YEVHEN ZELENYUK

Abstract. Let G be a countably infinite discrete group, let βG be the Stone–Čech compactification of G, and let $G^* = \beta G \setminus G$. An idempotent $p \in G^*$ is left (right) maximal if for every idempotent $q \in G^*$, pq = p (qp = p) implies qp = q (pq = q). An idempotent $p \in G^*$ is strongly right maximal if the equation xp = p has the unique solution x = p in G^* . We show that there is an idempotent $p \in G^*$ which is both left maximal and strongly right maximal.

§1. Introduction. Throughout the paper, G will be an arbitrary countably infinite discrete group.

The operation of *G* extends to the Stone–Čech compactification βG of *G* so that for each $a \in G$, the left translation $\beta G \ni x \mapsto ax \in \beta G$ is continuous, and for each $q \in \beta G$, the right translation $\beta G \ni x \mapsto xq \in \beta G$ is continuous.

We take the points of βG to be the ultrafilters on G, the principal ultrafilters being identified with the points of G, and $G^* = \beta G \setminus G$. The topology of βG is generated by taking as a base the subsets $\overline{A} = \{p \in \beta G : A \in p\}$, where $A \subseteq G$. For $p, q \in \beta G$, the ultrafilter pq has a base consisting of subsets $\bigcup_{x \in A} xB_x$, where $A \in p$ and $B_x \in q$.

The semigroup βG is interesting both for its own sake and for its applications to Ramsey theory and to topological dynamics. An elementary introduction to βG can be found in [3].

As any compact Hausdorff right topological semigroup, G^* has idempotents [1, Corollary 2.10]. The inclusion relation on principal left and right ideals of βG induces the left and right preorderings on idempotents of G^* :

$$p \leq_L q \Leftrightarrow (\beta G)p \subseteq (\beta G)q \Leftrightarrow pq = p,$$

$$p \leq_R q \Leftrightarrow p(\beta G) \subseteq q(\beta G) \Leftrightarrow qp = p.$$

The maximal idempotents with respect to $\leq_L (\leq_R)$ are called *left (right) maximal*. Thus, an idempotent $p \in G^*$ is left (right) maximal if and only if for every idempotent $q \in G^*$, pq = p (qp = p) implies qp = q (pq = q).

© 2017, Association for Symbolic Logic 0022-4812/17/8201-0002 DOI:10.1017/jsl.2016.62

Received November 1, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 22A15, 54H20, Secondary 54D80, 54H11.

Key words and phrases. Stone-Čech compactification, ultrafilter, principal left ideal, orbit closure, left maximal idempotent, strongly right maximal idempotent.

As any compact Hausdorff right topological semigroup, G^* has right maximal idempotents [5, Theorem I.2.7]. For every right maximal idempotent $p \in G^*$, $\{x \in G^* : xp = p\}$ is a finite right zero semigroup [3, Theorem 9.4]. An idempotent $p \in G^*$ is *strongly right (left) maximal* if the equation xp = p (px = p) has the unique solution x = p in G^* . There are strongly right maximal idempotents in G^* [4]. Assuming Martin's Axiom (MA), there is an idempotent $p \in \mathbb{Z}^*$ such that, for any $q, r \in \mathbb{Z}^*$, q + r = p implies $q, r \in \mathbb{Z} + p$ [2], and consequently, p is both strongly right maximal and strongly left maximal.

Recently, it was shown in ZFC, the system of usual axioms of set theory, that there are left maximal idempotents in G^* [8]. More specifically, it was shown that there are idempotents in G^* which are both minimal and left maximal. Since the minimal idempotents are not right maximal [3, Exercise 9.1.4], the idempotents constructed in [8] are left maximal but not right maximal.

In this paper we prove (in ZFC) the following result.

THEOREM 1.1. Let X be a G_{δ} subset of G^* containing an idempotent. Then there is an idempotent $p \in X$ such that p is strongly right maximal in G^* and $(\beta G)p$ is a maximal principal left ideal of βG .

As an immediate consequence, we obtain from Theorem 1.1 that

COROLLARY 1.2. Every G_{δ} subset of G^* containing an idempotent contains an idempotent which is both left maximal and strongly right maximal.

