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THE COLLAPSE OF THE HILBERT PROGRAM: A VARIATION
ON THE GÖDELIAN THEME

SAUL A. KRIPKE

Abstract. The Hilbert program was actually a specific approach for proving consistency,
a kind of constructive model theory. Quantifiers were supposed to be replaced by ε-terms.
εxA(x) was supposed to denote a witness to ∃xA(x), or something arbitrary if there is none.
The Hilbertians claimed that in any proof in a number-theoretic system S, each ε-term can be
replaced by a numeral, making each line provable and true. This implies that S must not only
be consistent, but also 1-consistent (Σ0

1-correct). Here we show that if the result is supposed
to be provable within S, a statement about all Π0

2 statements that subsumes itself within its
own scope must be provable, yielding a contradiction. The result resembles Gödel’s but arises
naturally out of the Hilbert program itself.

In contrast to what seems to be the case today, in the early part of the
twentieth century, many leading mathematicians were very concerned with
problems in the foundations of mathematics. They thought there was a great
problem awaiting their contributions. Hilbert was no exception. The main
idea of what has become known as the Hilbert program was of course to
prove the consistency of various systems of mathematics by “finitary” means.
He and his followers thought that this would show that a very narrow class
of statements—those that they regarded as having a finitary meaning—
would therefore be shown to be provable by finitary “metamathematical”
means, even though they were proved in systems that we must consider too
“infinitistic” to regard as true.

The antagonism between Hilbert and Brouwer in much of the foundational
debate of this period is famous.1 Yet, it is worth remarking that Hilbert’s
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version of this talk (given at the 2008 Winter Meeting of the Association for Symbolic Logic
on December 30, 2008) was published in The Bulletin of Symbolic Logic, vol. 15 (2009), no.
2, pp. 229–231.

1For the culmination of the Grundlagenstreit between Hilbert and Brouwer, see [4]. His
paper describes Hilbert’s ultimately successful, though legally unsupportable, effort to have
Brouwer removed from the editorial board of the journal Mathematische Annalen, the leading
mathematics journal of his time. He describes the reaction of various members of the editorial
board, usually major mathematicians, although Albert Einstein wasn’t a mathematician and
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actual program in the 1920s advocated an official “finitism” which, though
never fully defined, seems to have found valid a much narrower class of
arguments than those admitted by Brouwer. The class of statements that
had a clear finitary meaning was also narrow. (Hilbert had little interest in
the mathematical statements and arguments accepted by Brouwer.) A system
containing infinitary mathematics was supposed to be justified by a finitary
metamathematical argument that would show that all statements provable
in the system in the narrowly meaningful class can be proved without resort
to the dubious statements used in the proof.

Now, Hilbert’s interests are only partially described by the formulation of
the Hilbert program in the 1920s. They actually progressed to that position.
In the preceding years, for example, he was interested in the approach of
Principia Mathematica and wished to have Russell come to Göttingen (see
[28] for a history).2 But although he oscillated in his views, he really seemed
to have hankered after a position in which classical mathematics will really
be true, even though officially it largely consists only of “ideal” statements
used to prove “contentual” statements. And his famous slogan, “No one
shall be able to drive us from the Paradise that Cantor created for us” in his
relatively late (and rather obscure in his claim to have solved the continuum
problem) paper “On the Infinite” [19, p. 376], seems to confirm that this was
a long-held position.

We all know that the story of Hilbert’s program doesn’t have a happy
ending, but we should also remember that it did not “collapse” (as I say in my
title) without a legacy—both in the notion of a formal system as rigorously
formulated and independent of its interpretation, and in the subject of proof
theory (in which a lot of Hilbert’s standards have had to be relaxed to
carry some goals of the program through). Unlike Principia Mathematica,
Hilbert and his followers rigorously separated the purely formal, syntactic,
formulation of a system, from its interpretation. As Gödel has remarked,
Principia was a considerable backwards step from Frege’s work in the rigor
of its formalization.3 Frege’s standards of formalization were in fact the
modern ones, even though (as far as I know) he did not emphasize what the
standards should be. Hilbert and his school did so.

was a member of the board. The title of van Dalen’s paper (“The War of the Frogs and the
Mice”) is taken from an Ancient Greek parody of the Iliad, and it is often used to describe
a vehement, but essentially trivial dispute. Einstein once used the phrase to refer to this
dispute. It left Brouwer very depressed and temporarily unproductive. van Dalen also relates
that Hilbert and Brouwer were originally on very good terms.

2Sieg [28] states that Hilbert’s attitude really narrowed and became more defensive as time
went on—originally, perhaps, he had hoped simply to justify the absolute meaningfulness
and correctness of ordinary mathematics (say, in Principia Mathematica) outright without
revision, whereas eventually he settled for mounting only a very conservative defense.

3Gödel says: “It is to be regretted that it (Principia) is so lacking in formal precision in
the foundations that it represents in this respect a considerable step backwards as compared
with Frege” [15, p. 120].

