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We examine the effect of a kinetic undercooling condition on the evolution of a free boundary

in Hele–Shaw flow, in both bubble and channel geometries. We present analytical and

numerical evidence that the bubble boundary is unstable and may develop one or more

corners in finite time, for both expansion and contraction cases. This loss of regularity is

interesting because it occurs regardless of whether the less viscous fluid is displacing the more

viscous fluid, or vice versa. We show that small contracting bubbles are described to leading

order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem

continue past the corner formation until the bubble contracts to a point as a slit in the limit.

Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman–Taylor

channel geometry. The boundary may either form corners in finite time, or evolve to a single

long finger travelling at constant speed, depending on the strength of kinetic undercooling. We

demonstrate these two different behaviours numerically. For the travelling finger, we present

results of a numerical solution method similar to that used to demonstrate the selection of

discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free

travelling fingers exists for any finger width above a critical value, which goes to zero as

the kinetic undercooling vanishes. We have not been able to compute the discrete family of

analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme

cannot distinguish between solutions characterised by analytic fingers and those which are

corner-free but non-analytic.

Key words: Hele–Shaw flow; Kinetic undercooling; Bubble contraction and expansion; Vis-

cous fingering; Corner formation

1 Introduction

The mathematical model of an evolving fluid region in a Hele–Shaw cell is a canonical

example of a free boundary problem in applied mathematics. The amount written on this

problem in the last half-century is immeasurable, ranging from experimental work and

numerical computations, to explicit solution methods and theoretical results (see the web

site [35] for an extensive bibliography).

In this paper we consider a kinetic undercooling condition on the boundary ∂Ω of a

contracting or expanding inviscid bubble β(t) surrounded by a region of viscous fluid

Ω(t) ⊂ �2, as well as the equivalent problem in a channel geometry (see Figure 1). The
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Figure 1. (Colour online) A schematic of the evolving fluid region Ω(t) in free-boundary

Hele–Shaw flow, in (a) a bubble geometry, and (b) a channel geometry.

kinetic undercooling condition states that the potential at a point on the free boundary is

proportional to the normal velocity of the boundary at that point. While the name derives

from the physics of melting and freezing (Stefan) problems [3, 22, 38], similar boundary

conditions arise from modelling changes in curvature in the neglected transverse dimension

in the fluid dynamics context [55], diffusion of solvent into glassy polymers [8, 23, 44, 49]

and in streamers involved in the formation of sparks and lightning [18, 19, 36, 42, 48, 58].

Mathematically, kinetic undercooling is considered as an alternative to surface tension

in regularising unstable Hele–Shaw flows, by suppressing the blow-up in the speed of

the boundary that characterises the unregularised (constant pressure condition) problem,

which is ill-posed [34]. Numerical and existence results for Hele–Shaw flow with kinetic

undercooling have been derived for the problem of a viscous blob surrounded by inviscid

fluid [51, 53], a situation we do not consider in the present work.

We have recently considered the interplay between surface tension and kinetic un-

dercooling for a contracting inviscid bubble near extinction [14], but are aware of no

other published research on expanding or contracting bubbles with kinetic undercooling

only. On the other hand, much has been done on inviscid bubbles in the unregular-

ised case, without surface tension or kinetic undercooling. Many exact solutions are

known [9, 12, 31, 33, 34], and the behaviour of bubbles near extinction and break-up has

been studied [20, 21, 40, 41, 46]. With surface tension regularisation, there are many soph-

isticated numerical schemes that model an expanding (unstable) boundary and capture

the long fingering patterns that result [29, 30].

There has also been some research on the problem in a channel geometry; the selection

problem of determining the discrete set of allowed widths of a travelling finger for varying

kinetic undercooling strength (the analogue of the famous selection problem with surface

tension [6, 37, 47, 57, 61]) has been analysed using exponential asymptotics [7], and some

numerical studies have been attempted [11,55]. The conclusions vary: asymptotics suggests

that kinetic undercooling selects discrete fingers whose width tends to 1/2 as kinetic

undercooling vanishes, while numerical results suggest either no selection (a continuous

family of solutions) [55] or discrete branches whose width vanishes [11]. We aim to explain

these discrepancies in the current paper. There are also linear stability results [7, 34] and

exact travelling waves for sufficiently large kinetic undercooling [7]. Closely related to

the finger is the problem of a travelling finite bubble in a directed flow field, which is
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Table 1. Numerically and analytically observed properties of contracting and expanding in-

viscid bubbles in Hele–Shaw flow, with various regularisations. The last row contains the

results of this paper. We consider the competition between surface tension and kinetic un-

dercooling for contracting bubbles elsewhere [14].

Boundary Expanding Contracting

Unregularised Ill-posed : generic cusp formation,

corners possible [32–34, 39].

Stable: 2nd mode neutrally stable,

generic extinction shape an el-

lipse [20]

Surface tension Unstable but not ill-posed: high

modes stable, fingering solutions ex-

ist for all time [5, 14, 29, 50].

Stable: All modes stable: generic ex-

tinction shape a circle [14].

Kinetic under-

cooling

Unstable: all modes unstable, gen-

eric corner formation, only weak

solutions subsequently (§3)

Unstable: corners form, generic ex-

tinction shape a slit (§§3,4).

of recent interest in the literature on streamers [28, 36, 58]. Numerical solutions of the

evolving shape of a bubble suggest that an initially smooth bubble boundary may not

remain so for all time [36]; this property also arises in the present work.