The proof of Theorem 1.1 is based on a special construction of regular left invariant topologies on G and closed left ideals of βG and on deep subsets of ω^* .

For every closed subset $Y \subseteq \omega^*$, the *character* of Y in ω^* , denoted $\chi(Y)$, is the minimum cardinality of a family \mathcal{F} of subsets of ω such that $\bigcap_{A \in \mathcal{F}} \overline{A} = Y$. A nonempty closed subset $Z \subseteq \omega^*$ is *deep* if for every closed subset $Y \subseteq \omega^*$ with $\chi(Y) < \mathfrak{c}, Y \cap Z$ is either empty or infinite.

THEOREM 1.3 ([8, Theorem 3.1]). There is a deep subset $Z \subseteq \omega^*$.

As in [8], we use Theorem 1.3 as a replacement of MA.

In Section 2 we characterize idempotents from Theorem 1.1. In Section 3 we give that special construction. And in Section 4 we prove Theorem 1.1 itself.

§2. Left invariant topologies and closed left ideals. A topology on a group is *left invariant* if left translations are continuous. All topologies are assumed to satisfy the T_1 separation axiom unless otherwise specified. For every left invariant topology \mathcal{T} on G, $Ult(\mathcal{T}) = \{p \in G^* : p \text{ converges to } 1 \text{ in } \mathcal{T}\}$. That is, $Ult(\mathcal{T})$ consists of all nonprincipal ultrafilters on G containing the neighborhood filter of 1 in \mathcal{T} . This is a closed subsemigroup of G^* (see [6, Lemma 7.1]).

Every idempotent $p \in G^*$ determines naturally two left invariant topologies on *G*. The first one is the topology $\mathcal{T}(p)$ with $\text{Ult}(\mathcal{T}(p)) = \{p\}$. That is, the neighborhood filter of 1 in $\mathcal{T}(p)$ consists of subsets $A \cup \{1\}$, where $A \in p$. It is Hausdorff and *maximal* (= maximal among all dense in itself topologies). The second one is the topology $\mathcal{T}_p(p)$ with $\text{Ult}(\mathcal{T}_p(p)) = \{x \in G^* : xp = p\}$. It is the largest regular left invariant topology on *G* in which *p* converges to 1. It is induced by the mapping $G \ni x \mapsto xp \in G^*$. See [3, Section 9.2] or [6, Proposition 6.30 and Theorem 7.17] for the proofs. These results imply the following characterizations of strongly right maximal idempotents. LEMMA 2.1. Let $p \in G^*$ be an idempotent. Then the following statements are equivalent:

- (1) *p* is strongly right maximal,
- (2) $\mathcal{T}_{\rho}(p) = \mathcal{T}(p),$
- (3) $\mathcal{T}(p)$ is regular,
- (4) $Gp \subseteq G^*$ is a maximal space.

Given a left invariant topology on G, an ultrafilter q on G is *fundamental* if for every neighborhood U of 1, there is $x \in G$ such that $xU \in q$.

LEMMA 2.2. An ultrafilter $q \in \beta G$ is fundamental if and only if there is $r \in \beta G$ such that the ultrafilter rq converges to 1.

PROOF. Suppose that q is fundamental. For every neighborhood U of 1, pick $x_U \in G$ such that $x_U U \in q$, so $U \in x_U^{-1}q$. Let r be an ultrafilter on G extending the family of subsets $\{x_V^{-1} : V \text{ is a neighborhood of 1 contained in } U\}$, where U runs over neighborhoods of 1. Then rq converges to 1.

Conversely, suppose that rq converges to 1. Then for every neighborhood U of 1, there is $x_U \in G$ such that $x_Uq \in U$, so $x_U^{-1}U \in q$. Consequently, q is fundamental.

A left invariant topology \mathcal{T} on G is *complete* if every fundamental ultrafilter is convergent. We say that \mathcal{T} is *weakly complete* if every fundamental ultrafilter containing a discrete subset is convergent.

LEMMA 2.3. For every idempotent $p \in G^*$, $(G, \mathcal{T}(p))$ contains no nonclosed discrete subset.

