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Lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at
moderate Reynolds numbers, on flows in simple cubic, face-centred cubic and random
arrays of spheres. The drag force on the spheres, and hence the permeability of the
arrays, is calculated as a function of the Reynolds number at solid volume fractions
up to the close-packed limits of the arrays. At Reynolds numbers up to O(102), the
non-dimensional drag force has a more complex dependence on the Reynolds number
and the solid volume fraction than suggested by the well-known Ergun correlation,
particularly at solid volume fractions smaller than those that can be achieved in
physical experiments. However, good agreement is found between the simulations
and Ergun’s correlation at solid volume fractions approaching the close-packed limit.
For ordered arrays, the drag force is further complicated by its dependence on the
direction of the flow relative to the axes of the arrays, even though in the absence
of fluid inertia the permeability is isotropic. Visualizations of the flows are used to
help interpret the numerical results. For random arrays, the transition to unsteady
flow and the effect of moderate Reynolds numbers on hydrodynamic dispersion are
discussed.

1. Introduction
In the accompanying paper (Hill, Koch & Ladd 2001), we examined the first

effects of fluid inertia on flows in ordered and random arrays of spheres. The small
inertial correction to the Stokes-flow drag force on the spheres was shown to be
proportional to the cube of the average fluid velocity. This scaling contrasts with
the quadratic dependence to be expected at larger Reynolds numbers from typical
scaling arguments and experimental studies of flow in porous media. In this work, we
use lattice-Boltzmann simulations to examine the transition from small- to moderate-
Reynolds-number flow in ordered and random arrays of spheres. Reynolds numbers
up to O(100) are achieved. For close-packed random arrays, the simulations are
compared to experimental results in the literature.

Simulations of flows in fixed beds of spheres with solid volume fractions below the
close-packed limit are helpful for understanding how fluid inertia affects sedimenting
suspensions and fluidized beds, especially those for which the Stokes number is large.
This motivates our examination of flows in fixed beds of spheres with relatively small
solid volume fractions. From the simulations presented in this work, we obtain an
empirical equation for the rate at which the average drag force on the spheres in fixed
random arrays increases with the Reynolds number. This correlation is valid for solid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

59
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005936


244 R. J. Hill, D. L. Koch and A. J. C. Ladd

volume fractions in the range 0.1–0.64, and may be applicable to high-Stokes-number
sedimenting suspensions and fluidized beds, when the Reynolds number based on the
mean settling velocity is in the approximate range 30–100. We also examine, in some
detail, flows in ordered arrays of spheres to help understand the inertial hydrodynamic
interactions in random arrays. The relatively simple geometry of simple cubic and face-
centred cubic arrays allows the topology of the flow fields to be easily visualized when
the flow is directed along planes of symmetry.

Visualizing the flows not only helps to interpret the numerical results – for the
dependence of the drag force on the Reynolds number and the solid volume fraction,
for example – but also helps to explain how the fluid velocity field, modified by the
effects of fluid inertia, may affect hydrodynamic dispersion at large Péclet numbers.
Regions of fluid bounded by closed streamlines, for example, have been shown
by Koch & Brady (1985) to make a hold-up contribution to the overall effective
hydrodynamic diffusivity of a passive tracer that is O(Pe2) larger than the molecular
diffusivity when Pe� 1. Here, Pe = |〈u〉|a/Dm = Re ν/Dm is the Péclet number, where
Dm is the molecular diffusivity of the tracer in the fluid. In contrast, the dispersion
due to open streamlines in random arrays, and off-axis flows in ordered arrays of
spheres, grows much more slowly with the Péclet number (Koch & Brady 1989).
Therefore, identifying the presence of recirculating flow at finite Reynolds numbers
will indicate, at least qualitatively, to what extent hold-up dispersion may affect the
effective hydrodynamic diffusivity.

The complex geometry of porous media and the nonlinear term in the Navier–
Stokes equations make the theoretical and computational analysis of moderate-
Reynolds-number flows particularly difficult. For randomly packed beds of particles,
the dependence of the non-dimensional drag force, F , on the Reynolds number,
Re, and the solid volume fraction, c, has been established experimentally, with an
accuracy that is adequate for engineering design purposes. Perhaps the most well-
known formula for predicting the pressure drop in randomly packed beds is the
Ergun correlation (Ergun 1952).

Ergun’s correlation is based on the approximation that the drag force on the
particles in randomly packed beds is equal to the sum of a viscous force, proportional
to the average velocity, and an inertial force, proportional to the square of the average
velocity. The coefficients of these terms depend on the solid volume fraction, and the
particle shape and size distributions. For a monodisperse packed bed of spheres,
Ergun’s correlation can be written in the form

F = 8.33c/(1− c)3 + 0.18Re/(1− c)3, (1)

where the first term on the right-hand side has the same form as the well-known
Carman correlation (Carman 1937) for Stokes flow in randomly packed beds of
spheres. Note that the leading coefficient in the Carman correlation is 10.0 rather
than 8.33, and hence Ergun’s correlation necessarily under-predicts the Stokes-flow
drag force by approximately 17%. This is presumably to achieve a better fit of the
correlation to experimental results at finite Reynolds numbers. Details of Ergun’s
experiments will be elaborated below, but first we review more recent numerical and
experimental studies of moderate-Reynolds-number flows in porous media.

Numerical simulations have helped in understanding the effects of fluid inertia on
flows in two-dimensional porous media (Rojas & Koplik 1998; Andrade et al. 1997;
Ghaddar 1995; Edwards et al. 1990; Eidsath et al. 1983). Koch & Ladd (1997) used
a lattice-Boltzmann method to facilitate a comprehensive study of transverse flows
in two-dimensional ordered and random arrays of aligned cylinders. At moderate
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Reynolds numbers, when the flow is directed along the primary axis of a square array
of cylinders, recirculating flow in the gaps between the cylinders significantly reduces
the inertial (form drag) contribution to the total drag force. Under these conditions,
the non-dimensional drag force increases relatively slowly with the Reynolds number.
However, when the average pressure gradient is directed away from the primary axis,
recirculating flow is unable to span the gaps between the cylinders. Under these condi-
tions, the non-dimensional drag force increases much more rapidly with the Reynolds
number, because the largest contribution to the drag force is due to fluid inertia.

Simulations of three-dimensional finite-Reynolds-number flows in porous media
have been performed only for limited ranges of the solid volume fraction and the
Reynolds number. Maier et al. (1998) performed lattice-Boltzmann simulations of
Stokes flows and finite-Reynolds-number flows in randomly packed beds of spheres.
The permeability of a cylindrical randomly packed bed of spheres with a solid
volume fraction of 0.568 (packing P1 in their paper) was calculated at six Reynolds
numbers up to approximately 6. Although they did not compare the dependence of the
permeability on the Reynolds number with Ergun’s correlation, their results suggest
that F = 68.6 + 0.500Re2 when Re < 2 and F = 66.9 + 1.68Re when 2 < Re < 6,
whereas Ergun’s correlation at this solid volume fraction gives F = 58.7+2.23Re. The
large difference between the coefficient of Re obtained from these simulations and
Ergun’s correlation have yet to be explained. Note that, in the absence of fluid inertia,
Maier et al.’s simulations are in good agreement with F = 70.5 given by the Carman
correlation at this solid volume fraction. We will see that the apparent discrepancy
at finite Reynolds numbers is not due to inaccurately computing the effects of fluid
inertia. Instead, we find that the difference is due to the increased sensitivity of the
average drag force to the microstructure of the underlying sphere packing.

It is interesting to note that the form of Ergun’s equation, as written above,
suggests that at large solid volume fractions the transition from Re2 to Re scaling
occurs over a small range of Reynolds numbers. This is not necessarily true at small
solid volume fractions, as might be concluded when considering the case of a single
sphere in an unbounded fluid. In this case, the flow topology continues to develop
with increasing Reynolds number, and F does not increase linearly with Re in any
range of moderate Reynolds numbers (Clift, Grace & Weber 1978). This suggests
that the range of Reynolds numbers where the inertial contribution to F undergoes a
transition from Re2 to Re scaling must diminish with increasing solid volume fraction.
As discussed below, and demonstrated by the results presented in later sections, such
a transition may be associated with a changing flow topology.

Inertial wakes behind the spheres in dilute random arrays cannot extend further
than an O(ac−1) distance downstream without being obstructed by another sphere.
This is not the case for dilute simple cubic arrays, because, for certain directions of
the flow, the wakes may extend much further downstream. Nevertheless, when the
wakes are obstructed by downstream spheres, the velocity field may be expected to
remain approximately self-similar with increasing Reynolds number, particularly at
larger solid volume fractions. Then, since according to Bernoulli’s equation pressure
differences at large Reynolds numbers scale with the square of the average velocity,
the non-dimensional drag force would increase linearly with the Reynolds number,
which is indeed what Ergun’s correlation suggests. However, as the distance between
the spheres decreases, smaller Reynolds numbers would be required for a self-similar
velocity field to develop, and hence the range of Reynolds numbers where the
transition occurs would diminish with increasing solid volume fraction. The simulation
results presented in this work show that this is indeed the case.
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More recently, Fand et al. (1987) measured the permeability of a cylindrical packed
bed of approximately monodisperse spheres at Reynolds numbers up to approximately
200. Their results confirm the transition from a Re2 to Re dependence of the inertial
contribution to F at small Reynolds numbers. At larger Reynolds numbers, they find
F = 145 + 4.70Re for 2.5 < Re < 40 and F = 156 + 4.62Re when Re > 60. The
decrease in the coefficient of Re, which occurs in the range of Reynolds numbers
40–60, was attributed to the onset of unsteady flow, although they did not mention
how or whether unsteady flow was actually identified. Nevertheless, the coefficient
of Re at Reynolds numbers where F increases linearly with Re is almost 20%
greater than given by Ergun’s correlation, which at this solid volume fraction gives
F = 118 + 3.96Re. Note that Carman’s correlation for the Stokes-flow drag force
gives F = 141, which is much closer to that measured by Fand et al. The results of
simulations presented in § 5 go some way toward explaining these observations, as
well as identifying the approximate Reynolds numbers beyond which unsteady flow
in random arrays of spheres persists at long times.

