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SUMMARY
This paper presents applications of group theory tools
to simplify the analysis of kinematic chains associated
with mechanisms and parallel manipulators. For the
purpose of this analysis, a kinematic chain is described
by its properties, i.e. degrees-of-control, connectivity and
redundancy matrices. In number synthesis, kinematic chains
are represented by graphs, and thus the symmetry of a
kinematic chain is the same as the symmetry of its graph.
We present a formal definition of symmetry in kinematic
chains based on the automorphism group of its associated
graph. The symmetry group of the graph is associated
with the graph symmetry. By using the group structure
induced by the symmetry of the kinematic chain, we prove
that degrees-of-control, connectivity and redundancy are
invariants by the action of the automorphism group of
the graph. Consequently, it is shown that it is possible
to reduce the size of these matrices and thus reduce the
complexity of the kinematic analysis of mechanisms and
parallel manipulators in early stages of mechanisms design.

KEYWORDS: Kinematic chain; Parallel manipulators;
Graph symmetry; Automorphism group; Actions; Orbits.

1. Introduction
Mathematical models are commonly difficult to handle in a
general setting. Symmetry in mathematical models is useful
to simplify the understanding of a model and to determine
the patterns for which the model is appropriate. Thus, it is a
common strategy to study cases of symmetry in order to learn
more about a model. In nature, there are different types of
mathematical models and also different types of symmetries,
but thanks to the symmetry concept, many models are now
reasonably well understood. In our setting, the mathematical
model associates a kinematic chain with a graph. Graphs
are extensively used in the literature of mechanisms and
machine to describe kinematic chains.3, 35, 50 Belfiore and
Di Benedetto,3 Liberati and Belfiore27 and Martins and
Carboni30 discuss how the topological structure of a
kinematic chain of a parallel manipulator can be described
quite extensively by degrees-of-control, connectivity and
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redundancy matrices. These matrices are square symmetric
with dimension n × n, where n is the number of links of the
kinematic chain. One aim of this paper is to develop a method
to reduce the size of the degrees-of-control, connectivity and
redundancy matrices of a kinematic chain associated with
kinematic chains of mechanisms and parallel manipulators.
In this context, the graph symmetry plays an important role
because it provides a group structure that fits our purposes.

The graph of a kinematic chain is a graph on which
the vertices represent the links and the edges represent
the joints of the kinematic chain.35 Hence, in early stages
of mechanisms design, such as number synthesis,35, 50 the
analysis of a kinematic chain is reduced to the analysis
of its graph, and thus in this paper the term graph will be
synonymous with kinematic chain.

In order to achieve our aims, we investigate symmetries
and invariants by the action of the automorphism group
of the graph representing kinematic chains of mechanisms
and parallel manipulators. Symmetries of graphs are related
to automorphisms.10, 37 By exploring these symmetries it is
possible to reduce the matricial representation of important
properties to the kinematic analysis of kinematic chains.

The main result of this study was to prove that the degrees-
of-freedom (DoF), connectivity and redundancy matrices are
all invariants by the action of the automorphism group of the
graph. This invariance is the main tool used to reduce the size
of the matrices. It is shown that the matrix size is reduced
from n × n to o × n, where n is the number of links and o is
the number of orbits by the action of the automorphism group
of the graph. Higher graph symmetry means a smaller number
of orbits o, as will be clearly shown through examples.

The group theory has been used by some authors in
the context of analyzing kinematic chains. Tsai50 uses the
symmetry group of a kinematic chain to identify when
two kinematic chains are identical (isomorphism problem).
Tuttle51 uses group theory to identify all distinct bases of
a kinematic chain enumeration process. Simoni et al.44, 45

have applied the group theory tools in the enumeration of
kinematic chains, mechanisms and parallel manipulators.

The group theory has several applications in mechanisms
and robotics such as to characterize all equivalent ways a
modular robots can be constructed or assembled from its
components,8, 9 assembly planning18, 29 and for positioning
robots or robotic end effectors.36, 52
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Fig. 1. Biunivocal correspondence between graphs and kinematic
chains used extensively in early stages of mechanism design.
(a) Stephenson kinematic chain; (b) Stephenson graph.

The remainder of this paper is organized as follows:
Section 2 describes the analogy of kinematic chains
and graphs, and the application of group theory to
graphs/kinematic chains. Concepts that are important in
terms of the content of this paper, such as actions and orbits
of the automorphism group, are discussed and examples of
their application to graphs are presented. Details of group
theory can be found in Appendix 6. Section 2 also gives a
precise definition of symmetry of a kinematic chain. Section 3
presents the definitions found in the literature to degrees-of-
control, connectivity and redundancy in terms of the graph
associated with a kinematic chain. Section 4 details the
applications of group theory to the kinematic analysis of
kinematic chains and a method to reduce the size of these
matrices. Section 6 presents the conclusions and suggestions
for further work.