PROOF. It suffices to show that p contains no discrete subset. Let $A \in p$ and let $B = \{x \in G : A \in xp\}$. Since pp = p, one has $B \in p$. Then every $x \in A \cap B$ is a limit point of A, so A is not discrete.

Since by Lemma 2.3, no nonprincipal ultrafilter on $(G, \mathcal{T}(p))$ containing a discrete subset is convergent, we obtain that

COROLLARY 2.4. For every idempotent $p \in G^*$, $\mathcal{T}(p)$ is weakly complete if and only if no nonprincipal ultrafilter containing a discrete subset is fundamental.

The next lemma gives us a characterization of maximal principal left ideals generated by idempotents.

LEMMA 2.5. Let $p \in G^*$ be an idempotent. Then

(1) $(\beta G)p = \bigcap \{\overline{A} : G \setminus A \text{ is discrete in } \mathcal{T}(p)\},\$

(2) $(\beta G)p$ is maximal if and only if $\mathcal{T}(p)$ is weakly complete.

- PROOF. (1) Let $A \subseteq G$. Suppose that $G \setminus A$ is discrete in $\mathcal{T}(p)$. Then, by Lemma 2.3, it is also closed. For every $x \in G$, pick $A_x \in p$ such that $(xA_x) \cap (G \setminus A) = \emptyset$, and let $B = \bigcup_{x \in G} xA_x$. Then $(\beta G)p \subseteq \overline{B}$ and $B \subseteq A$. Now suppose that $(\beta G)p \subseteq \overline{A}$. For every $x \in G$, there is $A_x \in p$ such that $xA_x \subseteq A$. Then for every $x \in G \setminus A$, $U = A_x \cup \{x\}$ is a neighborhood of xand $U \cap (G \setminus A) = \{x\}$. It follows that $G \setminus A$ is discrete in $\mathcal{T}(p)$.
- (2) Suppose that (βG)p is maximal. Let D be a discrete subset of (G, T(p)) and let D ∈ q ∈ βG. By (1), D ∩ ((βG)p) = Ø, so q ∉ (βG)p. Since (βG)p is maximal, there is no r ∈ βG such that rq = p. Consequently by Lemma 2.2, q is not fundamental. Hence by Corollary 2.4, T(p) is weakly complete.

Suppose that $(\beta G)p$ is not maximal. Then there is $q \in G^* \setminus ((\beta G)p)$ such that $(\beta G)p \subseteq (\beta G)q$, and so there is $r \in \beta G$ such that rq = p. Consequently, q is fundamental, and by (1), q contains a discrete subset. Hence, $\mathcal{T}(p)$ is not weakly complete.

Notice that for every $p \in G^*$, $(\beta G)p = \overline{Gp}$ (here, \overline{Gp} denotes $cl_{G^*}(Gp)$), so the principal left ideal generated by p is the same as the orbit closure of p (under the action $G \times G^* \ni (a, p) \mapsto ap \in G^*$).

Combining Lemmas 2.1 and 2.5, we obtain the following characterizations of idempotents from Theorem 1.1.

PROPOSITION 2.6. Let $p \in G^*$ be an idempotent. Then the following statements are equivalent:

- (1) *p* is strongly right maximal and $(\beta G)p$ is a maximal principal left ideal,
- (2) $Gp \subseteq G^*$ is a maximal space and \overline{Gp} is a maximal orbit closure,
- (3) $\mathcal{T}(p)$ is regular and weakly complete.

We conclude this section with two more lemmas needed in the proof of Theorem 1.1.

LEMMA 2.7. Let \mathcal{T}_0 be a Hausdorff (regular) left invariant topology on G and let $(U_n)_{n<\omega}$ be any sequence of neighborhoods of 1 in \mathcal{T}_0 . Then \mathcal{T}_0 can be weakened to a first countable Hausdorff (regular) left invariant topology \mathcal{T} on G in which each U_n remains a neighborhood of 1.

PROOF. We consider the Hausdorff case, the regular one is [6, Lemma 9.28].