The lattice-Boltzmann method and our simulation methodology, including the
generation of the sphere packings and details of the ensemble averaging, are explained
in the accompanying paper (Hill et al. 2001). Nevertheless, to allow this paper to be
reasonably self-contained, a brief description of the important parameters is given
in the following section. Simulation results for moderate-Reynolds-number flows in
face-centred, simple-cubic, and random arrays of spheres are presented in §§ 3, 4 and
5, respectively. These are followed by a summary of the results in § 6.

2. Simulation methodology
Details of the lattice-Boltzmann method and our computational methodology, be-

yond the slightly condensed description given here, may be found in §§ 2 and 3,
respectively, of the accompanying paper (Hill et al. 2001). Note that all dimensional
quantities, with the exception of the sphere radii and the size of the computational do-
mains, are absorbed into the Reynolds number and dimensionless drag force, defined
below. Lengths are measured in lattice units, with one lattice unit being the closest
distance between the neighbouring nodes of the underlying cubic computational grid.

The porous media considered in this work are fixed periodic arrays of impermeable
spheres with solid volume fractions

c = n(4/3)πa3 = ns(4/3)π(a/L)3, (2)

where n is the sphere number density, a is the sphere radius, and ns is the number of
spheres enclosed in the typically cubic computational domains whose volume is L3.
For simple cubic and face-centred cubic arrays of spheres, ns = 1 and 4, respectively.
For random arrays of spheres, ns must be sufficiently large to minimize artifacts and
statistical fluctuations coming from the finite size of the computational domain. In
practice, ns is chosen to be large enough to avoid periodic artifacts, and statistical
uncertainty is reduced by ensemble averaging the results from nc random sphere
configurations.

Occasionally, only one or two random configurations were used to compute en-
semble averages, particularly for computations requiring a large sphere radius and a
large number of spheres in the computational domain. Under these conditions, the
statistical error cannot be guaranteed to be sufficiently small. However, if the spheres
in each random configuration are independent of one another, the standard error is
expected to be inversely proportional to (nsnc)

1/2, and hence the statistical variation
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coming from the small number of random configurations is expected to be small when
ns is large. The error bars used in presenting ensemble-averaged quantities indicate
the standard error in the mean values.

The pressure and fluid velocity are governed by the incompressible Navier–Stokes
equations, with the no-slip boundary condition at the sphere surfaces and periodic
boundary conditions at the bounds of the computational domain. The fluid is typically
accelerated from rest by a constant body force, which is equivalent to applying a
constant average pressure gradient to the fluid.

The Reynolds number is defined as

Re = |〈u〉|a/ν, (3)

where ν is the fluid kinematic viscosity and 〈u〉 is the spatially averaged velocity,
which includes the volume occupied by the spheres.

At finite Reynolds numbers, the average velocity is not necessarily in the same
direction as the average pressure gradient. In this work, flows are considered for
which the applied body force is directed at an angle θp from the x-axis in the (x, y)-
plane. For simple cubic and face-centred cubic arrays of spheres, the average velocity
lies in the (x, y)-plane, but at an angle θu = arctan (〈uy〉/〈ux〉) from the x-axis.

The non-dimensional drag force is defined as

F = |〈f〉|/(6πµa|〈u〉|), (4)

where 〈f〉 is the average drag force on the spheres. The denominator on the right-hand
side of (4) is the Stokes drag force on a single sphere in an unbounded fluid, and
hence positive deviations of F from unity indicate the contribution of hydrodynamic
interactions (finite solid volume fraction) and fluid inertia (finite Reynolds number)
to the magnitude of the average drag force.

At moderate Reynolds numbers, the spatial structure of the velocity field depends
strongly on the solid volume fraction, the Reynolds number itself, and, for ordered
arrays, the direction of the average pressure gradient relative to the axes of the arrays.
In general, the dependence of the drag force on these parameters cannot be quantified
by theoretical or heuristic scaling relationships. Nevertheless, it is helpful to consider
the drag force as the sum of contributions from viscous and inertial stresses.

The viscous and inertial contributions are taken to be approximately proportional
to the average velocity and the square of the average velocity, respectively, as might
be expected based on simple scaling arguments. It follows that the viscous and
inertial contributions to F are approximately independent of the Reynolds number
and proportional to the Reynolds number, respectively. While this simplification is
a good approximation for moderate-Reynolds-number flows in close-packed random
arrays of spheres (Ergun 1952), nonlinear effects coupled with the ordered structure
of simple cubic arrays – and to a lesser extent, face-centred cubic arrays – restrict its
use to small ranges of the Reynolds number.

The magnitude of ∂F/∂Re at a given Reynolds number is used to indicate, at least
qualitatively, the relative contribution of fluid inertia to the drag force. At the largest
Reynolds numbers considered in this work, F often increases approximately linearly
with the Reynolds number, and hence equations of the form

F = F2(c) + F3(c, θu)Re (5)

are fitted to simulation results. The magnitude of F3 will be used to quantitatively
compare simulations with different sphere configurations, solid volume fractions and,
for ordered arrays, flow directions.
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Figure 1. The inertial contribution to the non-dimensional drag force on the spheres in face-centred
cubic arrays, with a nominal solid volume fraction of 0.3, as a function of the Reynolds number when
the average pressure gradient is directed along the x-axis. The symbols are from lattice-Boltzmann
simulations with (a, c) = (6.8, 0.300) (◦), (7.8, 0.294) (�), (8.8, 0.291) (�), (10.8, 0.285) (4),
(12.8, 0.318) (/) and (16.8, 0.303) (O), where a is in lattice units. The lines are the equations
F − F0 = 0.042Re2 and F − F0 = 1.25 + 0.107Re.

3. Face-centred cubic arrays
To determine how the grid resolution affects the dependence of F on the Reynolds

number, simulations of finite-Reynolds-number flows in face-centred cubic arrays of
spheres with sphere radii in the range 6.8–16.8 lattice units were performed. To reduce
the computational cost, a single nominal solid volume fraction of 0.3 was chosen and
the average pressure gradient was directed only along the x-axis. This solid volume
fraction was chosen based on a compromise between the long time that it takes for
the fluid velocity to reach steady state at small solid volume fractions and the larger
number of lattice nodes required to accurately resolve velocity gradients at large solid
volume fractions.

Figure 1 shows the inertial contribution to F , i.e. F − F0, where F0 is the non-
dimensional Stokes-flow drag force, as a function of the Reynolds number for various
sphere radii. This way of plotting the results helps to eliminate the effect of small
differences in the solid volume fraction amongst the simulations with different sphere
radii. Since ∂F/∂Re increases with the solid volume fraction, the effect of the slightly
different solid volume fractions is most apparent at the largest Reynolds numbers.

Nevertheless, even at the largest Reynolds numbers, all the simulations, except,
perhaps, those with a sphere radius of 6.8 or 7.8 lattice units, are in reasonable
agreement with each other. The exceptional cases have an ostensibly larger drag force
than obtained from the simulations with larger sphere radii, even when allowing for
the different solid volume fractions.

With these relatively small sphere radii, the expected quadratic convergence of
the lattice-Boltzmann method with increasing grid resolution is not observed. This
is because a small change in the sphere radius changes the shapes of the spheres,
giving rise to changes in the drag force that are comparable to those coming from
the changing grid resolution. Nevertheless, such variations are small, and hence the
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(a) (b)

Figure 2. Streamlines, visualized on different planes, of a steady flow along the x-axis of a
face-centred cubic array of spheres with (c, a, Re, F) = (0.318, 12.8, 94.4, 26.4), where a is in lattice
units. The unit normals of the planes on which the streamlines are shown are (a) (0, 1, 0) and

(b) −(1/
√

2) (0,−1, 1).

accuracy of the simulations is reasonable over a wide range of sphere radii. For
example, the maximum difference between F − F0 amongst the simulations with
sphere radii greater than 6.8 lattice units is approximately 10%, and the maximum
difference in ∂F/∂Re, at the largest Reynolds numbers where F−F0 increases linearly
with Re, is approximately 13%. For reference, the simulations with the largest sphere
radius of 16.8 lattice units and a solid volume fraction of 0.303 give F3 = 0.107 when
Re > 40.

Figure 2 shows streamlines of a steady flow with a Reynolds number of 94.4
in a face-centred cubic array of spheres with a solid volume fraction of 0.318.
The streamlines in the plane shown in (a) indicate the presence of recirculating
flow attached to the rear of the spheres. While the recirculation in (a) is similar
in appearance to the annular vortex attached to the rear of a single sphere in an
unbounded fluid (Taneda 1956), (b), together with the fact that the flow is invariant to
rotations of π/2 about the x-axis, shows that it is actually composed of four smaller
recirculating flows.

