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LEFT MAXIMAL AND STRONGLY RIGHT MAXIMAL
IDEMPOTENTS IN G*

YEVHEN ZELENYUK

Abstract. Let G be a countably infinite discrete group, let G be the Stone—Cech compactification of
G.and let G* = BG \ G. Anidempotent p € G* is left (right) maximal if for every idempotent ¢ € G*.
pq = p (gp = p) implies gp = ¢ (pg = q). An idempotent p € G* is strongly right maximal if the
equation xp = p has the unique solution x = p in G*. We show that there is an idempotent p € G*
which is both left maximal and strongly right maximal.

§1. Introduction. Throughout the paper, G will be an arbitrary countably infinite
discrete group.

The operation of G extends to the Stone—Cech compactification fG of G so that
foreach a € G. the left translation fG > x — ax € G is continuous, and for each
q € PG, the right translation fG 3> x — xg € fG is continuous.

We take the points of G to be the ultrafilters on G. the principal ultrafilters
being identified with the points of G, and G* = G \ G. The topology of fG is
generated by taking as a base the subsets A = {p € BG : A € p}. where 4 C G.
For p.q € BG. the ultrafilter pg has a base consisting of subsets . , xBy. where
A € pand B, € 4.

The semigroup fG is interesting both for its own sake and for its applications
to Ramsey theory and to topological dynamics. An elementary introduction to G
can be found in [3].

As any compact Hausdorff right topological semigroup, G* has idempotents
[1, Corollary 2.10]. The inclusion relation on principal left and right ideals of G
induces the left and right preorderings on idempotents of G*:

p <1 q< (BG)p C (BG)g < pg = p.
p <rq< p(G) C q(BG) < qp = p.

The maximal idempotents with respect to <; (<z) are called left (right) maxi-
mal. Thus, an idempotent p € G* is left (right) maximal if and only if for every
idempotent ¢ € G*, pg = p (¢p = p) implies gp = q (pq = q).
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As any compact Hausdorff right topological semigroup. G* has right maximal
idempotents [5, Theorem 1.2.7]. For every right maximal idempotent p € G*,
{x € G* : xp = p} is afinite right zero semigroup [3, Theorem 9.4]. An idempotent
p € G* is strongly right (left) maximal if the equation xp = p (px = p) has the
unique solution x = p in G*. There are strongly right maximal idempotents in
G* [4]. Assuming Martin’s Axiom (MA), there is an idempotent p € Z* such that,
for any ¢.r € Z*, ¢ + r = p implies ¢.r € Z + p [2]. and consequently, p is both
strongly right maximal and strongly left maximal.

Recently, it was shown in ZFC, the system of usual axioms of set theory, that there
are left maximal idempotents in G* [8]. More specifically, it was shown that there
are idempotents in G* which are both minimal and left maximal. Since the minimal
idempotents are not right maximal [3, Exercise 9.1.4], the idempotents constructed
in [8] are left maximal but not right maximal.

In this paper we prove (in ZFC) the following result.

THEOREM 1.1. Let X be a Gs subset of G* containing an idempotent. Then there
is an idempotent p € X such that p is strongly right maximal in G* and (BG)p is a
maximal principal left ideal of pG .

As an immediate consequence, we obtain from Theorem 1.1 that

COROLLARY 1.2. Every Gy subset of G* containing an idempotent contains an
idempotent which is both left maximal and strongly right maximal.

The proof of Theorem 1.1 is based on a special construction of regular left
invariant topologies on G and closed left ideals of fG and on deep subsets of w*.

For every closed subset ¥ C w*, the character of Y in w*, denoted y(Y). is
the minimum cardinality of a family 7 of subsets of @ such that (.4 = Y.
A nonempty closed subset Z C w* is deep if for every closed subset ¥ C w* with
2(Y) <c, Y N Z is either empty or infinite.

THEOREM 1.3 ([8. Theorem 3.1]). There is a deep subset Z C w*.

As in [8], we use Theorem 1.3 as a replacement of MA.
In Section 2 we characterize idempotents from Theorem 1.1. In Section 3 we give
that special construction. And in Section 4 we prove Theorem 1.1 itself.

