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This study investigates the sound produced when a jet, issued from a circular nozzle
or hole in a plate, goes through a similar hole in a second plate. The sound,
known as a hole tone, is encountered in many practical engineering situations. Direct
computations of a hole tone feedback system were conducted. The mean velocity of
the air jet was 10 m s−1. The nozzle and the end plate hole both had a diameter
of 51 mm, and the impingement length between the nozzle and the end plate was
50 mm. The computational results agreed well with past experimental data in terms
of qualitative vortical structures, the relationship between the most dominant hole tone
peak frequency and the jet speed, and downstream growth of the mean jet profiles.
Based on the computational results, the shear-layer impingement on the hole edge,
the resulting propagation of pressure waves and the associated vortical structures
are discussed. To extract dominant unsteady behaviours of the hole tone phenomena,
a snapshot proper orthogonal decomposition (POD) analysis of pressure fluctuation
fields was conducted. It was found that the pressure fluctuation fields and the time
variation of mass flows through the end plate hole were dominantly expressed by the
first and second POD modes, respectively. Integrating the computational results, an
axisymmetric throttling mechanism linking mass flow rates through the hole, vortex
impingement and global pressure propagation, is proposed.
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1. Introduction
The sound produced when a jet, issued from a circular nozzle or hole in a plate,

goes through a second plate that has a hole of the same diameter is referred to as a
hole tone. The tone is encountered in many situations such as solid propellant rocket
motors, automobile intakes and exhaust systems, ventilation systems, gas distribution
systems, and whistling kettles, etc. The hole tone is categorized as a fluid dynamic
self-excited oscillation where axisymmetric coherent vortices are produced in the
naturally unstable jets, convected downstream, and the generation and feedback of
induced disturbances occur from some point in the flow near the surface on which the
vortices are impinging (Rayleigh 1945; Blake 1986; Howe 1997a; Ginevsky, Vlasov
& Karavosov 2010). Jet tone phenomena similar to the hole tone, involving impinging
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570 K. Matsuura and M. Nakano

surfaces, include edge and ring tones (Rockwell & Naudascher 1979; Blake 1986;
Ginevsky et al. 2010). The interaction of the jet shear layer and the surface gives
rise to strong self-excited oscillations with frequencies determined by the flow speed,
the initial thickness of the mixing layer, and the distance from the nozzle edge
downstream to the obstacle (Ginevsky et al. 2010).

Sondhauss (1854) first reported on the hole tone in 1854 and found that the
tone frequency increased with increasing jet velocity, and decreased with increasing
distance between the orifices. Rayleigh (1945, pp. 410–412), based on his observations,
conjectured a mechanism, now known as a feedback mechanism (Rayleigh 1945;
Rossiter 1962; Chanaud & Powell 1965; Rockwell & Naudascher 1979), as follows:
‘When a symmetrical excrescence reaches the second plate, it is unable to pass the
hole with freedom, and the disturbance is thrown back, probably with the velocity of
sound, to the first plate, where it gives rise to a further disturbance, to grow in its
turn during the progress of the jet.’ In the mechanism, as a result of the axisymmetric
instabilities of the jet, each vortex is convected over the gap Lim during a time of
the order of Lim/uc, at the shear-layer convection velocity uc, which is typically about
half the mean jet speed at exit u0. An impulsive disturbance is generated when the
vortex impinges on the downstream edge which initiates the formation of a new vortex.
The impulse takes a finite time ∼Lim/c∞ to travel back across the gap, where c∞ is
the speed of sound. Based on this picture, the frequency f of the vortex formation
satisfies n/f ∼ Lim/uc + Lim/c∞, where the values n = 1, 2, 3, etc., correspond to
the various stages of operation (Rossiter 1962). Crighton (1992) presented a linear
analytical model to predict the frequency characteristics of the discrete oscillations
of the jet-edge feedback cycle. Problems corresponding to various physical processes
associated with the cycle are analysed, for inviscid flows with vortex-sheet shear layers
and aligned flat-plate boundaries, and solved in an appropriate asymptotic sense by
Wiener–Hopf methods. Holger (1977) proposed a model for an edge tone that consists
of a periodic disturbance at a jet origin leading to the formation of an asymmetric
vortex street, and a potential flow analysis of the interaction of the vortices with the
edge to calculate the phase of the feedback mechanism. Howe (1997b) conducted
linearized analyses of self-sustaining oscillations of high-Reynolds-number shear layers
and jets incident on edges and corners at an infinitesimal Mach number. In the study,
the operating stages of self-sustained oscillations are identified with poles, in the upper
half of the complex frequency plane, of the Rayleigh conductivity KR(ω), by which the
volume flux Q(t) through the aperture is determined by the equation

ρ0
∂Q(t)

∂t
=−

∫ ∞
−∞

KR(ω)[p0(ω)]e−iωt dω. (1.1)

Here, [p0(t)] ≡ p+(t)− p−(t) is a uniform, time-dependent pressure differential linearly
disturbing the shear layer over the aperture, p±(t) are uniform pressures applied,
respectively, above and below the wall, and ω is the complex frequency. Umeda &
Ishii (1986) conducted experimental studies on the hole tone with supersonic jets,
and visualized six different sound wave propagations by shadow-graph pictures. They
observed two different processes in the generation of sound waves: (i) a feedback
mechanism consisting of sound waves propagating upstream outside the jet that trigger
downstream-convecting coherent vortical structures surrounding the jet upstream of the
second plate; and (ii) radial expansion of the vortical structures when they are created
and merged downstream of the second plate. Langthjem & Nakano (2005) proposed a
numerical approach to the generation of hole tones based on a discrete vortex method
using axisymmetric vortex rings combined with an acoustic feedback mechanism based
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A hole tone feedback system at very low Mach numbers 571

on a simplified Curle’s equation where only dipoles and monopoles are retained. The
dipoles and monopoles are evaluated respectively by the fluid force acting on the
upstream surface of the end plate, and by the time derivative of velocity at the hole
inlet position. The acoustic velocity potential function is obtained by integrating the
solution of the equation. Acoustic velocities obtained by differentiating the potential
function by the coordinate are added to the hydrodynamic velocity field near the
nozzle exit as the feedback effect.

Despite the long history of the hole tone problem, a comprehensive
analytical/numerical solution has not yet been developed. Recently, Matsuura &
Nakano (2011) conducted, to the best of their knowledge, the first direct computations
of a hole tone feedback system at very low Mach numbers Ma ∼ 0.029, which
predicted its dominant frequency successfully. They discussed the shear-layer
impingement on the hole edge, the resulting propagation of pressure waves, and
the associated vortical structures. In the study, a new feedback mechanism was found,
based on the computed results, for an air jet speed of 10 m s−1. It has been believed
for some time that pressure waves outside the jet trigger the feedback of the hole
tone, whereas pressure waves also pass inside the jet for the feedback, and the jet
including its shear layers oscillates periodically. However, the details of the origin of
the generation of pressure waves were unknown.

In this study, direct computations of a hole tone feedback system were conducted to
investigate the origin. The mean velocity of the air jet was 10 m s−1. The diameters
of the nozzle and the end plate hole were both 51 mm, and the impingement
length between the nozzle and the end plate was 50 mm. In § 2, numerical methods,
computational conditions, grids, initial and boundary conditions are described. In § 3,
the periodicity of the computed phenomena is assessed, and the validation studies
of these computations against past experimental measurements (Matsuura & Nakano
2011) are conducted in terms of qualitative vortical structures, the relationship between
the most dominant hole tone peak frequency and the jet speed, and the downstream
growth of the mean jet profiles. In § 4, based on the computational results, the shear-
layer impingement on the hole edge, the resulting propagation of pressure waves
and associated vortical structures are discussed. In § 5, a snapshot proper orthogonal
decomposition (POD) analysis of pressure fluctuation fields is conducted in order to
extract dominant unsteady behaviours of the hole tone phenomena. In § 6, integrating
the computational results, an axisymmetric throttling mechanism linking the mass
flow rates through the hole, the vortex impingement and global pressure propagation
is proposed. In § 7, conclusions for this study are drawn. In appendix A, a simple
explanation for the generation of a high pressure region and the directions of vorticity
vectors between two low pressure regions with backflows are given based on potential
flow theory. In appendix B, the method of evaluation of instantaneous acoustic power
is explained.

