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LEFT MAXIMAL AND STRONGLY RIGHT MAXIMAL
IDEMPOTENTS IN G∗

YEVHEN ZELENYUK

Abstract. Let G be a countably infinite discrete group, let �G be the Stone–Čech compactification of
G , and let G∗ = �G \ G . An idempotent p ∈ G∗ is left (right) maximal if for every idempotent q ∈ G∗,
pq = p (qp = p) implies qp = q (pq = q). An idempotent p ∈ G∗ is strongly right maximal if the
equation xp = p has the unique solution x = p in G∗. We show that there is an idempotent p ∈ G∗

which is both left maximal and strongly right maximal.

§1. Introduction. Throughout the paper,G will be an arbitrary countably infinite
discrete group.
The operation of G extends to the Stone–Čech compactification �G of G so that
for each a ∈ G , the left translation �G � x �→ ax ∈ �G is continuous, and for each
q ∈ �G , the right translation �G � x �→ xq ∈ �G is continuous.
We take the points of �G to be the ultrafilters on G , the principal ultrafilters
being identified with the points of G , and G∗ = �G \ G . The topology of �G is
generated by taking as a base the subsets A = {p ∈ �G : A ∈ p}, where A ⊆ G .
For p, q ∈ �G , the ultrafilter pq has a base consisting of subsets

⋃
x∈A xBx , where

A ∈ p and Bx ∈ q.
The semigroup �G is interesting both for its own sake and for its applications
to Ramsey theory and to topological dynamics. An elementary introduction to �G
can be found in [3].
As any compact Hausdorff right topological semigroup, G∗ has idempotents
[1, Corollary 2.10]. The inclusion relation on principal left and right ideals of �G
induces the left and right preorderings on idempotents of G∗:

p ≤L q ⇔ (�G)p ⊆ (�G)q ⇔ pq = p,
p ≤R q ⇔ p(�G) ⊆ q(�G)⇔ qp = p.

The maximal idempotents with respect to ≤L (≤R) are called left (right) maxi-
mal. Thus, an idempotent p ∈ G∗ is left (right) maximal if and only if for every
idempotent q ∈ G∗, pq = p (qp = p) implies qp = q (pq = q).
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As any compact Hausdorff right topological semigroup, G∗ has right maximal
idempotents [5, Theorem I.2.7]. For every right maximal idempotent p ∈ G∗,
{x ∈ G∗ : xp = p} is a finite right zero semigroup [3, Theorem 9.4]. An idempotent
p ∈ G∗ is strongly right (left) maximal if the equation xp = p (px = p) has the
unique solution x = p in G∗. There are strongly right maximal idempotents in
G∗ [4]. Assuming Martin’s Axiom (MA), there is an idempotent p ∈ Z

∗ such that,
for any q, r ∈ Z

∗, q + r = p implies q, r ∈ Z + p [2], and consequently, p is both
strongly right maximal and strongly left maximal.
Recently, it was shown in ZFC, the system of usual axioms of set theory, that there
are left maximal idempotents in G∗ [8]. More specifically, it was shown that there
are idempotents inG∗ which are both minimal and left maximal. Since the minimal
idempotents are not right maximal [3, Exercise 9.1.4], the idempotents constructed
in [8] are left maximal but not right maximal.
In this paper we prove (in ZFC) the following result.
Theorem 1.1. Let X be a G� subset of G∗ containing an idempotent. Then there
is an idempotent p ∈ X such that p is strongly right maximal in G∗ and (�G)p is a
maximal principal left ideal of �G .
As an immediate consequence, we obtain from Theorem 1.1 that
Corollary 1.2. Every G� subset of G∗ containing an idempotent contains an
idempotent which is both left maximal and strongly right maximal.
The proof of Theorem 1.1 is based on a special construction of regular left
invariant topologies on G and closed left ideals of �G and on deep subsets of �∗.
For every closed subset Y ⊆ �∗, the character of Y in �∗, denoted �(Y ), is
the minimum cardinality of a family F of subsets of � such that

⋂
A∈F A = Y .