My own personal view is that Principia should not simply be viewed as an unsuccessful
attempt to give a Hilbertian formal system, but it is some kind of axiomatic theory of
propositions and “propositional functions.” This is all I can say here.
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Hilbert and Ackermann’s famous textbook [18] formulates, among other
things, first-order logic without identity (really already known to Hilbert
much earlier), and the problems of completeness and decidability with
respect to validity in any non-empty domain are clearly stated. In other
lectures Hilbert did include identity as a part of first-order logic. Gödel [13]
proved completeness for both systems without and with identity.4 Regarding
proof theory, Hilbert formulated an approach to the subject, as well as the
subject itself. This subject is still alive today, and is even related to some
current problems in computer science and other formal disciplines. But the
complete realization of Hilbert’s original program of the 1920s is usually
thought to have been shown to be impossible.5

The details of Hilbert’s approach, and the reasons it convinced a
generation of logicians to believe that it obviously must succeed and that only
technical work remained to finish it, are generally left to more specialized
textbooks. As we will see, the “Hilbertians” had ample reason to assume
that it would succeed. Indeed, Gödel’s incompleteness theorems came as
a shock to them—especially the second incompleteness theorem, in which
he gave a rigorous proof that a reasonably strong consistent formal system
cannot prove its own consistency. Gödel himself wrote that his work did
not disprove the viability of the Hilbert program. Perhaps there are finitary
methods that cannot be formalized in the system discussed.6 But most people
believed that since finitary methods are supposed to be rather weak, however
they are to be delineated, they must be formalizable within any reasonably
strong system. In particular, the program is supposed to be formalizable in
the very system discussed. So most people concluded that Gödel had shown
that Hilbert’s program was hopeless. Throughout the present paper, we will
ourselves assume that the consequences of the program are formalizable in
the very system being discussed.

There are two relevant questions here. First, why were the Hilbertians
so convinced that the program would work? And, second, why wasn’t it
eventually noted that if the program really succeeded in the way it was
actually proposed in detail, it would imply its own collapse (assuming its
detailed claims could be carried out in the very system discussed)?7

4I am indebted here to correspondence with Richard Zach. See also [6], especially Section 8.
5Let me emphasize that Paul Bernays and Wilhelm Ackermann were crucial to the

development of Hilbertian logic and proof theory as well as the program itself. Bernays
actually wrote the book Grundlagen der Mathematik, by Hilbert and Bernays, as Hilbert
himself states in the preface. Other disciples, especially von Neumann, were helpful but less
central to the project.

6See [12]. The second incompleteness theorem is Gödel’s theorem XI. In the reprinting
in the Gödel papers, p. 194 (German) and p. 195 (English) contain Gödel’s statement
that Hilbert’s formalist program is not refuted. Hilbert also stated that Gödel’s work
did not refute his program of the 1920s (see his introduction to [19]). However,
as I say in the text, most people did conclude that Hilbert’s original program was
hopeless.

7I myself arrived at the present result through a circuitous route. I had already found a
purely model-theoretic version of the Gödel theorem (see Kripke [25]) and realized that it
could also be carried out syntactically, using appropriate finite approximations and semantic
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For our purposes, we will apply the Hilbert approach to systems
formulated only with quantification over the natural numbers in the usual
first-order logic with identity. We assume that the system—call it S—
contains symbols for the numerals (standing for 0 and a successor function).
It is also convenient to suppose that it contains function symbols for
arbitrary primitive recursive functions, where the axioms imply the ordinary
recursion equations. Arbitrary primitive recursive predicates can then be
defined as simply predicates of the form f (x) = 1. Note that the proof
predicate of the system, supposed to be formalized in ordinary first-order
logic with identity, will itself be primitive recursive, as long as the non-
logical axioms are primitive recursive. The system S could simply amount
to the usual first-order Peano arithmetic, or it could be something stronger.
(It could also be weaker. Anything containing a weak theory adequate
for primitive recursion would work for this version of the argument.) The
arithmetical statements provable in set theory would be much stronger, but
can be separately axiomatized in accordance with these requirements using
Craig’s device.8 The Hilbert approach (or Ansatz) was meant to apply to
these stronger systems also.

The basic ideas of the program are two. Hilbert’s first main idea was that
quantifiers are to be eliminated, so the system will consist only of quantifier-
free statements. Instead of writing ∃xA(x), write A(εxA(x)), where εxA(x)
denotes some true instance of A(x), and is arbitrary if there is no such
instance. In terms of the ε symbol, (x)A(x) can be defined as A(εx∼A(x)).
When all quantifiers have been eliminated in this way, one needs only the
axiom scheme A(t) ⊃ A(εxA(x)), where t is any term.9 Terms can be formed
using the constant and function symbols of the original language, but we
must also allow new terms formed using the ε symbol itself. One then needs
only propositional logic and identity10 to deduce theorems from the axioms.
Moreover, when particular values are assigned to each ε term, it is always
decidable whether a given formula is true.

Then we take A(t) ⊃ A(εxA(x)) as an axiom for the ε symbol, where t is
any term of the language denoting a number. t can be as simple as a numeral
or a primitive recursive function symbol applied to numerals, but it must be

tableaux. But then I saw that the ladder could be kicked away and that, formulated in detail,
the result the Hilbertians were attempting to obtain in fact implies its own impossibility.