2. Numerical analysis
2.1. Numerical method

The governing equations are the unsteady three-dimensional fully compressible
Navier–Stokes equations in general coordinates (ξ, η, ζ ), written in conservative
variables and expressed in the following notational form:

∂Q
∂t
+ ∂

∂ξ
(F− Fv)+ ∂

∂η
(G− Gv)+ ∂

∂ζ
(H −Hv)= S. (2.1)
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572 K. Matsuura and M. Nakano

The vector of the conservative variables is given by

Q≡ 1
J
(ρ, ρu1, ρu2, ρu3, ρe)t . (2.2)

Here, J is the Jacobian, ρ is the density, u1, u2, u3 are the velocity components in
Cartesian coordinates, and e is the total energy per unit mass. The inviscid and viscous
vector fluxes, i.e. F,G,H and Fv,Gv,Hv, respectively, are given by

F≡ 1
J


ρU1

ρu1U1 + ξxp
ρu2U1 + ξyp
ρu3U1 + ξzp
ρeU1 + ξxiuip

 , G≡ 1
J


ρU2

ρu1U2 + ηxp
ρu2U2 + ηyp
ρu3U2 + ηzp
ρeU2 + ηxiuip

 ,

H ≡ 1
J


ρU3

ρu1U3 + ζxp
ρu2U3 + ζyp
ρu3U3 + ζzp
ρeU3 + ζxiuip

 ,



(2.3)

Fv ≡ 1
J


0

ξxiσi1

ξxiσi2

ξxiσi3

ξxi[ujσij − Qi]

 , Gv ≡ 1
J


0

ηxiσi1

ηxiσi2

ηxiσi3

ηxi[ujσij − Qi]

 ,

Hv ≡ 1
J


0

ζxiσi1

ζxiσi2

ζxiσi3

ζxi[ujσij − Qi]

 ,



(2.4)

where (x, y, z) = (x1, x2, x3) are Cartesian coordinates, the contravariant velocity
components U1,U2,U3 are defined by metrics ξi, ηi, ζi (i= x, y, z) as

U1 ≡ ξxu1 + ξyu2 + ξzu3, (2.5a)
U2 ≡ ηxu1 + ηyu2 + ηzu3, (2.5b)
U3 ≡ ζxu1 + ζyu2 + ζzu3, (2.5c)

and p is the static pressure. The total energy per unit volume ρe is expressed as

ρe= p

(γ − 1)
+ 1

2
ρ(u2

1 + u2
2 + u2

3), (2.6)

where γ is the specific heat ratio. The components of the viscous stress tensor
σij(i, j= 1, . . . , 3) and the heat flux vector Qi(i= 1, . . . , 3) are defined by

σij ≡ µ
(
∂ξk

∂xj

∂ui

∂ξk
+ ∂ξk

∂xi

∂uj

∂ξk
− 2

3
δij
∂ξl

∂xk

∂uk

∂ξl

)
, (2.7)

Qi ≡−λ∂ξj

∂xi

∂T

∂ξj
, (2.8)
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A hole tone feedback system at very low Mach numbers 573

where µ is the viscosity, λ is the thermal conductivity, T is the temperature and
δij(i, j= 1, . . . , 3) is Kronecker’s delta function. The perfect gas law closes the system
of equations

p= ρRT, (2.9)

where R is the gas constant. Sutherland’s formula for viscosity is adopted and a
constant Prandtl number of Pr = 0.72 is assumed. S in (2.1) is zero except for the inlet
sponge region, which is mentioned later in § 2.2.

The equations were solved using the finite-difference method. Spatial derivatives
that appeared in the metrics, convective and viscous terms were evaluated by the
sixth-order tridiagonal compact scheme (Lele 1992). Near boundaries, the fourth-order
one-sided and classical Padé schemes (Lele 1992) are used at the boundaries and
one point internal to them. Time-accurate solutions to the governing equations were
obtained using the third-order explicit Runge–Kutta scheme. The time increment was
constant and 1t = 2.4 × 10−4Lim/c∞ in all flow fields. The Courant–Friedrichs–Lewy
(CFL) numbers of these computations, which were defined by the maximum sums of
the contravariant velocity and the speed of sound scaled by the metrics as

CFL≡1t max(|U1| + c∞
√
ξxiξxi, |U2| + c∞

√
ηxiηxi, |U3| + c∞

√
ζxiζxi), (2.10)

were around 0.4. In addition to the above-mentioned spatial discretization and time
integration, a tenth-order implicit filtering (Gaitonde & Visbal 2000) was introduced
to suppress numerical instabilities that arise from central differencing in the compact
scheme:

αf φ̂i−1 + φ̂i + αf φ̂i+1 =
5∑

n=0

an

2
(φi+n + φi−n), i ∈ {6, . . . , imax − 5}. (2.11)

Here, φ denotes a conservative quantity and φ̂ a filtered quantity at each grid point.
Regarding coefficients an (n = 0, . . . , 5), the values in Gaitonde & Visbal (2000) are
used. The filter parameters αf that appear on the left-hand side are set to 0.33 for
i = 2 and imax − 1, 0.492 for 2 < i < imax − 1. Near the boundaries, implicit filters of
orders p= (4, 4, 6, 8, 10)th for i= (2, . . . , 6) and i= (imax − 1, . . . , imax − 5), are used.
Here, i ∈ {k, l}, and indices j, k, l respectively run in the circumferential θ , radial r and
streamwise z directions in the general coordinate system. Not only the accuracy of the
filter but also the value of αf had a considerable influence both on the accuracy and
stability of the calculation. In this study, the above value was used to keep the stability
of the calculation while maintaining the high accuracy of the computational results.
Regarding the computation of the linear algebraic equation, the Thomas algorithm
was used for the tridiagonal systems, and the Sherman–Morrison formula (Press et al.
1992) was used for the cyclic tridiagonal systems that appear in the exact periodic
treatment in the θ direction described in the next subsection. This numerical method
has been well validated for the prediction of transitional and turbulent subsonic flows
(Matsuura & Kato 2007).

2.2. Computational details
Figure 1 shows the computational overview of this problem. The diameters of the
nozzle and the end plate hole were both d0 = 51 mm. In the numerical model, the
outer diameter of the end plate was taken to be 250 mm. The reference gap length
(or impingement length) Lim was 50 mm. This computation assumed the standard
atmospheric conditions, i.e. a temperature of 20 ◦C and a pressure of 1 atm as the
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d0

r

z

Lim

End plate

Flow

Convecting
vortices

x

y

z

FIGURE 1. Hole tone system: an instantaneous pressure field in a computation when
u0 = 10 m s−1 (Matsuura & Nakano 2011).

ambient conditions. The reference mean velocity u0 of the air jet is 10 m s−1. At
20 ◦C, u0 = 10 m s−1 corresponds to a Reynolds number Re = u0d0/ν = 3.39 × 104

and a Mach number Ma = u0/c∞ = 0.029, where the speed of sound c∞ = 343 m s−1

and the kinematic viscosity ν = 1.51 × 10−5 m2 s−1. Figure 2 shows an overview of
the computational grid consisting of five zones. Cylindrical-coordinate grids (r, θ, z) of
the O-type topology are generated in each zone. z = 0 mm corresponds to the nozzle
exit. Exact overlapping of five grid lines in the normal direction to an interface, which
corresponds to ‘a, b, c, d, e’ in figure 2, is used between neighbouring zones. The
details of overlapping for ‘b’ are shown in the enlarged figure. The z= 0 plane outside
the nozzle in figure 2 is modelled as a wall, which is consistent with a corresponding
experimental system shown in figure 4 of Matsuura & Nakano (2011). The nozzle exit
plate is removed in figure 1 for clarity.

Periodicity in the θ direction is treated strictly without employing a one-sided biased
scheme near the branch cut with regard to the derivative and filtering scheme. This
O-type topology has a singularity at the centreline. To circumvent this, primitive
values, circumferentially averaged at k = 2, are inserted into the primitive values at
k = 1, i.e. fj,1,l =

∑jmax−1
i=1 fi,2,l/(jmax − 1),∀(j, l) ∈ {1, . . . , jmax} × {1, . . . , lmax}. The total

number of grid points is initially 1.17 × 106 points denoted as ‘grid A’ or ‘1M grid’,
and increased up to 9.07× 106 points denoted as ‘grid B’ or ‘9M grid’. Computations
with grid B give improved results in terms of the most dominant hole tone peak
frequency as found by the frequency of 330 Hz mentioned later in § 3, and the results
of grid A and the experimental data in figure 7 of Matsuura & Nakano (2011). Grid B
also gives improved velocity profiles in the jet shear layers mentioned later in figure 9.
Therefore, the results of mainly grid B are discussed in this paper. The results of
grid A are used for mesh refinement tests and for generating an initial condition for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.377


A hole tone feedback system at very low Mach numbers 575

Grid stretching
to far boundary

Grid stretching
to far boundary

Zone 4

Zone 5

Zone 2 Zone 3

Zone 2

Zone 1 Zone 3

e
d

End plate

Inflow
r

z a b c

Nozzle exit

b

FIGURE 2. Computational grid for θ = 0 rad (Matsuura & Nakano 2011). Every five grid
lines in the r and z directions are drawn.

the computation of grid B. Grid A is also used for the evaluation of instantaneous
acoustic power in appendix B.

The distribution of grid widths in the radial (r), circumferential (θ ) and streamwise
(z) directions between the nozzle exit and the end plate, inside the hole and
downstream of the hole is shown in figure 3 of Matsuura & Nakano (2011). Mesh
widths are made fine so as to capture jet shear layers accurately in the r direction,
and in the separation regions near both the nozzle exit and the end plate hole in the
r and z directions. The maximum grid widths ∆max in the z direction between the
nozzle exit and the end plate are ∆max ∼ 2.84 mm in grid A and ∼1.00 mm in grid
B. The minimum grid widths ∆min/d0 are 1 × 10−3 in grid A and 4.9 × 10−4 in grid
B. In this study, the outer region of jets between the nozzle exit and the end plate is
laminar or in an initial stage of transition (Matsuura & Nakano 2011). Therefore,
dominant/coherent structures under these flow features with global instability are
expected to be well predicted by a relatively small number of grid points if the
dispersion error is kept as low as possible.

