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This paper investigates global dynamics of an infection age-space structured cholera model. The
model describes the vibrio cholerae transmission in human population, where infection-age structure
of vibrio cholerae and infectious individuals are incorporated to measure the infectivity during the
different stage of disease transmission. The model is described by reaction–diffusion models involv-
ing the spatial dispersal of vibrios and the mobility of human populations in the same domain�⊂Rn.
We first give the well-posedness of the model by converting the model to a reaction–diffusion model
and two Volterra integral equations and obtain two constant equilibria. Our result suggest that the
basic reproduction number determines the dichotomy of disease persistence and extinction, which
is achieved by studying the local stability of equilibria, disease persistence and global attractivity of
equilibria.
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1 Introduction

Cholera belongs to severe waterborne diseases. It is estimated that cholera causes about 2.9
million cases and 95,000 deaths in 69 endemic countries per year [1]. Cholera are transmit-
ted by pathogenic microorganisms vibrio cholerae contained in contaminated water, lakes and
aquatic reservoirs. Like other waterborne diseases, such as giardiasis, diarrhoea, dysentery, and
typhoid, cholera arises major public health concern and global burden of disease. In recent years,
devastating outbreaks in Zimbabwe (2008–2009) [23], Haiti (2010–2012) [34], South Africa
(2000–2001) [25] and Yemen (2017–2018) [14] have received worldwide attention. It is urgent
that quantitative understanding of cholera transmission is needed to control cholera epidemics.

The complexity of cholera dynamics involves two different transmission routes, that is, vibrio
cholerae transmission in human population takes place at human-to-human and environment-
to-human transmission. Recently, modelling the transmission of cholera has attracted much
attention by taking into account various aspects, such as multiple infection stages [32], age-
structure [5, 39, 22], hyperinfectivity [21], patch/network structures [36, 33] and spatial
heterogeneity [6, 40, 41, 49, 50, 53]. We list some literatures related to our work from the

https://doi.org/10.1017/S095679252100005X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252100005X
mailto:2180944@s.hlju.edu.cn
mailto:jinliangwang@hit.edu.cn
mailto:ranzhang90@nuaa.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S095679252100005X&domain=pdf
https://doi.org/10.1017/S095679252100005X


394 W. Liu et al.

standpoint of mathematical modelling and analyis. A review of the literature of mathematical
modelling of cholera outbreaks is given in [10].

• Cholera models based on ODEs deterministic model: since the earlier work [11] on cholera
epidemics in the European Mediterranean region, subsequent contributions have been devel-
oped to investigate cholera epidemics. In the aspect of mathematical modelling, a water
compartment (pathogen concentration) was introduced to classical Susceptible-Infected-
Recovered (SIR) epidemic model [13]. By introducing a hyperinfectious state of vibrio
cholerae (freshly shed vibrios), an extended model of [13] is proposed in [21]. The model
in [31] incorporated both hyperinfectivity and temporary immunity. Due to the fact that dif-
ferential infectivity, a staged progression model is formulated to model the multiple stages of
infectious individuals [36]. Some models involving indirect pathway and/or direct pathway
transmission of cholera can be founded in [4, 36, 26, 47].

• Cholera models based on patch/network structures: some models incorporating spatial effects
have used patches, networks, and directed graphs [6, 19, 33]. Taking into account the cities,
towns, and villages in the region as the nodes of the model, these discrete structure models are
allowed to be studied from the standpoint of applications. For example, Mukandavire et al.
[23] assessed the reproductive ratios for the 10 provinces in Zimbabwe and revealed that
spatial heterogeneity remarkably affected the underlying transmission pattern for the 2008–
2009 cholera outbreaks. After that, Tuite et al. [34] estimated the reproductive numbers using
the data from 10 administrative departments and also revealed that spatial heterogeneity brings
the difficulties in guiding practical control strategies for the 2010 cholera epidemic in Haiti.

• Cholera models based on infection-age structure: for the aspects of partial differential equa-
tions of cholera epidemics, Shuai et al. [5] proposed the model incorporating infection-age
structure for infectious humans and vibrios. In particular, the infection age is interpreted as
the the time since infection began, which can trace the history of infected individuals. The
infection-age structure for vibrios reflects the differential infectivity as a continuous variable.
In epidemic modelling, the age of infection was used to describe the period of latency (see
[15, 35] and references therein). At time t, denote by i(t, a) and p(t, b) the densities of infec-
tious humans of age a and the concentrations of pathogen in the contaminated water of age b,
respectively. Then the dynamics of infectious humans and pathogens are described by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −(μi + θ (a))i(t, a),

(
∂

∂t
+ ∂

∂b

)
p(t, b) = −(μp + δ(b))p(t, b),

(1.1)

for a � 0 and b � 0, where μi and μp, respectively, represent the death rates of infectious
humans and pathogens. δ(b) and θ (a) represent the removal rate of the pathogen and the
infectious humans, respectively. Generally, i(t, 0) and p(t, 0) are used to reflect the resources
fluxing into compartment, since the infection occurs at age 0. In [5], the authors identified
a sharp threshold called basic reproduction number (BRN) to determining whether or not
cholera dies out. However, some necessary arguments are left in [5], including uniform per-
sistence and relative compactness of orbit generated by (2.3), which two major issues to make
use of the Lyapunov techniques and LaSalle’s invariance principle. Hereafter, Yang et al. [51]
and Wang et al. [39] give a supplement to [5] with different methods.
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• Cholera models in nonhomogeneous environments: since the studies of cholera models with
patch/network structures, it is evident that spatial heterogeneity is very important in the
cholera transmission (see, e.g., [23, 34]). Recently, spatial heterogeneity (such as hygiene
conditions, water resource availability and spatial position) has been considered as one of the
main factors in understanding the spatial spread of infectious diseases. Reaction–diffusion
models involving the mobility of human populations, the spatial dispersal of vibrios and envi-
ronmental spatial effects have been formulated to get threshold dynamics of cholera epidemics
and find practical control strategies (see, e.g., [6, 12, 27, 40, 41, 49, 50, 53, 54, 43, 44, 46]).
Bertuzzo et al. [6] analysed a diffusive cholera system to investigate the effects of hetero-
geneity, where only saturating indirect transmission was adopted. Their results also revealed
that the heterogeneities of the environment may be the reason of spatial patterns of the disease
(e.g., secondary peaks). Wang et al. [45] further modified the model in [6] by incorporating
direct transmission pathways to consider how human behaviours impact cholera transmis-
sion. They also obtained the threshold dynamics and the propagation of epidemic waves when
convection of vibrios was theoretically set in a one-dimensional river. In [46], the habitat is
assumed to be a bounded one-dimensional domain. The authors of [46] confirmed that spatial
diffusion is not necessary to arise Turing instability and investigated the role of spatial dif-
fusion in the disease spread. In a recent work [42], a spatiotemporally heterogeneous cholera
epidemic model has been investigated.

In epidemic modelling, it is worth pointing out that threshold value called BRN determines the
dichotomy of disease persistence and extinction. The core problem here is to define this thresh-
old value such that above BRN, the disease persists; while below BRN, the disease vanishes.
The BRN for ODEs follows the classic theory developed in [18, 38]. For diffusive epidemic
model, the spectral radius of a resolvent-positive operator is usually used to define the BRN [37],
which extends the application range and theoretical approach from finite dimensional to infinite
dimensional. In a recent work [24], the connection between the BRN for reaction–diffusion epi-
demic models and the BRN for ODEs are established using a vector-host model. On the other
hand, once the disease persists, it becomes important to investigate the long-time behaviour of
solution, so that it can help decision-makers to conduct more effective control.

In this paper, inspired by the standard infection-age cholera model [5, 39, 46], we focus on a
cholera model with infection age-space structure. However, the modelling process is not trivial
due to the mobility of the individuals and cholera. Unlike in [45, 46] where the habitat is 1-D-
bounded domain, we consider the situation that the vibrio cholerae and human population are
living in the same domain �⊂Rn. This constitutes one motivation of the current paper. For
t � 0 and x ∈�, if no infection occurs, denote by dS > 0 the diffusion coefficient for susceptible
individuals. Further, we use � and μS to denote the constant recruitment rate and the natural
death rate for the susceptible individuals. Thus, the susceptible individuals S(t, x) is governed by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S(t, x)

∂t
= dS�S(t, x) +�−μSS(t, x), x ∈�, t > 0,

∂S(t, x)

∂n
= 0, x ∈ ∂�, t > 0.