A nonempty closed subset Z ⊆ �∗ is deep if for every closed subset Y ⊆ �∗ with
�(Y ) < c, Y ∩ Z is either empty or infinite.
Theorem 1.3 ([8, Theorem 3.1]). There is a deep subset Z ⊆ �∗.
As in [8], we use Theorem 1.3 as a replacement of MA.
In Section 2 we characterize idempotents from Theorem 1.1. In Section 3 we give
that special construction. And in Section 4 we prove Theorem 1.1 itself.

§2. Left invariant topologies and closed left ideals. A topology on a group is left
invariant if left translations are continuous. All topologies are assumed to satisfy the
T1 separation axiom unless otherwise specified. For every left invariant topology T
on G , Ult(T ) = {p ∈ G∗ : p converges to 1 in T }. That is, Ult(T ) consists of all
nonprincipal ultrafilters on G containing the neighborhood filter of 1 in T . This is
a closed subsemigroup of G∗ (see [6, Lemma 7.1]).
Every idempotent p ∈ G∗ determines naturally two left invariant topologies
on G . The first one is the topology T (p) with Ult(T (p)) = {p}. That is, the
neighborhood filter of 1 in T (p) consists of subsets A ∪ {1}, where A ∈ p. It is
Hausdorff and maximal (= maximal among all dense in itself topologies). The
second one is the topology T�(p) with Ult(T�(p)) = {x ∈ G∗ : xp = p}. It is the
largest regular left invariant topology on G in which p converges to 1. It is induced
by the mapping G � x �→ xp ∈ G∗. See [3, Section 9.2] or [6, Proposition 6.30 and
Theorem 7.17] for the proofs. These results imply the following characterizations of
strongly right maximal idempotents.
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Lemma 2.1. Let p ∈ G∗ be an idempotent. Then the following statements are
equivalent:
(1) p is strongly right maximal,
(2) T�(p) = T (p),
(3) T (p) is regular,
(4) Gp ⊆ G∗ is a maximal space.
Given a left invariant topology on G , an ultrafilter q on G is fundamental if for
every neighborhood U of 1, there is x ∈ G such that xU ∈ q.
Lemma 2.2. An ultrafilter q ∈ �G is fundamental if and only if there is r ∈ �G
such that the ultrafilter rq converges to 1.
Proof. Suppose that q is fundamental. For every neighborhood U of 1, pick
xU ∈ G such that xUU ∈ q, so U ∈ x−1U q. Let r be an ultrafilter on G extending
the family of subsets {x−1V : V is a neighborhood of 1 contained in U}, where U
runs over neighborhoods of 1. Then rq converges to 1.
Conversely, suppose that rq converges to 1. Then for every neighborhood U
of 1, there is xU ∈ G such that xUq ∈ U , so x−1U U ∈ q. Consequently, q is
fundamental. �
A left invariant topology T on G is complete if every fundamental ultrafilter
is convergent. We say that T is weakly complete if every fundamental ultrafilter
containing a discrete subset is convergent.

Lemma 2.3. For every idempotent p ∈ G∗, (G,T (p)) contains no nonclosed
discrete subset.
Proof. It suffices to show that p contains no discrete subset. Let A ∈ p and let
B = {x ∈ G : A ∈ xp}. Since pp = p, one has B ∈ p. Then every x ∈ A ∩ B is a
limit point of A, so A is not discrete. �
Since by Lemma 2.3, no nonprincipal ultrafilter on (G,T (p)) containing a
discrete subset is convergent, we obtain that

Corollary 2.4. For every idempotent p ∈ G∗, T (p) is weakly complete if and
only if no nonprincipal ultrafilter containing a discrete subset is fundamental.
The next lemma gives us a characterization of maximal principal left ideals
generated by idempotents.