Regarding the boundary conditions, the sponge layer method (Freund 1997), which
specifies inflow velocity profiles consistent with experimental data, is used near the
nozzle inlet, i.e. Ωz,in = [d0/51, d0/2]×[0, 2π)×[−d0/2.55,−d0/10.2]. Figure 3 shows
the measured velocity profiles of the boundary layers at (θ, z) = (0 rad, 0 mm) by a
hot wire and a Pitot probe for u0 = 8, 10 and 12 m s−1 when free jets are considered
without the downstream end plate, and the computational inflow velocity profile for
u0 = 10 m s−1. The hot wire is used within 4 mm of the wall, and the Pitot probe is
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FIGURE 3. Comparison of experimental (‘Exp.’) and computational (‘CFD’) inflow boundary
layer velocity profiles: u0 = 8, 10 and 12 m s−1 for the experiments, and u0 = 10 m s−1 for the
computation.

used elsewhere. The inflow boundary layers for u0 = 8, 10 and 12 m s−1 are laminar in
the experiment (Matsuura & Nakano 2011). For implementation of the sponge layer, S
in (2.1) is set to

S=−c(z)(Q− Qtarg). (2.12)

Here, c(z) is a coefficient defined by

c(z)= c1rc2, r1 = z− ze

ls
, ls = |zs − ze|, (2.13)

c1 = 9.28× 104, c2 = 2, (2.14)

ze =−5 mm, zs =−d0/2.55. (2.15)

Qtarg is the target conservative variables defined by

Qtarg ≡
(
ρ∞, 0, 0, ρ∞winfl,

p∞
γ − 1

+ 1
2
ρ∞w2

infl

)
, (2.16)

where winfl is the inflow velocity profile mentioned above. Here, ∞ denotes the
standard atmospheric conditions. In the sponge region, the root mean squares of
pressure fluctuations at (r, z)= (12.2,−10.0) and (12.2,−15.2) are 2.26×10−2 Pa and
8.24×10−5 Pa, respectively, and the pressure waves are well attenuated. In the notation
above, (r, z) implicitly means θ = 0, which is now used in this paper. In this system
where global instability is taking place, shear layers near the nozzle exit are perturbed
by periodically propagating pressure waves with natural oscillation frequencies. To
avoid disrupting naturally oscillating structures, no excitation such as random forcing
is imposed at the inlet boundary. Although some fundamental convective instability
of round jets is well known (Michalke 1984), little is known at present about the
effects of inlet disturbances on the hole tone and they will be investigated in the
future.

Far boundaries are set at Ωz,ex = [d0/51, 41.7d0] × [0, 2π) × [41.4d0, 41.4d0] and
Ωr,ex = [41.7d0, 41.7d0] × [0, 2π) × [0, 41.4d0]. Figure 4(a,b) shows the distribution of
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FIGURE 4. Distribution of grid widths in the r, θ, z directions near the far boundaries
(z= 0 mm: nozzle exit): (a) r, θ directions, (b) z direction.

grid widths in the r, θ and z directions near the far boundaries. At the far boundaries,
grid stretching similar to the methodology of Rai & Moin (1993) is used. Figure 5
shows the standard deviations p′′ of pressure variations p(t) (145.4 6 t∗ 6 290.2) along
the segments 60 6 z 6 41.4d0 of r = const. for the flow field data saved every 3000
steps after the flow field reaches equilibrium. t∗ is the time non-dimensionalized by
Lim and c∞, and 145.4 6 t∗ 6 290.2 corresponds to 200 saved data; t∗ is mentioned in
detail later in § 3.

Here, p′′ is defined by

p′′ ≡
√√√√ 1

Nmax

Nmax∑
i=1

(p(ti)− p)2, p≡ 1
Nmax

Nmax∑
i=1

p(ti), Nmax = 200. (2.17)

In the z direction, p′′ near (r, z) = (25.5 mm, 1000 mm) is attenuated to less than
∼1/49 of the maximum p′′ near the jet shear layer immediately downstream of
the hole, i.e. (r, z) ∼ (25.5 mm, 60 mm). In the r direction, p′′ at r ∼ 1371 mm is
attenuated to less than ∼1/82 of the maximum p′′. Thus, pressure fluctuations are well
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FIGURE 5. Standard deviations p′′ of pressure variations along the segments 60 6 z 6 41.4d0
of r = const.

attenuated in the grid-stretched regions and therefore the effects of reflection from the
far boundaries are negligible.

As an initial condition for the computation with grid A, a base profile and uniform
random numbers εi ∈ [−1, 1],∀i ∈ (1, . . . , 3) for breaking symmetry are employed:

(ρ, ur, uθ , uz, p)=
{
(ρ∞, 0, 0, u0, p∞)+ χu0(0, ε1, ε2, ε3, 0) |r|< d0/2,
(ρ∞, 0, 0, 0, p∞) |r|> d0/2.

(2.18)

Here, χ is a scaling factor and set to be 1.0 × 10−2. The initial condition for
grid B is prepared by interpolating the resulting flow fields of grid A. After the
flow field reaches equilibrium, physical quantities are sampled for approximately
1.75× 104Lim/c∞ for grid A and 478Lim/c∞ for grid B.

3. Periodicity of the computed phenomena and validation of the present
computation

Periodicity of the computed phenomena is checked by the time histories of pressure
variation at (r, z) = P1 : (d0/2,Lim/2), i.e. near the middle of the jet shear layers,
and P2 : (1.82d0,Lim/2), i.e. far from the jet, the mass flow variation through the
hole, the space–time plots of pressure fluctuation, and the radial and streamwise
velocities around the hole, the latter two of which are mentioned later in §§ 4.2 and
6, respectively. Figure 6(a,b) shows the time histories of pressure variation at P1
and P2. The abscissa 0 6 t∗g 6 t∗gmax = 927.4 is the time from the initial condition
non-dimensionalized by Lim and c∞. The ordinate is the pressure variation p′′(t) around
the average of whole data, i.e.

p′′(t)= p(t)− p, p≡
∫ t∗gmax

0
p(t) dt. (3.1)

In the figures, transient non-periodic pressure variation is observed for 0 6 t∗g < 330,
and the variation starts to become periodic at t∗g ∼ 330; t∗ = 0 and t = 0, which appear
in figures 7, 10–17, 19 and 21–24, correspond to t∗g = 567 and t∗ = 2.16, respectively.
Figure 7 shows the time histories of the non-dimensional mass flow rates ṁ†

h at the
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FIGURE 6. Time histories of pressure variation at (a) (r, z)= P1: (d0/2,Lim/2) (near the
middle of the jet shear layer) and (b) (r, z)= P2: (1.82d0,Lim/2) (far from the jet).

inlet of the end plate hole, i.e. z= 50 mm. ṁ†
h is defined by

ṁ†
h ≡

ṁh

π (d0/2)
2 ρ∞u0

, (3.2)

and the mass flow rates ṁh are evaluated as

ṁh ≡
∫
Ω

ρuz dr dθ, Ω ≡ {(r, θ); (r, θ) ∈ [0, d0/2] × [0, 2π)}. (3.3)

The variation of the mass flow rates is also periodic, corresponding to the periodic
pressure variation. The periodicity of the computed results is also confirmed by the
radial and streamwise velocities around the hole in figure 22, which will be referred to
later.

Figure 8 shows a comparison of the sound pressure levels (SPL) between the
computations and the experiment for u0 = 10 m s−1. For the estimation of SPL in the
computation, the time series data of pressure variation between 449 6 t∗g 6 927 shown
in figure 6 are employed. The sound pressure levels are evaluated at both P1 and P2.
The most dominant hole tone peak frequencies are 330 Hz for the computation and
320 Hz for the experiment, and therefore the most dominant experimental frequency is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.377


580 K. Matsuura and M. Nakano

0.925

0.920

0.915

0.910

0.905

0.900

0.930

0.895
0 50 100 150 200 250 300 350

FIGURE 7. Time variation of mass flow through the end plate hole.
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FIGURE 8. Comparison of sound pressure levels between the computations and experiment
for u0 = 10 m s−1: P1, (d0/2,Lim/2); P2, (1.82d0,Lim/2).
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FIGURE 9. Comparison of the distribution of non-circumferential velocity magnitude√
u2

r + u2
z around r = d0/2 between the experiment and the computation with the 1M and

9M grids (urz ≡√u2
r + u2

z and dr ≡ r − r0, r0 ≡ d0/2): (a) z = 5 mm, (b) z = 10 mm, (c)
z= 15 mm, (d) z= 20 mm, (e) z= 25 mm, (f ) z= 30 mm, (g) z= 35 mm, (h) z= 40 mm, (i)
z= 45 mm.

accurately predicted by the computation, while the difference in the magnitude of the
sound pressure levels is ∼14 dB. When a room temperature variation of ±1 ◦C and
the uncertainties in the inlet disturbances are taken into account, the above difference
is considered to be small.

The most dominant peak frequency f ∼ 330 Hz at P1 is the same as that at P2.
Therefore, flow fields in this hole tone system, which include not only the immediate
neighbourhood of the jet but also regions far away from the jet, are judged to have
reached a periodic equilibrium state. The frequency of the periodic variation of the
pressure at both P1 and P2 and that of the mass flow rates are the same as the most
dominant hole tone frequency, as shown later in figure 22.