§2. Left invariant topologies and closed left ideals. A topology on a group is left
invariant if left translations are continuous. All topologies are assumed to satisfy the
T separation axiom unless otherwise specified. For every left invariant topology 7
on G, Ult(T) = {p € G* : pconverges to 1 in T}. That is, Ult(7") consists of all
nonprincipal ultrafilters on G containing the neighborhood filter of 1 in 7. This is
a closed subsemigroup of G* (see [6. Lemma 7.1]).

Every idempotent p € G* determines naturally two left invariant topologies
on G. The first one is the topology 7 (p) with Ult(7T(p)) = {p}. That is, the
neighborhood filter of 1 in 7(p) consists of subsets 4 U {1}, where 4 € p. It is
Hausdorff and maximal (= maximal among all dense in itself topologies). The
second one is the topology 7,(p) with Ult(7,(p)) = {x € G* : xp = p}. It is the
largest regular left invariant topology on G in which p converges to 1. It is induced
by the mapping G > x — xp € G*. See [3, Section 9.2] or [6, Proposition 6.30 and
Theorem 7.17] for the proofs. These results imply the following characterizations of
strongly right maximal idempotents.
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LemMa 2.1. Let p € G* be an idempotent. Then the following statements are
equivalent:

(1) p is strongly right maximal,

(2) 7,(p) =T(p).

(3) T(p) is regular,

(4) Gp C G* is a maximal space.

Given a left invariant topology on G, an ultrafilter ¢ on G is fundamental if for
every neighborhood U of 1, there is x € G such that xU € q.

LEMMA 2.2. An ultrafilter ¢ € PG is fundamental if and only if there is r € G
such that the ultrafilter rq converges to 1.

Proor. Suppose that ¢ is fundamental. For every neighborhood U of 1, pick
Xy € G such that xyU € ¢,s0 U € x[,'q. Let r be an ultrafilter on G extending
the family of subsets {x,! : V is a neighborhood of 1 contained in U}, where U
runs over neighborhoods of 1. Then r¢q converges to 1.

Conversely, suppose that rq converges to 1. Then for every neighborhood U
of 1, there is xy € G such that xyqg € U, so x[,lU € ¢. Consequently, ¢ is
fundamental. —|

A left invariant topology 7 on G is complete if every fundamental ultrafilter
is convergent. We say that T is weakly complete if every fundamental ultrafilter
containing a discrete subset is convergent.

LEMMA 2.3. For every idempotent p € G*, (G.T(p)) contains no nonclosed
discrete subset.

Proor. It suffices to show that p contains no discrete subset. Let 4 € p and let
B={x€G:4¢€ xp}. Since pp = p,onehas B € p. Thenevery x € ANBisa
limit point of 4. so A is not discrete. -

Since by Lemma 2.3, no nonprincipal ultrafilter on (G.7(p)) containing a
discrete subset is convergent, we obtain that

COROLLARY 2.4. For every idempotent p € G*, T (p) is weakly complete if and
only if no nonprincipal ultrafilter containing a discrete subset is fundamental.

The next lemma gives us a characterization of maximal principal left ideals
generated by idempotents.

LEMMA 2.5. Let p € G* be an idempotent. Then

(1) (BG)p =4 : G\ Aisdiscrete in T (p)}.

(2) (BG)p is maximal if and only if T (p) is weakly complete.

Proor. (1) Let 4 C G. Suppose that G \ A4 is discrete in 7(p). Then, by
Lemma 2.3, it is also closed. For every x € G, pick 4, € p such that
(xA)N(G\ A4) =0.andlet B =J, s xA.. Then (G)p C Band B C A.

Now suppose that (8G)p C A. Forevery x € G, thereis A, € p such that
xAy C A. Then forevery x € G\ 4, U = A, U {x} is a neighborhood of x
and U N (G \ 4) = {x}. It follows that G \ 4 is discrete in 7 (p).

