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In this investigation, a data-driven turbulence closure framework is introduced and
deployed for the subgrid modelling of Kraichnan turbulence. The novelty of the
proposed method lies in the fact that snapshots from high-fidelity numerical data are
used to inform artificial neural networks for predicting the turbulence source term
through localized grid-resolved information. In particular, our proposed methodology
successfully establishes a map between inputs given by stencils of the vorticity
and the streamfunction along with information from two well-known eddy-viscosity
kernels. Through this we predict the subgrid vorticity forcing in a temporally and
spatially dynamic fashion. Our study is both a priori and a posteriori in nature. In
the former, we present an extensive hyper-parameter optimization analysis in addition
to learning quantification through probability-density-function-based validation of
subgrid predictions. In the latter, we analyse the performance of our framework for
flow evolution in a classical decaying two-dimensional turbulence test case in the
presence of errors related to temporal and spatial discretization. Statistical assessments
in the form of angle-averaged kinetic energy spectra demonstrate the promise of the
proposed methodology for subgrid quantity inference. In addition, it is also observed
that some measure of a posteriori error must be considered during optimal model
selection for greater accuracy. The results in this article thus represent a promising
development in the formalization of a framework for generation of heuristic-free
turbulence closures from data.
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1. Introduction

The efficient computational modelling of energetic flows continues to remain
an important area of research for many engineering and geophysical applications.
Over the past few decades, coarse-grained techniques such as Reynolds-averaged
Navier–Stokes (RANS) and large-eddy simulation (LES) have proven promising for
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the statistically accurate prediction of the grid-resolved scales of a turbulent flow.
While RANS is based on the modelling of turbulence in a temporally averaged sense,
LES requires the specification of a model for the finer scales and their effect on
the grid-resolved quantities. This modelling of the excluded wavenumbers in LES
represents the classical closure problem which has spawned a variety of algebraic
or equation-based techniques for representing the effect of these discarded scales on
the resolved ones (Berselli, Iliescu & Layton 2005; Sagaut 2006). It has generally
been observed that the choice of the subgrid model is physics-dependent, i.e. that
different flow phenomena require different expressions for subgrid terms with a priori
assumptions of phenomenology (Vreman 2004). We use this fact as a motivation for
moving to an equation-free model for the source term through the use of an artificial
neural network (ANN). Our hope, in addition to the formulation of a prediction
framework, is to devise the formalization of a ‘machine-learning experiment’ where
a priori model selection and a posteriori deployment are coupled to reveal information
about the physical characteristics of a particular flow class. This not only enables
the selection of computationally efficient predictive models but also reveals the
importance of certain grid-resolved quantities of interest from the flow characteristics.
In accordance with the recent trends of first-principles informed learning for physics
inference in turbulence (Ling & Templeton 2015; Tracey, Duraisamy & Alonso 2015;
Xiao et al. 2016; Schaeffer 2017; Singh, Medida & Duraisamy 2017; Wang et al.
2017a; Wang, Wu & Xiao 2017b; Weatheritt & Sandberg 2017; Mohan & Gaitonde
2018; Raissi & Karniadakis 2018; Wan et al. 2018; Wu, Xiao & Paterson 2018a),
a major goal of this research is to study the combination of the traditional learning
framework (inherently data-driven) and the physics-based prediction tool (based on
the coarse-grained Navier–Stokes equations). We devote particular attention to the
necessity for physical realizability as well as the issues faced by learning frameworks
and their interactions with numerical discretization error.

Over the past decade, there have been multiple studies on the use of machine-
learning tools for the reduced-order prediction of energetic flow physics. The study
of these techniques has been equally popular for both severely truncated systems such
as those obtained by leveraging sparsity in transformed bases (Faller & Schreck 1997;
Cohen et al. 2003; Mannarino & Mantegazza 2014; San & Maulik 2018) as well
as for modelling methodologies for coarse-grained meshes such as LES and RANS
simulations (Maulik & San 2017a; Wang et al. 2017b; Wu, Xiao & Paterson 2018b).
Therefore, they represent a promising direction for the assimilation of high-fidelity
numerical and experimental data during the model-formulation phase for improved
predictions during deployment. A hybrid formulation leveraging our knowledge of
governing equations and augmenting these with machine learning represents a great
opportunity for obtaining optimal LES closures for multiscale physics simulations
(Langford & Moser 1999; Moser et al. 2009; King, Hamlington & Dahm 2016;
Pathak et al. 2018).

From the point of view of turbulence modelling, we follow a strategy of utilizing
machine-learning methods for estimating the subgrid forcing quantity such as the
one utilized in Ling, Kurzawski & Templeton (2016) where a deep ANN has been
described for Reynolds stress predictions in an invariant subspace. ANNs have
been also implemented in Parish & Duraisamy (2016) to correct errors in RANS
turbulence models after the formulation of a field-inversion step. Gamahara & Hattori
(2017) detailed the application of ANNs for identifying quantities of interest for
subgrid modelling in a turbulent channel flow through the measurement of Pearson
correlation coefficients. Milano & Koumoutsakos (2002) also implemented these
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techniques for turbulent channel flow but for the generation of low-order wall models,
while Sarghini, De Felice & Santini (2003) deployed ANNs for the prediction of
the Smagorinsky coefficient (and thus the subgrid contribution) in a mixed subgrid
model. In Beck, Flad & Munz (2018), an ANN prediction has been hybridized with a
least-squares projection onto a truncated eddy-viscosity model for LES. In these (and
most) utilizations of machine-learning techniques, subgrid effects were estimated using
grid-resolved quantities. Our approach is similar, wherein grid-resolved information
is embedded into the input variables for predicting LES source terms for the filtered
vorticity transport equation.