2. Graphs and Symmetry
A graph X = (V, E) consists of a finite set V (X) of vertices
and a family E(X) of subsets of V (X) of size two called
edges. Usually, the pair {x,y} denotes an edge, and the
number of edges incident to a vertex v is the degree of
the vertex v (deg(v)). It is important to remember that in
early stages of design a kinematic chain can be uniquely
represented by a graph whose vertices correspond to the links
of the chain and whose edges correspond to the joints of the
chain.3, 27, 35, 50 Figure 1 shows this correspondence: Fig. 1(a)
shows the classical Stephenson kinematic chain with labeled
links and Fig. 1(b) shows the corresponding graph.

A subgraph of a graph X is a graph Y such that V (Y ) ⊆
V (X), E(Y ) ⊆ E(X). A path between two vertices x and y

is a sequence x0, x1, x2, . . . , xk of vertices such that x0 = x,
xk = y and for all i ∈ [1, k], (xi−1, xi) ∈ E. The length of
a path is its number of edges. The distance between two
vertices x and y, denoted by δ(x, y), is the length of the
shortest path between x and y.

Our aim is to develop a technique to reduce the size
of the degrees-of-control, connectivity and redundancy
matrices of a kinematic chain. The analysis of these
matrices is developed in early stages of mechanisms design
where the representation of kinematic chains by graphs is
classical.3, 27, 35, 50 Thus, for our purpose, a kinematic chain
is represented univocally by a graph. From now on, the term
graph will be used to mean a kinematic chain and vice versa,
unless otherwise stated.
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Fig. 2. Action of σ1 and σ2 in the Stephenson graph X. (a) σ1(X);
(b) σ2(X).

2.1. Actions in kinematic chains
Given a graph X, a bijective map σ : V (X) → V (X) defines
a permutation of the elements of V (X). Assuming V (X)
has n elements, the set of permutations endowed with the
operation of composition is the group Sn and we can apply
the definitions present in Appendix 6.

Example 1 (Actions). Figure 1(a) shows the Stephenson
kinematic chain and Fig. 1(b) its graph X. Figures 2(a)
and (b) show the action of σ1(X) and σ2(X), respectively, on
the labels of the Stephenson graph, where

σ1(X) =
(

1 2 3 4 5 6
3 5 4 1 6 2

)

=
(

1 3 4
3 4 1

) (
2 5 6
5 6 2

)
= (134) (256)

and

σ2(X) =
(

1 2 3 4 5 6
4 3 2 1 6 5

)

=
(

1 4
4 1

)(
2 3
3 2

)(
5 6
6 5

)
= (14) (23) (56).

2.2. Automorphisms in kinematic chains

Definition 1 (Isomorphisms and automorphisms of graphs).
Two graphs X and Y are isomorphic if there is a bijection
σ : V (X) → V (Y ) such that

{xy} ∈ E(X) ⇔ {σ (x)σ (y)} ∈ E(Y ).

If isomorphism exists between two graphs, then the graphs
are called isomorphic and we write X � H .
The automorphism of a graph is the graph’s isomorphism
with itself. The automorphism group of a graph X is denoted
by Aut(X).

Most isomorphism tests are based on graph invariants,
which preserve the properties or parameters of graphs under
isomorphism, such as degree sequence, distance matrix,
vertex ordering, etc.21

Herein, we use some results for invariants of isomorphism
and automorphism groups of graphs found in the
literature.4, 12, 16, 17, 25, 33, 46 These results are important to
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Fig. 3. Action of the automorphism group in the Stephenson graph.

prove Theorems 9 and 10 in Section 4 and are summarized
below:

Remark 1. Let X be a graph, Y a subgraph of X and σ an
element of Aut(X).

(1) Degree invariance: deg(σ (x)) = deg(x), for all x ∈
V (X);

(2) Distance invariance: δ(σ (x), σ (y)) = δ(x, y), for all
x, y ∈ V (X);

(3) Subgraph invariance: σ (Y ) � Y , i.e. they are
isomorphic.

Proofs of these invariant remarks are found in refs. [12,
46].

2.3. Orbits in kinematic chains
The orbit of a graph vertex corresponds to the set of vertices
for which the vertex is moved by the action of the automorph-
ism group of the graph. Let us consider an example.