(2) Suppose that (fG)p is maximal. Let D be a discrete subset of (G, 7 (p)) and
let D € g € fG.By (1). DN ((BG)p) = 0.s0 g ¢ (BG)p. Since (BG)p is
maximal, there is no r € G such that r¢ = p. Consequently by Lemma 2.2,
¢ is not fundamental. Hence by Corollary 2.4, 7 (p) is weakly complete.
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Suppose that (G ) p is not maximal. Then thereis ¢ € G* \ ((fG)p) such
that (8G)p C (BG)q. and so thereis r € BG such that rg = p. Consequently,
q is fundamental, and by (1), ¢ contains a discrete subset. Hence, 7 (p) is not
weakly complete. -

Notice that for every p € G*. (BG)p = Gp (here. Gp denotes clg- (Gp)). so the
principal left ideal generated by p is the same as the orbit closure of p (under the
action G x G* 3 (a, p) — ap € G*).

Combining Lemmas 2.1 and 2.5, we obtain the following characterizations of
idempotents from Theorem 1.1.

PROPOSITION 2.6. Let p € G* be an idempotent. Then the following statements
are equivalent:

(1) p is strongly right maximal and (fG) p is a maximal principal left ideal,
(2) Gp C G* is a maximal space and G p is a maximal orbit closure,
(3) T(p) is regular and weakly complete.

We conclude this section with two more lemmas needed in the proof of
Theorem 1.1.

LemMa 2.7. Let Ty be a Hausdorff (regular) left invariant topology on G and let
(Up)n<w be any sequence of neighborhoods of 1 in To. Then Ty can be weakened to a
first countable Hausdorff (regular) left invariant topology T on G in which each U,
remains a neighborhood of 1.

Proor. We consider the Hausdorff case, the regular one is [6, Lemma 9.28].

Without loss of generality one may suppose that Uy = G. Enumerate G \ {1} as
{xn : 1 < n < w}.Constructinductively a sequence (V)< of open neighborhoods
of 1in 7y with V) = G such that for every n > 1 the following conditions are
satisfied:

(1) Vn g Vn—l:

(ii) x,Vy C Vi, where k =max{i <n—1:x, € V;}.
(iii) (x, V)NV, =10.and

(iv) V, C U,.

It follows from (i)—(ii) that there is a left invariant topology 7 on G, not necessarily
Hausdorff, in which {V,, : n < w} is a neighborhood base at 1 (see [6, Corollary
4.4]). Condition (iii) implies that 7 is Hausdorff, and (iv) that each U, remains a
neighborhood of 1in 7. =

LemMmA 2.8. Let I C G* be a closed left ideal of fG. Then there is a left invariant
topology T on G with Ult(T) = I.

PrOOF. Let F be the intersection of all ultrafilters from /. Then F is a filter on
G such that the set of all ultrafilters on G containing F is / [6, Lemma 2.28]. The
filter 7 has also the property that for every 4 € F and x € G, thereis B, € F such
that xB, C A. Indeed. for every p € I. one has xp € I, so there is By, € p such
that xBy , C 4. Put By = ¢/ Bx.p-

Now let N ={4U{1}: 4 € F}. Then

(i) NN = {1}, and
(ii) forevery U € N and x € U. thereis V € Nand xV C U.
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It follows that there is a left invariant topology 7 on G for which N is the
neighborhood filter of 1, and so Ult(7) = I. 4

83. Special construction. By [7. Lemma 6]. there is a surjective finite-to-one
function f : G — w such that

(1) f(1)=0.

(2) forevery x € G, f(x) = f(x~!).and

(3) foreveryx.y € G. f(xy) < max{f(x). f(»)}+ 1 andif [f(x)—f(»)| = 2.

then /(xy) > max{f(x). /(y)} - L

The function f : G — o extends continuously to fG — fw. We use the

same letter f to denote this extension. Notice that for any p € fG and ¢ € G*.

f(pq) = f(q)+iforsomei € {—1,0,1}.
Aleftideal I C G* of fG is locally maximal if G* \ T is also a left ideal.

THEOREM 3.1 ([8. Theorem 2.6]). Let (A,)u<w be a decreasing sequence of subsets
of G such that
(a) foreveryn < wandx € Ay, f(x) > n, and
(b) both the sets f(Ao) +i.i € {—1,0,1}, and the sets f (A, \ Ans1), n < @, are
pairwise disjoint.
Foreveryn < w. let Wy, = J,cq XA,y r(v)- andlet I =)
maximal closed left ideal of pG .