We outline a methodology for the development, testing and validation of a purely
data-driven LES modelling strategy using ANNs which precludes the utilization of
any phenomenology. However, in our framework the machine-learning paradigm is
used for predicting the vorticity forcing or damping of the unresolved scales, which
lends to an easier characterization of numerical stability restrictions as well as ease
of implementation. Our model development and testing framework is outlined for
Kraichnan turbulence (Kraichnan 1967) where it is observed that a combination of
a priori and a posteriori analyses ensure the choice of model frameworks that are
optimally accurate and physically constrained during prediction. Conclusions are
drawn by statistical comparison of predictions with high-fidelity data drawn from
direct numerical simulations (DNS).

To improve the viability of our proposed ideas, we devise our learning using
extremely subsampled datasets. The use of such subsampled data necessitates a
greater emphasis on physics distillation to prevent extrapolation and over-fitting
during the training phase. An a priori hyper-parameter optimization is detailed for
the selection of our framework architecture before deployment. An a posteriori
prediction in a numerically evolving flow tests the aforementioned ‘learning’ of the
framework for spectral scaling recovery which are compared to robust models utilizing
algebraic eddy viscosities given by the Smagorinsky (1963) and Leith (1968) models.
A hardwired numerical realizability also ensures viscous stability of the proposed
framework in an a posteriori setting. Later discussions demonstrate how the proposed
framework is suitable for the prediction of vorticity forcing as well as damping in
the modelled scales. The proposed formulation also ensures data locality, where a
dynamic forcing or dissipation of vorticity is specified spatio-temporally.

Following our primary assessments, our article proposes the use of a combined
a priori and a posteriori study for optimal predictions of kinetic energy spectra as
well as hyper-parameter selection prior to deployment for different flows that belong
to the same class but have a different control parameter or initial conditions. It is
also observed that the specification of eddy-viscosity kernels (which are devised from
dimensional analyses) constrain the predictive performance of the framework for
the larger scales. Results also detail the effect of data locality, where an appropriate
region of influence utilized for sampling is shown to generate improved accuracy. The
reader may find a thorough review of concurrent ideas in Duraisamy, Iaccarino &
Xiao (2018). An excellent review of the strengths and opportunities of using artificial
neural networks for fluid dynamics applications may also be found in Kutz (2017).

The mathematical background of subgrid modelling for the LES of two-dimensional
turbulence may be summarized in the following. In terms of the vorticity–stream-
function formulation, our non-dimensional governing equation for incompressible flow
may be represented as

∂ω

∂t
+ J(ω, ψ)=

1
Re
∇

2ω, (1.1)
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where Re is the Reynolds number, and ω and ψ are the vorticity and streamfunction,
respectively, connected to each other through the Poisson equation given by

∇
2ψ =−ω. (1.2)

It may be noted that the Poisson equation implicitly ensures a divergence-free flow
evolution. The nonlinear term (denoted the Jacobian) is given by

J(ω, ψ)=
∂ψ

∂y
∂ω

∂x
−
∂ψ

∂x
∂ω

∂y
. (1.3)

A reduced-order implementation of the aforementioned governing laws (i.e. an LES)
is obtained through

∂ω̄

∂t
+ J(ω̄, ψ̄)=

1
Re
∇

2ω̄+Π, (1.4)

where the overbarred variables are now evolved on a grid with far fewer degrees of
freedom. The subgrid term Π encapsulates the effects of the finer wavenumbers which
have been truncated due to insufficient grid support and must be approximated by a
model. Mathematically we may express this (ideal) loss as

Π = J(ω̄, ψ̄)− J(ω, ψ). (1.5)

In essence, the basic principle of LES is to compute the largest scales of turbulent
motion and use closures to model the contributions from the smallest turbulent
flow scales. The nonlinear evolution equations introduce unclosed terms that must be
modelled to account for local, instantaneous momentum and energy exchange between
resolved and unresolved scales. If these inter-eddy interactions are not properly
parametrized, then an increase in resolution will not necessarily improve the accuracy
of these large scales (Frederiksen, O’Kane & Zidikheri 2013; Frederiksen & Zidikheri
2016). Additionally, most LES closures are based on three-dimensional turbulence
considerations primarily encountered in engineering applications. These LES models
fundamentally rely on the concept of the forward energy cascade, and their extension
to geophysical flows is challenging (Eden & Greatbatch 2008; Fox-Kemper et al.
2011; San, Staples & Iliescu 2013), due to the effects of stratification and rotation,
which suppress vertical motions in the thin layers of fluid. In the following, we shall
elaborate on the use of a machine-learning framework to predict the approximate
value of Π in a pointwise fashion on the coarser grid and assess the results of
its deployment in both a priori and a posteriori testing. Through this we attempt
to bypass an algebraic or differential-equation-based specification of the turbulence
closure and let the data drive the quantity and quality of subgrid forcing. We note
here that the definition of the subgrid source term given in (1.5) is formulated for
the LES of two-dimensional Navier–Stokes equations in the vorticity–streamfunction
formulation but the framework outlined in this article may be readily extended to
the primitive-variable formulation in two or higher dimensions (Mansfield, Knio &
Meneveau 1998; Marshall & Beninati 2003).