In figure 2, and in those that follow, each streamline begins at a node of a uniform
square grid lying in a plane whose unit normal is specified in the accompanying
figure caption. The planes on which the streamlines are shown are chosen so there are
no components of the fluid velocity normal to the plane. Therefore, the streamlines
remain on the plane from which they originate, making them considerably easier to
visualize. The spheres appear with a much courser surface than they actually have.
This is simply due to the surfaces being identified in the visualizations by lattice
nodes where the velocity is identically zero, whereas the boundary nodes that define
the surfaces in the computations are actually halfway between lattice nodes.

Figure 3 shows the non-dimensional drag force on the spheres in face-centred cubic
arrays as a function of the Reynolds number when the average pressure gradient
is directed along the x-axis. Over this range of solid volume fractions, 0.48–0.698,
∂F/∂Re and F increase rapidly with the solid volume fraction. Fitting equations of
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0 50 100 150
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F
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Figure 3. The non-dimensional drag force on the spheres in face-centred cubic arrays as a
function of the Reynolds number for various solid volume fractions when the average pressure
gradient is directed along the x-axis. The symbols are from lattice-Boltzmann simulations with
(a, c) = (20.8, 0.480) (◦), (20.8, 0.633) (�), (30.8, 0.629) (�) and (20.8, 0.698) (4), where a is in lattice
units. The lines are equations of the form F = F2 + F3Re, where F2 = 46.3, 192 and 346, and
F3 = 0.205, 1.14 and 11.4, respectively.

the form given by (5) to the simulation results at the largest Reynolds numbers shows
that each increase in the solid volume fraction by approximately 0.1 is accompanied
by an approximately order of magnitude increase in F3, whereas the corresponding
increases in F2 are considerably smaller. Note that ∂F/∂Re tends to decrease with
increasing Reynolds number and the maximum values of ∂F/∂Re occur at Reynolds
numbers of approximately 20.

Figure 4 shows the effect of changing the direction of the average pressure gradient
relative to the axes of the arrays at three relatively large solid volume fractions.
These simulations show that F , while it is not very sensitive to the direction of the
average pressure gradient, increases when the flow is directed away from the x-axis.
The increase of F with θp can be explained by considering the average fluid velocity
in the regions halfway between the spheres in the flow direction. The fluid velocity
there can be used to determine, qualitatively, how F changes with the direction of the
flow. Since, from Bernoulli’s equation, the difference between the pressures upstream
and downstream of the spheres depends on the square of the velocity, the drag force
will increase as the cross-sectional area through which the fluid flows decreases. In
the following description, the cross-sectional area on the plane passing through the
regions between the spheres in the flow direction will be referred to as the relative
cross-sectional area, i.e. the cross-sectional area relative to that in the absence of the
spheres.

For face-centred cubic arrays, a close examination of the geometry shows that the
relative cross-sectional area when the flow is directed along the x-axis is 1− π(a/L)2,

whereas it is 1−√2π(a/L)2 when θp = π/4. The smaller cross-sectional area available
when θp = π/4 corresponds to a larger velocity between the spheres and, hence, a
larger drag force, which is indeed what the simulations show. Similar considerations
for simple cubic arrays of spheres give relative cross-sectional areas of 1 and 1 −
π/
√

2(a/L)2 for θp = 0 and π/4 respectively. Consequently, the drag force on the
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Figure 4. The non-dimensional drag force on the spheres in face-centred cubic arrays as a function
of the Reynolds number for various solid volume fractions and directions of the average pressure
gradient relative to the axes of the arrays. The symbols are from lattice-Boltzmann simulations with
(a, c) = (20.8, 0.633) (�), (20.8, 0.698) (4) and (31.8, 0.739) (O), where a is in lattice units. The open
(fine), open (bold) and filled symbols correspond to θp = 0, π/8 and π/4, respectively, and the solid
and dotted lines are the equations F = 346 + 11.4Re and F = 345 + 15.6Re, respectively.

spheres in simple cubic arrays should also increase when the flow is directed away
from the x-axis. In the next section, this will be shown to be the case. However, for
simple cubic arrays, the increase in F with θp is much greater than for face-centred
cubic arrays. This is because the simple cubic arrangement facilitates the development
of recirculating flow in the gaps between the spheres in the flow direction.

At a solid volume fraction of approximately 0.63, which is close to the close-packed
solid volume fraction for random arrays of spheres, F increases linearly with Re when
the Reynolds number is greater than approximately 40. For example, the simulations
with a solid volume fraction of 0.623 give F3 = 1.3, whereas Ergun’s correlation at this
solid volume fraction gives F3 = 3.5. Therefore, the drag force on the spheres in face-
centred cubic arrays increases much more slowly with the Reynolds number than in
random arrays with the same solid volume fraction, at least when the average pressure
gradient is directed along the x-axis. Recall that the Stokes-flow drag forces on the
spheres in random and ordered arrays are similar, and hence the sphere configuration
affects the drag force considerably more at moderate Reynolds numbers.

Figures 5(a) and 5(b) show streamlines of steady flows in a face-centred cubic
array of spheres when θp = 0 and π/4, respectively. The solid volume fraction is
0.633, which is close to the solid volume fraction of close-packed random arrays of
spheres. When the flow is directed along the x-axis, the velocity field has a similar
structure to that observed by Wegner, Karabelas & Hanratty (1971) in experiments
used to visualize the flow in a close-packed face-centred cubic array of spheres at a
Reynolds number of 41. The most significant difference between the flow visualized
in figure 5(a) and that for a close-packed array is that, because the spheres in figure 5
do not contact one another, there are no saddle points on the upstream sides of the
spheres. Saddle points are points on the sphere surfaces where limiting streamlines
converge and diverge. Wegner et al. (1971) also identified nodes and focal points,
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(a) õp = 0

(b) õp = ð/4

Figure 5. Streamlines, visualized on different planes, of steady flows in a face-centred cubic array
of spheres with (c, a) = (0.633, 20.8), where a is in lattice units: (a) (θp, Re, F) = (0, 61.3, 244);
(b) (θp, Re, F) = (π/4, 58.5, 255). The unit normals of the planes on which the streamlines are shown

are (a) (0, 1, 0) (left), (1/
√

2) (0,−1, 1) (right), and (b) (1/
√

2) (1, 1, 0) (left), (0, 0, 1) (right).

which distinguish other types of singular points in the pattern of limiting streamlines.
Such details are difficult to observe from simulations, since the flow at the sphere
surfaces is least resolved there. Nevertheless, they can be inferred, approximately, by
observing the streamlines away from the surfaces.

Figure 6 shows the drag force on the spheres in a close-packed face-centred
cubic array when the average pressure gradient is directed along the x-axis. The
inertial contribution to F at this large solid volume fraction is proportional to Re2

at Reynolds numbers up to approximately 2.5, and F increases linearly with Re at
Reynolds numbers beyond approximately 10. The simulations give F3 = 11.0, which
is close to 10.4 given by Ergun’s correlation at this solid volume fraction. Although
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Figure 6. The non-dimensional drag force on the spheres in close-packed face-centred cubic arrays
as a function of the Reynolds number when the average pressure gradient is directed along the x-axis.
The symbols are from lattice-Boltzmann simulations with (a, c) = (19.8, 0.741) (◦), (31.8, 0.739) (�)
and (48.8, 0.741) (�), where a is in lattice units. The lines are the equations F = 397 + 0.875Re2

and F = 335 + 11.0Re.

Ergun’s correlation has not been tested experimentally at such a large solid volume
fraction (this would require overlapping spheres or polydispersity), this suggests that
the effects of fluid inertia on the drag force may be relatively independent of the
sphere configuration when the solid volume fraction is sufficiently large. At Reynolds
numbers greater than approximately 30, the spatially averaged velocity of the flows
whose drag force is shown in figure 6 is actually unsteady.

4. Simple cubic arrays
These results cover a wide range of solid volume fractions, Reynolds numbers, and

directions of the average pressure gradient relative to the axes of the arrays. For
almost all of the simulations, the average velocity monotonically approached a steady
state at long times. However, it is possible that if given sufficient time, slowly growing
unstable modes could lead to unsteady flows. In cases where unsteady flow was
detected at long times, the temporally and spatially averaged velocity was practically
the same as that of the unstable steady flow existing before the onset of unsteady
flow. Therefore, the dependence of the drag force on the Reynolds number, at least at
these Reynolds numbers, does not depend very much on whether the flow is steady
or not.

Since the effects of hydrodynamic interactions on the drag force at moderate
Reynolds numbers can be most easily understood by considering moderate-Reynolds-
number flow past a single sphere in an unbounded fluid, simulations with small solid
volume fractions are considered first, followed by those with larger solid volume
fractions.

4.1. Dilute arrays

Figure 7 shows the non-dimensional drag force on the spheres in a simple cubic array,
with a solid volume fraction of 9.59× 10−4 and a sphere radius of 0.734 lattice units,
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Figure 7. The non-dimensional drag force on the spheres in a simple cubic array as a function of
the Reynolds number and the angle between the average pressure gradient and the x-axis in the
(x, y)-plane. The symbols are from lattice-Boltzmann simulations with (c, a) = (9.59 × 10−4, 0.734)
(open) and (1.03 × 10−3, 1.88) (filled), where a is in lattice units: θp = 0 (◦), π/16 (�), π/8 (�),
3π/16 (4) and π/4 (/). The dashed line is for a single sphere in an unbounded fluid (Clift et al.
1978), and the solid line shows the O(Re2) inertial contribution to F when θp = 0.

as a function of the Reynolds number. The various symbols correspond to different
directions of the average pressure gradient relative to the axes of the array. The results
of two simulations with a larger sphere radius of 1.88 lattice units give some indication
of the effect of changing the grid resolution. At a Reynolds number of approximately
7, the resulting change in F is approximately 3%, and in the Stokes-flow limit the
change is even less. The largest Reynolds number shown for each direction of the
average pressure gradient indicates, approximately, the largest Reynolds number for
which numerically stable solutions could be obtained. Simulations with a larger sphere
radius would not only increase the accuracy of the results but would also increase the
maximum Reynolds number that could be achieved. However, the long time that it
takes for the average velocity to reach steady state at this solid volume fraction makes
such computations prohibitively expensive. The time to reach steady state decreases
with increasing Reynolds number, and hence the temporal evolution of the Stokes
flows examined in the accompanying paper (Hill et al. 2001) gives a reliable upper
bound on the time required for these flows to reach steady state.