In figure 9, comparisons are shown for the radial distribution of non-circumferential
velocity magnitude

√
u2

r + u2
z around r = 25.5 mm between the experiments and the

computations with the 1M and 9M grids. The experimental data are shown in the
range dr = −6 to 6 mm, where dr ≡ r − r0, r0 = d0/2 when u0 = 10 m s−1. The
measurements were conducted three times. The black points and error bars in the
figure show the averages x and the 90 % confidence intervals[

x− tNmax−1
σ√
Nmax

, x+ tNmax−1
σ√
Nmax

]
. (3.4)
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FIGURE 10. Visualization of vortical structures by the iso-surfaces of the second invariant of
the velocity gradient tensor Q† = 14.5 (1/Tf ∼ 330 Hz). Times: (a) t = 0, (b) t = Tf /6, (c)
t = 2Tf /6, (d) t = 3Tf /6, (e) t = 4Tf /6, (f ) t = 5Tf /6, (g) t = 6Tf /6.

Here,

Nmax = 3, x≡ 1
Nmax

Nmax∑
i=1

xi, σ ≡
√√√√ 1

Nmax − 1

Nmax∑
i=1

(xi − x)2, (3.5)
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and tNmax−1 = 2.920 for Student’s t-distribution (Student 1908). Initially thin shear
layers near the nozzle exit z ∼ 5 mm gradually become thick in the latter half of the
Lim as the disturbances around the jet develop, which is seen in figure 5 of Matsuura &
Nakano (2011). In the computations with the 1M grid, the jet shear layers are diffused
compared with the experimental data around z= 40 to 45 mm. While some deviations
are observed also for dr ∼ −3 mm of z = 0 to 20 mm, and dr > 3 mm of z = 45 mm,
the computation with the 9M grid much improves the diffusion mentioned above and
predicts the downstream variation of the velocity profiles very well.

Figure 10 shows vortical structures visualized by the iso-surfaces of the second
invariant of the velocity gradient tensor Q† = 14.5 for a period Tf . Here, Q† is defined
by

Q† = 1
2(−S†

ijS
†
ji +Ω†

ijΩ
†
ij), (3.6)

where S†
ij is the rate of strain tensor and Ω

†
ij is the vorticity tensor. Q†, S†

ij, Ω
†
ij are

non-dimensionalized by u0 and Lim. Vortex rings formed in the jet shear layer are
observed in figure 10. The vortex rings convect downstream, and impinge on the hole
edge. A new vortex ring is generated upstream near the nozzle exit, and the process
is repeated accompanying the periodic variation of pressure and the mass flow rates
mentioned in figures 6 and 7. Although the vortex rings visualized in figure 10 are
approximately axisymmetric, some azimuthal deformation of the vortex rings is also
visible. However, the asymmetry is much less apparent in the pressure fluctuation
fields in figure 13, and therefore we neglect the effects of the inhomogeneity in the
azimuthal direction.

In summary, these computations agree reasonably well with experiment.

4. Vortex impingement and pressure wave propagation
4.1. The relationship between pressure distribution of shear layers, velocity vectors and

separation at the edge
To clarify the details of the hole tone feedback mechanism, we first investigated
the vortex impingement processes. Figure 11 shows the time variation of pressure
fluctuation 1p and velocity fields due to shear-layer impingement on the hole edge
where 1p = p − p∞ and p∞ = 101, 325 Pa. Figure 12 shows a magnified view of
figure 11 in the neighbourhood of the hole edge. Regions of 1p < 0 are shown by
dashed lines and those of 1p > 0 by solid lines. The labels a1, . . . , k1 are used in
figure 11 and a2, . . . , l2 are used in figure 12.

Successive high and low pressure regions are formed in the jet shear layers. The
low pressure regions contain backflows that cause entrainment of the surrounding
fluids into the jets, and therefore correspond to vortices. The high pressure regions
are formed between the vortices. A simple explanation for the formation of the high
pressure regions is given in appendix A.

At t = 0, a low pressure region a1 is going to get into the hole near the hole edge; a
small vortex a2 which facilitates fluid entrainment to the hole is also observed on the
upstream surface of the hole edge. The small separation region b2 originally generated
at the upstream edge of the hole on previous occasions is observed on the interior
surface of the hole. Slightly away from the edge on the upstream side of the end plate,
a low pressure region b1 is observed.

At t = Tf /6, the large high pressure region c1 is formed on the upstream side of
the edge, and the low pressure region d1 is formed on the interior side of the edge.
Velocity vectors c2 around (r, z) = (d0/2,Lim) slightly point to the lower right. As a
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FIGURE 11. Time variation of pressure fluctuation 1p and velocity fields due to shear-
layer impingement on the hole edge (1/Tf ∼ 330 Hz). Solid lines, positive 1p; dashed lines,
negative 1p. Times: (a) t = 0, (b) t = Tf /6, (c) t = 2Tf /6, (d) t = 3Tf /6, (e) t = 4Tf /6, (f )
t = 5Tf /6, (g) t = 6Tf /6.

result, the inception of separation d2 takes place near the upstream edge of the hole.
Near the downstream edge of the hole, a vortex starts to leave from the edge.
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FIGURE 12. Time variation of pressure fluctuation 1p and velocity fields due to shear-layer
impingement on the hole edge in the neighbourhood of the edge (1/Tf ∼ 330 Hz). Solid lines,
positive 1p; dashed lines, negative 1p. Times: (a) t = 0, (b) t = Tf /6, (c) t = 2Tf /6, (d)
t = 3Tf /6, (e) t = 4Tf /6, (f ) t = 5Tf /6, (g) t = 6Tf /6.

At t = 2Tf /6, the high pressure region c1 observed on the upstream side of the
edge now diminishes as e1. From figure 12(c) the separation region e2 grows on the
interior side of the edge, while the velocity vectors f2 at z ∼ 50 mm are almost in
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FIGURE 13. Time variation of pressure fluctuation distribution 1p Pa upstream and
downstream of the end plate (1/Tf ∼ 330 Hz). Times: (a) t = 0, (b) t = Tf /8, (c) t = 2Tf /8,
(d) t = 3Tf /8, (e) t = 4Tf /8, (f ) t = 5Tf /8, (g) t = 6Tf /8, (h) t = 7Tf /8, (i) t = 8Tf /8.

the +z direction. The vortex near the downstream edge of the hole leaves the edge
slightly downstream.

At t = 3Tf /6, the high pressure region f1 in figure 11(d) on the upstream side of the
edge becomes much smaller compared with e1 in figure 11(c). In figure 12(d), velocity
vectors h2 point to the upper right in the high pressure region slightly upstream of the
hole inlet. The separation region e2 observed near the edge in figure 12(c) is convected
downstream as g2 to the middle of the hole.

At t = 4Tf /6, the high pressure region f1 observed near the edge in figure 11(d)
starts to get into the hole as g1. Velocity vectors point to the upper right as
found in i2 in figure 12(e). Separation near the interior side of the upstream edge
observed in figure 12(b–d) almost disappears, and the attached boundary layers grow
in conjunction with the high pressure region near the upstream side of the edge. The
separation region g2 observed in figure 12(d) approaches the hole edge. The vortex h1
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with backflow is observed a little away from the upstream surface of the end plate in
figure 11(e).

At t = 5Tf /6, the low pressure region h1 observed in figure 11(e) now impinges on
the hole edge. Because of the vorticity of the low pressure region near the upstream
side of the hole edge, velocity vectors i1 near the upstream side of the end plate
turn upstream, i.e. the −z direction. In figure 12(f ), velocity vectors j2 between the
high pressure region and the low pressure region point upward much more than
in figure 12(e), and the +z directional component of the velocity vectors decrease,
consequently alleviating the high pressure near the edge. The separation region k2 that
originally formed around t ∼ 2Tf /6 is now on the edge of the exit side of the hole.

At t = 6Tf /6, the high pressure region near the edge observed in figure 12(f )
disappears, and another high pressure region j1 approaches the hole edge. Two weak
low pressure regions k1 and l2 are distributed on both the upstream and interior side of
the hole. Compared with figure 11(a), the low pressure region k1 on the upstream side
of the edge proceeds in a radial direction. No evident separation is observed inside the
hole, and an attached boundary layer with a weak pressure gradient develops near the
interior side of the edge.