2. Machine-learning architecture
In this section, we introduce the machine-learning methodology employed for the

previously described regression problem. The ANN, also known as a multilayered
perceptron, consists of a set of linear or nonlinear mathematical operations on an input
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space vector to establish a map to an output space. Other than the input and output
spaces, an ANN is also said to contain multiple hidden layers (denoted so due to
the obscure mathematical significance of the matrix operations occurring here). Each
of these layers is an intermediate vector in a multistep transformation which is acted
on by biasing and activation before the next set of matrix operations. Biasing refers
to an addition of a constant vector to the incident vector at each layer, on its way
to a transformed output. The process of activation refers to an elementwise functional
modification of the incident vector to generally introduce nonlinearity into the eventual
map. In contrast, no activation (also referred to as ‘linear’ activation) results in the
incident vector being acted on solely by biasing. Note that each component of an
intermediate vector corresponds to a unit cell also known as the neuron. The learning
in this investigation is supervised, implying label data used for informing the optimal
map between inputs and outputs. Mathematically, if our input vector p resides in a
P-dimensional space and our desired output q resides in a Q-dimensional space, this
framework establishes a map M as follows:

M : {p1, p2, . . . , pP} ∈RP
→{q1, q2, . . . , qQ} ∈RQ. (2.1)

A schematic for this map may be observed in figure 1, where input, output and hidden
spaces are summarized. In equation form, our default optimal map is given by

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1, ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1, |S̄|i,j, |∇ω̄|i,j}

∈R20
→{Π̃i,j} ∈R1, (2.2)

where

|S̄| =

√
4
(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
−
∂2ψ̄

∂y2

)2

and |∇ω̄| =

√(
∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

(2.3a,b)

are eddy-viscosity kernel information input to the framework and Π̃ is the approxi-
mation to the true subgrid source term. Note that the indices i and j correspond
to discrete spatial locations on a coarse-grained two-dimensional grid. The map
represented by (2.2) is considered ‘default’ due to the utilization of a nine-point
sampling stencil of vorticity and streamfunction (corresponding to 18 total inputs)
and two other inputs of the Smagorinsky and Leith kernels. The purpose of utilizing
the additional information from these well-established eddy-viscosity hypotheses may
be considered a data pre-processing mechanism where certain important quantities of
interest are distilled and presented ‘as-is’ to the network for simplified architectures
and reduced training durations. The motivation behind the choice of these particular
kernels is discussed in later sections, where it is revealed that they also introduce
a certain regularization to the optimization. We note that all our variables in this
study are non-dimensionalized at the stage of problem definition and no further
pre-processing is utilized prior to exposing the map to the input data for predictions.
The predicted value of Π̃ is post-processed before injection into the vorticity equation
as follows:

Π =

{
Π̃, if (∇2ω̄)(Π̃) > 0,
0, otherwise.

(2.4)

This ensures numerical stability due to potentially negative eddy viscosities embedded
in the source term prediction and may be considered to be an implicit assumption of
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FIGURE 1. Proposed artificial neural network architecture and relation to sampling and
prediction space.

the Boussinesq hypothesis for functional subgrid modelling. It is later demonstrated
that the presence of this constraint does not preclude the prediction of positive
or negative values of Π̃ , which implies that the proposed framework is adept at
predicting vorticity forcing or damping at the finer scales, respectively. The damping
of vorticity at the finer scales would correspond to a lower dissipation of kinetic
energy (assuming that vorticity dissipates kinetic energy in the subgrid scales).
Similarly, the forcing of vorticity at the finer scales may be assumed to be a localized
event of high kinetic energy dissipation. In general, (2.4) precludes the presence of a
backscatter of enstrophy for strict adherence to viscous stability requirements on the
coarse-grained mesh. Instead of the proposed truncation, one may also resort to some
form of spatial averaging in an identifiable homogeneous direction as utilized by
Germano et al. (1991). However, the former was chosen to remove any dependence
on model forms or coefficient calculations. In what follows for the rest of this article,
our proposed framework is denoted ANN-SGS. Details related to hyper-parameter
selection and supervised learning of the model are provided in the appendices.