8See [3]. Of course, Craig’s device would not have been known in the 1920s, but the
Hilbertians could have added any extra axioms or schemata they found relevant.

9As a referee comments (all mentions of a referee in this paper are to the same referee,
except for the mention of “another referee” in the present footnote below), if one is
dealing with systems with full induction, one can do it with further axioms on the ε-terms
(over and above those needed for logic): A(t) ⊃ ∼(t′ < AεxA(x)), or (Hilbert’s original)
A(t′) ⊃ (t �=εxA(x)), so εx is a sort of least number operator (at least in the context of a given
proof).

I would add that the later proof in [2], mentioned below in Remark 4, using ε0-induction,
is based on this idea.

Another referee remarks that in the Hilbert school the epsilon symbol is followed by a
subscript variable. We have not used this notation here.

10That identity must also be used was suggested to me by a referee.
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allowed to contain ε symbols itself for the idea to work out. Conditionals of
this form, taken as axioms, replace the whole of quantification theory. Thus,
we need only propositional logic and identity to make inferences from the
axioms. But all the axioms have to be rewritten in terms of these ε symbols.
Now, stated this way, the whole thing looks pretty easy. But in fact anything
written out in terms of ε symbols, as people who have studied this know, is
a mess because there are quantifiers embedded inside of other quantifiers,
leading to ε-terms embedded in ε-terms.

So, while these formulae are a mess, everything else is very simple
because all inferences are a matter of pure propositional logic and identity
without need of quantification theory. To the Hilbertians that was important
because in the intellectual atmosphere of the time (which is not today’s)
quantification even over all the natural numbers was—at least in classical
logic, and maybe even in intuitionistic logic—a dubious idea. When they
were pursuing the Hilbert program, with its restriction to finitary arguments,
the Hilbert school officially had therefore to regard infinitary model theory as
meaningless. This is so even though in the book by Hilbert and Ackermann
the question of the completeness of quantification theory was raised, and
Ackermann and Bernays used model theory to show that some subclasses
of first-order logic were decidable.11

Hilbert’s second main idea was that you couldn’t get a contradiction
from these axioms as long as all the ε-terms have true numerical values.
Then, ordinary numerals for natural numbers when substituted for them
will make them true. So their truth under such a substitution would show
the consistency of mathematics. No contradiction could be derived from
true axioms with only propositional (truth-functional) inferences. Identity
statements must also be used.

Now, since there are no quantifiers in these formulae, whether a given
substitution of natural numbers for a set of ε-terms makes a formula true
or false is actually decidable. Of course, they didn’t have a formal theory of
decidability at the time, but they knew intuitively that it was checkable. The
simplest way would be to set every ε term occurring in a given formula—or
throughout the proof—to zero. Then you could say whether any of the given
formulae was true or false simply by deciding the zero case. Now, supposing
we were lucky enough that that worked, we could not possibly deduce a
contradiction like 0 = 1, because everything is checkable in propositional
logic, and identity statements. Of course, it is unlikely that we will be
that lucky: that all the ε-terms will be satisfied by the number 0. But this
circumstance gave rise to the idea of another kind of interpretation, different
from conventional model-theoretic interpretation; that is, a proof that is
interpreted by giving values to the ε-terms.

How can we see whether a given assignment works? Well, first we try
all zeros. Probably that fails, and the formulae in the proof do not all

11This last clause was suggested to me by a referee. I should add that the Hilbertian idea was
to justify classical mathematics, including “Cantor’s paradise” of set theory, as containing
“ideal” statements, justified by their ability to prove true “real” statements.
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come out true. Next, we follow a systematic procedure that the Hilbert
school prescribed to allow one to change one’s mind; so a 0 can change
to 1 and so on.12 Now since, as I said, ε-terms may involve other ε-terms,
changes in the values of some ε-terms intuitively ought to effect changes
in the other involved ones. On the other hand, if a given ε term was free
of any dependence on other ε-terms, you could change it without affecting
anything else. So they set up the idea of a priority ordering of substitutions;
that is, some changes will affect others, while other changes allow you to
stick to what you already have. Now, this is more or less the idea that
was rediscovered by Friedberg [10] and Muchnik [27] in recursion theory
(computability theory): a priority ordering in which you keep on changing
your mind, but which is supposed to terminate. (See also footnote 25 to
Remark 4).

Hilbert and his followers tried to show that after a finite number of changes
of mind, you would eventually get it right. That is, you can find values for
the ε-terms that will make the axioms, and hence, by propositional logic and
identity, all formulae in the proof, true. Most members of the school were
convinced throughout the 1920s that this procedure just had to work; it is
just a matter of ingenuity and detail to do it. But why were they so convinced?
Well, because really, in the back of their minds, they thought that the axioms
(and hence the theorems) of first-order Peano arithmetic—or whatever the
fundamental mathematical practice with numbers was—were true. And that
would imply that there are true values for these ε-terms.13

That is, if the existential statement ∃xA(x) is true, then there is a numeral
which if it replaces εxA(x) in A(εxA(x)), the result will be true. So, therefore,
they really thought it was only a matter of combinatorial work to change
this into an argument that doesn’t officially appeal to the model but shows
that everything will terminate in values for the terms that will make the
axioms true.14 And papers were published that purported to do this; only
they contained errors. ([1], as described by Zach [35], is a system of a
second-order version of primitive recursive arithmetic that was stated to
have been proved consistent. But the paper was also believed to have proved
the consistency of first-order Peano arithmetic.)