The aim of this paper is to demonstrate the very different effect that kinetic undercooling

has on free boundary Hele–Shaw flow, compared with surface tension and unregularised

variants, in the context of expanding or contracting bubbles, and translating fronts or

fingers in a channel. Table 1 summarises these differences with particular regard to

expanding and contracting bubbles.

The content of this paper is as follows. In Section 2 we outline the governing systems

of equations. In Section 3 we examine expanding and contracting inviscid bubbles. With

linear stability analysis (Section 3.1) we show that in both cases, kinetic undercooling

destabilises a near-circular bubble once its radius is outside a critical interval. We also

present strong numerical evidence (Section 3.2) that this instability generically leads to

the formation of corners on the boundary. This corner formation represents a blow-up

in the curvature, but not speed, of the boundary. In contrast, surface tension suppresses

singularities in both curvature and speed (corners may exist in the unregularised problem,

but they are not generic, and exist at a stationary point for a finite time before smoothing

off [39]).

In Section 4 we show that the boundary in the limit of small bubble size (equivalently,

large kinetic undercooling) behaves to leading order as a plane curve that evolves so that

each point on the curve moves with constant normal velocity, once a time scaling is applied.

For contracting bubbles this limit is particularly relevant; the extinction behaviour of a

bubble in the full Hele–Shaw problem is given by the extinction behaviour of the boundary

contracting according to the simpler constant velocity rule. We derive the exact solution

to the leading order problem for an initially elliptical boundary, which demonstrates the
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formation of corners and the asymptotic shape of the boundary: a slit of vanishing aspect

ratio. Such behaviour is likely to be generic for a wide class of initial conditions.

In Section 5 we consider Hele–Shaw flow with kinetic undercooling in a channel. Here

the pertinent question is the existence of travelling wave solutions: either a front that spans

the width of the channel (usually exhibiting corners), or a finger of width strictly less than

the channel. Explicit solutions have been found for the travelling fronts [7]. For fingers,

we present a numerical scheme, previously described in our conference paper [11], which

shows that corner-free fingers exist for a continuous range of widths bounded below by a

minimum width that vanishes as kinetic undercooling goes to zero. While this continuum

of solutions appears to contradict the findings of Chapman and King [7], who show there

exist discrete families of analytic fingers, the results are entirely consistent because the

numerical scheme cannot distinguish between solutions characterised by analytic fingers

and travelling fingers that are corner-free but not analytic (due to the nonexistence of

higher derivatives). Indeed, Chapman and King discuss the existence of these non-analytic

travelling finger solutions, and predict the resulting difficulty of numerically computing

the discrete spectrum of analytic solutions. These results also explain the conclusion of a

previous numerical study [55] that kinetic undercooling offered no discrete selection (the

discrete branches we found previously [11] are the result of small numerical errors). In

Section 5.3 we alter our numerical scheme from Section 3.2 to track the evolution of a

boundary to either a front or finger, depending on the kinetic undercooling strength. We

conclude with suggestions for further study in Section 6.

2 Model equations

The bubble problem consists of solving both a two-dimensional harmonic velocity po-

tential φ(x, t) (where x = (x, y)) in Ω(t) and evolution of the free boundary ∂Ω(t) (see

Figure 1). Two boundary conditions are needed on the free boundary ∂Ω: a kinematic

condition that relates the fluid velocity to that of the boundary, and a dynamic condition

that, in this case, includes the kinetic undercooling term. The model has two parameters:

the kinetic undercooling coefficient c (a length scale) and the far-field source strength. For

this geometry we choose to scale time such that the far-field source strength is unity, so

that the rate of change of area A of the bubble β(t) = �2\(Ω ∪ ∂Ω) is

dA
dt

= −2π, (2.1)

and scale length such that c = 1. The system in nondimensional variables is

∇2φ = 0, x ∈ Ω(t), (2.2a)

∂φ

∂n
= vn, x ∈ ∂Ω(t) (2.2b)

φ = vn, x ∈ ∂Ω(t), (2.2c)

φ ∼ − log |x|, |x| → ∞. (2.2d)
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The source term (2.2d) and negative change in area (2.1) are for a bubble contracting

as time t increases. However, the Hele–Shaw problem with kinetic undercooling is time-

reversible, so expansion may simply be considered by decreasing t instead.

In the channel geometry, the fluid region Ω is confined to the right of the boundary

∂Ω and between the channel walls (see Figure 1). In this geometry there is an additional

length scale: the channel width. For this geometry we scale lengths such that the channel

has width 2 (say, −1 < y < 1), and reintroduce the kinetic undercooling coefficient c. In

addition, we have no-flux conditions on the wall and a constant velocity (scaled to unity)

in the far field x → ∞. The system of equations is

∇2φ = 0, x ∈ Ω(t) (2.3a)

∂φ

∂n
= vn, x ∈ ∂Ω(t) (2.3b)

φ = cvn, x ∈ ∂Ω(t), (2.3c)

φy = 0, x ∈ �, y = ±1, (2.3d)

φ ∼ x, x → ∞, −1 < y < 1. (2.3e)

Both problems (2.2) and (2.3) require an initial condition Ω(0). For the nondimensionalised

bubble problem (2.2), an initial condition for which the length of the boundary ∂Ω(0) is

O(1) corresponds to a bubble whose size is the same order as kinetic undercooling. It is

this scale that we primarily consider in the next section.