Without loss of generality one may suppose that $U_0 = G$. Enumerate $G \setminus \{1\}$ as $\{x_n : 1 \le n < \omega\}$. Construct inductively a sequence $(V_n)_{n < \omega}$ of open neighborhoods of 1 in \mathcal{T}_0 with $V_0 = G$ such that for every $n \ge 1$ the following conditions are satisfied:

- (i) $V_n \subseteq V_{n-1}$,
- (ii) $x_n V_n \subseteq V_k$, where $k = \max\{i \le n 1 : x_n \in V_i\}$,
- (iii) $(x_n V_n) \cap V_n = \emptyset$, and
- (iv) $V_n \subseteq U_n$.

It follows from (i)–(ii) that there is a left invariant topology \mathcal{T} on G, not necessarily Hausdorff, in which $\{V_n : n < \omega\}$ is a neighborhood base at 1 (see [6, Corollary 4.4]). Condition (iii) implies that \mathcal{T} is Hausdorff, and (iv) that each U_n remains a neighborhood of 1 in \mathcal{T} .

LEMMA 2.8. Let $I \subseteq G^*$ be a closed left ideal of βG . Then there is a left invariant topology \mathcal{T} on G with $Ult(\mathcal{T}) = I$.

PROOF. Let \mathcal{F} be the intersection of all ultrafilters from *I*. Then \mathcal{F} is a filter on *G* such that the set of all ultrafilters on *G* containing \mathcal{F} is *I* [6, Lemma 2.28]. The filter \mathcal{F} has also the property that for every $A \in \mathcal{F}$ and $x \in G$, there is $B_x \in \mathcal{F}$ such that $xB_x \subseteq A$. Indeed, for every $p \in I$, one has $xp \in I$, so there is $B_{x,p} \in p$ such that $xB_{x,p} \subseteq A$. Put $B_x = \bigcup_{p \in I} B_{x,p}$.

Now let $\mathcal{N} = \{A \cup \{1\} : \hat{A} \in \mathcal{F}\}$. Then

- (i) $\bigcap \mathcal{N} = \{1\}$, and
- (ii) for every $U \in \mathcal{N}$ and $x \in U$, there is $V \in \mathcal{N}$ and $xV \subseteq U$.

It follows that there is a left invariant topology \mathcal{T} on G for which \mathcal{N} is the neighborhood filter of 1, and so $Ult(\mathcal{T}) = I$.

§3. Special construction. By [7, Lemma 6], there is a surjective finite-to-one function $f: G \to \omega$ such that

- (1) f(1) = 0,
- (2) for every $x \in G$, $f(x) = f(x^{-1})$, and
- (3) for every $x, y \in G$, $f(xy) \le \max\{f(x), f(y)\} + 1$, and if $|f(x) f(y)| \ge 2$, then $f(xy) \ge \max\{f(x), f(y)\} - 1$.

The function $f : G \to \omega$ extends continuously to $\beta G \to \beta \omega$. We use the same letter f to denote this extension. Notice that for any $p \in \beta G$ and $q \in G^*$, f(pq) = f(q) + i for some $i \in \{-1, 0, 1\}$.

A left ideal $I \subseteq G^*$ of βG is *locally maximal* if $G^* \setminus I$ is also a left ideal.

THEOREM 3.1 ([8, Theorem 2.6]). Let $(A_n)_{n < \omega}$ be a decreasing sequence of subsets of *G* such that

- (a) for every $n < \omega$ and $x \in A_n$, $f(x) \ge n$, and
- (b) both the sets $f(A_0) + i$, $i \in \{-1, 0, 1\}$, and the sets $f(A_n \setminus A_{n+1})$, $n < \omega$, are pairwise disjoint.

For every $n < \omega$, let $W_n = \bigcup_{x \in G} xA_{n+f(x)}$, and let $I = \bigcap_{n < \omega} \overline{W_n}$. Then I is a locally maximal closed left ideal of βG .

For every filter \mathcal{F} on G with $\bigcap \mathcal{F} = \emptyset$, there is a largest left invariant topology $\mathcal{T}[\mathcal{F}]$ on G in which \mathcal{F} converges to 1. The topology $\mathcal{T}[\mathcal{F}]$ has a neighborhood base at 1 consisting of subsets

 $[M] = \{x_0 x_1 \cdots x_n : n < \omega, x_0 = 1 \text{ and } x_{i+1} \in M(x_0 \cdots x_i) \text{ for each } i < n\},\$

where $M : G \to \mathcal{F}$ [6, Theorem 4.8].