The method was supposed to be completely “finitary,” but exactly what
the Hilbert school meant by this is not so clear. Two clarifications have been
proposed. One is Tait’s [30, 31]—identifying finitary arguments with those
that can be carried out in Skolem’s [29] primitive recursive arithmetic—
but historically it appears that the Hilbert school wanted to go beyond

12I have seen at least one paper by Hilbert that formulates this in terms of the positive
integers, not the non-negative integers, although this was not usual. In that case one would
have to replace 0 by 1. But often he sticks with 0.

13Of course, they thought the procedure would work for stronger systems also. They had a
specific proposal for doing it for second-order arithmetic (with quantification over number-
theoretic functions). But we can ignore this here. (I have little idea how, or whether, they
proposed to do it for stronger systems such as Principia, let alone ZFC.)

14Since the result of replacing ε-terms by numerals is a combinatorial statement, it should
have a combinatorial proof.
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this version, though nowadays it has been widely used as a finitary or
combinatory standard. Another one is by Gödel [16] and Kreisel [23], who
seem to believe that induction up to any fixed ordinal < ε0 is finitary, but
not ε0 induction itself.15

The main requirement here is simply that the means by which the
combinatorial argument is carried out be formalizable within the system
itself. This requirement is much weaker than what the Hilbert school
intended. It is only in virtue of our contemporary sophistication that we
know that we can’t give a consistency proof of a reasonably strong system
within the system itself.

But the Hilbertian way of looking at things actually influenced me,
because, as I said, I started all this with model theory and only afterward
translated it into proof theory. The proof-theoretic argument was rather
complicated at first, but finally, motivated by the Hilbert Ansatz, a very
simple argument emerged.

Well, again, what shows that this program must come to an end? I was
trying to say why everyone thought it must work. But as is well known Gödel
showed that, at least if we retain the requirement that it be carried out within
the system itself, it does not, in fact, work. Gödel’s famous argument is in one
sense a “deus ex machina.” It has no direct relation to the Hilbert program
or whether it can succeed. Originally Gödel wasn’t looking for such a result.
His argument for the first incompleteness theorem has no direct relation
to this, and he himself didn’t originally realize that it was connected to the
Hilbert program.16

At this point let’s note that the Hilbert program had, as a corollary,
a much stronger result than the mere consistency of mathematics. The
latter would merely mean that you couldn’t prove false equations like
0 = 1 or other false equations within the system where the identities are

15See Zach [35], who states that the early paper by Ackermann [1] used induction up to
��

�
, which goes beyond PRA. Zach also points out that, in this way, it resembles Gentzen’s

later proof of the consistency of first-order Peano arithmetic, which uses transfinite induction
up to ε0.

16At least according to Dawson’s biography [5], Gödel didn’t see this right away. He
received a letter from von Neumann saying: “Do you realize that it follows from your work
that we can’t prove mathematics consistent?” And he said, “Oh yes, I thought of that after
I lectured...” von Neumann was a nice man, at least in this respect, since others might have
started raising priority issues, but he did not do so.

von Neumann also appears to have influenced the statement of the first incompleteness
theorem, at least according to Wang [33]. Originally, Gödel formulated his unprovable
statement as one of finite combinatorics, and von Neumann asked whether it could be
made purely number-theoretic. According to Wang (pp. 42–43), Gödel originally identified
individual symbols with numbers, formulas with sequences of these numbers, and proofs
with sequences of such sequences. Thus a modest bit of type theory (or set theory) was used,
and the undecidable statement was finitary combinatorial in nature. von Neumann asked
whether the statement could be made purely number-theoretic, since everything involved was
countable. At first Gödel thought that new predicates on the natural numbers would have
to be introduced to make this possible, but later he, thinking about it, produced the purely
number-theoretic independence result we all know.
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of arbitrary terms (not containing the ε symbol). To put it in more positive
terms, any provable equations within the system will have been proved by
finitary metamathematical means to be true. It will follow that any universal
statement whose instances are calculable within the system must actually be
true. And in most reports of the Hilbert program, either simple consistency
is all that is stated, or the consequence that any Π0

1 statement that is proved
within the system must be true.