3. A priori validation
We first outline an a priori study for the proposed framework where the optimal

map is utilized for predicting probability distributions for the true subgrid source
term. In other words, we assess the turbulence model for a one-snapshot prediction.
Before proceeding, we return to our previous discussion about the choice of
Smagorinsky and Leith viscosity kernels by highlighting their behaviour for different
choices of model coefficients (utilized in effective eddy-viscosity computations
using mixing-length-based phenomenological arguments). The Smagorinsky or Leith
subgrid-scale models may be implemented in the vorticity–streamfunction formulation
via the specification of an effective eddy viscosity

Π̃ = νe∇
2ω̄, (3.1)
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FIGURE 2. (Colour online) A priori performance of (a) Smagorinsky and (b) Leith models
for varying model coefficients for data snapshot at t = 2. Here, instances refer to the
probability densities of truth and prediction at different magnitudes.

where the Smagorinsky model utilizes

νe = (Csδ)
2
|S̄|, (3.2)

while the Leith hypothesis states

νe = (Clδ)
3
|∇ω̄|. (3.3)

In the above relations, δ refers to the grid volume (or area in two-dimensional
cases) and νe is an effective eddy viscosity. From figure 2, it is apparent that the
choice of model-form coefficients Cs and Cl for the Smagorinsky and Leith models
dictates the accuracy of the closure model in a priori analyses. Instances here refer
to the probability densities of truth and prediction at different magnitudes. We would
also like to draw the reader’s attention to the fact that ideal reconstructions of the
true subgrid term are with coefficients near the value of 1.0, a value that is rather
different from the theoretically accepted values of Cs applicable in three-dimensional
turbulence. This dependence of closure efficacy on model coefficients continues to
represent a non-trivial a priori parameter specification task for practical utilization of
common LES turbulence models particularly in geophysical applications. Later, we
shall demonstrate that a posteriori implementations of these static turbulence models
is beset with difficulties for non-stationary turbulent behaviour.

In contrast, figure 3 shows the performance of the proposed framework in predicting
subgrid contributions purely through the indirect exposure to supervised data in the
training process. Figure 3 shows a remarkable ability for Π reconstruction for both Re
values of 32 000 and 64 000, solely from grid-resolved quantities. Performance similar
to ideal model coefficients mentioned in figure 2 are also observed. The Re= 64 000
case is utilized to assess model performance for ‘out-of-training’ snapshot data in an
a priori sense. The trained framework is seen to lead to viable results for a completely
unseen dataset with more energetic physics. We may thus conclude that the map has
managed to embed a relationship between sharp spectral cutoff filtered quantities and
subgrid source terms.

We also visually quantify the effect of (2.4) (described for the process of numerical
realizability) in figure 4, where a hardwired truncation is utilized for precluding
violation of viscous stability in the forward simulations of our learning deployment.
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FIGURE 3. (Colour online) A priori results for the probability density distributions of the
true and framework predicted LES source terms for (a) Re= 32 000 and (b) Re= 64 000.
Note that the training data were generated for Re= 32 000 only and prediction on Re=
64 000 represents a stringent validation.

One can observe that the blue regions of figure 4, which are spatial locations
of subgrid forcing (Π̃ ) and Laplacian ∇2ω̄ being of opposite sign, are truncated.
However, we must clarify that this does not imply a constraint on the nature of
forcing being obtained by our model – a negative value of the subgrid term implies a
damping of vorticity and the finer scales, whereas a positive value implies production
at the finer scales. Our next step is to assess the ability of this relationship to
recover statistical trends in an a posteriori deployment. The fact that roughly half of
the predicted subgrid terms are truncated matches the observations in Piomelli et al.
(1991), where it is observed that forward- and backscatter are present in approximately
equal amounts when extracted from DNS data. Studies are under way to extend some
form of dynamic localization of backscatter to the current formulation along the lines
of Ghosal et al. (1995).

4. Deployment and a posteriori assessment
The ultimate test of any data-driven closure model is in an a posteriori framework

with subsequent assessment for the said model’s ability to preserve coherent structures
and scaling laws. While the authors have undertaken a priori studies with promising
results for data-driven ideologies for LES (Maulik & San 2017a), the results of
the following section are unique in that they represent a model-free turbulence
model computation in temporally and spatially dynamic fashion. This test set-up
is particulary challenging due to the neglected effects of numerics in the a priori
training and assessment. In the following we utilize angle-averaged kinetic energy
spectra to assess the ability of the proposed framework to preserve integral and
inertial range statistics. In brief, we mention that the numerical implementation of the
conservation laws is through second-order discretization for all spatial quantities (with
a kinetic-energy-conserving Arakawa discretization (Arakawa 1966) for the calculation
of the nonlinear Jacobian). A third-order total-variation-diminishing Runge–Kutta
method is utilized for the vorticity evolution and a spectrally accurate Poisson
solver is utilized for updating streamfunction values from the vorticity. Our proposed
framework is deployed pointwise for approximate Π at each explicit time step until
the final time of t = 4 is reached. The robustness of the network to the effects of
numerics is thus examined.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.770


130 R. Maulik, O. San, A. Rasheed and P. Vedula

-4

Ô¡

-3 -2 -1 0

◊2ø-
1 2 3 4

(÷ 104)

-1000

-750

-500

-250

0

250

500

750

1000

-4

Ô¡

-3 -2 -1 0 1 2 3 4
(÷ 104)

-1000

-750

-500

-250

0

250

500

750

1000(a)

(b)

FIGURE 4. (Colour online) An a priori assessment of the nature of truncation given
by (2.4) for t = 2 snapshot data at (a) Re = 32 000 and (b) Re = 64 000. The nature
of this truncation is for the preservation of viscous stability in a coarse-grained forward
simulation.