(1.2)

At time t and location x, we use i(t, a, x) and p(t, b, x) to denote the density of infected individuals
with infection age a and the density of vibrios contained in contaminated water with infection
age b, respectively. It is assumed that β1(a) and β2(b) measure the age-specific infectivity of
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infected individuals and vibrios, respectively. Considering the direct and indirect transmission,
we assume that i(t, a, x) in the domain is governed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
i(t, a, x) = di�i(t, a, x) − (μi + θ (a))i(t, a, x), a � 0, x ∈�

i(t, 0, x) = S(t, x)
∫ ∞

0
β1(a)i(t, a, x)da + S(t, x)

∫ ∞

0
β2(b)p(t, b, x)db,

∂i(t, a, x)

∂n
= 0, x ∈ ∂�,

(1.3)

and p(t, a, x) in the domain is governed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂b

)
p(t, b, x) = dp�p(t, b, x) − (μp + δ(b))p(t, b, x), b � 0, x ∈�,

p(t, 0, x) =
∫ ∞

0
ξ (a)i(t, a, x)da,

∂p(t, b, x)

∂n
= 0, x ∈ ∂�.

(1.4)

Here di and dp represent, respectively, the diffusion coefficients for infective individuals and
cholera. ξ (a) is the age-specific shedding rate of infected individual.

Our second motivation comes from the recent studies on infection age-space structured models
(see, e.g., [16, 17, 55, 9, 52]), which is spent on understanding the effects of the infection age and
spatial heterogeneity on disease transmission. For the standard age-space structured SIR model,
Chekroun and Kuniya [9] reformulated the model by a hybrid system of one diffusive equation
and one Volterra integral equation and studied the threshold dynamics for the disease extinction
and persistence in one-dimensional domain. Further, the global stability problem of constant
equilibria was achieved. In another works, the travelling wave solutions of age-space structured
SIR model with or without birth and death processes were studied in a spatially unbounded
domain [16, 17]. For a age-space structured SIR model with seasonality, Zhang and Wang [55]
established the threshold dynamics that BRN more that 1 or less than 1 determines whether or
not disease extinction. Yang et al. [52] made an attempt to extend the methods and ideas in [9]
to propose a model for the spatial spreading of brucellosis in a continuous bounded domain.
Some basic mathematical arguments, including the existence and uniqueness of the solution and
threshold dynamics, were successfully addressed. However, reaction–diffusion cholera model
with infection-age structure seems to have received little attention.

Following this line and above settings, the main model of this paper is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St(t, x) = d1�S(t, x) +�−μSS(t, x) − i(t, 0, x),

it(t, a, x) + ia(t, a, x) = d2�i(t, a, x) − (μi + θ (a))i(t, a, x),

i(t, 0, x) = S(t, x)
∫ ∞

0
β1(a)i(t, a, x)da + S(t, x)

∫ ∞

0
β2(b)p(t, b, x)db,

pt(t, b, x) + pb(t, b, x) = d3�p(t, b, x) − (μp + δ(b))p(t, b, x),

p(t, 0, x) =
∫ ∞

0
ξ (a)i(t, a, x)da,

(1.5)
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associated with initial data:

(S(0, x), i(0, a, x), p(0, b, x)) = (φ1(x), φ2(a, x), φ3(b, x)), a, b � 0, x ∈�,

and boundary condition:

∂S(t, x)

∂n
= ∂i(t, a, x)

∂n
= ∂p(t, b, x)

∂n
= 0, x ∈ ∂�. (1.6)

Our goal is to investigate the effect of infection-age structure and spatial diffusion on the
threshold dynamics of diffusive cholera models. Let F= β1, θ , ξ , β2, δ, respectively. We always
assume that

(A1): F(υ) ∈ L∞+ (0, +∞) and F+ := ess.sup F(υ)<+∞, where υ = a or b.
(A2): There exist 0<υ1 <υ2 <+∞ such that F(υ) is strictly positive for all υ ∈ (υ1, υ2).

In Section 2, we first reformulate the original model into a hybrid system. Then we investigate
the basic properties of the solution of reformulated system, such as positivity, existence, unique-
ness and boundedness. Section 3 is spent on defining BRN and giving the constant equilibria. We
studied the local stability of equilibria by investigating the distribution of roots of characteristic
equations in Section 4. Section 5 is devoted to exploring the disease persistence. By constructing
suitable Lyapunov functions, we investigate the global stability of equilibria in Section 6. The
paper ends with a brief conclusion.

2 Well-posedness of the model

2.1 Reformulating the model (1.5)

Denote Banach spaces X := C(�, R) and Y := L1(R+, X) with norm |·|X, |ϕ|Y :=∫ +∞
0 |ϕ(a)|X da, respectively. The positive cones of X and Y are denoted by X+ and Y+,

respectively. Letting

i(a) = e− ∫ a
0 [μi+θ(σ )]dσ and p(b) = e− ∫ b

0 [μp+δ(σ )]dσ ,

and denoting �2 and �3 be the Green function associated with d2� and d3� subject to Neumann
boundary condition. By directly solving the equations i and p by the method of characteristics
yields

i(t, a, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i(a)

∫
�

�2(a, x, y)i(t − a, 0, y)dy, t − a> 0, x ∈�,

i(a)

i(a − t)

∫
�

�2(t, x, y)φ2(a − t, y)dy, a − t � 0, x ∈�,

(2.1)

and

p(t, b, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(b)

∫
�

�3(b, x, y)p(t − b, 0, y)dy, t − b> 0, x ∈�,

p(b)

p(b − t)

∫
�

�3(t, x, y)φ3(b − t, y)dy, b − t � 0, x ∈�,

(2.2)
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where
Let (u1(t, x), u2(t, x)) := (i(t, 0, x), p(t, 0, x)). Substituting (2.1) and (2.2) into (1.5) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= d1�S(t, x) +�−μSS(t, x) − u1(t, x),

u1(t, x) = S(t, x)
4∑

i=1

Fi(t, x),

u2(t, x) = F5(t, x) + F6(t, x),

∂S(t, x)

∂n
= 0, x ∈ ∂�,

(2.3)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(t, x) =
∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda,

F2(t, x) =
∫ ∞

t
β1(a)

i(a)

i(a − t)

∫
�

�2(t, x, y)φ2(a − t, y)dyda,

F3(t, x) =
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)u2(t − b, y)dydb,

F4(t, x) =
∫ ∞

t
β2(b)

p(b)

p(b − t)

∫
�

�3(t, x, y)φ3(b − t, y)dydb,

F5(t, x) =
∫ t

0
ξ (a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda,

F6(t, x) =
∫ ∞

t
ξ (a)

i(a)

i(a − t)

∫
�

�2(t, x, y)φ2(a − t, y)dyda.

(2.4)

Corresponding to the initial data of original system (1.5), we note that⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ2(a, x) =

∫
�

�2(0, x, y)φ2(a, y)dy, a − t � 0,

φ3(b, x) =
∫
�

�3(0, x, y)φ3(b, y)dy, b − t � 0,
(2.5)

we impose on the initial data of system (2.3) as:

S(0, x) = φ1(x), u1(0, x) = φ1(x)[
∫ ∞

0
β1(a)φ2(a, x)da +

∫ ∞

0
β2(b)φ2(b, x)db] (2.6)

and

u2(0, x) =
∫ ∞

0
ξ (a)φ2(a, x)da. (2.7)

In what follows, we focus on the system (2.3) with (2.6) and (2.7). If without specific
requirements, we use φ ∈W+ instead of (φ1, φ2, φ3) ∈X+ ×Y+ ×Y+. Our main result on the
well-posedness of (2.3) reads as:
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Theorem 2.1 For any φ ∈W+, system (2.3) with (2.6) and (2.7) admits a unique global
nonnegative classical solution (S, u1, u2) on [0, +∞) ×�.

We will show Theorem 2.1 by the following lemmas, which is achieved by the Banach–Picard
fixed point theorem (i.e., contraction mapping theorem). In what follows, we omit (t, x) in the
variable of equation (2.3) and (2.4) for simplicity.

Lemma 1 For any φ ∈W+, system (2.3) with (2.6) and (2.7) admits a unique solution (S, u1, u2)
on [0, tmax) ×�, with tmax ≤ ∞.

Proof Let Z := C([0, tmax], X) with the norm |ϕ|Z := sup0≤t≤tmax
|ϕ(t, ·)|X. Solving the

S-equation of (2.3) in (t, x) ∈ [0, tmax) ×� obtains⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S = F0 +
∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)[�− u1(a, y)]dyda,

u1 = S
4∑

i=1

Fi,

u2 = F5 + F6,

(2.8)

where F0 := e−μS t
∫ π

0 �1(t, x, y)φ1(y)dy, and �1 is the Green function associated with d1�

subject to Neumann boundary condition. Substituting S and u2 into u1 allows us to define
F : Z→Z as:

F [u1](t, x) :=
[
F0 +

∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)[�− u1(a, y)]dyda

]

×
[ ∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda + F2

+
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)[F5(t − b, y) + F6(t − b, y)]dydb + F4

]

=
[
F0 +

∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)[�− u1(a, y)]dyda

]

×
[ ∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda + F2 + F4

+
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, x, z)u1(t − b − a, z)dzdadydb

+
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)F6(t − b, y)dydb

]
.