Example 2. Let X be the Stephenson graph shown in
Fig. 1(b). In this case,

Aut(X) =
{
σ1 = (1)(2)(3)(4)(5)(6), σ2 = (1)(2)(3)(4)(56),
σ3 = (14)(23)(5)(6), σ4 = (14)(23)(56)

}
.

The generator set is Aut(X) =< σ2, σ3 >. The action of the
automorphism group in the Stephenson graph is shown in
Figs. 3(a)–(d).

The orbits are:

O = {{1, 4}, {2, 3}, {5, 6}} = {O1,O2,O3},

where

• O1 = {1, 4};
• O2 = {2, 3} and
• O5 = {5, 6}.

The Stephenson graph has three different orbits resulting in
classical Stephenson I (O5), II (O2) and III (O3) mechanisms

fixing a representative link of each orbit (for more details,
consult44, 45).

2.4. Symmetry in kinematic chains
Since our aim is to apply symmetry to simplify the kinematic
chain analysis, and kinematic chains are represented in
biunivocal correspondence by graphs, it is necessary to define
what is meant by graph symmetry. This is carried out using
the concept of a group defined in the Appendix 6 and used in
previous sections. Rao39 discusses symmetries in kinematic
chains but does not present a formal definition or a technique
to obtain the symmetries of a kinematic chain.

The symmetry of a graph corresponds to an element of
the automorphism group of the graph. According to Erdó́s
and Rényi10 and Petitjean,37 a graph is considered to be
symmetric when it has more than one automorphism, i.e.
the automorphism group has a degree greater than 1. In the
definition below, we extend the concept of graph symmetry
to kinematic chains.

Definition 2 (Symmetry of a kinematic chain). The symmetry
of a kinematic chain is the symmetry of its corresponding
graph. A kinematic chain is symmetric when it has more than
one automorphism.

This definition can be applied to kinematic chains with
geometrical information attached and their correspondent
valued graphs. Despite this fact, this paper considers only
“topological” kinematic chains and their correspondent non-
valued graphs. In all contexts, symmetric links can be iden-
tified by the orbits of the automorphism group of the graph.

3. Fundamental Properties of Kinematic Chains
In this section, some fundamental properties of kinematic
chains are introduced. These are essential for topological
analysis and number synthesis of mechanisms and parallel
manipulators and are extensively used in the literature of
mechanism and machine.3, 20, 27, 30, 35, 50

Definition 3 (Mobility). The number of degrees-of-freedom,
or mobility (M), of a kinematic chain is the number of
independent parameters required to completely specify the
configuration of the kinematic chain in space with respect to
one link chosen as the reference.

The mobility of a kinematic chain, with n links and g single
degree-of-freedom joints, may be calculated by the general
mobility criterion20, 35 applied to a set of n links and g single
degree-of-freedom joints,

M = λ(n − g − 1) + g, (1)

where λ is the order of the screw system to which all the joint
screws belong. Using the graph representation of a kinematic
chain (see Fig. 1), the general mobility criterion is given by

M = λ (|V | − |E| − 1) + |E|, (2)

where |V | is the number of graph vertices (i.e. links) and |E|
is the number of graph edges (i.e. joints).35, 50

A recent review of mobility calculation was presented by
Gogu,15 who presents a critical review on the mobility of
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mechanisms and discusses all the faults of mobility equations
found in the literature. However, in the early stages of
mechanism design (classical number synthesis35), where the
kinematic structure is not known, it is necessary to have a
quick calculation of mobility to design new kinematic chains
of mechanisms and parallel manipulators.

The connectivity Cij between two links i and j of a
kinematic chain is the relative mobility between links i

and j .20 Different algorithms for connectivity calculations
have been proposed by Shoham and Roth,43 Belfiore
and Di Benedetto,3 Liberati and Belfiore27 and Martins
and Carboni.30 Below we present the definitions found
in the literature for connectivity, degrees-of-control and
redundancy in terms of graphs.

Definition 4 (Connectivity30). In a kinematic chain
represented by a graph X, the connectivity between two links
i and j is

Cij (X) = min : {D[i, j ], M
′
min, λ}, (3)

where D[i, j ] is the distance between vertices i and j of X,
M

′
min is the minimum mobility of any closed-loop biconnected

subchain of X containing vertices i and j , and λ is the order
of the screw system.

