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A Contribution to the Theory of Ferromagnetism. By G. S.
ManaJANI, B.A., St John’s College.

[Received 13 February 1926.]

The following gives a brief summary of a paper, which it is
hoped to publish in extenso later. It is a contribution to the theory
of ferromagnetic crystals, and contains in particular a theo-
retical explanation of Webster’s* experimental results.

Introduction. The fundamental fact of interest with regard to
experiments on magnetic substances is that the direction () of
magnetization (I) does not in- general coincide with the direction
(¢) of the external, applied field (H). Experiments on iron crystals
have now revealed the fact that this “deviation-effect” (¢ — ¢)
exists even in crystals of cubic structure and a symmetrical
boundary. In other words, cubical symmetry of structure does not
make a body magnetically isotropic, as was erroneously assumed
by Faraday, Tyndall and Pliicker. To account for this “deviation-
effect””, and in general to relate the two directions (¢, ) with each

other, must certainly be the first object of any theory bearing on
this subject. Accordingly Weiss has developed a ‘““macroscopic”’
theory by introducing the conception of the ‘“molecular field”.
The idea served many useful purposes, especially in connection
with experiments on Pyrhotite. But, as is shown in the present
paper, it is quite inadequate to explain the phenomena in the case
of crystals with cubic structure.

- It seemed, therefore, better to give up the idea of the ““molecular
field”, and start right from the beginning with atomic actions.
This alternative was indeed conceived but not adopted by both
Weber and Maxwell. It is quite possible that, apart from the
external field (H), the internal field which governs the magnetiza-
tion of the body arises partly from the mutual actions of the
““molecular magnets” and partly from some other force, of which
we do not know the origin. The rational way of proceeding, how-
ever, is to try to see whether we cannot do with only the mutual
actions unaided by a force of an obscure origin. This is the point
of view adopted in this investigation.

General method. Two types of ferromagnetic crystals are con-
sidered:

1. Iron, which has a cubic structure, space-centred cubic,
1.e. consisting of two simple cubic lattices, interlocked in such a way
that the lattice-points of either occupy the centres of cells of the
other.

* «Magnetic Properties of Iron Crystals”’, by W. L. Webster, Proc. Roy. Soc. A,
107 (1925).
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2. Pyrhotite, which has a non-cubic structure. Two ortho-
rhombic simple lattices are interlocked in a ‘“space-centred”
manner, and give on the whole a hexagonal symmetry.

The ultimate particles that form the lattice-points of crystals
are supposed to derive their magnetic properties from the presence
of electronic orbits. A parameter (a) is introduced to denote the
radius of an orbit. The magnetic energy due to mutual actions of
the particles is calculated as a series of terms involving third,
fifth, seventh, ..., etc. powers of (1/s), where s is the lattice-con-
stant. The parameter (@), the radius of an electronic orbit, is also
naturally involved. The total magnetic energy of the system in an
external field (H) is determined per unit volume; and it is made
stationary to search for the steady states of magnetization.

In either of the two types considered the structure consists of
two simple lattices. In calculating the internal magnetic energy,
it is assumed that the “magnetic elements” (or, the axes of the
electronic orbits in our case) arrange themselves, in any steady
state, into two groups with two differéent directions. The two
groups severally belong to the two component simple lattices. In
saturation states, the two directions coincide; while in the non-
magnetized state of the substance they are opposite to each other.

The two distinctive features of the theory in this paper are the
association of two distinct directions with magnetic elements in the
two component simple lattices, and the replacement of the usual
“doublet-conception” by the one of electronic orbits.

Notation :
O-zyz Coincide with three edges of a cell of either lattice.
(I, m,n) Direction of I, magnetization.
(U',m',n’) Direction of H, applied field.

w? Volume of a cell.

L, L The two component lattices.

1/w? Density of magnetic elements in either lattice; and
2/w? Density in the crystal as a whole.

The work is divided into three parts, and may now be sum-
marized as follows:
Parr I.
This deals with cubic structures with saturation states and is
devoted mainly to explaining Webster’s results. A space-centred
cubic structure is specified by

T =7ps
y=gs;p=gq=r(mod2),
2=178

where 2s is the side of an elementary cubic cell.
! 10~—2
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The mutual potential energy of two magnetic elements, if
identified with two parallel ele¢tronic equal orbits, radius e, is
2w, where

2 2a2
w=_‘;_3P2+3"r—5P4*

(neglecting higher terms) and
r = distance between the centres,

p = ma%,
P,, P,= P, (cos 8), P, (cos 9), .
and 0 = angle between r and the axis of an orbit.