Figure 5 displays the statistical fidelity of coarse-grained simulations obtained with
the deployment of the proposed framework for Re= 32 000. Stable realizations of the
vorticity field are generated due to the combination of our training and post-processing.
For the purpose of comparison, we also include coarse-grained no-model simulations,
i.e. unresolved numerical simulations (UNS), which demonstrate an expected
accumulation of noise at grid cutoff wavenumbers. DNS spectra are also provided
showing agreement with the k−3 theoretical scaling expected for two-dimensional
turbulence. Our proposed framework is effective at stabilizing the coarse-grained flow
by estimating the effect of subgrid quantities and preserving trends with regards to
the inertial range scaling. We also demonstrate the utility of our learned map on
an a posteriori simulation for Re = 64 000 data where similar trends are recovered.
This also demonstrates an additional stringent validation of the data-driven model
for ensuring generalized learning. The reader may observe that Smagorinsky and
Leith turbulence model predictions using static model coefficients of value 1.0
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FIGURE 5. (Colour online) A posteriori results for the spatially averaged kinetic energy
spectra for the proposed framework compared with DNS and UNS solutions. Note that
only Re = 32 000 training data are used for both deployments, and network is applied
spatially and temporally in a dynamic manner until t= 4.

(i.e. Cs = Cl = 1.0) lead to over-dissipative results particularly at the lower (integral)
wavenumbers. This trend is unsurprising, since the test case examined here represents
non-stationary decaying turbulence for which fixed values of the coefficients are
not recommended. Indeed, the application of the Smagorinsky model to various
engineering and geophysical flow problems has revealed that the constant is not
single-valued and varies depending on resolution and flow characteristics (Galperin &
Orszag 1993; Canuto & Cheng 1997; Vorobev & Zikanov 2008), with higher values
specifically for geophysical flows (Cushman-Roisin & Beckers 2011). In comparison,
the proposed framework has embedded the adaptive nature of dissipation into its
map, which is a promising outcome. Figures 6 and 7 show the performance of the
Smagorinsky and Leith models, respectively, for a Re = 32 000 and Re = 64 000
a posteriori deployment for different values of the eddy-viscosity coefficients. One
can observe that the choice of the model-form coefficient is critical in the capture of
the lower wavenumber fidelity.

In particular, we would like to note that the choice of a coarse-grained forward
simulation using a Reynolds number of 64 000 represents a test for establishing what
the model has learned. This forward simulation verifies if the closure performance of
the framework is generalizable and not a numerical artifact. A similar performance
of the model on a different deployment scenario establishes the hybrid nature of our
framework where the bulk behaviour of the governing law is retained (through the
vorticity–streamfunction formulation) and the artificial intelligence acts as a corrector
for statistical fidelity. This observation holds promise for the development of closures
that are generalizable to multiple classes of flow without being restricted by initial
or boundary conditions. To test the premise of this hypothesis, we also display
ensemble-averaged kinetic energy spectra from multiple coarse-grained simulations at
Re= 32 000 and at Re= 64 000, utilizing a different set of random initial conditions
for each test case. In particular, we utilize 24 different tests for averaged spectra,
which are displayed in figure 8. We would like to emphasize here that the different
initial conditions correspond to the same initial energy spectrum in wavenumber space
but with random vorticity fields in Cartesian space. The performance of our proposed
framework is seen to be repeatable across different instances of random initial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.770


132 R. Maulik, O. San, A. Rasheed and P. Vedula

100(a)
10-1

10-2

10-3

10-4

10-5E(
k)

10-6

10-7

10-8

100 101

k
102

Re = 32 000

100(b)
10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

100 101

k
102

Re = 64 000

DNS
UNS

k-3 scaling

Cs = 0.1
Cs = 0.3
Cs = 0.5
Cs = 0.8
Cs = 1.0

FIGURE 6. (Colour online) A posteriori results for the spatially averaged kinetic energy
spectra for the Smagorinsky model for different values of their eddy-viscosity coefficients
and for different Reynolds numbers at t= 4. One can observe that the capture of lower-
wavenumber energy and scaling is heavily dependent on the value of these coefficients.
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FIGURE 7. (Colour online) A posteriori results for the spatially averaged kinetic energy
spectra for the Leith model for different values of their eddy-viscosity coefficients
and for different Reynolds numbers at t = 4. One can observe that the capture of
lower-wavenumber energy and scaling is heavily dependent on the value of these
coefficients.

vorticity fields sharing the same energy spectra. Details related to the generation of
these random initial conditions may be found in Maulik & San (2017b). In addition,
we also display spectra obtained from an a posteriori deployment of our framework
till t = 6 for Re = 32 000 and Re = 64 000, shown in figure 9, which ensures that
the model has learned a subgrid closure effectively and predicts the vorticity forcing
adequately in a temporal region to which it has not been exposed during training.