Lemma 2.5. Let p ∈ G∗ be an idempotent. Then
(1) (�G)p =

⋂
{A : G \ A is discrete in T (p)},

(2) (�G)p is maximal if and only if T (p) is weakly complete.
Proof. (1) Let A ⊆ G . Suppose that G \ A is discrete in T (p). Then, by
Lemma 2.3, it is also closed. For every x ∈ G , pick Ax ∈ p such that
(xAx)∩ (G \A) = ∅, and let B =

⋃
x∈G xAx . Then (�G)p ⊆ B and B ⊆ A.

Now suppose that (�G)p ⊆ A. For every x ∈ G , there is Ax ∈ p such that
xAx ⊆ A. Then for every x ∈ G \ A, U = Ax ∪ {x} is a neighborhood of x
and U ∩ (G \ A) = {x}. It follows that G \ A is discrete in T (p).

(2) Suppose that (�G)p is maximal. LetD be a discrete subset of (G,T (p)) and
let D ∈ q ∈ �G . By (1), D ∩ ((�G)p) = ∅, so q /∈ (�G)p. Since (�G)p is
maximal, there is no r ∈ �G such that rq = p. Consequently by Lemma 2.2,
q is not fundamental. Hence by Corollary 2.4, T (p) is weakly complete.
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Suppose that (�G)p is not maximal. Then there is q ∈ G∗ \ ((�G)p) such
that (�G)p ⊆ (�G)q, and so there is r ∈ �G such that rq = p. Consequently,
q is fundamental, and by (1), q contains a discrete subset. Hence, T (p) is not
weakly complete. �

Notice that for every p ∈ G∗, (�G)p = Gp (here, Gp denotes clG∗(Gp)), so the
principal left ideal generated by p is the same as the orbit closure of p (under the
action G ×G∗ � (a, p) �→ ap ∈ G∗).
Combining Lemmas 2.1 and 2.5, we obtain the following characterizations of
idempotents from Theorem 1.1.

Proposition 2.6. Let p ∈ G∗ be an idempotent. Then the following statements
are equivalent:

(1) p is strongly right maximal and (�G)p is a maximal principal left ideal,
(2) Gp ⊆ G∗ is a maximal space and Gp is a maximal orbit closure,
(3) T (p) is regular and weakly complete.
We conclude this section with two more lemmas needed in the proof of
Theorem 1.1.

Lemma 2.7. Let T0 be a Hausdorff (regular) left invariant topology on G and let
(Un)n<� be any sequence of neighborhoods of 1 in T0. Then T0 can be weakened to a
first countable Hausdorff (regular) left invariant topology T on G in which each Un
remains a neighborhood of 1.

Proof. We consider the Hausdorff case, the regular one is [6, Lemma 9.28].
Without loss of generality one may suppose that U0 = G . Enumerate G \ {1} as

{xn : 1 ≤ n < �}. Construct inductively a sequence (Vn)n<� of openneighborhoods
of 1 in T0 with V0 = G such that for every n ≥ 1 the following conditions are
satisfied:

(i) Vn ⊆ Vn−1,
(ii) xnVn ⊆ Vk , where k = max{i ≤ n − 1 : xn ∈ Vi},
(iii) (xnVn) ∩ Vn = ∅, and
(iv) Vn ⊆ Un.

It follows from (i)–(ii) that there is a left invariant topology T onG , not necessarily
Hausdorff, in which {Vn : n < �} is a neighborhood base at 1 (see [6, Corollary
4.4]). Condition (iii) implies that T is Hausdorff, and (iv) that each Un remains a
neighborhood of 1 in T . �
Lemma 2.8. Let I ⊆ G∗ be a closed left ideal of �G . Then there is a left invariant
topology T on G withUlt(T ) = I .
Proof. Let F be the intersection of all ultrafilters from I . Then F is a filter on
G such that the set of all ultrafilters on G containing F is I [6, Lemma 2.28]. The
filter F has also the property that for every A ∈ F and x ∈ G , there is Bx ∈ F such
that xBx ⊆ A. Indeed, for every p ∈ I , one has xp ∈ I , so there is Bx,p ∈ p such
that xBx,p ⊆ A. Put Bx =

⋃
p∈I Bx,p.