3 Corner formation for expanding and contracting bubbles

In this section we demonstrate that an inviscid bubble evolving according to Hele–Shaw

flow with kinetic undercooling (2.2) is unstable, both for expansion and contraction.

Linear stability suggests this property, while numerical results establish that corners may

form in both cases.

3.1 Linear stability

The system (2.2) has an exact, radially symmetric solution where ∂Ω is a circle of

time-dependent radius s0(t). In polar coordinates (x = rer + θeθ) this exact solution is

φ0(r, t) = − log

(
r

s0

)
+

1

s0
, s0(t) =

√
s0(0)2 − 2t, (3.1)

where r = s0(t) on the free boundary ∂Ω. We have previously considered the stability

of this exact solution to infinitesimal perturbations [14]; similar approaches have been

widely applied to bubbles in Hele–Shaw flow with various boundary conditions and fluid

properties [16,17,43,45,50,54]. Since the circle radius s0 is monotonic in time t we can treat

it as the time-like variable. We perturb the potential φ and bubble boundary r = s(θ, t)

by an nth mode term:

φ ∼ φ0 + εAn(s0)r
−n cos nθ, s ∼ s0 + εγn(s0) cos nθ, ε 
 1, (3.2)

https://doi.org/10.1017/S0956792514000230 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000230


712 M. C. Dallaston and S. W. McCue

1 2 3 4 5 6
0

2

4

6

8

10

G2

G3

G4

G5

s0

Figure 2. (Colour online) A plot of the first few modes of perturbation Gn, n = 2, 3, . . ., given by

(3.3), against the leading order bubble radius s0. The minimum of each mode is marked (circles). All

modes are unstable for s0 < 1, and all except the second are unstable for s0 > 3. A circular bubble is

ultimately unstable for both expansion and contraction, unlike the unregularised or surface tension

cases, in which the contracting bubble is stable.

where we must solve for γn and An. The stability of the evolving circle is determined by

the change in relative magnitude Gn(s0) = γn(s0)/s0. By taking the O(ε) terms in (2.2) and

solving an ordinary differential equation for γn, we find that Gn is given by

Gn(s0) = Gn(1)
(s0 + n)n−1

s0(1 + n)n−1
. (3.3)

We plot the evolution of the modes over s0 in Figure 2.

If Gn is increasing in s0 then the nth mode is unstable for expanding bubbles and

stable for contracting bubbles, while if Gn is decreasing in s0, the opposite holds. We

disregard the first mode n = 1 as it corresponds to a translation, which is neutrally

stable in absolute terms (γ1 = constant). The second mode G2 increases without bound

as s0 → 0 and vanishes as s0 → ∞. For all other modes, Gn has an absolute minimum at

s0 = n/(n − 2), and increases without bound as s0 tends to zero and infinity. The circle is

ultimately unstable for expanding and contracting bubbles, with all modes unstable for

s0 < 1 and all except the second mode G2 unstable for s0 > 3.

While all modes n � 3 are unstable for both s0 → 0 and s0 → ∞, the stability analysis

does indicate that kinetic undercooling removes the ill-posedness of unregularised Hele–

Shaw flow, since for a fixed s0 the growth of modes is bounded as n → ∞, that is

Gn(s0)/Gn(1) ∼ 1/s0, n → ∞.

This moderation of the growth of high order modes also occurs in the stability analysis of

Hele–Shaw flow with kinetic undercooling in a channel [7]. In contrast, in the unregularised

(ill-posed) problem the growth of modes is unbounded as n → ∞.
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3.2 Numerical results

To explore the nonlinear instability and the formation of corners of the boundary, we solve

the system (2.2) numerically. Our method is based on a complex variable formulation,

which is an extension of well-known exact solution methods [26,34,52]. We have detailed

this numerical method elsewhere [13, 14].

Let x ∈ �2 be represented by the complex spatial variable z ∈ �. To handle the free

boundary we define z = z(ζ, t) to be the time-dependent mapping function from the unit

disc |ζ| < 1 to the fluid region Ω(t). If ζ = 0 maps to the far field z = ∞, then z will have

the series expansion

z(ζ, t) =
a−1(t)

ζ
+

∞∑
n=0

an(t)ζ
n. (3.4)

Laplace’s equation (2.2a) and the far-field condition (2.2d) are satisfied by defining

φ to be the real part of a complex potential w(ζ, t), analytic in the punctured disc

0 < |ζ| < 1, with a logarithmic singularity at the origin. The dynamic condition (2.2c)

implies w = − log ζ + V(ζ, t), where V is the function analytic in the unit disc whose real

part coincides with the normal velocity vn:

�{V} = vn =
�{ztζzζ}

|ζzζ |
, |ζ| = 1. (3.5)

From the kinematic condition (2.2b) we obtain the Polubarinova–Galin (PG) equation

�{ztζzζ} = �{ζwζ} = −1 + �{ζVζ}, |ζ| = 1, (3.6)

which is an analogue of the PG equation used in constructing exact solutions for unreg-

ularised Hele–Shaw flow [26, 34, 52]. Unlike the unregularised case, there are no known

non-trivial exact solutions to (3.6). We instead solve (3.6) numerically, by truncating the

series expression (3.4) for z, and obtaining implicit equations for the evolution of the

series coefficients an by evaluating (3.6) at equally spaced points on the circle |ζ| = 1. By

performing this evaluation with the fast Fourier transform, the numerical scheme is very

time efficient, completing in seconds on a desktop computer even for a relatively large

(256–512) number of modes. For the numerical results in this paper we assume symmetry

in x- and y-axes, meaning the coefficients an are real and only nonzero for odd n. We

found this assumption greatly improved the stability of the numerical scheme.