Definition 5 (Degrees-of-control30). In a kinematic chain
represented by a graph X, the degrees-of-control between
two links i and j is

Kij (X) = min : {D[i, j ], M
′
min}. (4)

Definition 6 (Redundancy3). In a kinematic chain
represented by a graph X, the redundancy between two links
i and j is the difference between Kij (X) and Cij (X),

Rij (X) = Kij (X) − Cij (X). (5)

The importance of the connectivity and redundancy is
emphasized by several authors.3, 20, 27, 47–49

Example 3. Consider the planar kinematic chain X shown
in Fig. 4 where the mobility is M = 3.
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Fig. 4. Kinematic chain X: (a) structural, and (b) graph
representations.

The adjacency matrix A(X) is given by

A(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 0 0 0 0 1
2 0 0 0 0 0 0 0 0 1 1
3 1 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1 0 0 1
5 1 0 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 1 0 0 0
7 0 0 0 1 0 1 0 1 0 0
8 0 0 1 0 0 0 1 0 1 0
9 0 1 0 0 0 0 0 1 0 0
10 1 1 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

The connectivity C(X) is given by

C(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10
1 0 2 1 2 1 2 3 2 3 1
2 2 0 3 2 3 3 3 2 1 1
3 1 3 0 3 2 3 2 1 2 2
4 2 2 3 0 3 2 1 2 3 1
5 1 3 2 3 0 1 2 3 3 2
6 2 3 3 2 1 0 1 2 3 3
7 3 3 2 1 2 1 0 1 2 2
8 2 2 1 2 3 2 1 0 1 3
9 3 1 2 3 3 3 2 1 0 2
10 1 1 2 1 2 3 2 3 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In this case, the degrees-of-control matrix K(X) is equal
to the connectivity matrix C(X), K(X) = C(X), and the
redundancy matrix is null, R(X) = 0.

This example shows that a kinematic chain can be
described by its properties, i.e. adjacency, connectivity,
degrees-of-control and redundancy matrices.

3.1. The relevance of the connectivity, the
degrees-of-control and the redundancy
The connectivity, though is not a new concept in the
mechanism and machine literature, is as important as
mobility for kinematic chains, see e.g. Phillips,38 Hunt,20

Tischler et al.,47, 48 Belfiore and Di Benedetto,3 Liberati and
Belfiore27 and Martins and Carboni.30

The connectivity computation is very important for the
structural analysis and synthesis of mechanisms and parallel
manipulators. The structural analysis and synthesis of
mechanisms are fundamental to the invention and innovation
of mechanisms.7 In the structural synthesis, several kinematic
chains are enumerated, so it is necessary to analyze those
kinematic chains that fit in the customer’s specifications. The
connectivity is an important criterion for selecting kinematic
chains. For a better understanding of the importance of the
connectivity, we consider the kinematic chain as shown in
Fig. 5. In Fig. 5 it is represented as a closed-loop kinematic
chain with mobility M = 3 and the connectivity between
any two links not exceeding 2. From this simple example,
as outlined in previous works,3, 6, 27, 43 it is evident that the
connectivity, not the mobility, determines the ability of an
output link to perform a task relative to a frame.
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Fig. 5. Planar kinematic chain with maximum connectivity between
links of 2, i.e. Cij ≤ 2 ∀ i, j .6 This kinematic chain will be
eliminated for connectivity.

As shown in the above example, the connectivity is
very important to select kinematic chains in the structural
analysis. Since the degrees-of-control and the redundancy are
related to connectivity, they are also important parameters for
selecting kinematic chains as emphasized by Belfiore and Di
Benedetto,3 Liberati and Belfiore,27 Martins and Carboni30

and Shoham and Roth.43

More discussions and applications of connectivity can be
found in Shoham and Roth,43 Agrawal and Rao,1 Liu and
Yu.28 Similar applications for connectivity are described in
Gogu13 and Tsai.50

4. Invariants of Kinematic Chains
This section considers the applications of the group and
graph theory presented above. First, we prove theorems
about the invariance of degrees-of-control, connectivity
and redundancy of kinematic chains by the action of the
automorphism group of the associated graph. Then, with the
definition of the symmetry of kinematic chains (Definition
2) and the result of these theorems, we develop a technique
to reduce the matricial representation of the degrees-of-
control, connectivity and redundancy matrices simplifying
the kinematic analysis of kinematic chains in early stages of
mechanism design/analysis.

Lemma 7 (Mobility invariance). The mobility M of a
graph (kinematic chain) is invariant by the action of the
automorphism group of the graph.

Proof. The proof follows from Definition 1. An
automorphism of a graph is an isomorphism with itself
and thus the graph structure is preserved. As we can see
in Example 2, the automorphism group of the graph results
in the relabeling of the graph vertices and consequently the
number of vertices |V |, the number of edges |E| and the
order of the screw system λ remain the same. Consequently,
the mobility, Eq. (2), is invariant. �
Lemma 8 (Subgraph mobility invariance). The mobility M

of a subgraph (subchain) is invariant by the action of the
automorphism group of the graph.