A filter \mathcal{F} on G is *strongly discrete* if $\bigcap \mathcal{F} = \emptyset$ and there is $M : G \to \mathcal{F}$ such that the subsets $xM(x) \subseteq G$, $x \in G$, are pairwise disjoint.

THEOREM 3.2 ([6, Theorem 4.18]). For every strongly discrete filter \mathcal{F} on G, the topology $\mathcal{T}[\mathcal{F}]$ is zero-dimensional and Hausdorff, and consequently, regular.

THEOREM 3.3. Let \mathcal{T} be a Hausdorff left invariant topology on G and let $(\mathcal{F}_n)_{n<\omega}$ be a sequence of filters on G converging to 1 in \mathcal{T} . Suppose that

- (i) there is a neighborhood U of 1 in \mathcal{T} such that the subsets $f(U \setminus \{1\}) + i \subseteq \omega$, $i \in \{-1, 0, 1\}$, are pairwise disjoint,
- (ii) for every $n < \omega$, there is $A_n \in \mathcal{F}_n$ such that the subsets $f(A_n) \subseteq \omega$, $n < \omega$, are pairwise disjoint.

Let \mathcal{F} be the filter on G with a base of subsets $\bigcup_{n \leq i < \omega} B_i$, where $n < \omega$ and $B_i \in \mathcal{F}_i$. Then \mathcal{F} is strongly discrete.

PROOF. For every $n < \omega$, choose a neighborhood U_n of 1 in \mathcal{T} such that

(a) the subsets xU_n , where $x \in G$ with $f(x) \leq n$, are pairwise disjoint, and choose $C_n \in \mathcal{F}_n$ such that

(b)
$$C_n \subseteq U_n$$
,

- (c) for every $x \in C_n$, $f(x) \ge n+2$, and
- (d) $C_n \subseteq U \cap A_n$.

We claim that the subsets

$$x \bigcup_{n \ge f(x)} C_n,$$

where $x \in G$, are pairwise disjoint.

Let $x, y \in G, x \neq y$. Since

$$x \bigcup_{n \ge f(x)} C_n = \bigcup_{n \ge f(x)} x C_n,$$
$$y \bigcup_{m \ge f(y)} C_m = \bigcup_{m \ge f(y)} y C_m,$$

it suffices to check that the subsets xC_n and yC_m are disjoint for any $n \ge f(x)$, $m \ge f(y)$. If n = m, they are disjoint by (a) and (b). Now let $n \ne m$. Then by (c),

$$f(xC_n) \subseteq \bigcup_{i=-1}^{1} (f(C_n) + i),$$
$$f(yC_m) \subseteq \bigcup_{j=-1}^{1} (f(C_m) + j),$$

so by (d),

$$f(xC_n) \subseteq \bigcup_{i=-1}^{1} (f(U \cap A_n) + i),$$
$$f(yC_m) \subseteq \bigcup_{j=-1}^{1} (f(U \cap A_m) + j).$$

But by (i) and (ii),

$$\bigcup_{i=-1}^{1} (f(U \cap A_n) + i) \text{ and } \bigcup_{j=-1}^{1} (f(U \cap A_m) + j)$$

are disjoint. Hence, $f(xC_n)$ and $f(yC_m)$ are disjoint, and so are xC_n and yC_m . \dashv