(2.9)
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For ease of notations, we denote⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 2 =F2 + F4,

G1(u1) =
∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)[�− u1(a, y)]dyda,

G2(u1) =
∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda,

G3(u1) =
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, x, z)u1(t − b − a, z)dzdadydb,

F 6(t, x)) =
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)F6(t − b, y)dydb.

(2.10)
It then follows that

F [u1] (t, x)= [F0 + G1 (u1)]
[
F 2 + G2 (u1)+ G3 (u1)+ F 6

]
. (2.11)

By standard procedures, in order to obtain a strict contraction mapping F in Z, we let u′
1, u′′

1 ∈Z

and set ũ1 := u′
1 − u′′

1. We then have

|Fu′
1 − Fu′′

1| = F0 [G2 (ũ1)+ G3 (ũ1)] + [F 2 + F 6]Ĝ1(ũ1)

+ Ĝ1 (ũ1)
[
G2

(
u′′

1

) + G3
(
u′′

1

)] + G1
(
u′

1

)
[G2 (ũ1)+ G3 (ũ1)]

≤ | (F0 + G1)
[
G2 + G3

] +
[
F 2 + F 6 + G2 + G3

]
G1| · sup

0≤s≤t
|ũ1(s, ·)|X ,

(2.12)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝ1(u1) = −
∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)u1(a, y)dyda,

G1 = −
∫ t

0
e−μS (t−a)

∫
�

�1(t − a, x, y)dyda,

G2 =
∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)dyda,

G3 =
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, x, z)dzdadydb.

Set

c(tmax) := sup
0≤t≤tmax

∣∣∣(F0 + G1)
(
G2 + G3

) +
(
F 2 + F 6 + G2 + G3

)
G1

∣∣∣
X

.

It follows that ∣∣Fu1 − Fu′′
1

∣∣
Z

≤ c(tmax)
∣∣u′

1 − u′′
1

∣∣
Z

.
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Choose 0< tmax 	 1 small enough that c(tmax)< 1 (and clearly limα 
→0 c(α) = 0). Hence, F is a
strict contraction in Z. By contraction mapping theorem (see [28, Theorem 9.23]), we finish the
proof of this lemma.

Lemma 2 For any φ ∈W+, solution (S, u1, u2) of (2.3) with (2.6) and (2.7) satisfies

S > 0, u1 � 0 and u2 � 0 on [0, tmax) ×�.

Proof For any ϕ ∈Y, denote⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1(ϕ)(t, x) :=
∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)ϕ(t − a, y)dyda,

�2(ϕ)(t, x) :=
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)ϕ(t − b, y)dydb,

�3(ϕ)(t, x) :=
∫ t

0
ξ (a)i(a)

∫
�

�2(a, x, y)ϕ(t − a, y)dyda.

For i = 1, 2, 3, it follows from (A1) that �i : Y→Y is the positive linear operator in the
sense that �i(Y+) ⊂Y+. Noticing that F1, F3 and F5 defined in (2.4) can be expressed by
�1(u1),�2(u2) and �3(u1), respectively. Further, for (t, x) ∈ [0, tmax) ×�,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
> d1�S − S [μS +�1(u1) + F2 +�2(u2) + F4] ,

u1 = S(t, x) [�1(u1) + F2 +�2(u2) + F4] ,

u2 = �3(u1) + F6,

∂S

∂n
= 0, x ∈ ∂�.

(2.13)

Due to the continuity and boundedness of μS +�1(u1) + F2 +�2(u2) + F4, we directly have
S(t, x)> 0, on [0, tmax) ×�.

Next, we prove the positivity of u1. Assume for the contrary that there exist 0< ε	 1 and
(t1, x1) ∈ (0, tmax) ×� such that⎧⎪⎪⎨⎪⎪⎩

u1(t, x) � 0, t ∈ [0, t1) and x ∈�;

u1(t, x1) = 0, t = t1 and x1 ∈�;

u1(t + ε, x1)< 0, t = t1 and x1 ∈�.

However, due to the positivity of F2 and F4 � 0, and for sufficiently small ε,

u1(t1 + ε, x1)

= S(t1 + ε, x1)

[ ∫ t1+ε

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t1 + ε− a, y)dyda + F2(t1 + ε, x1)

+ F4(t1 + ε, x1)]
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+
∫ t1+ε

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t1+ε−b

0
ξ (a)i(a)

∫
�

�2(a, x, z)u1(t1 + ε− b − a, z)dzdadydb

+
∫ t1+ε

0
β2(b)p(b)

∫
�

�3(b, x, y)F6(t1 + ε− b, y)dydb

]
�0,

a contradiction. Similarly, due to the positivity of F6(t, x), u2(t, x) � 0 directly follows on
(0, tmax) ×�. This completes the proof.

To extend the existence interval of solution from [0, tmax) ×� to [0, +∞) ×�, we only need
to prove that the solution does not blow up in [0, tmax).

Lemma 3 For any φ ∈W+, solution (S, u1, u2) of (2.3) with (2.6) and (2.7) is bounded in
[0, tmax).

Proof From Lemma 2, S is bounded above by �/μS since ∂S
∂t ≤ d1�S +�−μSS for (0, ∞) ×

�. If u1 is unbounded in the sense that there exist t∗ > 0 and x∗ ∈� such that lim
t→t∗−0

u1(t, x∗) =
+∞. Then S-equation satisfies lim

t→t∗−0
∂tS(t, x∗) = −∞, that is, S(t, x∗) is negative around of t∗,

a contradiction. Hence, u1(t, x)<+∞ for (0, ∞) ×�. Further, the bounded of u2(t, x) in finite
time is implied by the boundedness of u1.

Hence, Theorem 2.1 can be proved by the previous lemmas.
Proof of Theorem 2.1. The local existence and uniqueness of solution of (2.3) with (2.6) and

(2.7) are demonstrated in Lemma 1. By Lemma 2, the solution of (2.3) with (2.6) and (2.7) is
non-negative. By Lemma 3, the solution of (2.3) with (2.6) and (2.7) does not blow up in finite
time. Hence, (2.3) with (2.6) and (2.7) admits a unique global non-negative classical solution in
C([0, +∞), X).

3 BRN and equilibria

Obviously, (2.3) admits the disease-free equilibrium E0 = (S0, 0, 0) ∈W+ with S0 = �
μS

.
Linearising the disease compartments u1 and u2 around E0 yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t, x) = S0

∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda

+ S0

∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)u2(t − b, y)dydb,

u2(t, x) =
∫ t

0
ξ (a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda.

(3.1)

Inserting u2-equation of (3.1) into u2-equation gets

u1(t, x) = S0

∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda

+ S0

∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, y, z)u1(t − b − a, z)dzdadydb.

(3.2)
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Making the Laplace transformation to (3.2), we obtian

L[u1] :=
∫ ∞

0
e−λtu1dt

= S0

∫ ∞

0
e−λt

∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dydadt

+ S0

∫ ∞

0
e−λt

∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)

×
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, y, z)u1(t − b − a, z)dzdadydbdt.

Consequently, after multiple interchanging the order of integration, we can obtain

L[u1] = S0

∫ ∞

0
β1(a)i(a)e−λa

∫
�

�2(a, x, y)
∫ ∞

0
e−λtu1(t, y)dtdyda

+ S0

∫ ∞

0
β2(b)p(b)e−λb

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)e−λa

∫
�

�2(a, y, z)

×
∫ ∞

0
e−λtu1(t, y)dtdzdadydb.

(3.3)

Setting λ= 0 results in∫ ∞

0
u1(t, x)dt = S0

∫ ∞

0
β1(a)i(a)

∫
�

�2(a, x, y)
∫ ∞

0
u1(t, y)dtdyda

+ S0

∫ ∞

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)

∫
�

�2(a, y, z)

×
∫ ∞

0
u1(t, y)dtdzdadydb.

(3.4)

Hence, the following operator K : X→X is termed as the next-generation operator (NGO)
(see, e.g., [18]),

K [ϕ](x) := S0

∫ ∞

0
β1(a)i(a)

∫
�

�2(a, x, y)ϕ(y)dyda

+ S0

∫ ∞

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)

∫
�

�2(a, y, z)ϕ(y)dzdadydb, ϕ ∈X.