Proof. The proof follows from Remark 1 and Lemma 7.
Remark 1 proves that a subgraph is invariant by the action of
its automorphism group and thus the structure of the subgraph
(|V |, |E|, λ) remains the same. Lemma 7 proves that the
mobility is invariant. Consequently, the subgraph mobility is
invariant. �

Theorem 9 (Degrees-of-control invariance). Let X be a
graph (kinematic chain) and Aut(X) its automorphism
group. The degrees-of-control matrix K(X) of the kinematic
chain is invariant by the action of the automorphism group
of the graph.

Proof. The degrees-of-control is given by Kij = min :
{D[i, j ], M

′
min}, see Eq. (4). To prove this theorem, it is

necessary to show that D matrix and M
′
min are invariant

by the action of the automorphism group. According to
Remark 1, the distance of any pair of vertices is invariant
by the action of the automorphism group of the graph, i.e.
D[i, j ] = D[σ (i), σ (j )]. Therefore, the D matrix is invariant
by the action of the automorphism group of the graph.
According to Remark 1, any subgraph is invariant by the
action of the automorphism group of the graph, therefore
M

′
min is also invariant. �

Theorem 10 (Connectivity invariance). Let X be a graph
(kinematic chain) and Aut(X) its automorphism group. The
connectivity matrix C(X) of the kinematic chain is invariant
by the action of the automorphism group of the graph.

Proof. The proof follows from Theorem 9. The
connectivity is given by Cij = min : {Kij , λ}, see Eq. (3).
Kij is invariant according to Theorem 9 and λ is a property
of the kinematic chain (it is not dependent on the graph) and
therefore it is constant. �

Corollary 11 (Redundancy invariance). Let X be a graph
(kinematic chain) and Aut(X) its automorphism group. The
redundancy matrix R(X) of the kinematic chain is invariant
by the action of the automorphism group of the graph.

Proof. The proof follows straightforwardly from
Theorems 9 and 10. The redundancy is given by Rij (X) =
Kij (X) − Cij (X) (see Eq. (4)). Kij (X) and Cij (X) are
invariants according to Theorems 9 and 10; consequently,
Rij (X) is invariant. �

Theorems 9 and 10 and Corollary 11 state that the degrees-
of-control, connectivity and redundancy are symmetric
properties of a kinematic chain, i.e. elements that are
symmetric by the action of the automorphism group of the
graph have the same properties. Considering that symmetric
links are identified by the orbits of the automorphism group of
the graph, it is possible to reduce the matricial representation
considering one representative element of each orbit. Figure 6
presents the technique to reduce the matricial representation
of the properties of a kinematic chain.

5. Applications
To show the potential of the proposal reduction in the
matricial representation, we have selected examples of
mechanisms and parallel manipulators found in the literature
where the connectivity, degrees-of-control and redundancy
matrices are presented. We use the notation Ar (X), Kr (X),
Cr (X) and Rr (X) to represent the reduced adjacency
matrix, the reduced degrees-of-control matrix, the reduced
connectivity matrix and the reduced redundancy matrix,
respectively.
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of Section 4
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Reduced matricial
representation
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Fig. 6. Technique to reduce the size of the matrices associated to
kinematic chains.

5.1. Example 1: Planar parallel mechanisms
Let X be the kinematic chain of the planar parallel
mechanism shown in Fig. 4. In this case, using, for example,
Nauty program33 on its graph, we find the automorphism
group

Aut(X) =

⎧⎪⎨
⎪⎩

σ1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
σ2 = (1 7)(2 9)(3 4)(5 6)(8 10)
σ3 = (1 8)(2 6)(5 9)(7 10)
σ4 = (1 10)(2 5)(3 4)(6 9)(7 8)

⎫⎪⎬
⎪⎭ . (8)

The generator set is Aut(X) =< σ2, σ3 >. The
automorphism group of the graph can be obtained with the
Nauty program31, 32, 34 or sage program.41

The orbits are:

O = {{1 7 8 10}; {2 5 6 9}; {3 4}},

where

• O1 = {1 7 8 10},
• O2 = {2 5 6 9} and
• O3 = {3 4}.