The range of Reynolds numbers where the inertial contribution to F is proportional
to Re2 is very small. From the theory presented in the accompanying paper (Hill et
al. 2001), this scaling is expected only when ReL � 1, which at this solid volume
fraction corresponds to Re � 0.06. Clearly, this prediction is in good agreement
with the simulations. At much larger Reynolds numbers, the drag force is close
to that on a single sphere in an unbounded fluid, particularly when θp is not too
close to 0 or π/4. Under these conditions, the wakes behind the spheres have weak
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Figure 8. The non-dimensional drag force on the spheres in a simple cubic array as a function of
the Reynolds number and the angle between the average pressure gradient and the x-axis in the
(x, y)-plane. The symbols are from lattice-Boltzmann simulations with (c, a) = (0.0141, 4.8), where a
is in lattice units: θp = 0 (◦), π/16 (�), π/8 (�), 3π/16 (4) and π/4 (/). The dashed line is for a
single sphere in an unbounded fluid (Clift et al. 1978), and the solid line shows the O(Re2) inertial
contribution to F when θp = 0.

interactions with the spheres downstream, and hence fluid inertia decreases the
strength of the hydrodynamic interactions. However, when θp is close to 0 or π/4,
the momentum deficit in the wakes of the spheres interacts strongly with the spheres
directly downstream. The relatively slowly moving fluid between the spheres decreases
the difference between the pressures upstream and downstream of the spheres, and
hence decreases the inertial contribution to the drag force. Note that this shielding
effect does not necessarily require recirculating flow to span the gaps between the
spheres – the Reynolds numbers of these simulations are actually smaller than the
critical Reynolds number of approximately 10 beyond which streamlines separate
from a single sphere in an unbounded fluid (Taneda 1956; Nakamura 1976; Johnson
& Patel 1999). However, at larger solid volume fractions, recirculating flow does play
a significant role in drag reduction.

Figure 8 shows the non-dimensional drag force on the spheres in a simple cubic
array, with a solid volume fraction of 0.0141 and a sphere radius of 4.8 lattice units,
as a function of the Reynolds number for various directions of the average pressure
gradient. The larger sphere radius used for these simulations allows Reynolds numbers
to be achieved where streamlines separate from the spheres and form recirculating
flow. For all directions of the average pressure gradient, the drag force at Reynolds
numbers greater than approximately 20 is smaller than that on a single sphere in an
unbounded fluid. Furthermore, the average velocity is always in practically the same
direction as the average pressure gradient.

Figures 9(a), 9(b) and 9(c) show streamlines and velocity vectors lying in the (x, y)-

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

59
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005936


256 R. J. Hill, D. L. Koch and A. J. C. Ladd

(a) õp = 0 (b) õp = ð/8

(c) õp = ð/4

Figure 9. Streamlines and velocity vectors of steady finite-Reynolds-number flows in a simple cubic
array of spheres with (c, a) = (0.0141, 4.8), where a is in lattice units: (a) (θp, Re, F) = (0, 50.1, 2.30);
(b) (θp, Re, F) = (π/8, 50.0, 3.60); (c) (θp, Re, F) = (π/4, 50.1, 3.00). The unit normal of the plane on
which the streamlines are shown is (0, 0, 1).

plane passing through the sphere centres when θp = 0, π/8 and π/4, respectively. A
large momentum deficit in the wakes of the spheres is apparent in (a) and (c). In
(b), however, the momentum deficit diminishes more rapidly downstream, because of
the large distance to the next sphere in the flow direction, and hence the drag force
is much closer to that on a single sphere in an unbounded fluid. The length of the
recirculating flow is approximately equal to that for a single sphere in an unbounded
fluid at the same Reynolds number (Batchelor 1967) and is practically independent
of the direction of the average velocity.

The foregoing observations, which distinguish moderate-Reynolds-number flows
in dilute arrays from those with larger solid volume fractions, can be summarized
as follows: (i) the recirculating flow in the wakes of the spheres is similar to that
for flow past a single sphere in an unbounded fluid; (ii) the drag force at a fixed
Reynolds number does not increase monotonically with θp; (iii) the drag force at large
Reynolds numbers tends to be smaller than that on a single sphere in an unbounded
fluid; and (iv) the average velocity is in practically the same direction as the average
pressure gradient. These reflect that, while the fluid velocity close to the spheres
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Figure 10. The non-dimensional drag force on the spheres in a simple cubic array as a function of
the Reynolds number and the angle between the average pressure gradient and the x-axis in the
(x, y)-plane. The symbols are from lattice-Boltzmann simulations with (c, a) = (0.201, 17.8) (open)
and (0.200, 9.8) (filled), where a is in lattice units: θp = 0 (◦), π/16 (�), π/8 (�), 3π/16 (4) and
π/4 (/). The solid line shows the O(Re2) inertial contribution to F when θp = 0.

is similar to that for flow past a single sphere in an unbounded fluid, long-range
hydrodynamic interactions decrease the drag force relative to that on a single sphere
in an unbounded fluid. This effect is stronger at larger Reynolds numbers, because
the momentum deficit in the wakes of the spheres extends further downstream.

4.2. Moderate solid volume fractions

At solid volume fractions of 0.0953 and 0.201, the dependence of the drag force on the
Reynolds number and the direction of the average pressure gradient is qualitatively
different to that shown above for dilute arrays. Note that results analogous to all
those shown here for a solid volume fraction of 0.201, but for a solid volume fraction
of 0.0953, can be found in the thesis of Hill (2001).

Figure 10 shows that F , at a given Reynolds number, increases monotonically
with θp. At relatively large Reynolds numbers, F increases almost linearly with Re,
particularly when the average pressure gradient is directed away from the x-axis.
Furthermore, when the average pressure gradient is directed along the x-axis, F
increases much more slowly with the Reynolds number.

Figure 11 shows the angle between the average velocity and the x-axis, at a solid
volume fraction of 0.201, as a function of the Reynolds number. Note that the average
velocity at a solid volume fraction of 0.0953 is in practically the same direction as the
average pressure gradient. However, at a solid volume fraction of 0.201, the average
velocity tends to move away from the x-axis when the Reynolds number is greater
than approximately 10 and the average pressure gradient is not already directed
along the x-axis. The average velocity moves back toward the x-axis as the Reynolds
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Figure 11. The angle between the average velocity and the x-axis in the (x, y)-plane as a function of
the Reynolds number for the simulations whose non-dimensional drag force is shown in figure 10.
The lines show the angle between the average pressure gradient and the x-axis in the (x, y)-plane.

number increases. At the largest Reynolds numbers shown, the average velocity is
not necessarily in the same direction as the average pressure gradient, but tends to
move toward the x-axis. Note that this is the direction in which the drag force is
minimized for a given average velocity.

Figure 12 shows streamlines and velocity vectors of finite-Reynolds-number flows in
a simple cubic array of sphere with a nominal solid volume fraction of 0.2. When the
average pressure gradient is directed along the x-axis, recirculating flow spans the gaps
between the spheres. The volume of recirculating fluid increases with the Reynolds
number, which increases the fore-aft symmetry of the flow about the sphere centres.
This decreases the difference between the pressures upstream and downstream of the
spheres, and therefore decreases the inertial contribution to the drag force relative
to the viscous contribution. Consequently, the drag force increases relatively slowly
with the Reynolds number when the flow is directed along the x-axis, as shown in
figure 10.

When the average pressure gradient is directed away from the x-axis, the momentum
of the fluid flowing around the sides of the spheres prevents recirculating flow from
contacting the spheres directly downstream. At the larger solid volume fraction (see
figure 12), the fluid flowing through the gaps between the spheres undergoes a larger
change in direction. This, together with the asymmetry of the flow about the sphere
centres, increases the difference between the pressures upstream and downstream of
the spheres, and therefore increases the inertial contribution to the drag force. Since,
from Bernoulli’s equation, pressure differences are approximately proportional to the
square of the velocity, F increases approximately linearly with Re when the Reynolds
number is large, as shown in figure 10.

4.3. Dense arrays

Figure 13 shows that, at a solid volume fraction of 0.408, there is a distinctive decrease
in ∂F/∂Re, which occurs at a Reynolds number of approximately 50. However, as
shown in figure 10, at a solid volume fraction of 0.201, there is a distinctive increase
in ∂F/∂Re, which occurs at a Reynolds number of approximately 30. The decrease
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(a) õp = 0

(b) õp = ð/4

Figure 12. Streamlines and velocity vectors of steady flows in a simple cubic array of
spheres with (c, a) = (0.189, 17.8), where a is in lattice units: (a) (θp, Re, F) = (0, 52.5, 7.57);
(b) (θp, Re, F) = (π/4, 52.7, 14.3). The unit normals of the planes on which the streamlines are

shown are (a) (0, 1, 0) (left), (1/
√

2) (0, 1, 1) (right), and (b) (0, 0, 1) (left), (1/
√

2), (1,−1, 0) (right).

in ∂F/∂Re at the larger solid volume fraction suggests that the relative contribution
of viscous stresses to the drag force increases. By examining the velocity fields, this
can be attributed to the smaller characteristic length scale of the more complex flow
that exists at the larger solid volume fraction.