(3.5)

The following result is on the operator K .

Lemma 4 The NGO K is strictly positive and compact.

Proof The positivity of the operator K is obvious. To prove the compactness of K , we need
the following two claims.

Claim 1 K is uniformly bounded. To this end,

• selecting a bounded sequence {ϕn}n∈N in X with |ϕn|X ≤M for some M> 0.
• defining a sequence {ψn}n∈N by ψn := K ϕn.
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Hence, for all n ∈N and x ∈�,

ψn(x) ≤ S0

∫ ∞

0
β1(a)i(a)

∫
�

�2(a, x, y)dydaM

+ S0

∫ ∞

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)

∫
�

�2(a, y, z)dzdadydbM.

(3.6)

Hence, {ψn}n∈N is uniformly bounded.
Claim 2 {ψn}n∈N is equi-continuous. For x, x̃ ∈�, directly calculation gives

|ψn(x) −ψn(x̃)| = |K ϕn(x) − K ϕn(x̃)|

≤ S0

( ∫ ∞

0
β1(a)i(a)

∫
�

|�2(a, x, y) − �2(a, x̃, y)|ϕn(y)dyda

+
∫ ∞

0
β2(b)p(b)

∫
�

|�3(b, x, y)

− �3(b, x̃, y)|
∫ ∞

0
ξ (a)i(a)

∫
�

�2(a, y, z)ϕn(y)dzdadydb

)
≤ S0β

+
1

∫ ∞

0
i(a)

∫
�

|�2(a, x, y) − �2(a, x̃, y)|dydaM

+ S0β
+
2 ξ

+
∫ ∞

0
p(b)

∫
�

|�3(b, x, y)

− �3(b, x̃, y)|
∫ ∞

0
i(a)

∫
�

�2(a, y, z)dzdadydbM,

(3.7)

where β+
1 , β+

2 , ξ+ are defined in (A1).
Due to the compactness of the operator � and the uniform continuity of �2(a, x, y) and

�3(b, x, y), there exists δ > 0 such that

|�2(a, x, y) − �2(a, x̃, y)| ≤ ε0

2S0β
+
1 MM1

,

and

|�3(b, x, y) − �3(b, x̃, y)| ≤ ε0

2S0β
+
2 ξ

+MM2
,

for any ε0 > 0 and |x − x̃|< δ, y ∈�, where M1 = |�| ∫ ∞
0 i(a)da and M2 =

|�|2 ∫ ∞
0 p(b)

∫ ∞
0 i(a)dadb and |�| is the volume of�. For this δ and ε0, |ψn(x) −ψn(x̃)|< ε0,

for all |x − x̄|< δ, that is, ψn(x)n∈N is equi-continuous.

As in [18], we define the BRN of (2.3) �0 = r(K ), the spectral radius of K . Lemma 4
together with Krein–Rutman theorem ([3, Theorem 3.2]) imply that BRN �0 is the only pos-
itive eigenvalue of K , corresponding to a positive eigenvector. Without loss of generality,
substituting ϕ(x) ≡ 1> 0 into (3.5) and using

∫
�
�i(·, x, y)dy = 1, i = 2, 3, one gets
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K [1] = S0

∫ ∞

0
β1(a)i(a)

∫
�

�2(a, x, y)dyda[1]

+ �

μS

∫ ∞

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)

∫
�

�2(a, y, z)dzdadydb[1]

= S0

∫ ∞

0
β1(a)i(a)da[1] + �

μS

∫ ∞

0
β2(b)p(b)db

∫ ∞

0
ξ (a)i(a)da[1].

Hence, �0 = r(K ) can be explicitly expressed by:

�0 = S0K+ S0QL, (3.8)

where

K=
∫ ∞

0
β1(a)i(a)da, L=

∫ ∞

0
ξ (a)i(a)da and Q=

∫ ∞

0
β2(b)p(b)db. (3.9)

By simple calculation, we directly have the existence of positive space-independent endemic
equilibrium.

Theorem 3.1 Let �0 be defined in (3.8). If �0 > 1, then (1.5) possesses a space-independent
endemic equilibrium E∗ = (S∗, i∗(a), p∗(b)), where

S∗ = S0

�0
, i∗(a) =�

(
1 − 1

�0

)
i(a) and p∗(b) =p(b)

∫ ∞

0
ξ (a)i∗(a)da.

4 Local dynamics

This subsection is spent on proving that both E0 and E∗ are locally asymptotically stable (LAS).

Theorem 4.1 Let R0 be defined in (3.8), then

(i) E0 is LAS if �0 < 1,
(ii) E∗ is LAS if �0 > 1.

Proof We first prove (i). Let Ŝ = S − S0, î(t, a, x) = i(t, a, x) and p̂(t, b, x) = p(t, b, x). The
linearised equation of (1.5) at E0 reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ŝ

∂t
= d1�Ŝ −μSŜ − S0

∫ ∞

0
β1(a)îda − S0

∫ ∞

0
β2(b)p̂db,(

∂

∂t
+ ∂

∂a

)
î = d2�î(t, a, x) − (μi + θ (a))î,

î(t, 0, x) = S0

∫ ∞

0
β1(a)îda + �

μS

∫ ∞

0
β2(b)p̂db,(

∂

∂t
+ ∂

∂b

)
p̂ = d3�p̂ − (μp + δ(b))p̂,

p̂(t, 0, x) =
∫ ∞

0
ξ (a)îda.

(4.1)
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Since the linear system contains Laplacian term, we introduce the related theory from [7]. Denote
by χi(i = 1, 2, ...) the eigenvalues of operator −� on a bounded set � with boundary condition
(1.6), that is, �ν(x) = −χiν(x). Hence,

0 = χ0 <χ1 <χ2 < · · ·,

corresponding to which, there is the space of eigenfunctions in C1(�), denoted by E(χi). Denote
by {φij| j = 1, 2, ..., dim E(χi)} the orthogonal basis of E(χi). Further, let Xij = {cφij| c ∈R3}
such that

X̃=
∞⊕

i=0

Xi, where Xi =
dim E(χi)⊕

j=1

Xij.

Since the parabolic problem ∂u
∂t =�u with ∂u

∂n = 0 admits the exponential solution u(t, x) =
eηtν(x), where ν(x) ∈Xi. Substituting (Ŝ(t, x), î(t, a, x), p̂(t, b, x)) = eηt(γ 0

1 (x), γ 0
2 (a, x), γ 0

3 (b, x))
into (4.1), one has that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηγ 0
1 (x) = −d1χiγ

0
1 (x) −μSγ

0
1 (x) − S0

( ∫ ∞

0
β1(a)γ 0

2 (a, x)da +
∫ ∞

0
β2(b)γ 0

3 (b, x)db

)
ηγ 0

2 (a, x) + ∂γ 0
2 (a, x)

∂a
= −d2χiγ

0
2 (a, x) − ( μi + θ (a))γ 0

2 (a, x),

ηγ 0
3 (b, x) + ∂γ 0

3 (b, x)

∂b
= −d3χiγ

0
3 (b, x) − (μp + δ(b))γ 0

3 (b, x),

γ 0
2 (0, x) = S0

( ∫ ∞

0
β1(a)γ 0

2 (a, x)da +
∫ ∞

0
β2(b)γ 0

3 (b, x)db

)
,

γ 0
3 (0, x) =

∫ ∞

0
ξ (a)γ 0

2 (a, x)da.

(4.2)
Solving the last four equations yields⎧⎪⎨⎪⎩

γ 0
2 (a, x) = γ 0

2 (0, x)̃i(a)e−ηa,

γ 0
3 (b, x) = γ 0

3 (0, x)̃p(b)e−ηb = γ 0
2 (0, x)

∫ ∞

0
ξ (a)̃i(a)e−ηadãp(b)e−ηb,

(4.3)

where ̃i(a) =i(a)e−d2χia and ̃p(b) =p(b)e−d3χib. Inserting (4.3) into the fourth equation of
(4.1), we can obtain

1 = S0

( ∫ ∞

0
β1(a)̃i(a)e−ηada +

∫ ∞

0
β2(b)

∫ ∞

0
ξ (a)̃i(a)e−ηadãp(b)e−ηbdb

)
:= H (η).