Now let N = {A ∪ {1} : A ∈ F}. Then
(i)

⋂
N = {1}, and

(ii) for every U ∈ N and x ∈ U , there is V ∈ N and xV ⊆ U .
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It follows that there is a left invariant topology T on G for which N is the
neighborhood filter of 1, and so Ult(T ) = I . �

§3. Special construction. By [7, Lemma 6], there is a surjective finite-to-one
function f : G → � such that
(1) f(1) = 0,
(2) for every x ∈ G , f(x) = f(x−1), and
(3) for every x, y ∈ G ,f(xy) ≤ max{f(x), f(y)}+1, and if |f(x)−f(y)| ≥ 2,
then f(xy) ≥ max{f(x), f(y)} − 1.

The function f : G → � extends continuously to �G → ��. We use the
same letter f to denote this extension. Notice that for any p ∈ �G and q ∈ G∗,
f(pq) = f(q) + i for some i ∈ {−1, 0, 1}.
A left ideal I ⊆ G∗ of �G is locally maximal if G∗ \ I is also a left ideal.
Theorem 3.1 ([8, Theorem 2.6]). Let (An)n<� be a decreasing sequence of subsets
of G such that

(a) for every n < � and x ∈ An , f(x) ≥ n, and
(b) both the sets f(A0) + i , i ∈ {−1, 0, 1}, and the sets f(An \An+1), n < �, are
pairwise disjoint.

For every n < �, letWn =
⋃
x∈G xAn+f(x), and let I =

⋂
n<� Wn. Then I is a locally

maximal closed left ideal of �G .

For every filter F on G with
⋂
F = ∅, there is a largest left invariant topology

T [F ] onG in which F converges to 1. The topology T [F ] has a neighborhood base
at 1 consisting of subsets

[M ] = {x0x1 · · ·xn : n < �, x0 = 1 and xi+1 ∈M (x0 · · ·xi) for each i < n},

whereM : G → F [6, Theorem 4.8].
A filter F on G is strongly discrete if

⋂
F = ∅ and there isM : G → F such that

the subsets xM (x) ⊆ G , x ∈ G , are pairwise disjoint.
Theorem 3.2 ([6, Theorem 4.18]). For every strongly discrete filter F on G , the
topology T [F ] is zero-dimensional and Hausdorff, and consequently, regular.
Theorem 3.3. Let T be a Hausdorff left invariant topology on G and let (Fn)n<�
be a sequence of filters on G converging to 1 in T . Suppose that
(i) there is a neighborhoodU of 1 in T such that the subsets f(U \ {1})+ i ⊆ �,
i ∈ {−1, 0, 1}, are pairwise disjoint,

(ii) for every n < �, there is An ∈ Fn such that the subsets f(An) ⊆ �, n < �,
are pairwise disjoint.

Let F be the filter on G with a base of subsets
⋃
n≤i<� Bi , where n < � and Bi ∈ Fi .

Then F is strongly discrete.
Proof. For every n < �, choose a neighborhood Un of 1 in T such that
(a) the subsets xUn, where x ∈ G with f(x) ≤ n, are pairwise disjoint, and
choose Cn ∈ Fn such that

(b) Cn ⊆ Un,
(c) for every x ∈ Cn, f(x) ≥ n + 2, and
(d) Cn ⊆ U ∩ An .
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We claim that the subsets
x

⋃

n≥f(x)
Cn,

where x ∈ G , are pairwise disjoint.
Let x, y ∈ G , x �= y. Since

x
⋃

n≥f(x)
Cn =

⋃

n≥f(x)
xCn,

y
⋃

m≥f(y)
Cm =

⋃

m≥f(y)
yCm,

it suffices to check that the subsets xCn and yCm are disjoint for any n ≥ f(x),
m ≥ f(y). If n = m, they are disjoint by (a) and (b). Now let n �= m. Then by (c),

f(xCn) ⊆
1⋃

i=−1
(f(Cn) + i),

f(yCm) ⊆
1⋃

j=−1
(f(Cm) + j),

so by (d),

f(xCn) ⊆
1⋃

i=−1
(f(U ∩ An) + i),

f(yCm) ⊆
1⋃

j=−1
(f(U ∩ Am) + j).