4.2. Pressure wave propagation
Here, we clarify the global propagation of pressure waves due to vortex impingement.
Figure 13 shows the time variation of the pressure fluctuation 1p distribution upstream
and downstream of the end plate. The region outside the range −3 6 1p 6 3 is
excluded in order to emphasize the relative ambient pressure distribution between
the space upstream and downstream of the end plate. In addition to the periodic
pressure distribution in the jet shear layers, high and low ambient pressure regions
alternately appear over a wide area upstream and downstream of the end plate, and
the hole part becomes a node for the change. Pressure waves pass through the jet,
and the jet including its shear layers oscillates periodically. For times t = 0 to 2Tf /8,
the ambient pressure upstream of the end plate gradually increases, and the ambient
pressure downstream of the end plate gradually decreases. For t = 3Tf /8 to 6Tf /8,
the ambient pressure upstream of the end plate gradually decreases, and the ambient
pressure downstream of the end plate gradually increases. For t = 7Tf /8 to 8Tf /8,
the ambient pressure upstream of the end plate gradually increases again, and the
ambient pressure downstream of the end plate gradually decreases again. Here, we
look at the relationship between the ambient pressures and the pressure distribution
around the hole edge. When high pressure regions impinge on the upstream surface of
the hole edge, the ambient pressure upstream of the end plate becomes high. At the
same time, low pressure regions are formed on the downstream surface of the hole
edge as well as the low ambient pressure region downstream of the end plate. When
low pressure regions impinge on the upstream surface of the hole edge, the ambient
pressure upstream of the end plate becomes low. At the same time, high pressure
regions are formed on the downstream surface of the hole edge as well as the high
ambient pressure region downstream of the end plate.

Figure 14 shows the detailed propagation of pressure waves due to the impingement
of the high pressure region on the hole edge for times t = 0.116Tf to 0.156Tf . Time
increments 1tinc are 1tinc ∼ 0.006Tf for (a–f ), and 1tinc = 0.003Tf for (g–i). First,
compression waves propagate upstream outside the jet, and increase the pressure there,
as shown by arrows in figure 14(a–f ). Then, the pressure inside the jet also increases
to the same pressure level as outside the jet due to the upstream propagation of
compression waves, as shown by arrows in figure 14(g–i).
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FIGURE 14. Detailed propagation of pressure waves due to the impingement of the high
pressure region on the hole edge for times t = 0.116Tf to 0.156Tf . 1p Pa is shown. Time
increments in (a–f ) are different from those in (g–i). Times: (a) t = 0.116Tf , (b) t = 0.122Tf ,
(c) t = 0.128Tf , (d) t = 0.134Tf , (e) t = 0.141Tf , (f ) t = 0.147Tf , (g) t = 0.150Tf , (h)
t = 0.153Tf , (i) t = 0.156Tf .

Figure 15 shows the detailed propagation of pressure waves due to the impingement
of the low pressure region on the hole edge for times t = 0.659Tf to 0.762Tf .
Time increments 1tinc are 1tinc ∼ 0.016Tf for (a–f ), and 1tinc = 0.009Tf for (g–i).
First, expansion waves propagate upstream outside the jet, and decrease the pressure
there as shown by arrows in figure 15(a–f ). After the pressure outside the jet
decreases, pressure inside the jet also decreases from upstream, as shown by arrows
in figure 15(e–i). In this way, a back-and-forth phenomenon, which does not occur
in the propagation of the compression waves, occurs in the propagation of the
expansion waves. Therefore, the directions of the pressure wave propagation are
different between the compression process and the expansion process. Figure 16
shows space–time plots, i.e. the time evolution of the pressure fluctuation distribution
at r = 5, 20, 40, 94 mm. Here, r = 5 mm corresponds to the neighbourhood of the
centreline, r = 20 mm corresponds to the jet shear layer, and r = 40 and 94 mm
correspond to the outside of the hole. The ordinate is the non-dimensional time t∗

and the abscissa is the z coordinate, where z = 0 mm corresponds to the nozzle
exit as explained in § 2.2. The times t = 0,Tf in figures 10–13 correspond to the
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FIGURE 15. Detailed propagation of pressure waves due to the impingement of the low
pressure region on the hole edge for times t = 0.659Tf to 0.762Tf . 1p Pa is shown. Time
increments in (a–f ) are different from those in (g–i). Times: (a) t = 0.659Tf , (b) t = 0.675Tf ,
(c) t = 0.691Tf , (d) t = 0.706Tf , (e) t = 0.722Tf , (f ) t = 0.738Tf , (g) t = 0.744Tf , (h)
t = 0.753Tf , (i) t = 0.762Tf .

times t∗ = 2.16, 25.2 respectively, as shown in figure 16. For comparison, the sound
speed propagation from downstream to upstream and from upstream to downstream is
shown by the arrow with c∞. The arrow with c∞ does not necessarily mean that the
apparent pressure waves propagate upstream, or downstream, at the speed of sound
because 1p is not a purely acoustic pressure. The apparent propagation speeds also
depend on the selection of 1p.

At r = 5 mm, a low pressure region ‘A’ is formed inside and downstream of the end
plate hole, and a high pressure region ‘B’ is formed just upstream of the end plate
hole. Pressure waves propagate upstream for the formation of region ‘B’ as found by
the inclination of the contours below it. A high pressure region ‘C’ is then formed
inside and downstream of the end plate hole, a low pressure region ‘D’ is formed near
the nozzle exit, and pressure waves propagate downstream for the formation of region
‘D’. When figure 16(a) is compared with figure 13, regions ‘A’ and ‘B’ approximately
correspond to the pressure distribution of figure 13(c,d). Region ‘C’ in figure 16(a)
corresponds to the high pressure regions in figure 13(f,g) downstream of the hole, and
region ‘D’ in figure 16(a) corresponds to the low pressure region in figure 13(h). At
r = 20 mm, the high and low pressure regions convect downstream slowly with the
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FIGURE 16. Space–time plots of pressure fluctuation 1p at r = 5, 20, 40, 94 mm (z = 0,
nozzle exit): (a) r = 5 mm (near the centreline); (b) r = 20 mm (near the jet shear layer); (c)
r = 40 mm (outside the hole, close to the centreline); (d) r = 94 mm (outside the hole, far
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FIGURE 17. Time histories of ur m s−1, uz m s−1 and 1p Pa near the nozzle exit, i.e.
(r, z)= (25.5 mm, 0.54 mm).

convection velocity of approximately 0.59u0. At r = 40 and 94 mm, which is outside
the jet, the variation of 1p in the z direction becomes small. From the pressure signals

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.377


A hole tone feedback system at very low Mach numbers 591

between z= 20 and 30 mm at r = 40 mm, the speed of the pressure wave propagation
is estimated to be larger than ∼0.85c∞.

With figures 13–16 taken into account, dominant pressure fluctuations in this
feedback system propagate both inside and outside the jet with the alternate
appearance of the wide high and low pressure regions upstream and downstream
of the end plate hole, and the frequencies of the pressure fluctuations and vortices
in the shear layer coincide. It has been thought for some time that pressure waves
outside the jet trigger the feedback of the hole tone regarding the feedback mechanism
mentioned in § 1. The global phenomena explained above are newly discovered
feedback phenomena (Matsuura & Nakano 2011).

Figure 17 shows the time histories of ur, uz and 1p near the nozzle exit, i.e.
(r, z)= (25.5 mm, 0.54 mm). The phases of uz and 1p are opposite, which means that
compression, i.e. a high 1p, decreases uz, and expansion, i.e. a low 1p, increases
uz; ur, which is a disturbance leading to the large vortices in the jet shear layer, is
generated with a phase advance of π/2 rad compared to uz.

These feedback phenomena consist of four elements, i.e. the birth of disturbances in
the jet shear layer, the convection and amplification of the disturbances leading to the
formation of vortices, the generation of pressure waves due to vortex impingement,
and the upstream propagation of pressure waves which initiate the disturbances.
It might be important to maintain the feedback loop that the vortex impingement,
associated with the alternative global fluctuations of the background pressures between
the upstream and downstream sides of the end plate, generates the periodic fluctuation
of pressure waves near the upstream edge of the end plate hole, which are propagating
upstream both inside and outside the jet. While the former two elements observed in
this paper do not alter existing views (Rayleigh 1945; Chanaud & Powell 1965), new
aspects of the mutual relationship between the latter two elements are given in the
feedback process mentioned above (Matsuura & Nakano 2011).

5. Proper orthogonal decomposition analysis for the relationship between the
pressure field and mass flow rate through the hole

In § 4.1 and appendix A, it is found that the distribution of pressure fluctuations
in the jet shear layers represents that of vortical structures. On the other hand, the
timing of the global propagation of pressure waves is closely related to the vortex
impingement and the associated distribution of vortical structures around the end plate
hole.

Here, to extract dominant unsteady behaviours, which are mutually independent, of
the hole tone phenomenon, a POD analysis is performed. The method used in this
study is Sirovich’s snapshot POD method (Sirovich & Rodriguez 1987). By using
this method, the whole pressure fluctuation field on Ωall ≡

⋃Nd
k=1Ωk is orthogonally

decomposed based on M instantaneous snapshots of the whole flow field. Here,
Ωk, k = 1, . . . ,Nd corresponds to each zone mentioned in § 2.2, and Nd is the total
number of the zones, i.e. Nd = 5. In the method, fluctuation p′(x, t) = p(x, t) − p(x) is
expanded by a set of eigenfunctions {φi(x)}Mi=1, which are also called ‘modes’, and the
corresponding coefficients {ai(t)}Mi=1 as

p′(x, t)∼ p′M(x, t)≡
M∑

i=1

ai(t)φi(x), (t, x) ∈ I ×Ωall. (5.1)
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Here, p(x) is the time-averaged pressure field. p(x), p′(x, ·), p′M(x, ·) and φi(x) are all
Nall-dimensional vectors of positions with a single coordinate. I is a set of times where
snapshots are sampled. Nall is the total number of grid points in Ωall, that is,

Nall ≡
Nd∑

k=1

Nk. (5.2)

Here, Nk is the number of grid points in Ωk. Strictly speaking, there is duplication
of elements in p′(x, ·) because ∃i, j ∈ {1, . . . ,Nd} of i 6= j, Ωi ∩ Ωj 6= φ. However, the
measures of Ωi ∩Ωj for such i, j are very small compared with those of the zones, and
therefore the duplication is considered to be negligible in these analyses. As discussed
later on, the eigenfunctions {φi(x)}Mi=1 and the corresponding coefficients {ai(t)}Mi=1 are
successfully evaluated by this treatment. In this study, the snapshots are collected every
30001t. M is varied as 100, 200 and 300, and M = 200 is used finally, based on the
discussion of the statistical convergence of the eigenvalues described later.