Figure 10 shows a qualitative assessment of the stabilization property of machine-
learning framework where a significant reduction in noise can be visually ascertained
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FIGURE 8. (Colour online) A posteriori results for 24 ensemble-averaged simulations for
(a) Re= 32 000 and (b) Re= 64 000.
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FIGURE 9. (Colour online) The deployment of our framework till t=6 for (a) Re=32 000
and (b) Re= 64 000 showing that a subgrid model has been learned for utility beyond the
training region. We note that the training region is defined between t= 0 and t= 4 alone.

due its deployment. Coherent structures are retained successfully as against UNS
results where high-wavenumber noise is seen to corrupt field realizations heavily.
Filtered DNS (FDNS) data obtained by Fourier cutoff filtering of vorticity data
obtained from DNS are also shown for the purpose of comparison. As discussed
previously, the stabilization behaviour is observed for both Re = 32 000 and
Re = 64 000 data. We may thus conclude that the learned model has established
an implicit subgrid model as a function of grid-resolved variables. We reiterate that
the choice of the eddy viscosities is motivated by ensuring a fair comparison with the
static Smagorinsky and Leith subgrid models and studies are under way to increase
complexity in the mapping as well as input space.

5. A priori and a posteriori dichotomy

In the previous sections, we have outlined the performance of our proposed
framework according to the optimal model architecture chosen by a grid search
for the number of hidden layers as well as the number of hidden-layer neurons.
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FIGURE 10. (Colour online) A posteriori results for the proposed framework showing
vorticity fields for Re= 32 000 and Re= 64 000 data using coarse-grained grids (a,b). We
also provide no-model simulations (c,d) and filtered DNS contours (e, f ) for the purpose
of comparison.

This a priori hyper-parameter selection is primarily devised on mean-squared-error
minimization and is susceptible to providing model architectures that are less resistant
to over-fitting and more prone to extrapolation. Our experience shows that an
a posteriori prediction (such as for this simple problem) must be embedded into
the model selection decision process to ensure an accurate learning of physics. We
briefly summarize our observations of the a priori and a posteriori dichotomy in the
following.
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FIGURE 11. (Colour online) (a) A priori and (b) a posteriori effect of the utilization
of eddy-viscosity kernel inputs in training and deployment for a two-layer 50-neuron
network with a nine-point stencil. The presence of these kernels (intangible in a priori
error minimization) leads to constrained statistical fidelity in a posteriori deployment at
Re= 32 000.

5.1. Effect of eddy-viscosity inputs
By fixing our optimal set of hyper-parameters (i.e. a two-layer 50-neuron network), we
attempted to train a map using an input space without the choice of Smagorinsky and
Leith viscosity kernels. Therefore our inputs would simply be the nine-point stencils
for vorticity and streamfunction as shown in the mathematical expression given by

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1, ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1} ∈R18
→{Π̃i,j} ∈R1.

(5.1)
As shown in figure 11, the modification of our input space had very little effect

on the training performance of our optimal network architecture. This would initially
seem to suggest that the Smagorinsky and Leith kernels were not augmenting learning
in any manner. However, our a posteriori deployment of this model, which mapped
to subgrid quantities from the 18-dimensional input space, displayed an unconstrained
behaviour at the larger scales with the formation of non-physical large-scale structures
(also shown in figure 8). This strongly points towards an implicit regularization of our
model due to the selection of input dimensions with these kernels.

We undertook the same study for a five-layer, 50-neuron ANN (one that was
deemed too complex by our grid search) with results shown in figure 12. Two
conclusions are apparent here – the utilization of these kernels in the learning
process has prevented a priori reduction of training error at a much higher value, and
the deployment of both networks (i.e. with and without input viscosities) has led to
a constrained prediction of the k−3 spectral scaling. Large-scale statistical predictions
remain unchanged and, indeed, a better agreement with the DNS spectrum can be
observed with the deeper network with the use of the kernels.

5.2. A posteriori informed architecture selection
While a priori hyper-parameter tuning is classically utilized for most machine-learning
deployments, the enforcement of physical realizability constraints (such as those
given by (2.4)) and the presence of numerical errors during deployment may often
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FIGURE 12. (Colour online) (a) A priori and (b) a posteriori effect of the utilization of
eddy-viscosity kernel inputs in training and deployment for a five-layer 50-neuron network
with a nine-point stencil. The presence of these kernels leads to higher training errors but
viable statistical fidelity in a posteriori deployment at Re= 32 000.
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FIGURE 13. (Colour online) (a) A priori and (b) a posteriori effect of the number of
hidden layers in the proposed framework. While the two-layered ANN with a nine-point
stencil leads to excellent a priori results, the five-layered network predicts k−3 scaling
more accurately in deployment for an a posteriori simulation at Re= 32 000.

necessitate architectures that differ significantly during a posteriori deployment. This
article demonstrates the fact that, while constrained predictions are obtained by our
optimal two-layer network (obtained by a grid search), the utilization of a deeper
network actually leads to more accurate predictions of the Kraichnan turbulence
spectrum as shown in figure 13. This is despite the fact that the deeper network
displays a great mean-squared-error during the training phase (which was the root
cause of it being deemed ineligible in the hyper-parameter tuning). Figure 12 thus
tells us that it is important to couple some form of a posteriori analysis during
model-form selection before it is deemed optimal (physically or computationally)
for deployment. We note that both networks tested in this subsection utilized the
Smagorinsky and Leith eddy viscosities in their input space.
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FIGURE 14. (Colour online) (a) A priori and (b) a posteriori effect of the stencil size
in the two-layer, 50-neuron framework for a Re= 32 000 simulation. While the nine-point
stencil leads to similar a priori training errors, an a posteriori deployment at Re= 32 000
reveals its limitations.