But by (i) and (ii),

1⋃

i=−1
(f(U ∩An) + i) and

1⋃

j=−1
(f(U ∩ Am) + j)

are disjoint. Hence, f(xCn) and f(yCm) are disjoint, and so are xCn and yCm. �

§4. Proof of Theorem 1.1. Let f : G → � be as at the beginning of Section 3.
Pick an idempotent p0 ∈ X . Since the ultrafiltersf(p0)+ i ∈ �∗, i ∈ {−1, 0, 1}, are
distinct (see [3, Lemma 6.28]), there is E ∈ f(p0) such that the subsets E + i ⊆ �,
i ∈ {−1, 0, 1}, are pairwise disjoint. Put P = f−1(E). Then P ∈ p0 and the
subsetsf(P)+ i ⊆ �, i ∈ {−1, 0, 1}, are pairwise disjoint. Let T ′

0 = T (p0) (that is,
Ult(T ′

0 ) = {p0}). By Lemma 2.7, T ′
0 can be weakened to a first countable Hausdorff

left invariant topology T0 on G such that
T0 = Ult(T0) ⊆ X ∩ P.

Since T0 ⊆ P, we have that for any p, q ∈ T0, f(pq) = f(q). Since the character
of T0 ⊆ G∗ is countable, there is an infinite D ⊆ � such that D∗ ⊆ f(T0). By
Theorem 1.3, there is a deep subset Z ⊆ D∗. Let

J = f−1(Z) ∩ T0.
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Then

(1) J is a closed left ideal of T0,
(2) f(J ) ⊆ �∗ is deep, and
(3) J = f−1(f(J )) ∩ T0.
Next, enumerate the subsets of G as {Cα : α < c} with C0 = G , and inductively,
for every α > 0, construct a first countable regular left invariant topology Tα on G
and a locally maximal closed left ideal Iα ⊆ G∗ of countable character such that

(4) Tα = Ult(Tα) ⊆ T0,
(5) Tα ⊆ Iα ,
(6) Tα ⊆ Cα or Tα ⊆ G \ Cα ,
(7) if there is an idempotent p ∈

⋂
�<α T� ∩ J such that (�G)p ⊆ Cα , then

Iα ⊆ Cα , and
(8)

⋂
�≤α T� ∩ J �= ∅.

Fix α > 0 and suppose that we have already constructed I� and T� for all � < α
as required. Let

Kα =
⋂

�<α

T� ∩ J.

By (1) and (8), Kα is a closed subsemigroup of T0.
Suppose that there is an idempotent pα ∈ Kα such that (�G)pα ⊆ Cα . Pick
Dα ∈ pα such that
(i) Dα ⊆ Cα .

Then for every n < �, pick Pnα ∈ pα such that
(ii) for each x ∈ G with f(x) ≤ n, xPnα ⊆ Cα ,
(iii) Pnα ⊆ P, and
(iv) for every x ∈ Pnα , f(x) ≥ n.
Let T ′

α = T (pα). By Lemma 2.7, T ′
α can be weakened to a first countable Hausdorff

left invariant topology T ′′
α such that

T ′′
α = Ult(T ′′

α ) ⊆ T0 ∩Dα ∩
⋂

n<�

Pnα.

Let
Yα =

⋂

�<α

T� ∩ T ′′
α .