In Figure 3 we present numerical solutions for an initially near-circle bubble with

four-fold symmetry (a−1(0) = 1, a3(0) = 0.05, all other modes zero), for both contracting

and expanding cases. The boundary is unstable in both directions, as the stability analysis

in Section 3.1 suggests. The numerical solutions also demonstrate that the instability leads

to the formation of corners, for contracting and expanding bubbles. The curvature, also

plotted in Figure 3, blows up at these points. The numerical scheme cannot be continued

past the time of corner formation, as the corners correspond to singularities on the unit

circle |ζ| = 1.

For expanding bubbles, these numerical results demonstrate the generic tendency of kin-

etic undercooling to cause curvature singularities in the form of corners, while preventing

blow-up in the velocity of the speed, which is the generic behaviour of the unregularised
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Figure 3. (Colour online) Numerical results for contracting and expanding bubbles, showing (a,b)

the boundary positions and (c,d) curvature κ as a function of ν = arg ζ over the first quadrant

0 < ν < π/2, where ζ is the auxiliary complex variable. Dashed lines represent initial conditions.

Both expanding and contracting bubbles exhibit corner formation.

problem. This contrasts with the regularising effect of surface tension, which suppresses

blow-up of both curvature and speed (see Table 1).

In the case of contracting bubbles, the numerical results demonstrate the instability

predicted by the linear stability analysis in Section 3.1. The numerical results suggest this

instability also leads to corner formation. In the next section we show that, to leading

order, the boundary of a small bubble evolves with constant normal velocity (up to a

rescaling of time). An exact solution to the leading order problem provides further insight

into the formation of corners, and the subsequent evolution and extinction of the bubble.

4 The small bubble limit

In this section we consider the behaviour of the system (2.2) for the case in which the

(dimensionless) size of the bubble β(t) is much less than unity; this is equivalent to a

dimensional bubble size much smaller than the kinetic undercooling parameter c. This

regime is ultimately attained by all contracting bubbles that shrink to a point, but is also

valid for small expanding bubbles (which are stable at this scale, according to the stability

analysis of the previous section).

In the small bubble limit, kinetic undercooling is the dominant effect on the boundary,

as opposed to the far-field source, as we demonstrate using formal asymptotics. Let l(t) be

some characteristic length scale of the contracting bubble, so that l → 0+ as the bubble
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tends to extinction. Let x = lX , φ = l−1Φ, and define T = − log l to be the new time-like

parameter (note that T → ∞ as l → 0+). The system (2.2) becomes

∇2Φ = 0, X ∈ Ω̂, (4.1a)

∂Φ

∂n
= lB(Xn − Vn), X ∈ ˆ∂Ω, (4.1b)

Φ = B(Xn − Vn), X ∈ ˆ∂Ω, (4.1c)

Φ ∼ −l log |X | + P (T ), |X | → ∞, (4.1d)

where spatial derivatives are now with respect to rescaled variables, Vn is the rescaled

normal velocity, Xn = X · n, and

B = B(T ) =
1

2

d

dt

(
l2

)
. (4.2)

The constant rate of change (2.1) in the area A of the bubble β(t) implies B = O(1).

Indeed, we could define l =
√

A, in which case (2.1) implies B = −π. The O(1) term P in

(4.1d) is included as it becomes dominant in the small bubble limit l → 0 for any fixed X .

To leading order in l, the evolution of the boundary is dominated by kinetic undercooling

on the boundary, while the fluid velocity in Ω̂ vanishes; if Φ ∼ Φ0 + O(l), then Φ0 satisfies

the homogeneous Neumann problem

∇2Φ0 = 0,
∂Φ

∂n

∣∣∣∣
X∈ ˆ∂Ω

= 0, Φ0||X |→∞ → P (T ).

The solution is trivially Φ0 = P (T ). The kinematic condition (4.1c) is therefore

Vn = Xn +
P (T )

B(T )
. (4.3)

In the original unscaled variables (x, t) the leading order evolution of the interface (4.3),

in the limit it contracts to a point, is thus

vn = p(t), x ∈ ∂Ω. (4.4)

The time-dependent funtion p(t) can be taken to be unity under the appropriate time

transformation t 
→ t̃ (we do not consider this time rescaling further, as it is non-trivial,

but it may be found, for example, by enforcing the constant area decrease (2.1)). We

therefore obtain the constant velocity equation:

vn = 1, x ∈ ∂Ω. (4.5)

Exact solutions for a boundary evolving according to (4.5) are readily found, and the

possibility of corner formation is known [56]. In Section 4.1 we construct the exact solution

for an initially elliptical boundary, in which corners form, and show that it accurately

approximates the numerical solution to the full Hele–Shaw problem.
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4.1 Exact solution for an ellipse

In Cartesian coordinates, vn = 1 is equivalent to the PDE yt̃ = −
√

1 + y2
x, where

(x,±y(x, t̃)) are points on the moving boundary (assumed to be symmetric in the x-

axis). By differentiating in x we find a first order quasilinear PDE for yx = y′:

y′
t̃ +

y′√
1 + y′2

y′
x = 0. (4.6)

We solve this equation using the method of characteristics. If x = x(x0, t̃) is a characteristic

curve originating at x0, then y′(x, t̃) is constant and equal to y′
0(x0), where y′