(4.4)
Obviously, H ′(η)< 0. If (4.4) has a unique real positive root η, one has that

1 = �

μS

( ∫ ∞

0
β1(a)̃i(a)e−ηada +

∫ ∞

0
β2(b)

∫ ∞

0
ξ (a)̃i(a)e−ηadãp(b)e−ηbdb

)
<�0.

which leads to a contradiction. Thus, all roots of (4.4) are negative.
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If (4.4) has complex roots in the form of η= x0 + iy0 with x0 > 0, we can obtain

1 = S0

( ∫ ∞

0
β1(a)̃i(a)e−x0a cos(y0a)da

+
∫ ∞

0
β2(b)

∫ ∞

0
ξ (a)̃i(a)e−x0(a+b) cos(y0(a + b))dãp(b)db

)
≤ �0,

a contradiction with �0 < 1. Consequently, E0 is LAS if �0 < 1.
We next prove (ii). Denote by Š(t, x) = S(t, x) − S∗, ǐ(t, a, x) = i(t, a, x) − i∗(a) and p̌(t, b, x) =

p(t, b, x) − p∗(b). The linearised equation of (1.5) at E∗ = (S∗, i∗(a), p∗(b)) reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Š

∂t
= d1�Š −μS�0Š − S∗

( ∫ ∞

0
β1(a)ǐda +

∫ ∞

0
β2(b)p̌db

)
,(

∂

∂t
+ ∂

∂a

)
ǐ = d2�ǐ − ( μi + θ (a))ǐ,

ǐ(t, 0, x) =μS(�0 − 1)Š + S∗
( ∫ ∞

0
β1(a)ǐda +

∫ ∞

0
β2(b)p̌db

)
,(

∂

∂t
+ ∂

∂b

)
p̌ = d3�p̌ − (μp + δ(b))p̌,

p̌(t, 0, x) =
∫ ∞

0
ξ (a)ǐda,

∂ Š

∂n
= ∂ ǐ

∂n
= ∂ p̌

∂n
= 0.

(4.5)

Here, we have used the fact that

S∗ = S0

�0
= �

μS�0
, �−μSS∗ = S∗

( ∫ ∞

0
β1(a)i∗(a)da +

∫ ∞

0
β2(b)p∗(b)db

)
. (4.6)

Similarly, we substitute (Š(t, x), ǐ(t, a, x), p̌(t, b, x)) = eηt(γ1(x), γ2(a, x), γ3(b, x)) into (4.5) gets⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηγ1(x) = −(d1χi +μS�0)γ1(x) − S∗
( ∫ ∞

0
β1(a)γ2(a, x)da +

∫ ∞

0
β2(b)γ3(b, x)db

)
,

ηγ2(a, x) + ∂γ2(a, x)

∂a
= −d2χiγ2(a, x) − ( μi + θ (a))γ2(a, x),

ηγ3(b, x) + ∂γ3(b, x)

∂a
= −d3χiγ3(b, x) − (μp + δ(b))γ3(b, x),

γ2(0, x) =μS(�0 − 1)γ1(x) + S∗
( ∫ ∞

0
β1(a)γ2(a, x)da +

∫ ∞

0
β2(b)γ3(b, x)db

)
,

γ3(0, x) =
∫ ∞

0
ξ (a)γ2(b, x)da.

(4.7)
Solving the last four equations of (4.7), we can obtain⎧⎪⎨⎪⎩

γ2(a, x) = γ2(0, x)̃i(a)e−ηa,

γ3(b, x) = γ3(0, x)̃p(b)e−ηb = γ2(0, x)
∫ ∞

0
ξ (a)̃i(a)e−ηadãp(b)e−ηb.

(4.8)
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Plugging (4.8) into the first and fourth equation of (4.7) yields the characteristic equation:∣∣∣∣∣ μS(�0 − 1) H1(η) − 1

d1χi +μS�0 + η H1(η)

∣∣∣∣∣ = 0, (4.9)

where

H1(η) = S∗
(∫ ∞

0
β1(a)̃i(a)e−ηada +

∫ ∞

0
β2(b)

∫ ∞

0
ξ (a)̃i(a)e−ηadãp(b)e−ηbdb

)
.

Thus,

(η+ d1χi +μS)H1(η) − (η+ d1χi +μS�0) = 0 . (4.10)

If (4.10) has a real root η > 0. By �0 > 1, we have

H1(η) = (η+ d1χi +μS�0)

(η+ d1χi +μS)
> 1. (4.11)

Obviously, H ′
1 (η)< 0. This together with S∗ = S0

�0
indicate that

H1(η)<H1(0)< S∗
∫ ∞

0
β1(a)i(a)da + S∗

∫ ∞

0
β2(b)p(b)db

∫ ∞

0
ξ (a)i(a)da = 1,

which leads to a contradiction with (4.11). Hence, all the real roots of (4.10) are negative.
If (4.10) has complex roots η= x1 + y1i with x1 � 0, then

(x1 + y1i + d1χi +μS)H1(x1 + y1i) − (x1 + y1i + d1χi +μS�0) = 0.

It follows that

ReH1(x1 + y1i) = (x1 + d1χi +μS�0)(x1 + d1χi +μS) + y2
1

(x1 + d1χi +μS)2 + y2
1

> 1. (4.12)

On the other hand,

ReH1(x1 + y1i) ≤ |H(x1)| = H(x1) ≤ H1(0)< 1,

a contradiction with (4.12). Thus, E∗ is LAS.

5 Disease persistence

This section is to show the disease persistence when �0 > 1. In order to using the methods in
[30, Section 9.4], we first rewrite (2.1) and (2.2) as:

i(t, a, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i(a)

i(a − t)

∫
�

�2(t, x, y)φ2(a − t, y)dy, a − t � 0, x ∈�,

i(a)
∫
�

�2(a, x, y)u1(t − a, y)dy, t − a> 0, x ∈�,

(5.1)
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and

p(t, b, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(b)

p(b − t)

∫
�

�3(t, x, y)φ3(b − t, y)dy, b − t � 0, x ∈�,

p(b)
∫
�

�3(b, x, y)u2(t − b, y)dy, t − b> 0, x ∈�.

(5.2)

Now, we are in position to show the first lemma of this section.

Lemma 5 For any φ ∈W+, system (2.3) defines a continuous semiflow:

�(t, φ) := (S(t, ·, φ1), i(t, ·, φ2), p(t, ·, φ3)) ∈W+

for all t � 0.

Proof For any ς � 0, t � 0, a, b � 0, and x ∈�, let

Sς (t, x) = S(ς + t, x), u1ς (t, x) = u1(ς + t, x), u2ς (t, x) = u2(r + t, x)

and

iς (t, a, x) = i(ς + t, a, x), pς (t, b, x) = p(ς + t, b, x).

Then,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Sς (t, x)

∂t
= d1�Sς (t, x) +�−μSSς (t, x) − u1ς (t, x), with Sς (0, x) = S(r, x),

u1ς (t, x) = Sς (t, x)
∫ ∞

0
β1(a)iς (t, a, x)da + Sς (t, x)

∫ ∞

0
β2(b)pς (t, b, x)db,

u2ς (t, x) =
∫ ∞

0
ξ (a)iς (t, a, x)da.

(5.3)

Hence (5.1) and (5.2) can be rewritten as:

iς (t, a, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i(a)

i(a − ς − t)

∫
�

�2(ς + t, x, y)φ2(a − ς − t, y)dy, a � ς + t,

i(a)
∫
�

�2(a, x, y)u1ς (t − a, y)dy, a<ς + t,

(5.4)

and

pς (t, b, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(b)

p(b − ς − t)

∫
�

�3(ς + t, x, y)φ3(b − ς − t, y)dy, b � ς + t,

p(b)
∫
�

�3(b, x, y)u2ς (t − b, y)dy, b<ς + t.

(5.5)

Additionally, for r � 0, a> t � 0 and x ∈�, we have

iς (0, a − t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i(a − t)

i(a − ς − t)

∫
�

�2(ς , x, y)φ2(a − ς − t, y)dy, a>ς + t,

i(a − t)
∫
�

�2(a − t, x, y)u1ς (t − a, y)dy, a ∈ [t, ς + t),
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and

pς (0, b − t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(b − t)

p(b − ς − t)

∫
�

�3(ς , x, y)φ3(b − ς − t, y)dy, b>ς + t,

p(b − t)
∫
�

�3(b − t, x, y)u2ς (t − b, y)dy, b ∈ [t, ς + t).

Due to the properties of �2 and �3 (see [8]), we have

i(a)

i(a − t)

∫
�

�2(t, x, y)iς (0, a − t, y)dy

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i(a)

i(a − ς − t)

∫
�

�2(ς + t, x, y)φ2(a − ς − t, y)dy, a>ς + t,

i(a)
∫
�

�2(a, x, y)u1ς (t − a, y)dy, a ∈ [t, ς + t),

(5.6)

and

p(b)

p(b − t)

∫
�

�3(t, x, y)pς (0, b − t, y)dy

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(b)

p(b − ς − t)

∫
�

�3(ς + t, x, y)φ3(b − ς − t, y)dy, b>ς + t,

p(b)
∫
�

�3(b, x, y)u2ς (t − b, y)dy, b ∈ [t, ς + t).