The contribution to the internal energy due to any one magnetic
element; say the one at the origin, in the presence of all others at
the other lattice-points is

2 272
Wy= 5 wy= — 5 (E-apz 3"“ P,,)
D,gr p,gr \T
p=g=r(mod2),
and the accent indicates that p =g =7 =0 is a cor ination to
be omitted.
It is easily seen that

= (pt+q*+1?)s%  cosf= Ip+ mgt nr

(P + g2 + 1)t

It is shown in Part III that for cubic structures the third order
terms which lead to divergent series involve no variable part of
the energy and we are left with

= effective part of Wy=+ X' 3“ P, (cos 8)
par

Sula?
=gt B cosB, = ¢ =r(mod 2).
e g Py(cosf), p=g=r( )
This reduces, omitting the non-variable part (i.e. not depending
upon lmn), to

125 prad (3@ — P) (I>m? 4 m2n? + n2l2),
4
where pP=3% T_%*Tg
par(p +~p92q;|' 7%) p=q=r (mod-2).

par(p?+ g2 + r2)t

* The mutual potential energy of two linear magnets is, however,
2u? 2ptal

- P Py et

The second term differs in sign. Actually experimental results require ( +) sign.
Hence the orbit-conception.
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Actual calculation shows that
015 < P< 018,
0-068 < @ < 0-076,
0-032 < 3Q — P < 0-064.
Next, the energy due to an external field (H) is
— pH W' + mm’ + nn').
Therefore the total energy density per unit volume is

12
E= 2;“? I:a (1Pm? + m*n? 4 n?2) — i—i @ + mm’ + nn’)] ,
2
where @= 1% ;Ls (3@ — P):

(This formula does not take account of temperature effects.)
Let now AT+ py +vz=0

be a symmetry plane of the crystal structure, and consider a
circular plate of the crystal cut parallel to this plane. If H be
applied in the plane of the disk, we have

Al 4 pm’ +vn” = 0.
By symmetry of the structure the vector of magnetization will
also lie in the plane of the disk and therefore

Al + pm + vn = 0.

Making now E stationary subject to

IR =1, TN =0,
U m o
I m =

B md nd
Il m =n

we get

= %

A pow A pov

This is a quite general result and includes all the cases considered.

Obviously (H) and (I) will coincide in direction, i.e. the devia-
tion-effect will vanish, when (I', m’, »') = (I, m, n), or

B md n3|=0,
Il m n
(A n

This result coupled with
=1, ZIN=0,

gives the directions in the symmetry plane Az + py + vz = 0, along
which the deviation-effect vanishes.
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Particular cases.
(1) Circular plate cut parallel to the face of an octahedron :

A=p=v=1/y3.
In this case I! = 0 makes

3 md n3 =0
I m n
1 1 1

an identity, and thus the following experimental fact is explained:

“The amplitude of the waves of o,, i.e. the component of
magnetization perpendicular to the direction of H, vanishes in
stronger fields almost completely*.”

(2) Circular plate cut_parallel to the face of a rhombic dodeca-

hedron. .
Here A= 1lys, n=1/4/2, v=0.
‘Solving B m® n¥|=0
I m n 1

11 0 J ’

IR =1, l+m=0

we get exactly the same result as required by experimental data:
*...The normal components o, show four zeros within 180° in

the direction of the axes at 0, 55°, 90°, 125°, and 180°t.”

Strictly speaking, theory yields not 55° and 125°, but
cos™! (1/4/3) and 7 — cos~! (1/4/3), that is 54° 44’ and 125° 16’.

(3) Circular plate cut parallel to the face of the cube. This is the
case of Webster's experiments. We have A=pu =0, v=1, and
therefore n = n’ = 0. The result reduces to
I md

Il m

A

I m

Putting (I, m) = (cos ¢, sin )
(', m') = (cos ¢, sin ¢>)} ’

sin(@—¢) _%u
singcospcos2y H -’

; ll(bl:dnz’ Bull. Nat. Res. Council, vol. 3, Part 3, p. 180 (1922).