§4. Proof of Theorem 1.1. Let $f : G \to \omega$ be as at the beginning of Section 3. Pick an idempotent $p_0 \in X$. Since the ultrafilters $f(p_0)+i \in \omega^*$, $i \in \{-1, 0, 1\}$, are distinct (see [3, Lemma 6.28]), there is $E \in f(p_0)$ such that the subsets $E + i \subseteq \omega$, $i \in \{-1, 0, 1\}$, are pairwise disjoint. Put $P = f^{-1}(E)$. Then $P \in p_0$ and the subsets $f(P)+i \subseteq \omega$, $i \in \{-1, 0, 1\}$, are pairwise disjoint. Let $\mathcal{T}'_0 = \mathcal{T}(p_0)$ (that is, $\text{Ult}(\mathcal{T}'_0) = \{p_0\}$). By Lemma 2.7, \mathcal{T}'_0 can be weakened to a first countable Hausdorff left invariant topology \mathcal{T}_0 on G such that

$$T_0 = \text{Ult}(\mathcal{T}_0) \subseteq X \cap \overline{P}.$$

Since $T_0 \subseteq \overline{P}$, we have that for any $p, q \in T_0$, f(pq) = f(q). Since the character of $T_0 \subseteq G^*$ is countable, there is an infinite $D \subseteq \omega$ such that $D^* \subseteq f(T_0)$. By Theorem 1.3, there is a deep subset $Z \subseteq D^*$. Let

$$J = f^{-1}(Z) \cap T_0.$$

Then

- (1) J is a closed left ideal of T_0 ,
- (2) $f(J) \subseteq \omega^*$ is deep, and
- (3) $J = f^{-1}(f(J)) \cap T_0.$

Next, enumerate the subsets of *G* as $\{C_{\alpha} : \alpha < \mathfrak{c}\}$ with $C_0 = G$, and inductively, for every $\alpha > 0$, construct a first countable regular left invariant topology \mathcal{T}_{α} on *G* and a locally maximal closed left ideal $I_{\alpha} \subseteq G^*$ of countable character such that

- (4) $T_{\alpha} = \text{Ult}(\mathcal{T}_{\alpha}) \subseteq T_0$,
- (5) $T_{\alpha} \subseteq \underline{I_{\alpha}},$
- (6) $T_{\alpha} \subseteq \overline{C_{\alpha}}$ or $T_{\alpha} \subseteq \overline{G \setminus C_{\alpha}}$,
- (7) if there is an idempotent $p \in \bigcap_{\gamma < \alpha} T_{\gamma} \cap J$ such that $(\beta G)p \subseteq \overline{C_{\alpha}}$, then $I_{\alpha} \subseteq \overline{C_{\alpha}}$, and
- (8) $\bigcap_{\gamma \leq \alpha} T_{\gamma} \cap J \neq \emptyset.$

Fix $\alpha > 0$ and suppose that we have already constructed I_{γ} and \mathcal{T}_{γ} for all $\gamma < \alpha$ as required. Let

$$K_{\alpha} = \bigcap_{\gamma < \alpha} T_{\gamma} \cap J.$$

By (1) and (8), K_{α} is a closed subsemigroup of T_0 .

Suppose that there is an idempotent $p_{\alpha} \in K_{\alpha}$ such that $(\beta G)p_{\alpha} \subseteq \overline{C_{\alpha}}$. Pick $D_{\alpha} \in p_{\alpha}$ such that

(i) $D_{\alpha} \subseteq C_{\alpha}$.

Then for every $n < \omega$, pick $P_{\alpha}^{n} \in p_{\alpha}$ such that

- (ii) for each $x \in G$ with $f(x) \leq n, xP_{\alpha}^{n} \subseteq C_{\alpha}$,
- (iii) $P_{\alpha}^{n} \subseteq P$, and
- (iv) for every $x \in P_{\alpha}^{n}$, $f(x) \ge n$.

Let $\mathcal{T}'_{\alpha} = \mathcal{T}(p_{\alpha})$. By Lemma 2.7, \mathcal{T}'_{α} can be weakened to a first countable Hausdorff left invariant topology \mathcal{T}''_{α} such that

$$T_{\alpha}^{\prime\prime} = \mathrm{Ult}(\mathcal{T}_{\alpha}^{\prime\prime}) \subseteq T_0 \cap \overline{D_{\alpha}} \cap \bigcap_{n < \omega} \overline{P_{\alpha}^n}.$$

Let

$$Y_{\alpha} = \bigcap_{\gamma < \alpha} T_{\gamma} \cap T_{\alpha}''.$$

Since $p_{\alpha} \in Y_{\alpha} \cap J$ and $\chi(Y_{\alpha}) \leq |\alpha| + \omega < \mathfrak{c}$, it follows from (2) that $f(Y_{\alpha}) \cap f(J)$ is infinite. For every $n < \omega$, choose

$$u_{\alpha}^{n} \in f(Y_{\alpha}) \cap f(J)$$

and $E_{\alpha}^{n} \in u_{\alpha}^{n}$ such that the subsets $E_{\alpha}^{n} \subseteq \omega$, $n < \omega$, are pairwise disjoint.