The eigenfunctions φi(x) are obtained by the algebraic equation

Cfi = λifi. (5.3)

Here, C = (Cm,n) is an M × M matrix, λi is an eigenvalue, and fi = (fm,i) is an
eigenvector. The elements Cm,n are defined by

Cm,n ≡ 〈p′(x, tm), p′(x, tn)〉, m, n ∈ {1, . . . ,M}, (5.4)

where 〈·, ·〉 is the Euclidean inner product. The above eigenvectors are scaled such that

‖fi ‖2 =
M∑

k=1

f 2
k,i = λi, i ∈ {1, . . . ,M}. (5.5)

Then, the eigenfunction φi(x) is defined by

φi(x)≡ 1
λi

M∑
k=1

fk,ip
′(x, tk). (5.6)

The eigenfunction φi(x) has a property such that

φk(x) ·φl(x)= δkl, k, l ∈ {1, . . . ,M}, (5.7)

where δkl is Kronecker’s delta function. Using the orthogonality of φi(x), the
coefficient ai(t) is derived as

ai(t)= φi(x) · p
′ (x, t)t . (5.8)

Figure 18 shows the fractional energies of the first 20 dominant POD modes for
M = 100, 200 and 300. Irrespective of the values of M, the most dominant mode
occupies nearly 47 % of the total energy, and the second dominant mode occupies
nearly 23 %. While there is a small difference between the results of M = 100 and
200, the difference between the results of M = 200 and 300 is negligible for the two
dominant modes. Therefore, M = 200 is used for the later discussion.

Figure 19 shows the time histories of the pressure fluctuation, i.e. p′(t), the
reconstructed pressure fluctuation from the dominant 20 POD modes, i.e. P′20(x, t),
the first POD mode, i.e. a1(t)φ1(x), and the second POD mode, i.e. a2(t)φ2(x), at
(r, z) = (d0/2, 0.964Lim) and (d0/2, 1.238Lim). The reconstructed pressure fluctuation
from the dominant 20 POD modes reproduces the original pressure fluctuation
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FIGURE 18. Fractional energies of the first 20 dominant POD modes.
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FIGURE 19. Pressure fluctuation, reconstructed pressure fluctuation from the dominant 20
POD modes, and the first and second POD modes at (a) (r, z) = (d0/2, 0.964Lim) and (b)
(r, z)= (d0/2, 1.238Lim).

accurately at both positions, and therefore these decompositions and reconstructions
are conducted correctly. At (r, z) = (d0/2, 0.964Lim), the first POD mode is much
more dominant than the second POD mode, and the original pressure fluctuation
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FIGURE 20. The first and second empirical eigenfunctions: (a) first mode, (b) second mode.

is represented mainly by the first POD mode. At (r, z) = (d0/2, 1.238Lim), the first
and second POD modes have almost equivalent magnitudes and the difference is the
phase between them. Although the positions of the negative peaks of the original
data lie between those of the negative peaks of the first and second POD modes, the
positive peaks are mainly represented by the first POD mode. Therefore, the first POD
mode, which has the most dominant fractional energy, mainly reproduces the pressure
fluctuation both upstream and downstream of the end plate hole.

Figure 20 shows the distributions of the first and second eigenfunctions. In the first
eigenfunction, there are a high pressure region ‘A’ on the upstream side of the hole
and a low pressure region ‘B’ on the downstream side of the hole. There is another
low pressure region ‘C’ on the interior side of the upstream edge, and another high
pressure region ‘D’ is formed between low pressure region ‘C’ and region ‘B’ on
the downstream side of the hole. Therefore, the first eigenfunction is anti-symmetric
regarding the pressure distribution between the upstream and downstream sides of
the hole. When the dominance of the first POD mode is taken into consideration,
this distribution is consistent with the pressure distribution upstream and downstream
of the hole observed in § 4.2. In the second eigenfunction, there is a high pressure
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FIGURE 21. Comparison of the time histories of the first and second POD modes’
coefficients with that of the mass flow through the end plate hole.

region ‘A’ on the upstream side of the hole and another high pressure region ‘B’
on the downstream side of the hole. Between these two high pressure regions, a
low pressure region ‘C’ is formed. Therefore, the second eigenfunction is symmetric
regarding the pressure distribution between the upstream and downstream sides of the
hole. When the second eigenfunction is compared with the first eigenfunction, the
distribution of the second eigenfunction can be viewed as the resulting distribution
of the first eigenfunction after a certain time period, i.e. a certain phase shift. In
fact, the high pressure region ‘A’ diminishes from figure 20(a) to figure 20(b), and
high pressure region ‘B’ in figure 20(b) is closer to the hole exit than region ‘D’ in
figure 20(a).

Figure 21 shows the comparison of the time histories of the coefficients of the first
and second POD modes with those of the mass flow through the end plate hole ṁ†

h.
When the mass flow is a local minimum the coefficient of the second POD mode
becomes a positive peak, and therefore they correlate well. When the coefficient of the
second POD mode becomes a peak, that of the first POD mode becomes almost zero.
Thus, the mass flow variation is mainly represented by the second POD mode.

Summarizing the above discussion of the first and second POD modes, the pressure
fluctuation and the mass flows are respectively expressed by the first and second POD
modes, which are mutually orthogonal and have a phase difference of π/2 similar to
the relationship between the sine and cosine functions.

6. An axisymmetric throttling mechanism linking mass flow rates, vortex
impingement and global pressure propagation

In §§ 4 and 5 the variation of velocity and pressure fields associated with vortex
impingement, i.e. the local phenomena occurring close to the hole edge, pressure
wave propagation and the variation of mass flow through the hole were investigated
independently. Here, a linkage between these components is investigated, which we
name ‘the throttling mechanism’ in analogy to a mechanical valve that regulates mass
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FIGURE 22. Comparisons of (a) the time histories of mass flow rates through the end plate
hole, (b) pressure fluctuation 1p Pa at the inlet and exit of the hole, (c) radial velocities
ur m s−1 at the inlet and exit of the hole, and (d) the streamwise velocities uz m s−1 at the inlet,
the centre and the exit of the hole.

flows with its resulting pressure wave propagation. Figure 22 shows comparisons
of the time histories of mass flow rates through the end plate hole ṁ†

h, pressure
fluctuation 1p at the inlet and exit of the hole, radial velocities ur at the inlet and
exit of the hole, and streamwise velocities uz at the inlet, the centre and the exit of
the hole. In the figure, the timings of t = nTf /6 (n= 0, 1, . . . , 6) used in figures 10–12
are also shown. For our convenience, points P3 = (25.5, 49.5), P4 = (26.0, 49.5),
P5 = (25.2, 50.5), P6 = (25.2, 54.7), P7 = (25.2, 59.5), P8 = (25.5, 60.5) are defined
at θ = 0. Here, (·, ·) is the coordinate (r mm, z mm). Figure 23 shows a schematic of
the throttling mechanism. Computed pressure contours are partly used in the figure. In
the figure, ‘H’ is a high 1p region and ‘L’ is a low 1p region.

At t = 0, the mass flow rate through the hole ṁ†
h becomes maximal, as shown in

figure 22(a). From figure 12(a) and 1p at P3 in figure 22(b), a low pressure region
will enter the hole near the hole edge. At this time, ur at P3 is almost zero, i.e.
in parallel to the centreline. Fluid entrainment is facilitated by the small vortex a2

observed in figure 12(a) mentioned previously in § 4.1. At P3 and P4, ur is on the shift
from a positive to negative velocity. As shown in figure 12(f ), a low pressure region,
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FIGURE 23. An axisymmetric throttling mechanism linking mass flow rates, vortex
impingement and global pressure propagation at the end plate hole. H, high 1p; L, low
1p; ur, the radial velocity; solid lines, positive 1p; dashed lines, negative 1p; double solid
lines, compression wave; double dashed lines, expansion wave. (a) Maximal ṁh (t ∼ 0), (b)
decreasing ṁh (t ∼ 0 to Tf /6), (c) minimal ṁh (t ∼ 3Tf /6), (d) increasing ṁh (t ∼ 3Tf /6 to
4Tf /6).

i.e. a vortex with anticlockwise rotation, impinges on the upstream surface of the hole
edge just before ṁ†

h becomes maximal, therefore creating the shift from positive to
negative velocity mentioned above. At P5, P6 and P7, uz > 0, and therefore no large
separation is taking place inside the hole. As mentioned in § 4.1, the separation region
k2 in figure 12(f ) that was originally formed around t ∼ 2Tf /6 is now almost as far
out of the hole as b2, although there is no strict repeatability in the positions of b2

over the successive periods Tf . In § 5, it is shown that the second POD mode correlates
well with ṁ†

h, and the mode has the symmetric pressure distribution around the hole,
as shown in figure 20(b). This distribution is consistent with the vortex locations
mentioned above, and is the condition for achieving maximal ṁ†

h. In figure 16, t = 0,
i.e. t∗ = 2.16 corresponds to an intermediate time between a local maximum and
minimum pressure, which is also confirmed by 1p at P3 in figure 22(b). A schematic
of the flow field at t ∼ 0 is shown in figure 23(a).