(5.7)

Combined with (5.4) and (5.6), we can obtain

iς (t, a, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i(a)

i(a − t)

∫
�

�2(t, x, y)iς (0, a − t, y)dy, a − t � 0,

i(a)
∫
�

�2(a, x, y)u1ς (t − a, y)dy, t − a> 0.

(5.8)

Combined with (5.5) and (5.7), we can obtain

pς (t, b, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(b)

p(b − t)

∫
�

�3(t, x, y)iς (0, b − t, y)dy, a − t � 0,

p(b)
∫
�

�3(b, x, y)u2ς (t − b, y)dy, t − b> 0.

(5.9)

Consequently, from (5.3), (5.8) and (5.9), we have,

�(t, S(ς , ·), i(ς , ·, ·), p(ς , ·, ·)) = (Sς (t), iς (t, ·, ·), pς (t, ·, ·)) =�(ς + t, φ1, φ2, φ3),

for all ς � 0 and t � 0. Hence, the time continuity of � follows from Theorem 2.1.
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Following the procedures in [2, Lemma 6.1], let

D :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩φ ∈W+

∣∣∣∣∣∣∣∣∣∣
φ1(·)

[∫ ∞

0
β1(·)φ2(a, ·)da +

∫ ∞

0
β2(b)φ3(b, ·)db

]
> 0,

φ1(·)
∫ ∞

0
ξ (a)φ2(a, ·)da> 0 for some x ∈�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

we claim the following results.

Lemma 6 If φ ∈D and �0 > 1, then there exist ρi > 0 (i = 1.2) such that

lim sup
t→+∞

|ui(t, ·)|X >ρi.

Proof By the expression of �0 defined in (3.8), choose ρ1 > 0 such that

�− ρ1

μS

( ∫ ∞

0
β1(a)i(a)da +

∫ ∞

0
β2(b)p(b)

∫ ∞

0
ξ (a)i(a)dadb

)
> 1. (5.10)

Suppose, by contradiction, assume that u1(t, x) ≤ ρ1 for all x ∈� and t � t1 > 0. Using inequality
(5.10), there exist sufficiently large t2 > t1 and λ> 0 is small enough ensures that

� :=�− ρ1

μS

(
1 − e−μh

) ( ∫ ∞

0
β1(a)i(a)e−λada

+
∫ ∞

0
β2(b)p(b)e−λb

∫ ∞

0
ξ (a)i(a)e−λadadb

)
> 1, (5.11)

where h = t2 − t1. One has that

∂S(t, x)

∂t
� d1�S(t, x) +�− ρ1 −μSS(t, x) on [t2, ∞) ×�.

Solving the above equation and applying comparison principle yields⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(t, x) � �− ρ1

μS
(1 − e−μSh),

u2(t, x) �
∫ t

0
ξ (a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda,

(5.12)

on [t2, ∞) ×�. Lemma 5 together with (5.12) allow us to take S(t2, x), u1(t2, x) and u2(t2, x) with
t2 = 0 as initial data. Hence,

u1(t, x) ��− ρ1

μS

(
1 − e−μSh

) ( ∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dyda

+
∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

∫
�

�2(a, x, z)u1(t − b − a, z)dzdadydb

)
(5.13)
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on [0, ∞) ×�. Obviously, for all x ∈�, L(u1) = ∫ ∞
0 e−λtu1(t, x)dt <∞. Define x̃ ∈� such that

L(u1)(x̃) = minx∈� L(u1). By (5.13),

L(u1)(x̃) � �− ρ1

μS
(1 − e−μSh)

( ∫ ∞

0
e−λt

∫ t

0
β1(a)i(a)

∫
�

�2(a, x, y)u1(t − a, y)dydadt

+
∫ ∞

0
e−λt

∫ t

0
β2(b)p(b)

∫
�

�3(b, x, y)
∫ t−b

0
ξ (a)i(a)

×
∫
�

�2(a, y, z)u1(t − b − a, y)dzdadydbdt

)
.

Consequently, after multiple interchanging the order of integration, we can obtain

L(u1)(x̃) � �− ρ1

μS
(1 − e−μSh)

( ∫ ∞

0
β1(a)i(a)e−λa

∫
�

�2(a, x, y)
∫ ∞

0
e−λtu1(t, y)dtdyda

+
∫ ∞

0
β2(b)p(b)e−λb

∫
�

�3(b, x, y)
∫ ∞

0
ξ (a)i(a)e−λa

∫
�

�2(a, y, z)∫ ∞

0
e−λtu1(t, y)dtdzdadydb

)
� �L(u1)(x̃),

a contradiction with (5.11). The second assertion directly follows from (5.12).

With the help of Lemma 6, we next prove the strong | · |X-persistence (see the definition
in [20]).

Lemma 7 For any φ ∈D, if �0 > 1, then there exist ρ ′
i > 0 (i = 1, 2) such that

lim inf
t→+∞ |ui(t, ·)|X >ρ ′

i .

Proof Assume that lim inft→+∞ |u1(t, ·)|X <ρ ′
1 for some ρ ′

1 > 0. This together with Lemma 6
imply that there exist increasing sequences {t1k}+∞

k=1, {t2k}+∞
k=1, {t3k}+∞

k=1 and decreasing sequence
{t4k}+∞

k=1 with t1k > t2k > t3k , lim inf
k→+∞

t4k = 0 and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|u1(t3k , ·)|X >ρ1, t = t3k ,

|u1(t2k , ·)|X = ρ1, t = t2k ,

|u1(t1k , ·)|X < t4k <ρ1, t = t1k ,

|u1(t, ·)|X <ρ1, t ∈ (t2k , t1k).

(5.14)

Let {Sk}+∞
k=1, {u1k}+∞

k=1 and {u2k}+∞
k=1 such that Sk := S(t2k , ·) ∈X, u1k := u1(t2k , ·) ∈X and u2k :=

u2(t2k , ·) ∈X, respectively. From (2.8) and (2.9) and applying the Arzela–Ascoli theorem (see
[29, Theorem 11.28]), there exists (S∗, u∗

1, u∗
2) ∈X+ ×X+ ×X+ such that

lim inf
k→+∞

Sk = S∗, lim inf
k→+∞

u1k = u∗
1 and lim inf

k→+∞
u2k = u∗

2.
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Let (S̃, ũ1, ũ2) be a solution of (2.3) with⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ1(x) = S∗(x),

φ2(a, x) =i(a)
∫
�

�2(a, x, y)u∗
1(y)dyda +p(b)

∫
�

�3(b, x, y)i(a)
∫
�

�2(z, x, y)u∗
1(y)dzdy,

φ3(x) =i(a)
∫
�

�2(a, x, y)u∗
1(y)dy,

for all a � 0, b � 0 and x ∈�. Since φ2 and φ3 depend on (5.1) and (5.2). According to Lemma
6, there exist τ ′ > 0, � > 0 such that{ |ũ1(τ ′, ·)|X >ρ1, t = τ ′,

|ũ1(t, ·)|X >� , 0< t < τ ′.
(5.15)

Let ũ1k(t, ·) := u1(t2k + t, ·) for each k ∈N, it follows from the semiflow property that{ |ũ1k(τ ′, ·)|X >ρ1, t = τ ′,

|ũ1k(t, ·)|X >� > t4k , 0< t < τ ′,
(5.16)

for sufficiently large k. In contrast, for t̃k := t1k − t2k , we have from (5.14) that{ |ũ1k(t̃k , ·)|X < t4k <ρ1, t = t̃k ,

|ũ1k(t, ·)|X <ρ1, 0< t < τ ′.
(5.17)

It is easy to get a contradiction between (5.16) and (5.17). Here, we finish the proof of
lim inf
t→+∞ |u1(t, ·)|X >ρ ′

1 for some constant ρ ′
1 > 0. Similarly, ρ ′

2 > 0 such that lim inf
t→+∞ |u2(t, ·)|X >

ρ ′
2 for some ρ ′

2 > 0.

6 Global stability of equilibria

Now, we spent on proving that both E0 and E∗ are globally asymptotically stable (GAS).

Theorem 6.1 E0 is GAS provided that �0 < 1.