But the Hilbert program or approach (Ansatz) actually implied something
much stronger. Here’s the idea. Whenever a statement like A(εxA(x)) is
provable (remember, there are no quantifiers) there actually will be a value
of the term εxA(x) that is true and provable in the system, because quantifier-
free calculations can be carried out within the system. This in turn implies,
if we rewrite it in terms of ordinary quantification theory, that if you prove
∃xA(x) and A(x) is itself free of quantifiers (say, a primitive recursive
predicate), some numerical instance must be provable. Therefore, we obtain
something much stronger, using the details of the Hilbert program, than the
mere consistency of mathematics. In contemporary consistency jargon, it
would be called the 1-consistency of mathematics, which is a special case of
what Gödel called�-consistency (the only�-consistency notion he actually
used).17 But we could also call this the Σ0

1-correctness of the system—that
is, if it can prove a Σ0

1 statement, that statement is true. Moreover, the Σ0
1-

correctness would hold in a constructive sense. One could actually calculate
a true instance. Further, that instance would have to be provable in the
system.18 Thus, the Hilbertian idea would have shown not merely that every
Π0

1 statement that is provable has a finitary proof (as stated above), but
even that the same result holds for Π0

2 statements. For if a Π0
2 statement

is provable, each numerical instance is a provable Σ0
1 statement, which by

hypothesis must be true.19

The goal of the Hilbert program was to show that at least each of
the narrower class of meaningful statements which are proved using
resources that appeared to be highly infinitistic—i.e., resources that involved
quantifiers over infinite totalities, which were therefore supposed to be

17A referee points out that the notion of 1-consistency (and indeed the notions of k-
consistency for each finite k) is due to Kreisel, see his abstract [22].

18Of course, if a Σ0
1 statement is true, one can calculate an instance that must be

true, and therefore provable, simply by running through all the instances, together with
instances of the existential quantifier until one finds one. This is a method that is at least
classically valid. However, here the calculation of an instance is done more directly, and more
constructively.

Note also that the Hilbertian idea implies something even stronger: that every line of a
proof containing ε-terms can be replaced by numerals making these lines true. We do not
need this stronger assertion here.

19Instead of allowing arbitrary primitive recursive predicates, one could restrict oneself
to predicates involving addition, 0, S, multiplication, identity, truth-functions, and bounded
quantifiers (even this is broader than is needed). But then we should stipulate that such
bounded quantifiers, being decidable, do not need to be quantifiers eliminated by ε-terms.
For this reason, I have chosen arbitrary primitive recursive predicates after the initial
quantifiers.
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suspect—would in fact have a so-called finitary proof (whatever precisely
that meant).

As I have said, what I am trying to show here is that although Gödel’s
work (independently) led to the collapse of the Hilbert program, if the
Hilbertians had really thought through what they were claiming, they should
have seen that their own demands were impossible. It is strange to me that
nobody appears to have noticed this, either immediately or in the following
decades. Perhaps people just regarded Gödel’s work as a sufficient refutation
and stopped thinking further about it. (I am struck that I myself took a
surprisingly long time to see this, and only came to see it eventually via a
complicated route. See footnote 7.)

Let’s return to the question: What, therefore, is being claimed by the
Hilbertians? Well, they claim that, given any proof p of a Π0

2 statement—
(x)(∃y)A(x, y)—where A(x, y) is a simple, decidable formula not involving
quantifiers, say a primitive recursive formula, and for any numberm, there is
a proof p1—remember, this can be a different proof and even longer than the
proof p, so that p1 may exceed p—of some particular instance A(0(m), 0(n)).
Now, first, intuitively—and reasoning infinitistically, so to speak—this is a
true statement. In fact, we can eventually say something stronger than that,
but at any rate this formulation is a true statement. The question is whether
it is formalizable within the system. If you state this claim within the system,
it says that for every proof p and any number m there is another proof p1

and a number n making an instance of this true. Notice that this statement
is itself a Π0

2 statement making a general statement about all Π0
2 statements

provable in the system.
The Gödel theorem has sometimes been compared to the Liar paradox. In

our case we again have something like “All Cretans are liars”—only here it
may seem more positive than negative. We are saying that every Π0

2 statement
has a certain property, and the statement is itself a Π0

2 statement. So,
whatever is self-referential here has not been introduced by some ingenious
external argument—a deus ex machina, as I would characterize Gödel’s
famous argument—but rather arises from within the Hilbert program itself.
They are making a Π0

2 statement about all Π0
2 statements, including, of

course, that very statement itself.
However, we have to allow for the possibility that the Hilbertians might

have realized the reflexiveness of this statement while thinking of it as merely
analogous to a Cretan saying, “All Cretans tell the truth.” For the property
they were talking about was good; it wasn’t quite like “All Cretans are liars.”

Consider the two statements:20

(∗) (x1)(x2)((x1 proves a Π0
2 statement �(x)(∃y)A(x,y)�) ⊃ (∃y)(y proves

an instance �A(0(x2), 0(n))�)).
(∗∗) (x)((x proves a Π0

2 statement �(x)(∃y)A(x,y)�) ⊃ (∃y)(y proves an
instance �A(0(x), 0(n))�)).

20A referee seems to think that they may appear to be schemata. Understood properly
they are single statements.
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Here (∗) is the general claim to be made. (∗∗) is the special case where
x1 = x2.

Now (∗∗) is a Π0
2 statement, but to put it in an appropriate normal form

with one universal quantifier and one existential quantifier, we must write it
as:

(∗∗∗) (x)(∃y)((x proves a Π0
2 statement �(x)(∃y)A(x,y))� ⊃ (y proves an

instance �A(0(x), 0(n))�).

(∗∗∗) is clearly equivalent to (∗∗). One must note here that the predicates
involved are all primitive recursive. In spite of their verbal form, they need
not involve quantifiers to be eliminated in the ε-calculus (since bounded
quantification is primitive recursive).