From t = 0 to ∼Tf /6, ṁ†
h begins to decrease. As mentioned in § 4.1, a high pressure

region starts to impinge on the upstream surface of the hole edge, which is also found
in figures 11(b), 12(b) and 13(b,c). Associated with the impingement, the ambient 1p
increases, by the pressure wave propagation shown in figure 14, in the space between
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FIGURE 24. Computational results of the instantaneous acoustic power evaluation. (a)
Instantaneous acoustic power near the hole, Pac W. (b) Positional contribution 1Pac to Pac
along the z coordinate at t = Tf /6 and t = 2Tf /6. (c) Spatial contribution pac to Pac around the
upstream edge of the hole: (ci) t = Tf /6, (cii) t = 2Tf /6.

the nozzle exit and the end plate, as confirmed in figure 13(b,c). Because the surface
meets the downstream portion of the high pressure region at this time, ur < 0 at P3
and P4, as explained in appendix A. The change of ur, i.e. the local angle of attack,
due to the impingement of the high pressure region is the reason for the decrease of
ṁ†

h. Because of the negative ur, the separation bubble d2 in figure 12(b) is formed
as mentioned in § 4.1, which is also confirmed by uz < 0 at P5 and uz > 0 at both
P6 and P7 in figure 22(d). The negative ur also leads to the negative 1p near the
interior surfaces of the hole in figure 13(b,c), and to the appearance of the region
‘A’ in figure 16(a) associated with the downstream propagation of expansion waves
due to the decrease of ṁ†

h. The direction of the wave propagation is confirmed by
the inclination of contours toward the upper right below region ‘A’ in figure 16(a).
It appears that the decrease of ṁ†

h at the hole exit is complemented by the fluid
entrainment of vorticity with a separation bubble formed near the upstream edge of the
hole. This formation of the separation bubble triggers the decrease of ṁ†, i.e. to close
the hole in analogy to a mechanical valve. The flow field of t ∼ 0 to Tf /6 is sketched
in figure 23(b).
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Hole edge

Separation

u

FIGURE 25. Explanation for the strong acoustic power generation.

To identify flow regions responsible for strong sound production, the vortex
sound theory developed by Howe (1975, 1980) is used. The procedures to evaluate
instantaneous acoustic power are described in appendix B. The results of the
evaluation are summarized in figure 24. Figure 24(a) shows the instantaneous acoustic
power Pac generated in a volume V at t = nTf /6 (n= 0, 1, . . . , 6). Here,

V ≡ {(r, θ, z); (r, θ, z) ∈ V1 ∪ V2 ∪ V3}, (6.1)

where

V1 ≡ [d0/51, 4.93d0] × [0, 2π)× [45 mm, 50 mm], (6.2)
V2 ≡ [d0/51, d0/2] × [0, 2π)× [50 mm, 60 mm], (6.3)
V3 ≡ [d0/51, 4.93d0] × [0, 2π)× [60 mm, 65 mm]. (6.4)

Pac becomes high around t = Tf /6 to 2Tf /6. Figure 24(b) shows positional contribution
1Pac to Pac along the z coordinate at t = Tf /6 and t = 2Tf /6. 1Pac is defined by
integrating the power per unit volume pac in the r, θ directions, i.e.

1Pac ≡
∫∫

pac

J
dξ dη, pac ≡−ρ∞(ω × u) ·uac. (6.5)

Here, ξ and η are the general coordinates in the θ and r directions, respectively.
High values of 1Pac are observed around z = 50–53 mm. Figure 24(c) shows spatial
contribution pac to Pac around the upstream edge of the hole at t = Tf /6 and t = 2Tf /6.
pac is defined as the average of pac in the θ direction. Two high pac regions are
observed. The highest pac region coincides with the outer edge of the separation region,
and the second highest pac region is on the just upstream side of the end plate near the
hole edge. In the former region, considering the vorticity of the region and ur < 0, an
external force f =−ρ∞(ω×u) acting on acoustic potential flows is in the −z direction,
which coincides with the direction of the pressure wave propagation as in figure 25.
Therefore, when § 4.2 is taken into consideration, the outer edge of the separation
region near the upstream edge of the hole is considered to be the major sound source
of the pressure waves propagating inside the jet. Meanwhile, the upstream side of
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the end plate near the hole edge is considered to be the major sound source of the
pressure waves propagating outside the jet.

At t = 2Tf /6, ṁ†
h is still decreasing. From figure 11(c), the high pressure region

near the upstream surface of the hole edge is compressed further than at t = Tf /6 by
the impingement. In figure 22(b), the pressure at P3 reaches a local maximum. Near
the maximal pressure, |ur| at both P3 and P4 becomes smaller than |ur| at t = Tf /6
because flows from successive low pressure vortices meet at regions where pressure
becomes maximal, as explained in appendix A. However, because ur is still negative,
a separation bubble near the hole edge continues to expand, as found from uz < 0 at
P5, uz ∼ 0 at P6 and uz > 0 at P7 in figure 22(d). By the propagation of compression
and expansion waves, region ‘A’ of 1p< 0 and region ‘B’ of 1p> 0 in figure 16 are
clearly formed at this time, which is also confirmed by figure 13(c,d). The pressure
distribution at this time is dominantly represented by the eigenfunction of the first
POD mode based on the discussion in § 5. Region ‘A’ in figure 16(a) corresponds
to the formation of the low pressure regions ‘B’ and ‘C’ in figure 20(a), which is
also confirmed by figure 13(c,d), and region ‘B’ in figure 16(a) corresponds to the
formation of the high pressure region ‘A’ in figure 20(a) by the impingement. Region
‘B’ in the eigenfunction corresponds to the vortices observed in figure 12(b,c).

At t = 3Tf /6, ṁ†
h becomes a local minimum. From figures 11(d) and 12(d), the high

pressure regions near the upstream surface of the hole edge are diminished compared
to t = 2Tf /6, and the pressure at P3 starts to decrease from the maximal pressure
at t = 2Tf /6 in figure 22(b). Because ur ∼ 0 at P3, as shown in figure 22(c), the
centre of the high pressure region is almost at the edge based on the discussion in
appendix A. However, because the surrounding flows have outward components due
to the existence of a low pressure region upstream of the high pressure region as also
mentioned in § 4.1, the fluid entrainment observed in figures 11(a) and 12(a) does not
occur, and therefore ṁ†

h becomes minimal. Because ur ∼ 0, the separation bubble at
the upstream side of the hole disappears, as found in uz ∼ 0 at P5. Compared with
t = 2Tf /6, the separation bubble is convected downstream to the middle of the hole, as
found both from figure 12(d) and from uz < 0 at P6 and uz > 0 at P7 in figure 22(d).
Because the variation of ṁ†

h correlates well with the second POD mode as discussed in
§ 5, the pressure distribution around the hole in figure 13(e) is very similar to that in
figure 20(b). The low pressure region ‘C’ in figure 20(b) corresponds to the convected
separation bubble mention above. Between the low pressure region at the middle of
the hole, and a vortex downstream of the edge, a high pressure region is formed at
the exit of the edge, which is shown as ‘B’ in figure 20(b). It corresponds to the
appearance of high pressure region ‘C’ in figure 16(a). The increase of pressure at the
downstream edge of the hole, which is also confirmed by 1p at P8, correlates well
with the increase of ur at the same point. The flow field at the time is sketched in
figure 23(c).

From t = 3Tf /6 to ∼4Tf /6, ṁ†
h starts to increase, which corresponds to the start

of opening the hole in analogy to a mechanical valve. The high pressure region will
enter the hole in figure 12(e), and a low pressure region with anticlockwise rotation is
approaching from upstream to the edge in figure 11(e). As a result, the pressure at P3
decreases, and ur also increases continuously with the entrainment of the surrounding
fluids to the hole, which is the reason for the increase in ṁ†

h. Accompanying the
pressure decrease near the hole, the ambient pressure upstream of the end plate
decreases almost simultaneously, which is confirmed by figure 13(e,f ), figures 15 and
16(a). The separation region inside the hole is convected further downstream than
t = 3Tf /6, and the upstream end of the region is around z ∼ 54.7 mm, as found
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from uz ∼ 0 in figure 22(d). Increasing ṁ†
h makes the ur of outflows positive, which

results in the high pressure region downstream of the edge, and is consistent with
the distribution of the first POD mode’s eigenfunction. With the growth of the high
pressure region near the downstream surface of the edge, which is also found by the
increase of 1p at P8, the ambient pressure downstream of the end plate becomes
high, which is confirmed by region ‘C’ in figure 16(a). Compression waves propagate
upstream, as found by the inclination of contours toward upper left below region ‘C’
in figure 16(a). The flow fields for t = 3Tf /6 to 4Tf /6 are sketched in figure 23(d).