For every filter F on G with (| F = {), there is a largest left invariant topology
T[F] on G in which F converges to 1. The topology 7 [F] has a neighborhood base
at 1 consisting of subsets

W,. Then I is a locally

n<w

[M]={xox1 Xy :n<w xo=1and x;;1 € M(xo---x;) foreachi < n},

where M : G — F [6. Theorem 4.8].
A filter F on G is strongly discrete if (| F = () and there is M : G — F such that
the subsets xM (x) C G, x € G, are pairwise disjoint.
THEOREM 3.2 ([6, Theorem 4.18]). For every strongly discrete filter F on G, the
topology T[F] is zero-dimensional and Hausdorff, and consequently, regular.
THEOREM 3.3. Let T be a Hausdorff left invariant topology on G and let (F,,)u<e
be a sequence of filters on G converging to 1 in T . Suppose that
(i) there is a neighborhood U of 1 in T such that the subsets f(U\ {1})+i C w,
i € {—1,0, 1}, are pairwise disjoint,
(ii) for every n < w. thereis A, € F, such that the subsets f(A4,) C w.n < w,
are pairwise disjoint.
Let F be the filter on G with a base of subsets | J
Then F is strongly discrete.

n<i<e Bi- wheren < w and B; € F;.

ProoOF. For every n < w, choose a neighborhood U, of 1 in 7 such that

(a) the subsets xU,. where x € G with f(x) < n, are pairwise disjoint, and
choose C, € F,, such that

(b) C, C Uy,

(c) forevery x € C,, f(x) >n+2,and

(d) C, CUNA,.
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We claim that the subsets

where x € G, are pairwise disjoint.
Letx,y € G, x # y. Since

X U C, = U xC,,,

n>f(x) n>f(x)
y U Cn = U yCm,
m>f(y) m>f(y)

it suffices to check that the subsets xC, and yC,, are disjoint for any n > f(x),
m > f(y).If n = m, they are disjoint by (a) and (b). Now let n # m. Then by (c).

1
f(xcn) c U (f(cn) +1i).
i=—1
1
f(ycm) c U (f(cm) +j)’

j=—1

so by (d).
1

fxG)c | (F(und,)+i),
1
FCn) € | (F(UNAn)+ ).
But by (i) and (ii), |
1 1

U Fwnd,)+iand [ (£(UNA)+ )

i=—1 j=—1

are disjoint. Hence, f(xC,) and f(yC,,) are disjoint, and so are xC, and yC,,.

84. Proof of Theorem 1.1. Let /' : G — w be as at the beginning of Section 3.
Pick an idempotent py € X. Since the ultrafilters f (po) +i € w*,i € {—1,0,1},are
distinct (see [3, Lemma 6.28]). there is £ € f (po) such that the subsets £ +i C w,
i € {~1.0,1}, are pairwise disjoint. Put P = f~!(E). Then P € py and the
subsets f(P)+i C w.i € {—1,0,1}, are pairwise disjoint. Let 7 = T (po) (that s,
Ult(7y) = {po}). By Lemma 2.7, 7 can be weakened to a first countable Hausdorff
left invariant topology 7y on G such that

To=Ult(Ty) C X N P.

Since Ty C P, we have that for any p.q € To. f(pq) = f(q). Since the character
of Ty € G* is countable, there is an infinite D C w such that D* C f (7). By
Theorem 1.3, there is a deep subset Z C D*. Let

J=f"YZ2)nT.
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Then

(1) J is a closed left ideal of Ty,

(2) f(J) C w*is deep. and

3) J =/ (rU))NT.

Next, enumerate the subsets of G as {C, : a < ¢} with Cy = G, and inductively,
for every a > 0, construct a first countable regular left invariant topology 7, on G
and a locally maximal closed left ideal 7, C G* of countable character such that

(4) To = Ult(Ta) C To.

(5) Ta C Lo,

(6) To CCoor Ty C G\ C,.

(7) if there is an idempotent p €

I, C C,, and

(8) Nyea T, 1T #0.