Figure 14 shows streamlines and velocity vectors of finite-Reynolds-number flows
in a simple cubic array of spheres with a nominal solid volume fraction of 0.4 when
θp = 0 and π/4. When the average pressure gradient is directed along the x-axis, there
are four large regions of recirculating flow between the spheres instead of the single
region that was identified in figure 12(a) at a solid volume fraction of 0.189. When
θp = π/4, the fluid flowing through the smallest gaps between the spheres undergoes
a rapid change in direction: the momentum of the fluid exiting the periodic cell, at
least in this region of the flow, is practically perpendicular to its momentum on entry.
Although this also occurs at a solid volume fraction of 0.189 (see figure 12b), there
is a smaller length scale associated with the more complex flow at this solid volume
fraction. Therefore, the smaller scales associated with the more complex flow field
increase the viscous contribution to the drag force, and hence decrease ∂F/∂Re.

Figure 15 shows the non-dimensional drag force on the spheres in a simple cubic
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Figure 13. The non-dimensional drag force on the spheres in a simple cubic array as a function of
the Reynolds number and the angle between the average pressure gradient and the x-axis in the
(x, y)-plane. The symbols are from lattice-Boltzmann simulations with (c, a) = (0.408, 18.8) (open)
and (0.408, 36.8) (filled), where a is in lattice units: θp = 0 (◦), π/16 (�), π/8 (�), 3π/16 (4) and
π/4 (/). The solid line shows the O(Re2) inertial contribution to F when θp = 0.

array, with a solid volume fraction of 0.514, as a function of the Reynolds number
for various directions of the average pressure gradient. At a given Reynolds number,
F increases monotonically with θp, but F changes relatively slowly with the flow
direction when θp is in the range π/8–π/4. Furthermore, F increases approximately
linearly with Re over a wide range of Reynolds numbers, which is typical of moderate-
Reynolds-number flows in dense face-centred cubic and random arrays of spheres.

At this relatively large solid volume fraction, F3 obtained from the simulations at the
largest Reynolds numbers can be compared to that given by Ergun’s correlation (1)
for dense random arrays. Such a comparison is complicated by the fact that the drag
force on the spheres in cubic arrays depends on the direction of the average pressure
gradient relative to the axes of the arrays. From the simulations shown in figure 15,
F3 spans the range 0.12–2.6 as θp increases from 0 to π/4. However, averaging F3 over
the five directions of the average pressure gradient shown in figure 15 gives 1.7, which
is close to 1.6 given by Ergun’s correlation at this solid volume fraction. This rather
crude estimate is based on only considering those directions where the average velocity
lies in the (x, y)-plane. Nevertheless, it does show that the interactions between the
spheres in dense random arrays may be dominated by the interaction of each sphere
with its nearest neighbours. In the next section, where moderate-Reynolds-number
flows in random arrays of spheres are examined, Ergun’s correlation is compared to
simulations over a wide range of solid volume fractions.

Figure 16 shows the angle between the average velocity and the x-axis as a function
of the Reynolds number. At this solid volume fraction, there is a strong tendency for
the average velocity to move toward the closer of the two directions corresponding
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(a) õp = 0

(b) õp = ð/4

Figure 14. Streamlines and velocity vectors of steady flows in a simple cubic array of
spheres with (c, a) = (0.376, 18.8), where a is in lattice units: (a) (θp, Re, F) = (0, 68.8, 24.6); (b)
(θp, Re, F) = (π/4, 60.0, 51.6). The unit normals of the planes on which the streamlines are shown

are (a) (0, 1, 0) (left), (1/
√

2) (0,−1, 1) (right), and (b) (0, 0, 1) (left), (1/
√

2) (1,−1, 0) (right).

to θu = 0 and π/4. In these directions, the flows have symmetries that are otherwise
broken when 0 < θu < π/4, and, unlike at smaller solid volume fractions, θu = π/4
corresponds to a local minimum in the drag force at a given Reynolds number.
Furthermore, these simulations show that θu = 0 minimizes the drag force at any
given Reynolds number and solid volume volume fraction.

When θp is close to π/4, at this solid volume fraction, the average velocity becomes
unsteady at relatively small Reynolds numbers. Unsteady flows are indicated by the
bold open symbols in figures 15 and 16. The unsteady behaviour, which developed
after the flows first reached a practically steady state, shows that the apparently
steady solutions were in fact unstable. In general, the transition to unsteady flow and
the ensuing dynamics depend on the initial conditions and perturbations that may
be applied to the unstable steady base state. The enhanced stability when the flow
is directed along the x-axis is presumably related to the symmetries, the presence of
straight-line trajectories, and the fact that the drag force is least there.

Figure 17 shows streamlines and velocity vectors of finite-Reynolds-number flows
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Figure 15. The non-dimensional drag force on the spheres in a close-packed simple cubic array as a
function of the Reynolds number and the angle between the average pressure gradient and the x-axis
in the (x, y)-plane. The symbols are from lattice-Boltzmann simulations with (c, a) = (0.514, 32.8)
(open) and (0.510, 22.8) (filled), where a is in lattice units: θp = 0 (◦), π/16 (�), π/8 (�), 3π/16
(4) and π/4 (/). The solid line shows the O(Re2) inertial contribution to F when θp = 0, and the
dotted and dashed lines are the equations F = 47.1 + 0.118Re and F = 22.1 + 2.60Re, respectively.
The bold open symbols show time-averaged values for flows that were unsteady at long times.

in a close-packed simple cubic array of spheres when θp = 0 and π/4. In contrast to
the visualizations above with smaller solid volume fractions, there are large regions
between the spheres where fluid moves slowly upstream. When the flow is directed
along the x-axis, the straight-line trajectories referred to above are clearly those at
the top and bottom of the computational domains shown in figure 17(a). Recall that
the flow visualized in (b) represents, to a good approximation, the base state from
which unsteady flow developed at only slightly larger Reynolds numbers. Similarly,
the flow visualized in (a) represents, at least qualitatively, a base state that was found
to be stable at considerably larger Reynolds numbers. This flow is characterized by an
inertial core in which fluid moves with high velocity along the straight-line trajectories
that can be seen at the top and bottom of the image to the right in figure 17(a).

5. Random arrays
5.1. Drag force

At large solid volume fractions, the close proximity of the spheres to their nearest
neighbours screens the long-range hydrodynamic interactions that occur at smaller
solid volume fractions. However, in a finite computational domain with periodic
boundary conditions, long-range correlations in the fluid velocity may occur at finite
Reynolds numbers if the fluid is able to flow directly through the computational do-
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Figure 16. The angle between the average velocity and the x-axis in the (x, y)-plane as a function of
the Reynolds number for the simulations whose non-dimensional drag force is shown in figure 15.
The ‘error’ bars show the amplitude of the temporal fluctuations, and the lines show the angle
between the average pressure gradient and the x-axis in the (x, y)-plane.

main. Such channels exist when either there are too few spheres in the computational
domain or there is long-range order in a supposedly random sphere configuration.
The relatively straight trajectories in such channels decreases the inertial contribution
to the average pressure gradient and, hence, increases the velocity in the channels.
The resulting increase in the average velocity and decrease in the average drag force
have the combined effect of decreasing ∂F/∂Re.

Simulations of finite-Reynolds-number flows in dense random arrays of spheres
generated using the Monte-Carlo (MC) method (see Hill et al. 2001) with 16 and 32
spheres in the computational domain were compared to the results of simulations with
sphere configurations generated using Zinchenko’s method (Zinchenko 1994) with 64
spheres in the computational domain. In general, ∂F/∂Re from the simulations with
configurations generated using the MC method were smaller than those obtained
from the simulations with configurations generated using Zinchenko’s method. This
suggests that either there were too few spheres in the computational domains or that
the supposedly random configurations had crystallized. Indeed, hard-sphere systems
are known to undergo a transition from a disordered state to a face-centred cubic
phase at a solid volume fraction of approximately 0.5 (Russel, Saville & Schowalter
1989). However, the time required for a disordered structure to reach its equilibrium
state at large solid volume fractions can be very long, since the diffusivity at large
solid volume fractions is small.

Nevertheless, to check for possible crystallization, the distribution of the angle
between the vectors separating each sphere from its two nearest neighbours was
calculated. This had distinct peaks at angles corresponding to π/3 and 2π/3, suggesting
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(a) õp = 0

(b) õp = ð/4

Figure 17. Streamlines and velocity vectors of steady flows in a close-packed simple cubic array
of spheres with (c, a) = (0.514, 32.8), where a is in lattice units: (θp, Re, F) = (0, 34.7, 51.0);
(b) (θp, Re, F) = (π/4, 25.0, 88.3). The unit normals of the planes on which the streamlines are

shown are (a) (0, 1, 0) (left), (1/
√

2) (0,−1, 1) (right), and (b) (0, 0, 1) (left), (1/
√

2) (1,−1, 0) (right).

that the arrays may have crystallized. Since it was impractical to generate larger
close-packed arrays using the MC algorithm, the configurations generated using
Zinchenko’s method with 64 spheres were subsequently used for simulations with
solid volume fractions greater than approximately 0.5. The solid volume fraction of
the configurations generated using Zinchenko’s method is as close as possible to the
close-packed limit of random arrays of spheres. Therefore, to achieve smaller solid
volume fractions, the sphere radius was first decreased and then MC steps were
applied to allow the configurations to ‘relax’. The distributions of the angle between
each sphere and its two nearest neighbours for these arrays were more uniform,
suggesting that the configurations were more ‘random’ than those obtained using the
MC method alone.