5.3. Stencil selection
Another comparison is made when the input dimension is substantially reduced
by choosing a five-point stencil (instead of the aforementioned nine-point stencil).
In this architecture, vorticity and streamfunction values are chosen only for the x
and y directions (i.e. ω̄i,j, ω̄i+1,j, ω̄i−1,j, ω̄i,j+1, ω̄i,j−1 for vorticity and similarly for
streamfunction). The input eddy viscosities given by the Smagorinsky and Leith
kernels are also provided to this reduced network architecture. Mathematically, this
new map may be expressed as

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, ω̄i+1,j, ω̄i−1,jψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, ψ̄i+1,j, ψ̄i−1,j, |S̄|i,j, |∇ω̄|i,j}

∈R12
→{Π̃i,j} ∈R1. (5.2)

Figure 14 shows the performance of this set-up in training and deployment, where it
can once again be observed that a posteriori analysis is imperative for determining a
map for the subgrid terms. While training errors are more or less similar, the reduced
stencil fails to capture the nonlinear relationship between the resolved and cutoff
scales, with consequent results on the statistical fidelity of the lower wavenumbers.
We perform a similar study related to this effect of data locality on a deeper network
given by five layers and 50 neurons to verify the effect of the deeper architecture
on constrained prediction. The results of this training and deployment are shown
in figure 15, where it is observed that the increased depth of the ANN leads to
a similar performance with a smaller stencil size. This implies that optimal data
locality (in terms of the choice of a stencil) leads to a reduced number of hidden
layers. Again, the a priori mean-squared error is not indicative of the quality of
a posteriori prediction.

The main point to take away from this section thus becomes the fact that
optimal architectures and maps for subgrid predictions require a careful a priori
and a posteriori study for tractable computational problems (such as the Kraichnan
turbulence case) before they may be deployed for representative flows. The effect of
realizability constraints and numerical errors often leads to unexpected a posteriori
performance and some form of lightweight deployment must be utilized for confirming
model feasibility.
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FIGURE 15. (Colour online) (a) A priori and (b) a posteriori effect of the stencil
size in the five-layer, 50-neuron framework for a Re = 32 000 simulation. With deeper
architectures, the five- and nine-point stencils show similar statistical performance.

6. Conclusions
In this investigation, a purely data-driven approach to closure modelling utilizing

artificial neural networks is detailed, implemented and analysed in both a priori
and a posteriori assessments for decaying two-dimensional turbulence. An extensive
hyper-parameter selection strategy is also performed prior to the selection of an
optimal network architecture in addition to explanations regarding the choice of
input space and truncation for numerical realizability. The motivation behind the
search of a model-free closure stems from the fact that most closures utilize
empirical or phenomenological relationships to determine closure strength with
associated hazards of insufficient or more than adequate dissipation in a posteriori
utilizations. To that end, our proposed framework utilizes an implicit map with
inputs as grid-resolved variables and eddy viscosities to determine a dynamic closure
strength. Our optimal map is determined by training an artificial neural network with
extremely subsampled data obtained from high-fidelity direct numerical simulations
of the decaying two-dimensional turbulence test case. Our inputs to the network
are given by sampling stencils of vorticity and streamfunction in addition to two
kernels utilized in the classical Smagorinsky and Leith models for eddy-viscosity
computations. Based on these inputs, the network predicts a temporally and spatially
dynamic closure term which is pre-processed for numerical stability before injection
into the vorticity equation as a potential source (or sink) of vorticity in the finer
scales. Our statistical studies show that the proposed framework is successful in
imparting a dynamic dissipation of kinetic energy to the decaying turbulence problem
for accurate capture of coherent structures and inertial range fidelity.

In addition, we also come to the conclusion that the effects of prediction truncation
(for numerical realizability) and numerical error during forward simulation deployment
necessitate the need for a posteriori analyses when identifying optimal architectures
(such as the number of hidden layers and the input spaces). This conclusion has
significant implications for the modern era of physics-informed machine learning
for fluid dynamics applications where a priori trained learning is constrained by
knowledge from first principles. Our conclusions point towards the need for coupling
a posteriori knowledge during hyper-parameter optimization either passively (as
demonstrated in this article) or through the use of custom training objective functions
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which embed physics in the form of regularization. Our study basically proposes
that data-driven spatio-temporally dynamic subgrid models may be developed for
tractable computational cases such as Kraichnan and Kolmogorov turbulence through
a combination of a priori and a posteriori study before they may be deployed for
practical flow problems such as those encountered in engineering or geophysical
flows. Studies are under way to extend these concepts to multiple flow classes in
pursuit of data-driven closures that may prove to be more universal.