Fix oo > 0 and suppose that we have already constructed /, and 7, for all y < «
as required. Let

T, N J such that (fG)p C C,. then

<o

Ko= (TN
y<a

By (1) and (8). K, is a closed subsemigroup of 7. o

Suppose that there is an idempotent p, € K, such that (fG)p, C C,. Pick
D, € p, such that

(i) Do C Ca.
Then for every n < w. pick P!, € p, such that

(ii) foreach x € G with f(x) < n, xP" C C,.

(iii) P" C P, and

(iv) forevery x € P, f(x) > n.
Let 7 = T(pa). By Lemma 2.7, 7 can be weakened to a first countable Hausdorff
left invariant topology 7. such that

T = UI(T)) C Ton Do () Pa.
n<w

Let
Y, = ﬂ T,NT..
y<a
Since p, € Yo NJ and x(Y,) < |a| + o < ¢, it follows from (2) that f(Y,) N £ (J)
is infinite. For every n < w. choose

uy € f(Ya) N f(J)
and E/ € u! such that the subsets £ C w. n < w, are pairwise disjoint.
This can be done by induction on 7 as follows. Pick uj, € (f (Ya) N f(J))\ Fi!
and E" € u, where F/~! = Uj<ni EY. such that E" is disjoint from F~! and

(f(Ya) N f )\ FE #0.
For every n < w, pick ¢! € Y, such that f(¢") = u”. By (3), ¢" € J, so

qh € Yo NJ
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Then for every n < w, choose Q2 € g2 such that
(v) Q2 C Pland
(vi) f(0a) € Ej.

Let
U 0. wi=Jxas/™ and 1, = (| W]

n<i<w xeG n<w

Then by (iv) and (v), for every n < w and x € A", f(x) > n, and by (iii) and
(vi). both the sets f(A4%) 4+i.i € {—1.0.1}, and the sets /(47 \ A7), n < w. are
pairwise disjoint. Consequently by Theorem 3.1, I, is a locally maximal closed left
ideal. By (ii) and (v). I, C C,.

If thereis noidempotent p € K, such that (8G)p C C,.then pick any idempotent
of K, as p, and take care of (i)’ D, C C, or D, C G \ C,, (vi), (iii))” Q" C P,
and (iv)’ for every x € 0", f(x) > n.

Let F, be the filter on G with a base consisting of subsets | J,;_,, R.. where
n < wand R, € ¢, and let 7" = T[F,]. By Theorem 3.3, F, is strongly
discrete, so 7" is regular. Notice that {g € fG : F, C ¢} C I,. Consequently
by Lemma 2.8, Ult(7)”) C I,. Using Lemma 2.7, weaken 7" to a first countable
regular left invariant topology 7, such that Ult(7,) C T2/ N I,.

Clearly, (4). (5), (6), and (7) are satisfied. To see (8), let ¢ be any limit point of
{¢4 :n<w}. Then 7y Cqgandg e, T,NJ.soqg€(),., T, NJ.

Now let 7 be the least upper bound of topologles Ta. 1 < a < c. Thatis, T is the
left invariant topology on G with a neighborhood base at 1 consisting of subsets
Ney Us.where l <n<w. 1 <ay <--- < a, <c and U, is a neighborhood of
1 in 7,, for each i. Then

T=UWT)= (] Ta
1<a<c
If each UL, is closed in 7y,. ();<, Us, is closed in 7. Consequently, 7 is regular.
By (4). T C Ty. and since Ty C X. one has T C X. By (6) and (8). T is a one-
element semigroup, so T = {p} for some idempotent p € X, thatis, 7 = T(p).
Hence by Lemma 2.1, p is strongly right maximal.

Let
) o

I1<a<c

Then p € I by (5), and I is a locally maximal closed left ideal. We claim that
I =(pG)p. _ _

To see this, assume the contrary. Pick C C G such that (8G)p C C and I\ C # 0.
There is & < ¢ such that C = C,. Then by (7). I, € C,. and so I C C,.
a contradiction.

We conclude this paper with the following question.

QUESTION 4.1. Can it be shown in ZFC that there is a strongly left maximal
idempotent in 7*?
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