The adjacency matrix presented in Eq. (6) is reduced to

Ar (X) =
⎡
⎣

1 2 3 4 5 6 7 8 9 10
O1 0 0 1 0 1 0 0 0 0 1
O2 0 0 0 0 0 0 0 0 1 1
O3 1 0 0 0 0 0 0 1 0 0

⎤
⎦ (9)

and the connectivity matrix presented in Eq. (7) is reduced
to

Cr (X) =
⎡
⎣

1 2 3 4 5 6 7 8 9 10
O1 0 2 1 2 1 2 3 2 3 1
O2 2 0 3 2 3 3 3 2 1 1
O3 1 3 0 3 2 3 2 1 2 2

⎤
⎦, (10)

where we chose as representative elements of each orbit the
elements (links) 1, 2 and 3, rows with a single element of
each orbit.

Note that the matrices are reduced from 10 × 10 to 3 × 10.
Appendix 6 shows how to rebuilt the original matrices using
the automorphism group and the reduced matrices.

The more symmetric the kinematic chain, the smaller is
its representation. As most parallel mechanisms found in the
literature are symmetric, this representation is particularly
advantageous.

5.2. Example 2: Hybrid 6-DoF mechanisms
Let X be the kinematic chain of the hybrid 6-DoF
manipulator presented in Fig. 11 of Belfiore Di Benedetto3

and shown in Fig. 7(a). In this case, Aut(X) in terms of the
generator set is given by

Aut(X)

=
〈σ1 = (7 11)(8 12)(9 13)(10 14)

σ2 = (20 24)(21 25)(22 26)(23 27)
σ3 = (15 20)(16 21)(17 22)(18 23)
σ4 = (2 7)(3 8)(4 9)(5 10)
σ5 = (1 19)(2 18)(3 17)(4 16)(5 15)(7 23)(8 22)
σ5 = (9 21)(10 20)(11 27)(12 26)(13 25)(14 24)

〉

The orbits are

O = {{1 19}; {2 7 11 18 23 27}; {3 8 12 17 22 26};
O = {4 9 13 16 21 25}; {5 10 14 15 20 24}; {6}}.

Following the same procedure applied in the example
above, it is possible to reduce the matricial representation.
The connectivity matrix C(X) presented in Appendix B of
Belfiore and Di Benedetto,3 which is 27 × 27, is reduced to

Cr (X) =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
O1 0 1 2 3 3 3 1 2 3 3 1 2 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O2 1 0 1 2 3 3 2 3 3 3 2 3 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O3 2 1 0 1 2 3 3 3 3 3 3 3 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O4 3 2 1 0 1 2 3 3 3 3 3 3 3 3 3 4 5 5 5 3 4 5 5 3 4 5 5
O5 3 3 2 1 0 1 3 3 3 2 3 3 3 2 2 3 4 4 4 2 3 4 4 2 3 4 4
O6 3 3 3 2 1 0 3 3 2 1 3 3 2 1 1 2 3 3 3 1 2 3 3 1 2 3 3

⎤
⎥⎥⎥⎥⎥⎦,
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Fig. 7. Examples of mechanisms found in the literature.3, 27 (a) Hybrid 6-DoF mechanisms, (b) redundant mechanism.

where we chose as representative elements of each orbit the
elements (links) 1, 2, 3, 4, 5 and 6.

In this case, the connectivity matrix is reduced from
27 × 27 to 6 × 27. Other properties represented by matrices,
such as degrees-of-control, redundancy and adjacency, are
also reduced from 27 × 27 to 6 × 27.

5.3. Example 3: Redundant mechanism employed in space
missions
Let X be the kinematic chain of a multiple-arm robot
employed in space missions presented by Belfiore and Di
Benedetto3 and shown schematically in Fig. 7(b). In this
case, Aut(X) in terms of the generator set is given by

Aut(X) =
〈
σ1 = (1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)
σ2 = (8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)

〉
.

The orbits are

O = {{1 30}; {2 29}; {3 28}; {4 27}; {5 26}; {6 25}; {7 24}; {8 16};
O = {9 17}, {10 18}; {11 19}; {12 20}; {13 21}; {14 22}; {15 23}; {31}}.

The redundancy matrix R(X) presented in Appendix B of
Belfiore and Di Benedetto3 is reduced to

Rr (X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
O1 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1
O2 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 0
O3 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0
O4 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 0
O5 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 0
O6 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 0
O7 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 0
O8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 0
O9 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 0
O10 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 0
O11 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 0
O12 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0
O13 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 0
O14 8 7 6 5 4 3 2 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1
O15 9 8 7 6 5 4 3 1 0 0 0 0 0 0 0 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 2
O31 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we chose as representative elements of each orbit the
elements (links) 1, 2, 3, . . ., 15 and 31.

In this case the redundancy matrix is reduced from 31 × 31
to 16 × 31.