H
2ua’

we get
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Further, if we write % instead of I, to denote that we are dealing
with saturation states, we see that

S,  aud
singcospcos2y H °
1.e. (Sp)max. H = 3au® = constant ... (1.

The explanation of all the experimental curves of Webster is con-
tained in the two formulae

H sin (¢ ~ ) _ 21x£._=a w?
Ssingeospeosp N .
(Yp)maz. H = %a#&

Quantitatively, the second of the results above is made to fit
Webster’s Graph 4, by adjusting e. All the quantities in equa-
tion (1) are known, or can be calculated except the parameter
a, the radius of an electronic orbit. Thus the proper adjustment of
« to fit the experimental curves yields the magnitude of a.

The results are:

Disk 4  0212> a x 108> 0-147
Disk B 0:331 > a x 108 > 0-232}°

The conclusion is reached that
a = 0[10-7].

The molecular field. Our work shows that if we start from the
bulk-conception of the molecular field, we must adopt a “third-
power” law and not a ‘“fourth-power” one, as is empirically
suggested by Webster, in the case of cubic structures. Incidentally
a better generalization of Weiss’s law of simple proportionality in
the case of non-cubic structures is suggested, which includes both
the cubic and the non-cubic cases. Thus in place of Weiss’s

(Hm)u = Nulu,
we Write (Hp)u=Nu[ay I, + a2+ agl5+...].

Adopting this form; we obtain in the case of a circular plate

the following result:
dind
U m
Ilm[a, (N, — N,) + a3 (!N, — m®N,) I? + a; (AN, — m*N,) I* + ...]
=1

In the non-cubic case N, # N,
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Retaining only the first non-vanishing term in the denominator

gives
Hp
Ilm "al(Nav’"Nv)

Take a, = 1 and we obtain exactly Weiss’s result

Tt .- )
On the other hand, in the cubic case
N,=N,=N, say.
Therefore retaining only the first nbn-vaﬁishing term gives

gl
UV m N
Flm(E—m2) &
i.e. in the saturation case
Hsin(¢—4¢) .
S sin cospcos B N2,

which agrees with the result we obtained by the consideration of
“atomic actions”.

Quantitatively, the agreement is fairly satisfactory. We obtain
the following result:

. Present theory ez;’)::’isn?el;is
Uz 576 620
M4 368 470

where Mp, M4 denote the magnitude in gauss of the molecular
field in the case of saturation when H acts along one of the structural
axes, for disks B and 4 respectively.

Part II.

This deals with non-cubic structures. Two methods are pointed
out for dealing with the ° third-order” terms in the energy
function. It is shown that, in the cubic structures, these involve
no variable part of the energy; while in the non-cubic cases, these
involve the most effective part of the variable energy. Hence the
simple doublet conception suffices in this case. The same results
are arrived at as Weiss’s.
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Part IT1.

In this, an attempt is made to extend the theory to non-satura-
tion states. The two general results that are obtained may be stated
here. Cubic case:

H cos (4 — §)
1 [2 - 5‘8_2{4 (h — 3j) cos &p.f, + 2’ (1+ cos? 24) + 3 (1 —cos4x/1)}]
= — %ws’
and I - Hsin(d— o) o?

923,

sin 4 [(Rf, + KA) — 3 (i +5)1 - 16
where ¢, b, %', j, §' are constants defined by the structure thus:

=2 () |
4
J =1,,§,8m§8y2 (71T J
4
¥=32()

9 ot /1
J 1,5,8:1;28.1/2 (r)
2 = (p2 + q2 + 72) 32’
fn =fn (I/S):" cos n (‘/’1 - ‘/’2)7
i, and i, being the directions of the magnetic elements in the two
component simple lattices. The constant ¢ is rather too complicated
to define in this summary.

Formulae are obtained for the non-cubic structures also, in
non-saturated states.

(p,q,7) all even,

(P, g, 7) all odd,

Concluding remarks. The theory requires to be completed in
three directions:

1. To consider which of the steady states are stable. This will
probably bear on the hysteresis phenomena.

2. To consider the effect of temperature.

3. To put the formulae for the third order terms in Part II

in a form suitable for numerical computation, and thus to test the
theory in the case of non-cubic structures quantitatively.
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