Figures 18–24 show the non-dimensional drag force on the spheres in random arrays
with nominal solid volume fractions of 0.1i (i = 1 . . . 6). At Reynolds numbers greater
than approximately 40, F increases approximately linearly with Re, as suggested by
Ergun’s correlation. In all the figures showing F as a function of Re, the results of
simulations with a relatively small sphere radius and a relatively small number of
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c a Lx/Ly ns nc F0 F1 F2 F3

0.0953 6.8 2 128 1 2.88 0.100 3.87 0.111
0.0953 6.8 3 192 1 — — 3.52 0.103
0.0960 6.8 1 32 5 2.87 0.0867 3.38 0.101
0.100 4.8 1 16 5 — — 3.28 0.118

0.192 8.8 1 16 4 4.98 0.0915 5.35 0.147
0.201 8.8 1 16 5 5.74 — 6.10 0.176
0.224 9.8 2 128 1 6.61 0.125 7.80 0.204

0.290 8.8 1 16 5 9.35 0.152 10.5 0.257
0.300 10.8 2 128 1 10.5 0.148 11.9 0.320

0.408 16.8 1 16 5 — — 24.9 0.528
0.408 16.8 1 128 1 20.5 0.195 23.4 0.488
0.413 8.8 1 16 5 21.5 0.213 22.6 0.581
0.413 8.8 1 128 1 — — 21.7 0.545

0.4721 19.8 1 64 1 34.2 0.229 37.3 0.690
0.474 16.8 1 60 1 33.7 0.207 34.7 0.841
0.500 16.8 1 16 5 42.0 0.352 45.7 0.950

0.5471 20.8 1 64 1 60.1 0.379 65.9 1.36
0.555 17.8 1 16 2 63.1 0.255 63.0 1.21
0.568 16.8 1 60 1 73.2 0.345 75.1 1.66

0.5891 20.8 1 64 1 83.9 0.598 87.1 2.16
0.6201 23.8 1 64 1 109 0.792 106 3.27
0.641 20.8 1 16 2 141 0.431 134 3.35

Table 1. The parameters used for selected lattice-Boltzmann simulations of finite-Reynolds-number
flows in random arrays of spheres. The coefficients F2 and F3 in equations of the form F = F2 +F3Re
were obtained from the simulations with the largest Reynolds numbers at each solid volume fraction.
1The sphere configurations for these simulations were initialized with configurations generated using
the method of Zinchenko (1994).

spheres in the computational domain are shown. These clearly show the qualitative
dependence of F on Re. However, to validate the accuracy of these simulations, and
to obtain more accurate estimates of F3 at the largest Reynolds numbers, the results
of a smaller number of simulations are shown, which have a larger sphere radius
and a larger number of spheres in the computational domain. Note that, because the
solid volume fractions could not be matched exactly, part of the difference between
the results comes from statistical fluctuations and the various grid resolutions, system
sizes, and solid volume fractions. The error bars show the standard error (see Hill et
al. 2001) in the ensemble-averaged F and Re. Simulation parameters and the values
of F2 and F3 obtained at Reynolds numbers where F increases linearly with Re are
listed in table 1. Also shown are the coefficients F0 and F1 in equations fitted to the
simulation results, at small Reynolds numbers, where the non-dimensional drag force
takes the form (Hill et al. 2001).

F = F0 + F1Re
2. (6)

Note that simulations were also performed with a computational domain whose
length in the x-direction, Lx, was two or three times longer than in the y- and
z-directions (Ly = Lz). The nominal solid volume fractions of these simulations
were chosen to be 0.1, 0.2 and 0.3, since the wakes behind the spheres at relatively
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Figure 18. The non-dimensional drag force on the spheres in random arrays with a nominal
solid volume fraction of 0.1 as a function of the Reynolds number. The symbols are from lat-
tice-Boltzmann simulations with (c, a, Lx/Ly, ns, nc) = (0.0960, 6.8, 1, 32, 2) (◦), (0.0953, 6.8, 2, 128, 1)
(�), (0.0953, 6.8, 3, 192, 1) (�) and (0.100, 4.8, 1, 16, 5) (4), where a is in lattice units. The dashed
line is the empirical equation (Hill et al. 2001, equation (46)) for a single sphere in an unbounded
fluid (Clift et al. 1978), and the solid lines are quadratic and linear fits to the simulation results
identified with circles. The error bars show the standard errors in the ensemble-averaged F and Re.

small solid volume fractions are most likely to interact with their periodic images
downstream. However, as shown in figures 18–20, no significant, systematic change
in the dependence of F on the Reynolds number with the size of the computational
domain can be detected. This confirms that the simulations give a good approximation
of the drag force on the spheres in infinite arrays.

In general, the range of Reynolds numbers where the inertial contribution to F is
proportional to Re2 increases with the solid volume fraction. The coefficient of Re2

was examined in the accompanying paper (Hill et al. 2001) at solid volume fractions
up to the close-packed limit. Recall that Kaneda’s theory for dilute random arrays of
spheres is valid when the Reynolds number based on the Brinkman screening length
is very small. Since the Brinkman screening length decreases with increasing solid
volume fraction, the Reynolds numbers where the Re2 scaling occurs is expected to
increase with the solid volume fraction. This is indeed the case, as shown in figure 22,
for example, where at a solid volume fraction of 0.413 the inertial contribution to
F is proportional to Re2 at Reynolds numbers up to approximately 1.2. At very
small solid volume fractions, Kaneda’s theory shows that Re2 scaling occurs when
Re� O(c1/2)� 1. Although it is difficult to see in figure 18, the inertial contribution
to F at a solid volume fraction of 0.0960 is proportional to Re2 at Reynolds numbers
up to approximately 0.75. At the close-packed limit, Re2 scaling was shown in the
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Figure 19. As figure 18 but with a nominal solid volume fraction of 0.2 and
(c, a, Lx/Ly, ns, nc) = (0.192, 8.8, 1, 16, 4) (◦), (0.201, 8.8, 1, 16, 5) (�) and (0.224, 9.8, 2, 128, 1) (�).

accompanying paper to occur at Reynolds numbers up to approximately 2.6, which
is consistent with the qualitative behaviour identified here.

The simulation results identified with circles in figure 18 were obtained from only
two random configurations, since the long time that it takes for the velocity to reach
a steady state at this relatively small solid volume fraction makes these simulations
particularly expensive. However, five random configurations were used to calculate
F at the two largest Reynolds numbers, giving F3 = 0.104 with a standard error of
approximately 3%. The standard errors in the Reynolds numbers obtained from these
simulations were approximately 1.2%.

5.2. Comparison of simulations with the Ergun correlation

Ergun’s correlation is compared to the simulations identified with circles in figures 20–
24, at nominal solid volume fractions in the range 0.3–0.6. In all cases, Ergun’s
correlation under-predicts the drag force given by the simulations at small Reynolds
numbers and over-predicts the drag force at larger Reynolds numbers. This is clearly
due to F3 from Ergun’s correlation being too large, particularly at the smaller solid
volume fractions, and F2 being too small. Nevertheless, as shown in figure 24, there
is considerably better agreement at nominal solid volume fractions of 0.6. This is,
perhaps, not surprising, since in experiments it is only when the particles are closely
packed that their configuration might be considered to approximate a ‘random’ hard-
sphere distribution. Otherwise, cohesive forces and ordering are required to maintain
a rigid structure whose solid volume fraction is less than the close-packed limit.

Before we consider how the particle configuration might affect the drag force, note
that Ergun compared his correlation to experiments by plotting log10 (18F(1− c)3/c)
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Figure 20. As figure 18 but with a nominal solid volume fraction of 0.3 and
(c, a, Lx/Ly, ns, nc) = (0.290, 8.8, 1, 16, 5) (◦) and (0.300, 10.8, 2, 128, 1) (�). The dashed line is from
Ergun’s correlation (1) (Ergun 1952) with c = 0.290.

as a function of log10 (2Re/c) without identifying the solid volume fractions of the
individual experimental results. The experiments were performed using packed beds
of coke particles that were sieved to obtain relatively narrow size distributions. Solid
volume fractions in the range 0.46–0.56 were achieved by compressing the packings
while they were maintained in a fluidized state. The Reynolds numbers that were
achieved can be estimated to be in the range 1.6–60. Therefore, the scatter due to
experimental error cannot be distinguished from the variations coming from the
various solid volume fractions and particle shapes. Despite this scatter, however, it
is reasonable to conclude that Ergun’s correlation tends to over-predict the ordinate
at large values of 2Re/c, which suggests that it might also tend to over-predict F at
large Reynolds numbers and, possibly, at small solid volume fractions too.