0(x) = y′(x, 0)

is the initial condition. The characteristics are straight lines satisfying

∂x

∂t̃
=

y′
0(x0)√

1 + y′
0(x0)2

. (4.7)

Without loss of generality, we take the initial boundary to be an ellipse centred at the

origin, with semimajor axis (in the x direction) of unity and semiminor axis (in the y

direction) of α � 1. The initial condition is therefore

y(x, 0) = α
√

1 − x2, y′
0(x) = − αx√

1 − x2
. (4.8)

By integrating (4.7) we obtain a solution parametrised by x0:

x = x0 − αx0 t̃√
1 − (1 − α2)x2

0

, (4.9a)

y′ = − αx0√
1 − x2

0

. (4.9b)

We obtain an expression for y by integrating:

y =

∫
y′

0

∂x

∂x0
dx0 =

√
1 − x2

0

⎛
⎝α − t̃√

1 − (1 − α2)x2
0

⎞
⎠ . (4.10)

(The initial condition and the requirement yt̃ = −1 at x0 = 0 is enough to remove the

arbitrary constant.) The vertical coordinate y has zeros at x0 = ±1 and x0 = ±x∗
0, where

x∗
0 =

√
1 − (̃t/α)2

1 − α2
. (4.11)

A shock forms in the solution (4.9) when t̃ = α2, after which x ceases to be invertible with

respect to x0 in the interval [−1, 1] (corresponding to the overlap of characteristic curves).

After this time we also have x∗
0 < 1. The boundary is therefore given by the parametric

equations (4.9a), (4.10) for x and y, over the interval

− min{1, x∗
0(̃t)} � x0 � min{1, x∗

0(̃t)}. (4.12)

Corners form on the x-axis at t̃cnr = α2 and at the point xcnr = x(1, α2) = 1 − α2.
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The initial condition generalises to an ellipse with semi-axes of b and αb by the

rescaling x 
→ bx, y 
→ by, t̃ 
→ b̃t. In this case, the time and point of corner formation

are

t̃cnr = bα2, xcnr = b(1 − α2). (4.13)

The boundary contracts to the origin at the extinction time t̃ext = αb. The corner angle and

the aspect ratio of the boundary vanish in this limit, so the boundary is asymptotically a

slit in shape. This is reminiscent of the generic eye-closing behaviour of contracting level

sets of the eikonal equation [2] (see the discussion in Section 6).

4.2 Comparison to a shrinking ellipse in Hele–Shaw flow

To solve the Hele–Shaw problem (2.2) for an ellipse, we use our numerical scheme

described in Section 3.2 with the conformal mapping function

f(ζ, 0) =
b

2
(1 + α)

1

ζ
+

b

2
(1 − α)ζ (4.14)

as an initial condition. This mapping transforms the unit disc to the exterior of the

ellipse with semi-axes b and αb. If b 
 1, then the exact solution (4.9a), (4.10) to the

constant velocity problem (4.5), with lengths scaled by b, is a good approximation to

the numerical solution, up to the time of corner formation. The only complication is

the time rescaling t 
→ t̃ introduced to obtain the constant velocity problem (4.5) from

(4.4).

In Figure 4 we compare the exact constant velocity solution and numerical Hele–Shaw

solution for an elliptic initial condition with b = 1/10 and α = 2/3. As well as the

apparent visual agreement between the two solutions, we numerically approximate the

time of corner formation in the Hele–Shaw problem by using the time at which the scheme

breaks. Using 512 terms in the expansion (3.4) we obtain

tcnr ≈ 0.00275, xcnr ≈ 0.0548. (4.15)

While we cannot directly compare the time of corner formation, the point xcnr compares

well with the value of b(1 − α) = 0.0555 . . . predicted by the constant velocity solution

(4.13). We also plot the corner angle θ of the exact solution, defined by

θ = −2 arctan

(
∂y

∂x0

/
∂x

∂x0

)∣∣∣∣
x0=min{1,x∗

0}
. (4.16)

From this expression it can be shown that the corner angle is continuous and differentiable

with respect to time t̃ at t̃cnr, although it is not twice differentiable.

5 Fingering and corners in a channel

In this section we consider the effect of kinetic undercooling on the evolution of an

initially perturbed planar front moving into the viscous fluid, using numerical solutions

to the system (2.3) for varying kinetic undercooling coefficients c. The planar front has
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Figure 4. (Colour online) (a) The numerical solution (circles, see Section 3.2) for a contracting

bubble with kinetic undercooling, compared to the exact solution (4.9a), (4.10) (solid lines) to the

constant velocity problem (4.4). In both cases the initial condition (dashed line) is an ellipse of aspect

ratio α = 2/3 and semimajor axis b = 1/10. Since the time scales are different for each solution, the

times for the exact solution are chosen such that the x-intercepts match with the numerical solution.

The corners form at a given point (4.13), (4.15), after which only the exact solution, with persistent

corners, may be continued. (b) The corner angle θ of the exact solution, starting at π (no corner),

and ending at zero. The corner angle is a once (but not twice) differentiable function of time t̃.

been previously shown to be unstable [7, 34]; as with the expanding bubble, all modes

of perturbation are unstable, although the inclusion of kinetic undercooling moderates

their growth as mode number n increases, suppressing the formation of cusp singularities.