Since pα ∈ Yα ∩ J and �(Yα) ≤ |α|+� < c, it follows from (2) thatf(Yα)∩f(J )
is infinite. For every n < �, choose

unα ∈ f(Yα) ∩ f(J )

and Enα ∈ unα such that the subsets Enα ⊆ �, n < �, are pairwise disjoint.
This can be done by induction on n as follows. Pick unα ∈ (f(Yα)∩f(J )) \F n−1α

and Enα ∈ unα, where F n−1α =
⋃
j≤n−1E

j
α , such that Enα is disjoint from F

n−1
α and

(f(Yα) ∩ f(J )) \ F nα �= ∅.
For every n < �, pick qnα ∈ Yα such that f(qnα) = unα. By (3), qnα ∈ J , so

qnα ∈ Yα ∩ J.
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Then for every n < �, choose Qnα ∈ qnα such that
(v) Qnα ⊆ Pnα and
(vi) f(Qnα) ⊆ Enα .
Let

Anα =
⋃

n≤i<�
Qiα, W

n
α =

⋃

x∈G
xAn+f(x)α , and Iα =

⋂

n<�

W n
α .

Then by (iv) and (v), for every n < � and x ∈ Anα , f(x) ≥ n, and by (iii) and
(vi), both the sets f(A0α) + i , i ∈ {−1, 0, 1}, and the sets f(Anα \An+1α ), n < �, are
pairwise disjoint. Consequently by Theorem 3.1, Iα is a locally maximal closed left
ideal. By (ii) and (v), Iα ⊆ Cα .
If there is no idempotentp ∈ Kα such that (�G)p ⊆ Cα , then pick any idempotent
of Kα as pα and take care of (i)’ Dα ⊆ Cα or Dα ⊆ G \ Cα , (vi), (iii)’ Qnα ⊆ P,
and (iv)’ for every x ∈ Qnα , f(x) ≥ n.
Let Fα be the filter on G with a base consisting of subsets

⋃
n≤i<� R

i
α , where

n < � and Riα ∈ qiα , and let T ′′′
α = T [Fα]. By Theorem 3.3, Fα is strongly

discrete, so T ′′′
α is regular. Notice that {q ∈ �G : Fα ⊆ q} ⊆ Iα . Consequently

by Lemma 2.8, Ult(T ′′′
α ) ⊆ Iα . Using Lemma 2.7, weaken T ′′′

α to a first countable
regular left invariant topology Tα such that Ult(Tα) ⊆ T ′′

α ∩ Iα .
Clearly, (4), (5), (6), and (7) are satisfied. To see (8), let q be any limit point of

{qnα : n < �}. Then Fα ⊆ q and q ∈
⋂
�<α T� ∩ J , so q ∈

⋂
�≤α T� ∩ J .

Now let T be the least upper bound of topologies Tα , 1 ≤ α < c. That is, T is the
left invariant topology on G with a neighborhood base at 1 consisting of subsets⋂n
i=1Uαi , where 1 ≤ n < �, 1 ≤ α1 < · · · < αn < c, and Uαi is a neighborhood of
1 in Tαi for each i . Then

T = Ult(T ) =
⋂

1≤α<c
Tα.

If each Uαi is closed in Tαi ,
⋂
i≤n Uαi is closed in T . Consequently, T is regular.

By (4), T ⊆ T0, and since T0 ⊆ X , one has T ⊆ X . By (6) and (8), T is a one-
element semigroup, so T = {p} for some idempotent p ∈ X , that is, T = T (p).
Hence by Lemma 2.1, p is strongly right maximal.
Let

I =
⋂

1≤α<c
Iα.

Then p ∈ I by (5), and I is a locally maximal closed left ideal. We claim that
I = (�G)p.
To see this, assume the contrary. PickC ⊆ G such that (�G)p ⊆ C and I \C �= ∅.
There is α < c such that C = Cα . Then by (7), Iα ⊆ Cα , and so I ⊆ Cα ,
a contradiction.
We conclude this paper with the following question.

Question 4.1. Can it be shown in ZFC that there is a strongly left maximal
idempotent in Z∗?
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