This can be done by induction on *n* as follows. Pick $u_{\alpha}^{n} \in (f(Y_{\alpha}) \cap f(J)) \setminus \overline{F_{\alpha}^{n-1}}$ and $E_{\alpha}^{n} \in u_{\alpha}^{n}$, where $F_{\alpha}^{n-1} = \bigcup_{j \leq n-1} E_{\alpha}^{j}$, such that E_{α}^{n} is disjoint from F_{α}^{n-1} and $(f(Y_{\alpha}) \cap f(J)) \setminus \overline{F_{\alpha}^{n}} \neq \emptyset$.

For every $n < \omega$, pick $q_{\alpha}^n \in Y_{\alpha}$ such that $f(q_{\alpha}^n) = u_{\alpha}^n$. By (3), $q_{\alpha}^n \in J$, so

$$q_{\alpha}^n \in Y_{\alpha} \cap J$$

32

Then for every $n < \omega$, choose $Q_{\alpha}^{n} \in q_{\alpha}^{n}$ such that

(v) $Q_{\alpha}^{n} \subseteq P_{\alpha}^{n}$ and (vi) $f(Q_{\alpha}^{n}) \subseteq E_{\alpha}^{n}$. Let

$$A^n_{\alpha} = \bigcup_{n \le i < \omega} Q^i_{\alpha}, \ W^n_{\alpha} = \bigcup_{x \in G} x A^{n+f(x)}_{\alpha}, \text{ and } I_{\alpha} = \bigcap_{n < \omega} \overline{W^n_{\alpha}}.$$

Then by (iv) and (v), for every $n < \omega$ and $x \in A^n_{\alpha}$, $f(x) \ge n$, and by (iii) and (vi), both the sets $f(A^0_{\alpha}) + i$, $i \in \{-1, 0, 1\}$, and the sets $f(A^n_{\alpha} \setminus A^{n+1}_{\alpha})$, $n < \omega$, are pairwise disjoint. Consequently by Theorem 3.1, I_{α} is a locally maximal closed left ideal. By (ii) and (v), $I_{\alpha} \subseteq C_{\alpha}$.

If there is no idempotent $p \in K_{\alpha}$ such that $(\beta G)p \subseteq \overline{C_{\alpha}}$, then pick any idempotent of K_{α} as p_{α} and take care of (i)' $D_{\alpha} \subseteq C_{\alpha}$ or $D_{\alpha} \subseteq G \setminus C_{\alpha}$, (vi), (iii)' $Q_{\alpha}^{n} \subseteq P$, and (iv)' for every $x \in Q_{\alpha}^{n}$, $f(x) \ge n$.

Let \mathcal{F}_{α} be the filter on G with a base consisting of subsets $\bigcup_{n \leq i < \omega} R^{i}_{\alpha}$, where $n < \omega$ and $R^{i}_{\alpha} \in q^{i}_{\alpha}$, and let $\mathcal{T}^{'''}_{\alpha} = \mathcal{T}[\mathcal{F}_{\alpha}]$. By Theorem 3.3, \mathcal{F}_{α} is strongly discrete, so $\mathcal{T}^{'''}_{\alpha}$ is regular. Notice that $\{q \in \beta G : \mathcal{F}_{\alpha} \subseteq q\} \subseteq I_{\alpha}$. Consequently by Lemma 2.8, $\text{Ult}(\mathcal{T}^{'''}_{\alpha}) \subseteq I_{\alpha}$. Using Lemma 2.7, weaken $\mathcal{T}^{'''}_{\alpha}$ to a first countable regular left invariant topology \mathcal{T}_{α} such that $\text{Ult}(\mathcal{T}_{\alpha}) \subseteq T^{''}_{\alpha} \cap I_{\alpha}$.