Proof Define Lyapunov functional”

LE0 (t) =
∫
�

[VS(t, x) + Vi(t, x) + Vp(t, x)]dx,

where

VS(t, x) = G[S, S0], Vi(t, x) =
∫ ∞

0
�(a)i(t, a, x)da, Vp(t, x) =

∫ ∞

0
�(b)p(t, b, x)db,

and

G[α, β](t, x) = α − β − β ln
α

β
� 0 for α, β ∈X+ with G[α, α](t, x) = 0. (6.1)
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We will determine the functions �(a) and �(b) later. The calculation of the derivative of VS

reads as:

∂VS(t, x)

∂t
= d1

S − S0

S
�S − μS

S
(S − S0)2 − u1(t, x) + S0

∫ ∞

0
β1(a)i(t, a, x)da

+ S0

∫ ∞

0
β2(b)p(t, b, x)db. (6.2)

Note that

Vi(t, x) =
∫ ∞

0
�(t + a)

i(t + a)

i(a)

∫
�

�2(t, x, y)φ2(a, y)dyda

+
∫ t

0
�(t − a)i(t − a)

∫
�

�2(t − a, x, y)u1(a, y)dyda.

Hence,

∂Vi(t, x)

∂t
= �(0)

∫
�

�2(0, x, y)u1(t, y)dy +
∫ t

0

d�(t − a)

dt
i(t − a)

∫
�

�2(t − a, x, y)u1(a, y)dyda

+
∫ t

0
�(t − a)i(t − a)

∫
�

∂�2(t − a, x, y)

∂t
u1(a, y)dyda

−
∫ t

0
[μi + θ (t − a)]�(t − a)i(t − a)

∫
�

�2(t − a, x, y)u1(a, y)dyda

+
∫ ∞

0

d�(t + a)

dt

i(t + a)

i(a)

∫
�

�2(t, x, y)φ2(a, y)dyda

+
∫ ∞

0
�(t + a)

i(t + a)

i(a)

∫
�

∂�2(t, x, y)

∂t
φ2(a, y)dyda

−
∫ ∞

0
[μi + θ (t + a)]�(t + a)

i(t + a)

i(a)

∫
�

�2(t, x, y)φ2(a, y)dyda

= �(0)u1(t, x) +
∫ ∞

0

[
d�(a)

da
− [μi + θ (a) − d2�]�(a)

]
i(t, a, x)da.

(6.3)

Similarly,

Vp(t, x) =
∫ ∞

0
�(t + b)

p(t + b)

p(b)

∫
�

�3(t, x, y)φ3(b, y)dydb

+
∫ t

0
�(t − b)p(t − b)

∫
�

�3(t − b, x, y)u2(b, y)dydb.

and

∂Vp(t, x)

∂t
=�(0)

∫ ∞

0
ξ (a)i(t, a, x)da +

∫ ∞

0

[
d�(b)

db
− [μp + δ(b) − d3�]�(b)

]
p(t, b, x)db.

(6.4)
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Hence,

∂LE0 (t)

∂t
= − d1

∫
�

|∇S|2
S2

dx −
∫
�

μS

S
(S − S0)2dx −

∫
�

(1 −�(0))u1(t, x)dx

+
∫
�

∫ ∞

0

(
S0β1(a) +�′(a) +�(0)ξ (a) − [μi + θ (a) − d2�]�(a)

)
i(t, a, x)dadx

+
∫
�

∫ ∞

0

(
S0β2(b) +� ′(b) − [μp + δ(b) − d3�]�(b)

)
p(t, b, x)dbdx.

(6.5)

By (6.5), we define ⎧⎪⎪⎨⎪⎪⎩
�(b) = 1

p(b)

∫ ∞

b
S0β2(ς )p(ς )dς ,

�(a) = 1

i(a)

∫ ∞

a
[S0β1(ϑ) +�(0)ξ (ϑ)]i(ϑ)dϑ .

Obviously, �(b) and �(a) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0β2(b) + d�(b)

db
− [μp + δ(b)]�(b) = 0,

�(0) = S0Q,

S0β1(a) + d�(a)

da
+�(0)ξ (a) − [μi + θ (a)]�(a) = 0,

�(0) = S0K+ S0QL= �0,

where K, Q and L are defined in (3.9). Consequently, we have

∂LE0 (t)

∂t
= −d1

∫
�

|∇S|2
S2

x −
∫
�

μS

S
(S − S0)2dx −

∫
�

(1 − �0)u1(t, x)dx ≤ 0 if �0 ≤ 1.

Hence, {E0} is the largest invariant set such that
∂LE0 (t)

∂t = 0 and it follows from invariance
principle [48] that E0 is globally attractive.

Theorem 6.2 E∗ is GAS provided that �0 > 1.

Proof Let �(a) and ϒ(b) be some functions to be determined later. Define

LE∗ (t) =
∫
�

[V S(t, x) + V i(t, x) + V p(t, x)]dx,

where

V S = G[S, S∗], V i =
∫ ∞

0
�(a)G[i(t, a, x), i∗(a)]da, V p =

∫ ∞

0
ϒ(a)G[p(t, b, x), p∗(b)]db,

By direct calculation, one has that

∂V S

∂t
= d1

S − S∗

S
�S − μS

S
(S − S∗)2 + i(t, 0, x)

S∗

S
+ i∗(0) − i(t, 0, x) − i∗(0)

S∗

S
. (6.6)
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Note that

V i =
∫ t

0
�(t − a)G[m1, n1]dyda +

∫ ∞

0
�(t + a)G[m2, n2]dyda.

where

m1 =i(t − a)
∫
�

�2(t − a, x, y)i(a, 0, y)dy, n1 = i∗(t − a),

and

m2 = i(t + a)

i(a)

∫
�

�2(t, x, y)φ2(a, y)dy, n2 = i∗(t + a).

Recalling that i∗(a) = i∗(0)i(a) and i(0) = 1, we have

∂V i(t, x)

∂t
= �(0)G

[ ∫
�

�2(0, x, y)i(a, 0, y)dy, i∗(0)

]
+

∫ t

0

d�(t − a)

dt
G[m1, n1]da

+
∫ ∞

0

d�(t + a)

dt
G[m2, n2]da

+
∫ t

0
�(t − a)

{[
(t − a)

∫
�

∂�2(t − a, x, y)

∂t
i(a, 0, y)dy

− [μi + θ (t − a)]m1

]
∂G [m1, n1]

∂m1
− [μi + θ (t − a)]i∗(t − a)

∂G [m1, n1]

∂n1

}
da

+
∫ ∞

0
�(t + a)

{[
i(t + a)

i(a)

∫
�

∂�2(t, x, y)

∂t
φ2(a, y)dy

− [μi + θ (t + a)]m2

]
∂G [m2, n2]

∂m2
− [μi + θ (t + a)]i∗(t + a)

∂G [m2, n2]

∂n2

}
da.

It follows from m ∂G[m,n]
∂m + n ∂G[m,n]

∂n = G[m, n] that

∂V i(t, x)

∂t
=�(0)G

[ ∫
�

�2(0, x, y)i(a, 0, y)dy, i∗(0)

]

+
∫ ∞

0

[
�′(a) − [μi + θ (t − a)]�(a)

]
G[i(t, a, x), i∗(a)]da

+
∫ t

0
�(t − a)

[
(t − a)

∫
�

∂�2(t − a, x, y)

∂t
i(a, 0, y)dy

]
∂G [m1, n1]

∂m1
da

+
∫ ∞

0
�(t + a)

[
i(t + a)

i(a)

∫
�

∂�2(t, x, y)

∂t
φ(a, y)dy

]
∂G [m2, n2]

∂n2
da.

Define the semigroup (T(0)[φ])(x) = ∫
�
�2(0, x, y)φ(y)dy as the unit semigroup and note that

∂�2
∂t = d2��2, ∂G[m,n]

m = 1 − n
m . One has that
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∂V i(t, x)

∂t
=�(0)G[i(t, 0, x), i∗(0)] +

∫ ∞

0
�(a)d2�i(t, a, x)

[
1 − i∗(a)

i(t, a, x)

]
da

+
∫ ∞

0

[
d�(a)

da
− [μi + θ (a)]�(a)

]
G[i(t, a, x), i∗(a)]da.

(6.7)

Similarly,

V p =
∫ t

0
ϒ(t − b)G

[
p(t − b)

∫
�

�3(t − b, x, y)p(a, 0, y)dy, p∗(t − b)

]
db

+
∫ ∞

0
ϒ(t + b)G

[
p(t + b)

p(b)

∫
�

�3(t, x, y)φ3(b, y)dy, p∗(t + b)

]
db.

Hence,

∂V p(t, x)

∂t
=ϒ(0)G[p(t, 0, x), p∗(0)] +

∫ ∞

0
ϒ(b)d3�p(t, b, x)

[
1 − p∗(b)

p(t, b, x)

]
db

+
∫ ∞

0

[
dϒ(b)

db
− [μp + δ(b) − d3�]ϒ(b)

]
G[p(t, b, x), p∗(b)]db.