Depending on the magnitude c, there are two possible long-time behaviours the boundary

may tend toward:

(1) Travelling fronts that extend across the whole channel width, which typically have

corners;

(2) Travelling fingers (of unbounded length) that take up some fraction λ (that is, of

nondimensional width 2λ) of the channel.

In this section we reproduce the exact solutions for the front [7], and outline a numerical

scheme for the travelling finger with kinetic undercooling (first appearing in our conference

paper [11]). This scheme shows that a continuous family of finger solutions exists with

widths λ ∈ [λmin, 1), given a kinetic undercooling c; the minimum width λmin → 0 as

c → 0. These results explain previous numerical results [55], while suggesting the selection

mechanism described by the asymptotic analysis [7] is more subtle than the surface tension

case, and is not picked up by the numerical scheme outlined here.

To close this section we consider the time-dependent problem in a channel. Chapman

and King [7] hypothesise that travelling waves of the first kind (fronts with corners)

are stable for sufficiently large kinetic undercooling compared to the channel width

(c > 1), while travelling waves of the second kind (fingers) are stable for small kinetic

undercooling c < 1. We use our numerical scheme described in Section 3.2 to support this

hypothesis.
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5.1 Travelling fronts

Exact travelling wave solutions of the Hele–Shaw problem in a channel (2.3) exist in the

form [7]

φ = x − t + c, f(y, t) = t + g(y), (5.1)

where x = f(y, t) on the boundary ∂Ω. The ansatz (5.1) identically satisfies Laplace’s

equation (2.3a), the kinematic condition (2.3b), the wall conditions (2.3d) and the far field

condition (2.3e). The dynamic condition (2.3c) gives an equation for g:

g + c =
c√

1 + g′2
. (5.2)

For c � 1, the solutions of (5.2) are one parameter family of circular arcs

g =
√
c2 − (y − y0)2 + c. (5.3)

Allowing the existence of corners, a travelling front may be made of a piecewise combin-

ation of these solutions with different values of y0. In this section, we restrict ourselves

to the evolution of a boundary with an initial perturbation that is symmetric about the

centreline of the channel, and pointing into the fluid region at the centreline (as depicted

in Figure 1; see also the initial conditions depicted in Figure 6). In Section 5.3 we show

numerically that the perturbation spreads out to the channel walls, where the corners

form. The relevant travelling front in this case is thus

g(y) =
√

c2 − y2 − c, (5.4)

which has corners at the channel walls at y ± 1.

5.2 Numerical results for travelling fingers

Here we outline a numerical solution method for computing the shape of a travelling

finger in Hele–Shaw flow with kinetic undercooling. This method is based on numerical

approaches to the equivalent problem with surface tension [47, 61]. One variation of

the scheme is to allow for the possibility of an artificial corner at the nose and let the

width parameter λ be arbitrary; there then exist only discrete values of the λ for which

the artificial corner angle vanishes [61]. The selected finger widths λ → 1/2+ as the

surface tension vanishes, which is corroborated by exponential asymptotic analysis of the

same problem [6, e.g.]. In contrast, our numerical results for the problem with kinetic

undercooling do not provide a clear selection of discrete finger widths, instead allowing

for corner-free fingers of any width above a certain value λmin, which vanishes as the

kinetic undercooling parameter c → 0. Given that asymptotic analysis [7] predicts analytic

solutions select discrete widths, almost all the corner-free solutions we compute must be

non-analytic in some other, more subtle fashion.

Taking a reference frame in which the finger is stationary, the fluid region is mapped

to the upper half ζ-plane by ζ = exp π(w − w(0)), where w is the complex potential. The

fluid log-speed log q and velocity angle θ are harmonic conjugates, and on the real line

ζ = ξ ∈ �, θ is only nonzero on the interval [0, 1]. The dynamic condition (2.2c) becomes
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a nonlinear ordinary differential equation relating q and θ. Allowing for a possible corner

with interior angle equal to −2θnose at the nose of the finger (ζ = 1), the problem reduces

to the following nonlinear integrodifferential system for q and θ [7]:

2εq cos θξ
dθ

dξ
+ cos θ − q = 0, (5.5a)

log(1 − λ) =
1

π

∫ 1

0

θ(ξ)

ξ
dξ, (5.5b)

log q = log(1 − λ) − 1

π
−
∫ 1

0

θ(ξ′)

ξ′ − ξ
dξ′, (5.5c)

θ(0) = 0, θ(1) = θnose, (5.5d)

where ε is related to the kinetic undercooling parameter c by

ε =
cπ

2(1 − λ)
. (5.6)

For numerical efficiency, endpoint singularities in ξ are removed by introducing the new

independent variable t defined by

t =
√

1 − ξα, (5.7)

where the exponent α is found by solving a transcendental equation (see our previous

work [11] for further details). This transformation also leads to a greater density of points

near the endpoints ξ = 0 and ξ = 1, corresponding to the tail and nose of the finger,

respectively. For given values of ε and λ, we discretise the system (5.5) by dividing t ∈ [0, 1]

into N + 1 grid points tn, where n = 0, 1, . . . , N, and solving the N × N nonlinear system

resulting from (5.5a) and (5.5b) for the unknown values of θnose and θn at interior grid

points (n = 1, . . . , N − 1).