At t = 5Tf /6, ṁ†
h is still increasing. A low pressure region impinges on the hole

edge, as found from figure 12(f ), figure 13(g,h), and the minimal value of 1p at P3.
Because of the vorticity of the low pressure region, ur at P3 and P4 becomes a local
maximum. Consistent with the dominance of the first POD mode and its eigenfunction
in figure 20(a), the pressure at the exit of the hole becomes a local maximum as
opposed to the minimal pressure at the upstream edge, which is confirmed by 1p at
P8 in figure 20(b). The separation region inside the hole is convected near the exit, as
found from uz < 0 at P7. Due to the large ur near the upstream side of the hole edge,
a portion of a vortex in the jet shear layer does not enter the hole and is ejected in
the radial direction near the upstream surface of the end plate, which was mentioned
previously as b1 in figure 11(a). At t = 6Tf /6 the flow states come back to similar
states as at t = 0.

7. Conclusions
Direct computations of a hole tone feedback system were conducted. The mean

velocity of an air jet was 10 m s−1. The diameters of the nozzle and the end plate
hole used were both 51 mm, and the impingement length between the nozzle and the
end plate was 50 mm. This numerical method was validated against past experimental
data in terms of the qualitative vortical structures, the relationship between the most
dominant hole tone peak frequency and the jet speed, and the downstream growth of
the mean jet profiles. Based on the computational results, the shear-layer impingement
on the hole edge, the resulting propagation of the pressure waves and the associated
vortical structures were discussed. In the jet shear layers, successive high and low
pressure regions were formed. A simple explanation for the generation of the high
pressure region and the directions of velocity vectors between two low pressure
regions with backflows were given based on potential flow theory. The periodic
pressure fluctuation as a result of shear-layer instability around the jet is associated
with the variation of velocity vectors. Therefore, the shear-layer impingement on the
hole edge is associated with the periodic flow separation and reattachment near the
edge due to the variation of incidence angles to the edge. Accompanying the events,
high and low pressure regions appeared alternately over a wide area upstream and
downstream of the end plate hole. Dominant pressure fluctuations propagated both
inside and outside the jet, and the frequencies of the pressure fluctuations coincided
with those of successive vortices in the jet shear layer. Inside the jet, the directions
of the pressure wave propagation differed between the compression and expansion
processes.

To extract the dominant unsteady behaviours of the hole tone phenomenon, a
snapshot POD analysis of the pressure fluctuation fields was conducted. The first and
second eigenfunctions were respectively anti-symmetric and symmetric with regard to
the pressure distribution around the hole. The pressure fluctuations and the mass flows
were dominantly expressed by the first and second POD modes, respectively, which
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had a phase difference of π/2 similar to the relationship between the sine and cosine
functions.

Integrating the computational results, an axisymmetric throttling mechanism linking
the mass flow rates through the hole, the vortex impingement and the global pressure
propagation is proposed. When a low pressure region entered the hole at t = 0, flows
entered the hole almost in parallel to the centreline. In addition, the low pressure
region had vorticity, which augments the surrounding fluid entrainment. Consequently,
the mass flow rates through the hole, i.e. ṁh, became maximal at this stage. Around
t = Tf /6 to 2Tf /6, the downstream half portion of a high pressure region impinged
on the upstream surface of the hole edge. Because the velocity vectors of the region
had inward components, i.e. ur < 0, meaning the formation of the separation bubble
at the hole edge, ṁh started to decrease compared with that at t = 0. Because the
flows were blocked by the surface of the edge, a high pressure region grew on
the surface. As a result, especially around t ∼ Tf /6, compression waves propagated
upstream both inside and outside the jet between the nozzle exit and the end plate.
Meanwhile, expansion waves propagated downstream of the end plate because ṁh

decreased. Near the downstream edge of the hole, low pressure vortical flows with
ur < 0, which were similar to the distribution of the eigenfunction of the first POD
mode, were realized. The outer edge of the separation region and the upstream side
of the hole edge produce strong sound. Around t = 3Tf /6, the centre of the high
pressure region, which has ur ∼ 0 was almost at the edge. However, because the
surrounding flows had outward components due to the existence of a low pressure
region upstream of the high pressure region, ṁh became minimal. Around t = 4Tf /6
to 5Tf /6, a low pressure region impinged on the upstream surface of the hole edge.
Because the velocity vectors had outward components, i.e. ur > 0 due to the vorticity
of the low pressure region, ṁh also started to increase with entrainments of the
surrounding flows compared with that at t = 3Tf /6. Especially around t ∼ 4Tf /6,
expansion waves propagated upstream outside the jet and downstream inside the jet
by the impingement. Near the downstream edge of the hole, increasing ṁ made the ur

of outflows positive, which resulted in a high pressure region downstream of the edge.
As a result, compression waves propagated upstream towards the end plate hole. It was
consistent with the distribution of the eigenfunction of the first POD mode.
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Appendix A. A simple explanation for the generation of a high pressure
region, and the direction of velocity vectors between vortices

As mentioned in § 4.1, successive high and low pressure regions are formed in
the jet shear layers. The low pressure regions correspond to vortices with backflows.
Here, we explain, by a simple model based on potential flow theory, the generation
of such high pressure regions between successive vortices. In addition, the direction
of velocity vectors between the vortices is also discussed. Assuming two free vortices
with constant circulation Γ which are at a distance of λ from each other, the complex
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FIGURE 26. A vector field and dynamic pressure distribution formed by two free vortices: (a)
vector field; (b) distribution of dynamic pressure divided by (1/2)ρ∞.

potential W(z) becomes (Imai 1973)

W(z)= Γ

2πi
(ln(z)+ ln(z− λ)). (A 1)

Inserting z= reiθ , the complex velocity reads

dW(z)

dz
= u− iv = Γ

2πi

(
1
z
+ 1

z− λ
)

(A 2)

=−Γ sin θ
2π

{
1
r
+ r

(r cos θ − λ)2+ (r sin θ)2

}
− i

Γ

2π

{
cos θ

r
+ r cos θ − λ
(r cos θ − λ)2+ (r sin θ)2

}
. (A 3)

The resulting dynamic pressure H becomes

H = 1
2
ρ∞(u2 + v2) (A 4)

= 1
2
ρ∞

(
Γ

2π

)2{ 1
r2
+ 1

(r cos θ − a)2+ (r sin θ)2

+
(

2
r

)
r − a cos θ

(r cos θ − a)2+ (r sin θ)2

}
. (A 5)

Figure 26 shows a vector field and dynamic pressure distribution formed by the
two free vortices. To plot the figure, λ = 14.4 × 10−3 m, and Γ = 2πRvθ with
R = 2 × 10−3 m and vθ = 5 m s−1 are substituted based on the computed flow results.
In figure 26(a), because vector fields become singular around the vortex cores x= 0, λ,
the vectors near the cores are removed from the figure. In figure 26(b), the dynamic
pressure becomes low between the vortices, and therefore the static pressure becomes
high according to Bernoulli’s principle.

Another important property of the vortex system is that, on the line l′ which is
below the line l, ux > 0 and uy > 0 near A, uy ∼ 0 near the centre between A and B
where the pressure becomes high, and ux > 0 and uy < 0 near B.
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Appendix B. Evaluation of instantaneous acoustic power
In order to identify flow regions responsible for strong sound production, the

vortex sound theory developed by Howe (1975, 1980) is used. The theory shows
that when an acoustic oscillation occurs in an inviscid, isentropic but rotational flow,
then instantaneous acoustic power Pac is generated in a volume V , which is given by

Pac =−ρ∞
∫

V
(ω × u) ·uac dV, (B 1)

where u is the instantaneous fluid velocity, ω = ∇ × u is the vorticity, uac is the
acoustic particle velocity, and ρ∞ is the mean density of the fluid. The acoustic
particle velocity is defined as the fluctuating irrotational part of the flow field
(Howe 1997a), and is obtained by the following procedure. By the Helmholtz–Hodge
decomposition (Chorin & Marsden 1992), the fluid velocity u is uniquely decomposed
into the irrotational and the solenoidal parts as

u=∇φ +∇ × A, ∇ ·A= 0. (B 2)

Here, φ and A are a scalar potential and a vector potential, respectively. φ is
obtained by solving the following Poisson equation in a domain Ω with corresponding
boundary conditions:

∇2φ =∇ ·u in Ω, n ·∇φ = n ·u on ∂Ω. (B 3)

Here, n is the unit normal vector directed outward from ∂Ω . While the domain
Ω where the Poisson equation is solved has the same multidomain configuration as
figure 2, the far boundaries in the r and z directions are trimmed to r = 4.93d0 and
z= 4.03d0 to reduce computational cost. In addition, grid A mentioned in § 2.2 is used.
The velocity fields are interpolated from grid B. Because φ has an arbitrariness of
a constant, the value of φ at a reference point is fixed. The above decomposition is
conducted also for the time-averaged velocity field u0, and its scalar potential φ0 is
obtained. Finally, uac is defined by

uac =∇(φ − φ0). (B 4)
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