Clearly, (4), (5), (6), and (7) are satisfied. To see (8), let q be any limit point of $\{q_{\alpha}^{n}: n < \omega\}$. Then $\mathcal{F}_{\alpha} \subseteq q$ and $q \in \bigcap_{\gamma < \alpha} T_{\gamma} \cap J$, so $q \in \bigcap_{\gamma < \alpha} T_{\gamma} \cap J$.

Now let \mathcal{T} be the least upper bound of topologies \mathcal{T}_{α} , $1 \leq \overline{\alpha} < \mathfrak{c}$. That is, \mathcal{T} is the left invariant topology on G with a neighborhood base at 1 consisting of subsets $\bigcap_{i=1}^{n} U_{\alpha_i}$, where $1 \leq n < \omega$, $1 \leq \alpha_1 < \cdots < \alpha_n < \mathfrak{c}$, and U_{α_i} is a neighborhood of 1 in \mathcal{T}_{α_i} for each i. Then

$$T = \mathrm{Ult}(\mathcal{T}) = \bigcap_{1 \leq \alpha < \mathfrak{c}} T_{\alpha}$$

If each U_{α_i} is closed in \mathcal{T}_{α_i} , $\bigcap_{i \leq n} U_{\alpha_i}$ is closed in \mathcal{T} . Consequently, \mathcal{T} is regular. By (4), $T \subseteq T_0$, and since $T_0 \subseteq X$, one has $T \subseteq X$. By (6) and (8), T is a oneelement semigroup, so $T = \{p\}$ for some idempotent $p \in X$, that is, $\mathcal{T} = \mathcal{T}(p)$. Hence by Lemma 2.1, p is strongly right maximal.

Let

$$I=\bigcap_{1\leq\alpha<\mathfrak{c}}I_{\alpha}.$$

Then $p \in I$ by (5), and I is a locally maximal closed left ideal. We claim that $I = (\beta G)p$.

To see this, assume the contrary. Pick $C \subseteq G$ such that $(\beta G)p \subseteq \overline{C}$ and $I \setminus \overline{C} \neq \emptyset$. There is $\alpha < \mathfrak{c}$ such that $C = C_{\alpha}$. Then by (7), $I_{\alpha} \subseteq \overline{C_{\alpha}}$, and so $I \subseteq \overline{C_{\alpha}}$, a contradiction.

We conclude this paper with the following question.

QUESTION 4.1. Can it be shown in ZFC that there is a strongly left maximal idempotent in \mathbb{Z}^* ?

§5. Acknowledgements. The work was supported by NRF grant IFR2011033100072. The author thanks the referee for a careful reading of the paper and useful comments.

YEVHEN ZELENYUK

REFERENCES

[1] R. ELLIS, Lectures on Topological Dynamics, Benjamin, New York, 1969.

[2] N. HINDMAN and D. STRAUSS, *Nearly prime subsemigroups of* $\beta \mathbb{N}$. *Semigroup Forum*, vol. 51 (1995), pp. 299–318.

[3] _____, Algebra in the Stone-Čech Compactification, De Gruyter, Berlin, 1998.

[4] I. PROTASOV, Maximal topologies on groups. Siberian Mathematical Journal, vol. 39 (1998), pp. 1184–1194.

[5] W. RUPPERT, *Compact Semitopological Semigroups: An Intrinsic Theory*, Lecture Notes in Mathematics 1079, Springer-Verlag, Berlin, 1984.

[6] Y. ZELENYUK, Ultrafilters and Topologies on Groups, De Gruyter, Berlin, 2011.

[7] — , Principal left ideals of βG may be both minimal and maximal. Bulletin of the London Mathematical Society, vol. 45 (2013), pp. 613–617.

[8] — , Left maximal idempotents in G*. Advances in Mathematics, vol. 262 (2014), pp. 593–603.

SCHOOL OF MATHEMATICS

UNIVERSITY OF THE WITWATERSRAND PRIVATE BAG 3, WITS 2050 SOUTH AFRICA *E-mail:* yevhen.zelenyuk@wits.ac.za