Another explanation for the difference between Ergun’s correlation and our sim-
ulation results is due to the fact that the packings with solid volume fractions in
the range 0.46–56 reported by Ergun would have required a network of touching
particles to coexist with a network of void spaces and empty channels. The backbone
of such a particle network might give rise to a larger inertial contribution to the
drag force, since the wakes behind the spheres would more often have to extend
further downstream before they are obstructed by other particles in the network. At
small Reynolds numbers, when the largest contribution to the drag force comes from
viscous stresses, the drag force on such a network would be smaller, since the more
open structure would have a larger characteristic pore size and, hence, smaller viscous
stresses acting on the particles. These are the trends identified from the comparison
of Ergun’s correlation with the simulation results shown in figures 20–24.
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Figure 21. As figure 18 but with a nominal solid volume fraction of 0.4 and
(c, a, Lx/Ly, ns, nc) = (0.413, 8.8, 1, 16, 5) (◦), (0.413, 8.8, 1, 128, 1) (�), (0.408, 16.8, 1, 16, 5) (�)
and (0.413, 16.8, 1, 128, 1) (4). The dashed line is from Ergun’s correlation (1) (Ergun 1952) with
c = 0.413.

Figure 25 compares F3 obtained from the simulations at the largest Reynolds
numbers where F increases linearly with Re to F3 given by Ergun’s correlation
(dashed line). While there is good agreement at solid volume fractions greater than
approximately 0.6, Ergun’s correlation predicts much larger values of F3 and, hence,
a larger drag force at smaller solid volume fractions. The simulation results are given
to a good approximation by the fit

F3 = 0.0673 + 0.212c+ 0.0232/(1− c)5, (7)

which is shown as the solid line. When extrapolated to a solid volume fraction of
0.64, (7) is in good agreement with the experiments of Fant et al. (1987), which
were performed with spherical glass spheres with a relatively narrow size distribution.
Good agreement is also found between our lattice-Boltzmann simulations and those
of Maier et al. (1998) for flow in a cylindrical packed bed of spheres with a solid
volume fraction of 0.568.

It is important to note that F3 was obtained from simulations at the largest
Reynolds numbers where F increases linearly with Re. Therefore, it does not account
for the transition region that exists at smaller Reynolds numbers where ∂F/∂Re may
be considerably larger than F3. Fitting splines to F versus Re from the simulations and
then plotting ∂F/∂Re versus Re showed that ∂F/∂Re reaches a maximum at Reynolds
numbers in the range 10–20 before decaying toward F3 at larger Reynolds numbers.
The maximum of ∂F/∂Re is 10–60% larger than F3, with the largest differences
occurring at the smallest solid volume fractions. Consequently, F3 given by (7) is a
better approximation of ∂F/∂Re over a wider range of Reynolds numbers when the
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Figure 22. The simulations identified with circles in figure 21, but with the axes
scaled to detail the limit Re→ 0.

solid volume fraction is relatively large. Unfortunately, the statistical fluctuations in
the results prohibits a more quantitative analysis of the dependence of ∂F/∂Re on
the Reynolds number and the solid volume fraction.

The vertical line in figure 25 shows the range of F3 that comes from changing the
direction of the average pressure gradient in a close-packed simple cubic array of
spheres. The diamond shows F3 for flow along the (1, 0, 0) axis of a face-centred cubic
array of spheres with a solid volume fraction corresponding to the close-packed limit
of random arrays of spheres. Recall that the drag force on the spheres in face-centred
cubic arrays with large solid volume fractions does not depend very much on the
direction of the average pressure gradient (see figure 4). The comparisons show that,
at finite Reynolds numbers, the long-range order of simple cubic arrays of spheres
may either increase or decrease F3 relative to that for random arrays. Clearly, the
sphere configuration plays an increasingly important role in determining the drag
force at moderate Reynolds numbers.

5.3. Flow topology, velocity variance, and hydrodynamic dispersion

Figure 26 compares the velocity field of a flow with a Reynolds number of 26.9 to
that of a Stokes flow with exactly the same geometry. The solid volume fraction
of the array is 0.0960. Note that the length of the recirculating flow attached to
the rear of a single sphere in an unbounded fluid at a Reynolds number of 30
is approximately 1.2a (Batchelor 1967). However, even at this relatively small solid
volume fraction, recirculating flow in the wakes of the spheres cannot be seen, except,
perhaps, between a small number of spheres that are very close to each other. This
suggests that the velocity disturbances created by the randomly positioned spheres
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Figure 23. As figure 18 but with a nominal solid volume fraction of 0.5 and
(c, a, Lx/Ly, ns, nc) = (0.500, 16.8, 1, 16, 5) (◦), (0.472, 19.8, 1, 64, 1) (�) and (0.474, 16.8, 1, 60,
1) (�). Also shown are results with (c, a, Lx/Ly, ns, nc) = (0.555, 17.8, 1, 16, 2) (4), (0.547, 20.8, 1, 64,
1) (/) and (0.568, 16.8, 1, 60, 1) (5). The dashed line is from Ergun’s correlation (1) (Ergun 1952)
with c = 0.500.

prohibits recirculating flow from developing in their wakes, at least at this Reynolds
number and solid volume fraction.

The disturbances to the transverse components of the fluid velocity, which can
be can be seen in figure 26, are smaller at a finite Reynolds number. The velocity
variance of the Stokes flow is 0.450|〈u〉|2, which is close to the value of 0.420|〈u〉|2 at
a Reynolds number of 26.9. However, as expected from the visual comparison of the
flows, the transverse velocity variances of the flows are very different. For the Stokes
flow, (〈u′y〉2 + 〈u′z〉2)/2 = 0.195|〈u〉|2, whereas at a Reynolds number of 26.9, (〈u′y〉2 +

〈u′z〉2)/2 = 0.0719|〈u〉|2, which is approximately 63% smaller. Therefore, the effect
of moderate Reynolds numbers on hydrodynamic dispersion would be to decrease
the rate at which the transverse component of the effective hydrodynamic diffusivity
increases with the Péclet number. Furthermore, a significant hold-up contribution to
the longitudinal component of the effective diffusivity is unlikely, since there are very
few regions of fluid bounded by closed streamlines. Recall that the spheres in simple
cubic arrays with nominal solid volume fractions of 0.1 and 0.2 had a considerable
volume of recirculating fluid in their wakes (see figure 12), which would give rise to
hold-up dispersion.

At larger solid volume fractions, more of the fluid is directly influenced by the
presence of the spheres. The close proximity of the fluid to the sphere surfaces
increases the contribution of the transverse components of the velocity disturbances
to the velocity variance. Furthermore, since most of the velocity disturbances at large
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Figure 24. As figure 18 but with a nominal solid volume fraction of 0.6 and
(c, a, Lx/Ly, ns, nc) = (0.620, 23.8, 1, 64, 3) (◦), (0.641, 20.8, 1, 16, 2) (�) and (0.589, 20.8, 1, 64,
1) (�). The dashed lines are from Ergun’s correlation (1) (Ergun 1952).

solid volume fractions come from fluid having to move through the tortuous paths
between the spheres, the velocity variance, when scaled with the square of the average
velocity, does not depend very much on the Reynolds number. At a solid volume
fraction of 0.588, for example, figure 27 compares the velocity field of a flow with a
Reynolds number of 23.3 to that of a Stokes flow.

The velocity variance of the Stokes flow is 5.38|〈u〉|2, which is close to 5.58|〈u〉|2
at a Reynolds number of 23.3. The small increase in the scaled velocity variance
comes from the larger velocity gradients and the development of a small number
of regions with recirculating flow. However, in contrast to the flows discussed above
with a solid volume fraction of 0.0960, the transverse velocity variance of these
flows is very similar. For the Stokes flow, (〈u′y〉2 + 〈u′z〉2)/2 = 1.10|〈u〉|2, whereas at
a Reynolds number of 23.3, (〈u′y〉2 + 〈u′z〉2)/2 = 1.06|〈u〉|2. These results suggest that
hydrodynamic dispersion at large Péclet numbers would be less influenced by finite
Reynolds numbers at large solid volume fractions than at small solid volume fractions.
However, hold-up dispersion, coming from the development of recirculating flow in
the narrow gaps between the spheres, would increase the longitudinal component of
the effective hydrodynamic diffusivity at moderate Reynolds numbers. Relative to the
contribution from mechanical dispersion, which appears not to depend very much on
the Reynolds number, the hold-up contribution might be very difficult to measure,
since the volume of fluid occupied by stagnant fluid is very small.

5.4. Transition to unsteady flow

At many of the largest Reynolds numbers shown in figures 18–24, temporal fluc-
tuations in the average velocity, in at least one of the sphere configurations, were
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Figure 25. The rate at which the non-dimensional drag force on the spheres in random arrays
increases with the Reynolds number at moderate Reynolds numbers. The circles are from the
lattice-Boltzmann simulations shown in figures 18–24 and listed in table 1. Filled circles identify
those simulations, at each nominal solid volume fraction, with the largest sphere radii and the largest
number of spheres in the computational domain. The solid line is from (7), which was obtained from
all the results identified with both open and filled circles, and the dotted lines indicate deviations
up to ±20% from the solid line. The dashed line is from Ergun’s correlation (1) (Ergun 1952). The
plus symbol is from the lattice-Boltzmann simulations of Maier et al. (1998) for flow in a cylindrical
packed-bed of spheres with Re < 6, and the crosses are from the experiments of Fand et al. (1987).
The diamond is for a face-centred cubic array with the average pressure gradient directed along
the x-axis, and the vertical line shows the range of values obtained for a close-packed simple cubic
array with θp in the range 0–π/4.