Recall that we have formulated our system S to be strong enough that
primitive recursive predicates are correctly decidable within S and are
quantifier-free.

(∗∗∗) is a sweeping statement about the provability of Π0
2 statements in

the system. Yet it itself is a Π0
2 statement. Note also that it does involve

the notion of Gödel numbering, assumed to be done in some standard way.
Note also that the quantifier-free part of (∗∗∗) is the conditional given.
Call it A*** (x, y). Now, suppose (∗∗∗) were provable. Then it has a proof
with Gödel number p. Since p does prove (∗∗∗) and true primitive recursive
statements are all provable in S, the antecedent of A*** (x, y) is provable,
with the variable x replaced by 0(p).

Assume also that the system S is 1-consistent (Σ0
1-correct). Given this

assumption, there must be a number p1 instantiating the variable y of A***
(x, y). Since the antecedent of the conditional is true, the consequent
must be true also. So there is a number p1 that is the Gödel number
of a proof of an instance of A*** (x, y). Hence, there must be a least
such p1.

Now p1 is supposed to be a proof of an instance of A*** (0(p), y). But if
that instance is, say, A*** (0(p), 0(n)) for some particular n, clearly, in any
standard Gödel numbering, n < p1. But n is supposed to be an instance of
the existential quantifier in (∗∗∗). This is clearly impossible if p1 is chosen to
be an instance as small as possible.

(∗∗∗) is therefore unprovable if the system is 1-consistent (Σ0
1-correct).

Now if S is inconsistent, (∗∗∗) is true, since every formula is provable. On
the other hand, if S is 1-consistent (Σ0

1-correct), (∗∗∗) is also true, as we
have just argued. In this latter case, the situation is just like Gödel’s formula:
(∗∗∗) is true but unprovable.

In either case (whether S is inconsistent or 1-consistent), every numerical
instance of (∗∗∗) is provable, being a true Σ0

1 statement. Hence, as in the case
of Gödel’s formula, (∗∗∗) cannot be refuted if S is �-consistent (in fact,
2-consistency suffices).

As in the case of Gödel’s second incompleteness theorem, as long
as the argument just stated can be formalized within the system S, it
shows that “S is inconsistent or 1-consistent” or equivalently, the material
conditional “if S is consistent, it is 1-consistent” cannot be proved in
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S if S itself is 1-consistent. (Here, however, unlike the Gödel case, the
original statement (∗∗∗) comes close to being a 1-consistency statement
itself.)21

Note that the original statement (∗) also has the properties ascribed
to (∗∗∗). It is true if S is inconsistent, and true but unprovable if S is
1-consistent. Also, in either case, every numerical instance (substituting for
both variables x1 and x2) is provable. Here again (∗) is not refutable, hence
undecidable if S is �-consistent (even 2-consistent).22 In this argument,
unlike Gödel’s original, the undecidability result comes from a natural
statement that will be believed true by anyone who believes S to be
1-consistent. The “self-referential” aspect comes simply from the fact that
it is a sweeping Π0

2 statement about the provability of Π0
2 statements in the

system, not from an ingenious diagonalization. The statement was suggested
by the Hilbert Ansatz, but the result and its naturalness are independent of
the Hilbert program itself.23

Remark 1. One concern raised by a referee is that my argument makes
it look as if the property of Gödel numberings used is essential to the
argument, but it is not. A variant of my argument would simply use the fact
that (∃w)A is equivalent to (∃z)(∃w< z)A. This possibility was mentioned,
but not stressed in my abstract [24].

Remark 2. A referee has suggested a brief and perspicuous formulation
of the Π0

2 statement shown to be independent. This formulation also shows
that no special property of Gödel numberings needs to be used.

Successful completion of the Hilbert Ansatz would imply that given any
provable Π0

2 statement and proof of the statement, there is also a proof p of
any numerical instance of it. Making use of Gödel numbering and primitive
recursive arithmetization, this very statement can be arithmetized as a Π0

2
statement: ∀x∃y(B(x) ⊃ C(x, y)), where B(x) is read as “x is the Gödel
number of a proof of a Π0

2 statement” and C(x, y) as “there is an n< y such
that y is a proof of A(p, n), where ∀x∃y A(x, y) is the end formula of the
proof coded by x.”

If a finitary ε-substitution proof were possible, S should be able to
formalize it and prove ∀x∃y(B(x) ⊃ C(x, y)). Let p be the Gödel number of
this proof in S. An application of the ε-substitution method yields a p1 and
a proof of B(0(p)) ⊃ C(0(p),0(p1)). Assume that p1 is minimal with respect
to this property. Since p is the Gödel number of a proof of a Π0

2 sentence,
B(0(p)) holds. Thus, C(0(p), 0(p1)) also holds, that is, there is an n < p1 such

21Although, as we have seen, it is true if S is inconsistent.
22Strictly speaking, these statements about (∗) require a reformulation of (∗) since it has

two universal quantifiers, and 1-consistency, �-consistency, etc., involve only one. But we
all know how to contract quantifiers in any reasonably strong system, either using a pairing
function, or more simply, a bound (i.e., (x1)(x2) is equivalent to (x3)(x1 < x3)(x2 < x3)).