(6.8)

Further, we let ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϒ(b) = 1

p(b)

∫ ∞

b
S∗β2(ς )p(ς )dς ,

�(a) = 1

i(a)

∫ ∞

a
[S∗β1(ϑ) +�(0)ξ (ϑ)]i(ϑ)dϑ .

(6.9)

It then follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϒ(b)[μp + δ(b)] −ϒ ′(b) = S∗β2(b),

�(a)[μi + θ (a)] −�′(a) = S∗β1(a) +ϒ(0)ξ (a),

ϒ(0) =
∫ ∞

0
S∗β2(ς )p(ς )dς = S∗Q,

�(0) =
∫ ∞

0
[S∗β1(ϑ) +ϒ(0)ξ (ϑ)]i(ϑ)dϑ = S∗K+ S∗QL= 1,

(6.10)

where K, Q and L are defined in (3.9). Hence, we have

∂V i(t, x)

∂t
= G[i(t, 0, x), i∗(0)] +

∫ ∞

0
�(a)d2�i(t, a, x)

[
1 − i∗(a)

i(t, a, x)

]
da

−
∫ ∞

0
[S∗β1(a) + S∗Qξ (a)]G[i(t, a, x), i∗(a)]da,

(6.11)

and

∂V p(t, x)

∂t
= S∗QG[p(t, 0, x), p∗(0)] +

∫ ∞

0
ϒ(b)d3�p(t, b, x)

[
1 − p∗(b)

p(t, b, x)

]
db

−
∫ ∞

0
S∗β2(b)G[p(t, b, x), p∗(b)]db. (6.12)
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Let

Ŵ (t, x) = V S + V i + V p.

Together with (6.6), (6.11) and (6.12), which implies that

∂Ŵ (t, x)

∂t
= W0 − i∗(0)

S∗

S
+ i(t, 0, x)

S∗

S
+

∫ ∞

0
[S∗β1(a) − S∗Qξ (a)]G[i(t, a, x), i∗(a)]da

+ S∗QG[p(t, 0, x), p∗(0)] − i∗(0) ln
i(t, 0, x)

i∗(0)
−

∫ ∞

0
S∗β2(b)G[p(t, b, x), p∗(b)]db,

(6.13)

where

W0 = d1
S − S∗

S
�S − μS

S
(S − S∗)2 +

∫ ∞

0
�(a)d2�i(t, a, x)

[
1 − i∗(a)

i(t, a, x)

]
da

+
∫ ∞

0
ϒ(b)d3�p(t, b, x)

[
1 − p∗(b)

p(t, b, x)

]
db.

With the help of the third and fifth equations of (1.5) and using the equilibrium condition, one
has that

∂Ŵ (t, x)

∂t
=W0 + S∗

∫ ∞

0
β1(a)i∗(a)

[
1 − S∗

S
+ ln

i(t, a, x)

i∗(a)
− ln

i(t, 0, x)

i∗(0)

]
da

+ S∗
∫ ∞

0
β2(b)p∗(b)

[
1 − S∗

S
+ ln

p(t, b, x)

p∗(b)
− ln

i(t, 0, x)

i∗(0)

]
db

+ S∗Q
∫ ∞

0
ξ (a)i∗(a)

[
ln

i(t, a, x)

i∗(a)
− ln

p(t, 0, x)

p∗(0)

]
da.

(6.14)

By simple calculation, we can obtain the following zero tricks:

S∗Q
∫ ∞

0
ξ (a)i∗(a)

[
1 − i(t, a, x)p∗(0)

i∗(a)p(t, 0, x)

]
da = 0,

and

S∗
∫ ∞

0
β1(a)i∗(a)

[
1 − Si∗(0)i(t, a, x)

S∗i(t, 0, x)i∗(a)

]
da + S∗

∫ ∞

0
β2(b)p∗(b)

[
1 − Si∗(0)p(t, b, x)

i(t, 0, x)p∗(b)

]
db = 0,

Then, we can rewrite (6.14) as:

∂Ŵ (t, x)

∂t
=W0 + S∗

∫ ∞

0
β1(a)i∗(a)

[
1 − S∗

S
+ ln

S∗

S
+ 1 − Si∗(0)i(t, a, x)

S∗i(t, 0, x)i∗(a)
+ ln

Si∗(0)i(t, a, x)

S∗i(t, 0, x)i∗(a)

]
da

+ S∗
∫ ∞

0
β2(b)p∗(b)

[
1 − S∗

S
+ ln

S∗

S
+ 1 − Si∗(0)p(t, b, x)

S∗i(t, 0, x)p∗(b)
+ ln

Si∗(0)p(t, b, x)

S∗i(t, 0, x)p∗(b)

]
db

+ S∗Q
∫ ∞

0
ξ (a)i∗(a)

[
1 − i(t, a, x)p∗(0)

i∗(a)p(t, 0, x)
+ ln

i(t, a, x)p∗(0)

i∗(a)p(t, 0, x)

]
da.

(6.15)
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Consequently, we integrate (6.15) over � to get

dLE∗ (t)

dt
= − dSS∗

∫
�

|∇S(t, x)|2
S2(t, x)

dx −
∫
�

∫ ∞

0
�(a)d2i∗(a)

|∇i(t, a, x)|2
i2(t, a, x)

dadx

−
∫
�

∫ ∞

0
ϒ(b)d3p∗(b)

|∇p(t, b, x)|2
p2(t, b, x)

dbdx

−
∫
�

μS

S
(S − S∗)2dx + S∗

∫
�

∫ ∞

0
β1(a)i∗(a)

[
g

(
S∗

S

)
+ g

(
Si∗(0)i(t, a, x)

S∗i(t, 0, x)i∗(a)

) ]
dadx

+ S∗
∫
�

∫ ∞

0
β2(b)p∗(b)

[
g

(
Si∗(0)p(t, b, x)

S∗i(t, 0, x)p∗(b)

)
+ g

(
S∗

S

) ]
dbdx

+ S∗Q
∫
�

∫ ∞

0
ξ (a)i∗(a)

[
g

(
i(t, a, x)p∗(0)

i∗(a)p(t, 0, x)

) ]
dadx

≤ 0,

where g(s) = 1 − s + ln s, s ∈R+ possesses the properties that g(s) ≤ 0 when s> 0 and g(s)
reaches the global minimum 0 at s = 1. It can be verified that {E∗} is the largest invariant set
such that L′

E∗ (t) = 0. From [48], we finish the proof.

7 Conclusion

This paper focus on the dynamics of the cholera model with infection age-space structure. By
using the reaction–diffusion model formulation, the mobility of human populations, the spatial
dispersal of vibrios and the infection-age structure of vibrio cholerae and infectious individuals
are incorporated into the model to describe the vibrio cholerae transmission in a general domain.
Our main task is studying the dynamics for the model. Thanks to the Banach–Picard fixed point
theorem, we are able to show the existence and uniqueness of solution for the model on t ∈
[0, tmax) ×� with tmax <∞. The positivity and boundedness for such solution are confirmed by
way of contradiction. Hence, the model in the current paper has a unique global non-negative
classical solution in C([0, +∞), X) (see Theorem 2.1). We introduce the BRN �0 by the theory
developed in [18], and we found that the spectral radius of NGO K is �0. Further, with the
help of Ascoli–Arzelá theorem, we have verified that K is strictly positive and compact (see
Lemma 4), which allows us to use Krein–Rutman theorem to get the explicit expression of �0

(see (3.8)). Our model (2.3) with (2.6) and (2.7) possesses two space-independent equilibria:
disease-free equilibrium E0 and endemic equilibrium E∗.

Our results imply that, despite the introduction of the spatial dispersal of vibrios and the mobil-
ity of human populations, �0 still is the sharp threshold for cholera dynamics: (i) if �0 < 1, then
E0 is LAS (see (i) of Theorem 4.1); (ii) If �0 > 1, then E∗ is LAS (see (ii) of Theorem 4.1); (iii) If
�0 > 1, strong | · |X-persistence is confirmed; (iv) If �0 < 1, then E0 is GAS (see Theorem 6.1);
(v) If �0 > 1, then E∗ is LAS (see Theorem 6.2). We proved the (i) and (ii) by checking the dis-
tribution of roots of characteristic equations. (iii) is verified based on the weak | · |X-persistence
of the disease and the way of contradiction. We proved (iv) and (v) by constructing Lyapunov
functions. Biologically, (i) and (iv) imply that the disease dies out, and (ii), (iii) and (v) imply that
disease will persist in the long time. In summary, �0 plays the role in determining the dichotomy
of disease persistence and extinction.
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