(a) Re = 0; F = 3.10 (b) Re = 26.9; F = 6.42

Figure 26. Visualizations of (a) Stokes flow and (b) a moderate-Reynolds-number flow in a
random array of spheres with (c, a, ns) = (0.0960, 6.8, 32).
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(a) Re = 0; F = 84.5

(b) Re = 23.3; F = 158

Figure 27. Visualizations of (a) Stokes flow and (b) a moderate-Reynolds-number flow in a random
array of spheres with (c, a, ns) = (0.588, 19.8, 16), where a is in lattice units. In the images on the left
the flow is from left to right, whereas in those on the right the flow is out of the page.

observed at long times. The smallest Reynolds numbers at which unsteady flows were
observed give an upper bound on the critical Reynolds number, at each solid volume
fraction, beyond which unsteady flow persists at long times. These critical Reynolds
numbers, Rec, are listed in table 2 for various solid volume fractions up to the close-
packed limit. Note that Rec does not depend very much on the solid volume fraction,
but does tend to be smaller at small and large solid volume fractions. Note also that
the critical Reynolds numbers are considerably smaller than that for a single sphere
in an unbounded fluid, which, according to the linear stability analysis of Natarajan
& Acrivos (1993), is approximately 105.

By observing the dispersion of a dye tracer released from the surface of a single
sphere in a close-packed random array of spheres, Jolls & Hanratty (1966) detected
unsteady flows at Reynolds numbers in the range 55–75. They also observed the
signals from mass-transfer probes located at the sphere surface. Note that the probes
require the presence of a mass-transfer boundary layer in order to measure a change
in the signal, and hence unsteady flows would be difficult to detect if the fluid
velocity fluctuations were sufficiently slow, as when Re is close to Rec. Therefore,
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c a ns Rec

0.0960 6.8 32 35
0.192 8.8 16 30
0.201 8.8 16 35
0.290 8.8 16 40
0.408 16.8 16 60
0.472 19.8 64 70
0.479 20.8 16 55
0.474 16.8 60 55
0.500 16.8 16 50
0.536 10.8 16 30
0.547 20.8 64 50
0.555 17.8 16 45
0.620 23.8 64 40
0.633 20.8 32 35
0.641 20.8 16 30

Table 2. Approximate upper bounds, obtained from lattice-Boltzmann simulations, on the critical
Reynolds number beyond which unsteady flow persists in random arrays of spheres.

these experiments are more likely to over-predict Rec. Furthermore, it is possible
that, at Reynolds numbers close to Rec, unsteady flow could be localized to disjointed
regions of the packed bed. In this case, a range of critical Reynolds numbers might be
observed, depending on the position of the test sphere. Since even spatially localized
temporal fluctuations in the fluid velocity can be detected in the time series of the
spatially averaged velocity from simulations, simulations will tend to give smaller
estimates of Rec. This is indeed the case, since unsteady flows at Reynolds numbers
as small as approximately 30 were found from simulations.

The relatively small critical Reynolds numbers that occur at the smaller solid
volume fractions can be explained by the random positions of the spheres breaking
the symmetry of the flow about any single sphere. Note that breaking of symmetry
is also responsible for the transition to unsteady flow past a single sphere in an
unbounded fluid (Natarajan & Acrivos 1993). This is consistent with the simulation
results for simple cubic arrays, which are steady at considerably larger Reynolds
numbers when the flow is directed along the x-axis than when it is directed elsewhere.

The weak dependence of Rec on the solid volume fraction can be attributed to the
following stabilizing and destabilizing influences. First, the velocity in the interstitial
region of the arrays is O((1− c)−1) larger than the average velocity. However, because
the spheres cannot overlap, the largest length scale characterizing the interstitial region
of the arrays is O(a). Therefore, the Reynolds number characterizing the stability of
the flow in the interstitial region of the arrays is O(Re/(1 − c)), which can be up to
approximately 2.5 times larger than Re. On the other hand, at larger solid volume
fractions, the fluid is increasingly confined and, hence, stabilized by neighbouring
spheres. Note that the rate of viscous dissipation per unit volume is proportional to
cF Re2, and hence, for a given Reynolds number, viscous dissipation will be more
effective at damping temporal velocity fluctuations at larger solid volume fractions.
In other words, the critical Reynolds number tends to be smaller at the smallest
and largest solid volume fractions, because at small solid volume fractions longer
wavelength disturbances are permitted and there is less viscous dissipation, whereas
at larger solid volume fractions larger velocities occur in the small gaps between the
spheres, enabling inertia to destabilized shorter wavelength disturbances.
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6. Summary
The lattice-Boltzmann method has been used to examine the effects of fluid inertia,

at moderate Reynolds numbers, on flows in fixed ordered and random arrays of
spheres. Together with the results in the accompanying paper for small but finite
Reynolds numbers (Hill et al. 2001), this work shows how the drag force on the
spheres in ordered and random arrays depends on the Reynolds number at Reynolds
numbers from practically zero up to O(100), at solid volume fractions from the dilute
limit up to the close-packed limits of the arrays.

The drag force on the spheres in face-centred cubic arrays was found to increase
when the flow is directed away from the primary axis, whereas in the absence of
fluid inertia the drag force is independent of the flow direction. This behaviour was
explained by considering the cross-sectional area available for the fluid to traverse
in the region between the spheres – in the flow direction – relative to that in the
absence of the spheres. When the fluid is forced to flow away from the primary
axis, the decrease in the cross-sectional area increases the fluid velocity in the region
between the spheres. This increases the difference between the pressures upstream
and downstream of the spheres and, hence, increases the drag force. At relatively
large solid volume fractions, the non-dimensional drag force was found to increase
linearly with the Reynolds number over a wide range of Reynolds numbers. The rate
at which it increases was compared to Ergun’s correlation for random arrays, which
showed that the drag force on the spheres in face-centred cubic arrays is less than in
random arrays, irrespective of the flow direction.

For simple cubic arrays, the drag force at moderate Reynolds numbers was found to
be least when the flow is directed along the primary axis. In contrast to the behaviour
at larger solid volume fractions, the drag force on the spheres in dilute arrays, at a
given Reynolds number, does not increase monotonically with the angle between the
average pressure gradient and the primary axis of symmetry. With increasing solid
volume fraction, the velocity fields were shown to increase in complexity and in their
dependence on the flow direction. In close-packed arrays, for example, visualizations
of fluid velocity fields showed that much of the fluid in the gaps between the spheres,
in the flow direction, flows upstream when the flow is directed away from the primary
axis. These flows became unsteady at relatively small Reynolds numbers. The drag
force on the spheres in dilute simple cubic arrays was found to be smaller than that on
a single sphere in an unbounded fluid, and the difference increased with the Reynolds
number. This interesting behaviour comes from the long-range interaction of the
wakes with downstream spheres, and its effectiveness increases with the Reynolds
number because the wakes are able to extend further downstream.

Finally, moderate-Reynolds-number flows in random arrays of spheres were ex-
amined. The non-dimensional drag force was found to increase linearly with the
Reynolds number at Reynolds numbers greater than approximately 40. At smaller
Reynolds numbers and larger solid volume fractions, the rate at which the drag
force increases with the Reynolds number is closer to that predicted by Ergun’s
correlation. However, at the largest Reynolds numbers, where the non-dimensional
drag force increases linearly with the Reynolds number, the rate at which it increases
is considerably smaller than given by Ergun’s correlation, particularly at solid vol-
ume fractions smaller than those that can be achieved in physical experiments. This
difference was explained by the microstructure in packed beds with solid volume
fractions less than the close-packed limit being necessarily inhomogeneous at the
micro-scale. The difference between the drag force on the spheres in packed beds
and random arrays highlights the increasing role that the micro-structure plays at
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moderate Reynolds numbers. This was corroborated by the Stokes-flow drag force on
the particles in packed beds (physical experiments) and random arrays (simulations)
being indistinguishable over the entire range of solid volume fractions that can be
achieved in physical experiments.

At a solid volume fraction of 0.096, the variance of the transverse components of
the velocity, when scaled with the square of the magnitude of the average velocity,
was found to decrease with increasing Reynolds number, because at large Reynolds
numbers the fluid’s inertia carries it more directly through the arrays. However, at
a solid volume fraction of 0.588, the velocity variance scaled with the square of the
average velocity was found to be relatively independent of the Reynolds number.
This is because the velocity fluctuations at large solid volume fractions are dominated
by the fluid having to flow along the tortuous trajectories close to the spheres. These
observations suggest that the effect of finite Reynolds numbers on hydrodynamic
dispersion at large Péclet numbers would be to decrease the transverse components
of the effective hydrodynamic diffusivity relative to that of a Stokes flow, particularly
at small solid volume fractions.

The random positions of the spheres was shown to give rise to unsteady flow at
much smaller Reynolds numbers than for a single sphere in an unbounded fluid.
Steady flow was suggested to be destabilized by (i) the breaking of symmetry about
any single sphere due to the velocity disturbances produced by the other spheres, (ii)
the longer wavelength disturbances that are allowed to develop with decreasing solid
volume fraction, (iii) the decreasing rate of viscous dissipation with decreasing solid
volume fraction, and (iv) the large velocities that occur in the small gaps between the
spheres when the solid volume fraction is large. Consequently, the critical Reynolds
number does not vary significantly with the solid volume fraction, but it does tend
to be smaller at the smallest and largest solid volume fractions.

This work was funded by the National Science Foundation (NSF) under grant
number CTS-9526149, and the computations were performed using the resources of
the Cornell Theory Center. We would also like to thank Alexander Boyarski for his
assistance in producing the three-dimensional flow visualizations and Alexander Z.
Zinchenko for providing close-packed random sphere configurations that were used
in this work.
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