23Of course, the price is that 1-consistency needs to be assumed to get a true but unprovable
statement. Could one “Rosserize” the statement to get a better result, assuming only simple
consistency? I have not explored such an idea, since it would detract from the naturalness of
the statement proved undecidable.
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that p1 is the Gödel number of a proof of an instance of the end-formula
of the proof coded by p—in this case, of B(0(p)) ⊃ C(0(p), 0(n)). But this
contradicts the assumption that p1 is the least y such that B(0(p)) ⊃ C(0(p),
0(y)) has a proof.

Remark 3. What would be unknown to the Hilbertians in the argument
just given? Perhaps the concept of a Π0

2 statement, which would not have
been defined in those days (but the notion seems to be implicit in their
claims).

More important, the argument as given uses Gödel numbering, surely
unknown to the Hilbertians. They were aware of coding devices as
instantiated by Ackermann’s coding of countable transfinite ordinals. But
they were certainly unaware of Gödel numbering.24 One might try to
eliminate it by a direct representation of elementary syntax. However, this
would require making terms cease to denote numbers and an expansion of
the language.

Remark 4. The usual constructive proofs of the consistency of first-
order Peano arithmetic using induction up to ε0, starting with Gentzen
[11] and continuing with Ackermann [2], who this time successfully used
the ε-calculus, are in fact proofs of 1-consistency. They remain valid even if
function symbols are added. This is the basis of Kreisel’s characterization
[20, 21] (anticipated by Gödel [14]) both of the provable Π0

2 statements
of first-order Peano arithmetic, and of the Π1

1 forms (“no counterexample
interpretation”) of arbitrary statements.25 This remains true of the later (and
more elegant) proof-theoretic proofs of the consistency of first-order PA,
and also the proofs (using induction up to smaller ordinals) of fragments
with restricted induction.

Acknowledgments. I would like to thank Yale Weiss for editorial help.
Special thanks to Romina Padró, Panu Raatikainen, Richard Zach, and
anonymous referees for their help in producing this paper. This paper has
been completed with support from the Saul Kripke Center at the City
University of New York Graduate Center. I am indebted to Burton Dreben
for his insistence that the Hilbert program or approach (Ansatz) was not
merely to prove the consistency of mathematics by finitary means, but was
a specific program for interpreting proofs. Thus, as Dreben emphasized, it
is a kind of constructive model theory.

24In a personal communication to me, Panu Raatikainen writes: “I think the Hilbertians
took for granted the possibility of something like Gödel numbering, although it was left
to Gödel to actually carry out in detail one such numbering. After all, they assumed that
metamathematics is done in finitary mathematics, which is essentially just a weak theory of
arithmetic.”

25A referee points out that according to [26], Kreisel observed that Ackerman’s [2] proof
was a priority argument. But as I said above the priority idea was part of the original Hilbert
program.

https://doi.org/10.1017/bsl.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.14


THE COLLAPSE OF THE HILBERT PROGRAM 425

REFERENCES

[1] W. Ackermann, Begründung des “tertium non datur” mittels der Hilbertschen Theorie
der Widerspruchsfreiheit. Mathematische Annalen, vol. 93 (1924), pp. 1–36.

[2] ———, Zur Widerspruchsfreiheit der Zahlentheorie. Mathematische Annalen, vol. 117
(1940), pp. 162–194.

[3] W. Craig, On axiomatizability within a system. The Journal of Symbolic Logic, vol. 18
(1953), no. 1, pp. 30–32.

[4] D. van Dalen, The war of the frogs and the mice, or the crisis of the Mathematische
Annalen. The Mathematical Intelligencer, vol. 12 (1990), no. 4, pp. 17–31.

[5] J. Dawson, Logical Dilemmas: The Life and Work of Kurt Gödel, Metaphysics Research
Lab, Stanford University, Stanford, 1997.

[6] W. Ewald, The emergence of first-order logic, The Stanford Encyclopedia
of Philosophy (Spring 2019 edition) (E. N. Zalta, editor), 2019. Available at
https://plato.stanford.edu/archives/spr2019/entries/logic-firstorder-emergence/.

[7] S. Feferman, J. W. Dawson, Jr., W. Goldfarb, C. Parsons and R. M. Solovay, Kurt
Gödel: Collected Works. Volume III: Unpublished Essays and Lectures, Oxford University
Press, New York, 1995.

[8] S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay and J.

van Heijenoort, Kurt Gödel: Collected Works. Volume I: Publications 1929–1936, Oxford
University Press, New York, 1986.

[9] ———, Kurt Gödel: Collected Works. Volume II: Publications 1938–1974, Oxford
University Press, New York, 1990.

[10] R. M. Friedberg, Two recursively enumerable sets of incomparable degrees of
unsolvability. Proceedings of the National Academy of Sciences of the United States of
America, vol. 43 (1957), pp. 236–238.

[11] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Annalen, vol. 112 (1936), pp. 493–565.

[12] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198.
Reprinted and translated as On formally undecidable propositions of Principia Mathematica
and related systems I in [8], pp. 144–195.