To support the classical approach of a finite difference discretisation on evenly spaced

gridpoints, we also implemented a spectral collocation method based on Chebyshev poly-

nomials, where tn are chosen to be Chebyshev nodes (this leads to greater concentration

of nodes near the end points) and differentiation and integration are performed in the

space of coefficients, using well known algorithms [24, e.g.]. More details of this procedure

exist in the appendix of the PhD thesis [10]. The spectral collocation method provided the

same results and performed similarly to the finite difference discretisation; while overall

fewer nodes were needed in the spectral method (20–30 rather than 50–100), the run time

was similar (on the order of seconds per value of λ and ε), and we did not attain spectral

convergence, likely due to remaining weak singularities at the endpoints.

A nose angle θnose = −π/2 corresponds to a boundary that is differentiable at the nose,

with no corner. We solve the problem (5.5) for a range of λ values, to find the dependence

of θnose on λ. In Figure 5(a) we plot the resulting curves of nose angle θnose against width

λ, for kinetic undercooling coefficient ε = 0.01, 0.1 and 1. For small ε, the nose angle θnose

is close to zero, representing a sharp corner; however, as ε increases, it reaches the value

of −π/2 at a minimum λ = λmin(ε), at which it remains. Due to numerical error, very

small oscillations (of the order of numerical error) in θnose exist near λ = λmin around
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Figure 5. (Colour online) (a) Nose angle θnose as a function of finger width λ, for kinetic undercool-

ing coefficient ε = 0.01, 0.1 and 1. For λ greater than a minimum λmin, the nose angle θnose = −π/2,

corresponding to a corner-free finger. (b) The dependence of λmin on ε, with the shaded region

corresponding to the existence of fingers without corners at the nose. (c) An example solution to the

integrodiffierential system (5.5) for ε = 0.1, λ = 0.5, and N = 50 nodes, showing the nodes, evenly

spaced in the transformed variable t (5.7), are concentrated at each end point. (d) The shape of the

example travelling finger solution in physical coordinates, also showing the distribution of nodes.

the value of −π/2, which explains the discrete solution branch with λ → 0 we previously

observed [11], roughly corresponding to λmin. Thus there is a continuous family of corner-

free finger solutions for any given ε, in contrast to the surface tension case, where θnose is

equal to −π/2 only at discrete points [61]. In Figure 5(b) we plot λmin against ε, showing

that λmin → 0 as ε → 0. In Figure 5(c) and (d), we show an example solution for ε = 0.1

and λ = 0.5, and the distribution of nodes that are evenly spaced in the unit interval in t,

thus demonstrating the density of nodes near the nose of the finger.

At first glance these results seem to be at odds with the asymptotic analysis of Chapman

and King [7], which predicts that only discrete branches of analytic fingers exist, with

a countable number of allowed widths λ for a given ε; furthermore, each branch has

λ → 1/2+ as ε → 0+ (as with surface tension). Our results reconcile with these predictions

given that a boundary may have no corner at the nose but still not be analytic there; we

have found the family of solutions which are corner-free (the shaded region in Figure 5(b)),

but the numerical method is unable to resolve non-analytcities of a more subtle nature (for

instance, nonexistence of the arclength derivative of curvature, or higher derivatives). The

complicated nature of the selection problem near the nose in the asymptotic analysis [7],

compared to the more straightforward problem with surface tension, also supports this

view. Our numerical results also conform to those of Romero [55], who found no
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discrete selection effect from kinetic undercooling; the numerical scheme devised therein

is also unlikely to discriminate between analytic solutions and those with such subtle

non-analyticities.

5.3 Numerical results for an evolving front

We now adapt our numerical scheme outlined in Section 3.2 to the channel geometry. The

approach is very similar, except the mapping function z now takes the form

z(ζ, t) = − 1

π
log ζ +

∞∑
n=0

an(t)ζ
n, (5.8)

while the kinetic undercooling coefficient c is introduced to the Polubarinova–Galin

equation (3.6). On the assumption the finger is symmetric around the centreline y = 0,

the coefficients an are real. While this solution method is not well-suited to approximating

highly elongated boundaries such as those with long fingers, we found some improvement

for moderately deformed boundaries could be made by composing z(ζ, t) with the Möbius

transformation (which preserves the unit disc)

ζ =
χ + r

1 + χr
, 0 � r < 1, (5.9)

and solving (3.6) at equally spaced point on the unit circle in the χ-plane. By altering the

value of r, we have some control over the node spacing on the boundary, while the fast

Fourier transform is still applicable.

In Figure 6 we plot the numerical solution of an initially perturbed boundary (a1 > 0, all

other modes zero), for two values of the kinetic undercooling coefficient c: for c = 2 > 1,

we expect the travelling front (5.4) to be stable, while for c = 0.18 < 1, we expect the

boundary to tend to an infinitely long finger given by the numerical solution of (5.5). Here

the value of c = 0.18 is chosen to correspond (using (5.6)) to ε = 1, and λ = λmin = 0.71

is the computed minimum width for which a finger exists that has no corner at the nose

(note, however, this finger may not be analytic and it is not clear which travelling finger

solution is stable in the time-dependent problem; see the discussion in Section 6).

In each case, 256 modes are used, and the transformation parameter r = 0.8 concentrates

nodes at the channel walls. For c = 2, the initial perturbation grows and spreads out

toward the walls, with corners forming at the walls at a finite time tcnr. The numerical

scheme cannot continue past this time; it is likely that the travelling front (5.4) (also

plotted) is stable and the boundary evolves towards it, although a sophisticated numerical

scheme that can handle persistent corners is necessary to test this conjecture.

For c = 0.18, the initial perturbation also grows and initially spreads outward, but

does not cause corners to form on the walls; instead, a finger forms in the centre of

the channel. The numerical scheme breaks as the boundary points (equally spaced in

the χ-plane) become sparse near the finger nose and channel walls in the physical plane.