6. Conclusions
The main contribution of this paper is to prove the invariance
of connectivity, degrees-of-control and redundancy by
the action of the automorphism group of the graph.
The connectivity, degrees-of-control and redundancy are
symmetric properties of a kinematic chain, i.e. links which
are symmetric by the action of the automorphism group of the
graph have the same properties. Considering that symmetric
links are identified by the orbits of the automorphism group of
the graph, we reduce the matricial representation considering
one representative element of each orbit. Thus, the order of
the matrices are reduced from n × n to o × n, where n is the
number of links of the kinematic chain and o is the number
of orbits of the automorphism group of the graph.
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Another contribution is a precise definition of the
symmetry of a kinematic chain in terms of the automorphism
group of the graph (see Section 2.4). The reduced
representation presented is a minimal representation of the
properties of kinematic chains in terms of symmetry. This
definition is applied in early stages of mechanisms design
where a kinematic chain can be represented by a graph.

Considering that the majority of parallel manip-
ulators in the literature have symmetric kinematic
chains,11, 13, 14, 19, 22–24, 26 the reduced representation offers
considerable advantages. As shown in the examples, if a
kinematic chain has symmetry, it is possible to obtain a gain
in terms of the storage of matrices, and in the simplicity
of the kinematic analysis. These techniques can also be
applied to kinematic chains of serial and hybrid manipulators.
The only cases for which the theory presented herein is not
advantageous is when the graph is fully asymmetric, i.e. in
rare practical cases.

The authors believe that the results presented in this paper
can be applied to network analysis and optimization.
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Appendix A. Group theory
The group theory concepts used in this paper are self-
contained in this appendix. The appendix was written with
the aim of making group theory more accessible to those not
acquainted with the main techniques. Thus, a brief review
of definitions, theorems and examples are discussed. More
details on group theory can be found in ref. [2, 5, 40, 42, 43].

A group is a set G endowed with a binary operation
· : G × G → G satisfying certain axioms, detailed below.
Thus, whenever a set has a group structure, the whole group
can be described in terms of a set of generators. This follows
from the fact that the equation a · x = b always admits a
unique solution x = a−1 · b in G.

Definition 12 (Group). Let G be a set and · : G × G → G.
The pair (G, ·) is a group if the following conditions are
satisfied:

(1) Associativity: for all a, b and c in G, (a · b) · c =
a · (b · c).

(2) Identity element: there exists an element e ∈ G such
that for all a ∈ G, e · a = a · e = a.

(3) Inverse element: for every a ∈ G, there exists an
element a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition 13 (Subgroup). A subset H ⊂ G is a subgroup
of a group G if the operation induced by the operation on
(G, ·) satisfies the three conditions in Definition 12. This is

equivalent to a requirement that x = h−1 · g ∈ H , for all
h, g ∈ H .

Definition 14 (Group generators). A set β = {g1, . . . , gn} ⊂
G is a set of generators for a group G if any element g ∈ G

can be written as the product of elements in β. In this case,
we denote G =< g1, . . . , gn >.

Example 4 (Symmetric group). Let Xn = {x1, x2, . . . , xn}
and Sn = {σ : Xn → Xn | σ is bijective} (permutations).
Consider · : Sn × Sn → Sn the operation given by the
composition law σ · τ = σ ◦ τ : Xn → Xn. Thus, (Sn, ·) is
the nth-symmetric group. In order to describe the elements
of Sn in a convenient way, let us consider a bijection
σ : Xn → Xn:

σ =
(

1 2 · · · n

σ (1) σ (2) · · · σ (n)

)
.

For n = 2, we have 2! = 2 elements,

S2 =
{(

1 2
1 2

)
,

(
1 2
2 1

)}
.

For n = 3, we have 3! = 6 elements,

S3 =
{(

1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
.

The group Sn has n! elements. Also, the symmetric group is
a matrix group as shown by the following example:

σ =
(

a b c

b a c

)
→

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ,

since

σ =
⎡
⎣ b

a

c

⎤
⎦ =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ·

⎡
⎣a

b

c

⎤
⎦ .

A group structure may appear in different sets. Sometimes
two distinct sets, when endowed with an operation, represent
the same group structure. From an algebraic point of view
they are the same groups.

Definition 15 (Isomorphism and automorphism groups).
Consider the groups (G1, ·1) and (G2, ·2).

(1) A map φ : G1 → G2 is a homomorphism if φ(x ·1
y) = φ(x) ·2 φ(y), for all x, y ∈ G1.

(2) A homomorphism φ : G1 → G2 is an isomorphism if
φ is bijective.