[13] ———, Die Vollständigkeit der Axiome des logischen Funktionenkalküls,
Monatshefte für Mathematik und Physik, vol. 37 (1930), pp. 349–360. Reprinted in [8],
pp. 102–123.

[14] ———, Vortrag bei Zilsel. Translated as Lecture at Zilsel’s by C. Parsons in [7], pp.
62–113.

[15] ———, Russell’s mathematical logic, The Philosophy of Bertrand Russell, vol. 3
(P. A. Schlipp, editor). Reprinted in [9], pp. 119–141.

[16] ———, Über eine bisher noch nicht benütze Erweiterung des finiten Standpunktes,
Dialectica, 1958, pp. 280–287. Reprinted and translated as On a hithero unutilized extension
of the finitary standpoint by S. Bauer-Mengelberg and J. van Heijenoort in [9], pp. 217–251.

[17] D. Hilbert, Über das Unendliche. Mathematische Annalen, vol. 95 (1926), pp. 161–
190. Lecture given Münster, June 4, 1925. Reprinted and translated as On the infinite by S.
Bauer-Mengelberg in [32], pp. 367–392.

[18] D. Hilbert and W. Ackermann, Grundzüge der Theoretischen Logik, Springer, Berlin,
1928.

[19] D. Hilbert and P. Bernays, Grundlagen der Mathematik, Volume 1, Springer, Berlin,
1934.

[20] G. Kreisel, On the interpretation of non-finitist proofs I. The Journal of Symbolic
Logic, vol. 16 (1951), no. 2, pp. 241–267.

[21] ———, On the interpretation of non-finitist proofs II. The Journal of Symbolic Logic,
vol. 17 (1952), no. 1, pp. 43–58.

[22] ———, A refinement of �-consistency (abstract). The Journal of Symbolic Logic, vol.
22 (1957), no. 1957, pp. 108–109.

https://doi.org/10.1017/bsl.2022.14 Published online by Cambridge University Press

https://plato.stanford.edu/archives/spr2019/entries/logic-firstorder-emergence/
https://doi.org/10.1017/bsl.2022.14


426 SAUL A. KRIPKE

[23] ———, Ordinal logics and the characterization of informal notions of proof,
Proceedings of the International Congress of Mathematicians, Edinburgh, 14–21 August 1958
(J. A. Todd, editor), Cambridge University Press, Cambridge, 1960, pp. 289–299.

[24] S. A. Kripke, The collapse of the Hilbert program (abstract), this Journal, vol. 15
(2009), no. 2, pp. 229–231.

[25] ———, A model-theoretic approach to Gödel’s theorem, Logical Troubles. Collected
Papers, vol. II , Oxford University Press, New York, forthcoming

[26] G. Mints, Incomplete proofs and program synthesis (extended abstract), AAAI
Technical report SS-02-05, 2002. Available at http://www.aaai.org.

[27] A. A. Muchnik, Negative answer to the problem of reducibility of the theory of
algorithms (in Russian). Doklady Akademii Nauk SSSR, vol. 108 (1956), pp. 194–197.

[28] W. Sieg, Hilbert’s programs: 1917–1922, this Journal, vol. 5 (1999), no. 1, pp. 1–44.
[29] T. Skolem, Begründung der elementaren Arithmetik durch die rekurrierende Denkweise

ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich, Skrifter
utgit av Videnskapsselskapet i Kristiania. I, Matematisk-naturvidenskabelig klasse 6 (1923),
pp. 1–38. Reprinted and translated as The foundations of elementary arithmetic established
by means of the recursive mode of thought, without the use of apparent variables ranging over
infinite domains by S. Bauer-Mengelberg in [32], pp. 302–333.

[30] W. W. Tait, Constructive reasoning, Logic, Methodology and Philosophy of Science III
(B. van Rootselar and J. F. Staal, editors), North-Holland, Amsterdam, 1968, pp. 185–199.

[31] ———, Finitism. The Journal of Philosophy, vol. 78 (1981), pp. 524–546.
[32] J. van Heijenoort, From Frege to Gödel: Source Book in Mathematical Logic,

1879–1931, Harvard University Press, Cambridge, 1967.
[33] H. Wang, Reflections on Kurt Gödel, MIT Press, Cambridge, 1987.
[34] A. N. Whitehead and B. Russell, Principia Mathematica , vols. I–III , Cambridge

University Press, Cambridge, 1910, 1912, 1913. Second edition: 1925 (vol. 1) and 1927 (vols. 2
and 3).

[35] R. Zach, The practice of finitism. Epsilon calculus and consistency proofs in Hilbert’s
program. Synthese, vol. 137 (2003), pp. 211–259.

THE SAUL KRIPKE CENTER AND THE GRADUATE CENTER
CITY UNIVERSITY OF NEW YORK

NEW YORK, NY, USA
E-mail: skripke@gc.cuny.edu

https://doi.org/10.1017/bsl.2022.14 Published online by Cambridge University Press

http://www.aaai.org
mailto:skripke@gc.cuny.edu
https://doi.org/10.1017/bsl.2022.14

	REFERENCES