While this article represents the successful application of a proof of concept,
our expectation is that further robust turbulence closures may be developed on the
guidelines presented herein, with the utilization of more grid-resolved quantities such
as flow invariants and physics-informed hyper-parameter optimization. In addition,
network-embedded symmetry considerations are also being explored as a future
enhancement for this research. Dataset pre-processing for outlier identification, not
utilized in this study, is also a potential avenue for improved a posteriori performance
and more efficient hyper-parameter selection. Our ultimate goal is to determine maps
that may implicitly classify closure requirements according to inhomogeneities in a
computational domain (through exposure to different flow classes) that may then be
ported as predictive tools in multiscale phenomena with complex initial and boundary
conditions. The results in this article indicate a promising first step in that direction.
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Appendix A. Hyper-parameter optimization

In this appendix, we detail the process of a priori architecture selection before
training and deployment. Our hidden layers have neurons that are activated by the
rectified linear (ReLU) function. The choice of the ReLU activation was made for
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FIGURE 16. (Colour online) Quantification of hyper-parameter optimization shown for
(a) number of layers and (b) number of neurons. An optimal network architecture of two
layers and 50 neurons is chosen for our study.

efficient optimization of the network architecture by bypassing the problems of
vanishing gradients inherent in sigmoidal activation functions (Ling et al. 2016).

For the purpose of optimal network architecture selection, we utilize a grid-search
selection coupled with a three-fold cross-validation implemented in the open-source
library Scikit-learn. In essence, a parameter space given by a grid is coupled with
three trainings, tests and validations for each network through three partitions of the
total training data. We first undertake our aforementioned optimization for the number
of layers by utilizing a total of 1000 epochs for determining the optimal depth of
the network. Each network with a particular choice of the number of layers (ranging
between one and eight) is optimized three times using a three-fold cross-validation
strategy and utilized for prediction on the test and validation partitions not used for
weight optimization. The three networks for each hyper-parameter are then assigned
a mean cost-function score, which is used for selection of the final model depth.
We observe that a two-layer model outperforms other alternatives during this grid
search as shown in figure 16. We note that the number of neurons in this first grid
search is fixed at 50 although similar trends are recovered with varying specifications
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FIGURE 17. (Colour online) Learning rate of the proposed optimal model architecture.
Note how training and validation loss are correlated closely for this learning problem.

between 10 and 100. Our mean cost index is given by the following expression for
each location on the grid:

mean cost index=
1
K

K∑
i=1

‖Π true
K − Π̃K‖2, (A 1)

where K refers to the training fold chosen for gradient calculation in the back-
propagation within the same dataset.

A second grid search is performed with a fixed number of layers (i.e. two obtained
from the previous tuning) and with a varying number of neurons. The results of
this optimization are observed in figure 16, which shows that an optimal number
of neurons of 50 suffice for this training. We note, however, that the choice for
the number of neurons in the two-layer network does not affect the tuning score
significantly. We clarify here that the model optimization may have been carried out
using a multidimensional grid search for the optimal hyper-parameters or through
sampling in a certain probability distribution space; however, our approach was
formulated out of a desire to reduce offline training cost as much as possible. The
final network was then selected for a longer duration of training (5000 epochs) till the
learning rate is minimal as shown in figure 17. Details of our network optimization
and dataset generation are provided in appendix B.

Appendix B. Network training
For the purpose of generating an optimal map discussed in the previous section,

we utilize a supervised learning with sets of labelled inputs and outputs obtained
from direct numerical simulation (DNS) data for two-dimensional turbulence (San &
Staples 2012; Maulik & San 2017b). Our grid-resolved variables (which, we remind
the reader, are denoted as overbarred quantities) are generated by a Fourier cutoff filter
so as to truncate the fully resolved DNS fields (obtained at 20482 degrees of freedom)
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to coarse-grained grid level (i.e. given by 2562 degrees of freedom). Therefore, this
procedure is utilized to generate input–output pairs for the process of training our
ANN map. We also emphasize the fact that, while the DNS data generated multiple
time snapshots of flow evolution, data were harvested from times t= 0, 1, 2, 3 and 4
for the purpose of training and validation. This represents a stringent subsampling of
the total available data for map optimization. To quantify this subsampling, we note
that we had potential access to 40 000 space–time snapshots of DNS data, out of
which only five were chosen for training and validation data generation (0.0125 % of
total data). We also note that the Reynolds number chosen for generating the training
and validation datasets is given by Re= 32 000 alone.

Two-thirds of the total dataset generated for optimization was utilized for training
and the rest was utilized for validation assessment. Here, training refers to the
use of data for loss calculation (which in this study is a classical mean-squared
error) and back-propagation for parameter update. Validation was utilized to record
the performance of the trained network on data to which it was not exposed
during training. Similar behaviour in training and validation loss would imply a
well-formulated learning problem. The final ANN (obtained post-training) would
be selected according to the best validation loss after a desired number of iterations,
which for this study was fixed at 5000. We also note that the error minimization in the
training of the ANN utilized the Adam optimizer (Kingma & Ba 2014) implemented
in the open-source ANN training platform TensorFlow. Figure 17 shows the learning
rate of the proposed framework with very similar behaviour between training and
validation loss, implying a successfully optimized map. We remark that, while the
network may have learned the map from the data with which it has been provided for
training and validation, testing would require an a posteriori examination, as detailed
in § 4.
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