Again, more sophisticated numerical methods are needed to track the finger further, as

we discuss in the following section.
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Figure 6. (Colour online) Evolution of a perturbed boundary (a1 = 0.5 in (5.8)) in a Hele–Shaw

channel, with kinetic undercooling regularisation. (a) For large kinetic undercooling (c = 2 > 1),

the initial perturbation (dashed line) grows and spreads out to the channel walls, forming corners

at a finite time tcnr. The travelling wave for c = 2, given by (5.4), is shown as a dotted line. (b)

For small kinetic undercooling (c = 0.18 < 1), the perturbation does not spread to the cell walls,

instead tending to a finger of width 2λ, less than the channel width. In this case the travelling finger

solution (dotted line) comes from the numerical solution of the integrodifferential system (5.5) with

ε = 1, and λ = λmin = 0.71.

6 Discussion

We have examined the effect of kinetic undercooling on growing and contracting inviscid

bubbles in Hele–Shaw flow. Stability analysis, numerical solutions and explicit solutions

for the leading order approximation in the small bubble limit demonstrate the difference

between kinetic undercooling, surface tension and the unregularised problem, particularly

with regard to the formation of corners at finite time for both expanding and contracting

bubbles in the kinetic undercooling case.

Additionally, we have numerically examined finger and corner formation of Hele–Shaw

flow in a channel, demonstrating corners form for sufficiently high kinetic undercooling

(c > 1), and fingers form for lower kinetic undercooling (c < 1). We have examined the

effect of kinetic undercooling in the problem of selecting discrete analytic solutions to

the problem of a travelling finger shape. Kinetic undercooling allows a continuous family

of corner-free fingers with widths above a minimum width λmin(ε), for a given kinetic

undercooling strength ε. It is likely, given asymptotic analysis [7], that this continuous

family is not analytic apart from discretely selected widths λ, but this non-analyticity is

more subtle than the presence of a corner at the nose. The selection cannot be resolved

by numerical methods employed to date.
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One area we believe deserves more attention is the generic extinction behaviour of

closed curves contracting with constant normal velocity (4.5). The general rule of curve

evolution by constant velocity is well-known, being equivalent to Huygen’s principle from

optics, and also used in image analysis and etching/deposition [56, e.g.], but we are not

aware of specific studies into the extinction behaviour of closed curves contracting to a

point according to such a rule. The exact solution presented in Section 4 demonstrates

two characteristics of such a curve: the formation of corners, and the slit-type (vanishing

aspect ratio) extinction shape. It is reasonable to conjecture that these two properties are

generic for curves contracting according to (4.5), and therefore for bubbles contracting

in Hele–Shaw flow with kinetic undercooling. Another issue is the possibility of self-

intersection of the boundary (or pinch-off of bubbles in the Hele–Shaw context), and

which initial conditions lead to such self-intersection. Since the curve must be non-convex

to intersect with itself, we conjecture that a curve avoids such self-intersection if and only

if it is initially convex. The generic extinction shape of contracting plane curves is also a

topic in focusing/hole-closing problems in curvature-driven flow [25, 27], and the porous

medium and eikonal equations [1,2]. In particular, the generic closing eye solution for the

eikonal equation [2] also exhibits the finite-time corner formation and slit-type extinction

we see for (4.5). Our problem is likely to be related.

There is also clear scope for the application of more sophisticated numerical schemes to

the full Hele–Shaw problem with kinetic undercooling. Our approach, based on conformal

mapping functions, is limited in that solutions cannot be continued past the time of corner

formation, and is not particularly effective at capturing highly elongated boundaries (such

as those with long fingers). Many numerical techniques have been applied to growing

Hele–Shaw bubbles and channels with surface tension, effectively capturing fingering and

tip-splitting phenomena [4, 5, 15, 29, 30, 60]. A similar method applied to the problem

with kinetic undercooling would be valuable to demonstrate the evolution of a finger in

a channel and determine if it evolves from a variety of initial conditions to a steadily

translating finger of unique width; this finger would likely correspond to the lowest (stable)

of the discrete branches selected by their analyticity [7]. For large kinetic undercooling,

a numerical approach that can capture corner formation and subsequent evolution is a

greater challenge, although level set methods [56, e.g.] have demonstrated this ability.

A numerical method that allows for corners could also be used to test the stability

of corners in the case of expanding bubbles. In a channel, the boundary develops either

corners or fingers depending on the ratio of kinetic undercooling to channel width, which

is fixed. For an expanding bubble, the only length scale is the bubble size, which is

increasing. One possibility in the bubble geometry is that corners are initially stable (as

seen in the numerical solution in Figure 3) when the bubble size is of the same order as

kinetic undercooling, but when the bubble is much larger, the corners become unstable

and fingering solutions emerge instead.

Finally, the discrete selection of analytic fingers by kinetic undercooling, predicted by

asymptotic analysis [7], has not yet been demonstrated numerically. From our results, and

the nature of the asymptotic problem, it is likely that the difference between an analytic

solution and non-analytic (but corner-free) solution is very subtle, and a numerical method

that can detect such a difference will be difficult to devise. An alternative approach may

be to add finite surface tension (eliminating the possibility of corner-free but non-analytic
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fingers [59, 62]) and observe what solution is selected in the limit that surface tension

vanishes. We leave this problem for future study.
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