(3) Whenever G1 = G2, the isomorphism φ : G → G is
named an automorphism.

The group structure is present in a model in the form of the
group action, also called group representation. For the sake
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Table I. Actions of the elements of the automorphism group of the graph on the rows of the
reduced adjacency matrix Ar (X) for reconstruction of the original adjacency matrix A(X).

Rebuilt Applied element of Aut(X) Row of Ar (X) Row of A(X)

4 (1 7)(2 9)(3 4)(5 6)(8 10) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
5 (1 10)(2 5)(3 4)(6 9)(7 8) 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
6 (1 8)(2 6)(5 9)(7 10) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0
7 (1 7)(2 9)(3 4)(5 6)(8 10) 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
8 (1 8)(2 6)(5 9)(7 10) 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
9 (1 7)(2 9)(3 4)(5 6)(8 10) 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0
10 (1 10)(2 5)(3 4)(6 9)(7 8) 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

of simplicity, from now on let us denote the product of two
group elements g, h ∈ G by gh.

Definition 16 (Left group action). A left group action
of a group G on a set X is a map α : G × X → X,
usually denoted by α(g, x) = g · x, satisfying the following
conditions:

(1) For all g, h ∈ G and x ∈ X, g · (h · x) = (gh) · x.
(2) For all x ∈ X, e · x = x.

Analogously, a right group action can be defined. From now
on, we use the term action for left action. A space X endowed
with a G-action is named a G-space.

Definition 17 (Orbits). Let X be a G-space. The orbit of a
point x ∈ X, by the action of G, is the space

Ox = {g · x | g ∈ G}.

A partition of a G-space X is obtained by considering the
space of G-orbits. This can be seen by defining the following
equivalence relation: x ∼ y if and only if there exists an
element g ∈ G such that y = g · x. The equivalence classes
are exactly the orbits under the G-action. Therefore, if x ∼ y,

then Ox = Oy . It is well known that the equivalent classes
define a partition.

Appendix B. From reduced to original matrices
This appendix presents an example of the reconstruction of
the original matrices from the reduced matrices and the orbits.

With the reduced adjacency and connectivity matrices
shown in Eqs. (9) and (10) and the automorphism group
shown in Eq. (8), it is possible to rebuild the original matrices
shown in Eqs. (6) and (7), respectively, just considering the
action of the automorphism group elements on the rows of
the reduced matrices.

Note that it is necessary to rebuild rows 4, 5, . . ., 10.
Tables I and II show the actions that should be applied to
rebuild the original matrices A(X) and C(X), respectively,
where the first column shows the row to be rebuilt.

Observe the action of each element of Aut(X). To rebuild
row 4 we need to choose an element of the automorphism
group whose action changes a determined label x to 4. For
example, the action of (1 7)(2 9)(3 4)(5 6)(8 10) change the
label x = 3 to 4 and thus it can be used to rebuild row 4 from
row 3. Note that, while the results are the same, the way to
rebuild the matrices is not unique, i.e. to rebuild row 10 we
can use the elements (1 10)(2 5)(3 4)(6 9)(7 8), (1 8)(2 6)(5
9)(7 10) and (1 7)(2 9)(3 4)(5 6)(8 10).

Table II. Actions of the elements of automorphism group of the graph on the rows of the
reduced connectivity matrix Cr (X) for reconstruction of original connectivity matrix C(X).

Rebuilt Applied element of Aut(X) Row of Cr (X) Row of C(X)

4 (1 7)(2 9)(3 4)(5 6)(8 10) 1 3 0 3 2 3 2 1 2 2 2 2 3 0 3 2 1 2 3 1
5 (1 10)(2 5)(3 4)(6 9)(7 8) 2 0 3 2 3 3 3 2 1 1 1 3 2 3 0 1 2 3 3 2
6 (1 8)(2 6)(5 9)(7 10) 2 0 3 2 3 3 3 2 1 1 2 3 3 2 1 0 1 2 3 3
7 (1 7)(2 9)(3 4)(5 6)(8 10) 0 2 1 2 1 2 3 2 3 1 3 3 2 1 2 1 0 1 2 2
8 (1 8)(2 6)(5 9)(7 10) 0 2 1 2 1 2 3 2 3 1 2 2 1 2 3 2 1 0 1 3
9 (1 7)(2 9)(3 4)(5 6)(8 10) 2 0 3 2 3 3 3 2 1 1 3 1 2 3 3 3 2 1 0 2
10 (1 10)(2 5)(3 4)(6 9)(7 8) 0 2 1 2 1 2 3 2 3 1 1 1 2 1 2 3 2 3 2 0
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