
Combinatorics, Probability and Computing (2020), 29, pp. 318–345
doi:10.1017/S0963548319000373

ARTICLE

Monochromatic trees in random tournaments
Matija Bucić1, Sven Heberle1, Shoham Letzter2,† and Benny Sudakov1,∗,‡

1Department of Mathematics, ETH Zürich, Raemistrasse 101, 8092 Zürich, Switzerland and 2ETH Institute for Theoretical
Studies, ETH Zürich, Clausiusstrasse 47, 8092 Zürich, Switzerland
∗Corresponding author. Email: benjamin.sudakov@math.ethz.ch

(Received 18 September 2018; revised 6 August 2019; first published online 7 November 2019)

Abstract
We prove that, with high probability, in every 2-edge-colouring of the random tournament on n vertices
there is a monochromatic copy of every oriented tree of order O(n/

√
log n). This generalizes a result of

the first, third and fourth authors, who proved the same statement for paths, and is tight up to a constant
factor.

2010 MSC Codes: 05C05, 05C55, 05C80

1. Introduction
Ramsey theory consists of a considerable amount of mathematical results, which, roughly speak-
ing, say that there is no completely chaotic structure, that is, any sufficiently large structure is
guaranteed to have a large well-organized substructure. For instance, the famous theorem of
Ramsey [15] states that for any fixed graph H, every 2-edge-colouring of a sufficiently large com-
plete graph contains a monochromatic copy of H. The smallest order of a complete graph with
this property is called the Ramsey number of H.

In this paper we study an analogous phenomenon for oriented graphs. An oriented graph is a
directed graph G obtained by orienting the edges of a simple undirected graph, which is called the
underlying graph of G.

A tournament is an oriented graph whose underlying graph is complete. Given oriented graphs
G,H,K, we write G→ (H,K) whenever in every 2-colouring of the edges of G there is a blue copy
of H or a red copy of K. In the special case that H =K, we write G→H. The oriented Ramsey
number of H is defined to be the smallest N for which every tournament G on N vertices satisfies
G→H.

Note that unlike the standard Ramsey numbers, which are always finite, in the oriented set-
ting, if H contains a directed cycle then its oriented Ramsey number may be infinite. To see this,
consider the following colouring: fix an ordering of the vertices and colour all forward edges blue
and all backward edges red. This 2-coloured tournament does not contain any monochromatic
directed cycles. In particular, it does not have a monochromatic copy ofH ifH contains a directed
cycle. Moreover, it is easy to see that every 2-edge-coloured tournament on N vertices contains
a monochromatic transitive tournament on roughly log4 N vertices, from which it follows that

†Research supported by Dr Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation.
‡Research supported in part by SNSF grant 200021-175573.

© Cambridge University Press 2019

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373
mailto:benjamin.sudakov@math.ethz.ch
https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 319

it contains a monochromatic copy of every acyclic graph on at most log4 N vertices. Hence, the
oriented Ramsey number is finite if and only if H is acyclic.

Let us start by investigating Ramsey numbers of directed paths. Denote the directed path on
n vertices by −→Pn , where by a directed path we mean an oriented graph obtained from a path by
orienting all its edges in the same direction. The celebrated Gallai–Hasse–Roy–Vitaver theorem
[10, 14, 17, 19] says that any directed graph whose underlying graph has chromatic number at
least n contains a −→Pn as a subgraph. It follows that G→−→Pn for every tournament G of order at
least (n− 1)2 + 1; indeed, given a red and blue colouring of G, either the graph of red edges or the
graph of blue edges has chromatic number at least n, implying the existence of a monochromatic
path on at least n vertices. This statement is sharp. To see this, consider a transitive tournament
on (n− 1)2 vertices. We partition the vertices into sets Ai, each of size n− 1, while preserving
the order. We colour all edges inside some set Ai blue, and all other edges red. It is easy to see
that there is no monochromatic path on n vertices in this colouring. This shows that the oriented
Ramsey number of−→Pn is (n− 1)2 + 1.

It is interesting to consider oriented Ramsey numbers of further acyclic graphs, and the natural
next example is that of trees. It turns out that oriented trees behave similarly to paths in terms of
their oriented Ramsey numbers: Bucić, Letzter and Sudakov [4] proved that, given any (oriented)
tree T on n vertices and any tournamentG on cn2 vertices (where c is a positive constant), we have
G→ T, that is, the oriented Ramsey number of any tree of order n is at most cn2.

This result resolves (up to a constant factor) the question of, given n, finding the smallest N
such that every 2-colouring of every tournament of order N is guaranteed to have a monochro-
matic copy of T for any tree T of order at most n. However, intuitively it seems that examples of
tournaments for which the bound is tight are close to being transitive. Therefore, it is natural to ask
whether in tournaments that are ‘far from being transitive’ larger monochromatic trees are guar-
anteed; this question was asked implicitly, for paths, by Ben-Eliezer, Krivelevich and Sudakov [2].
A natural candidate for such a tournament is the random tournament, in which the orientation
of each edge is chosen independently and uniformly at random. They showed that, with high
probability, every 2-colouring of a random tournament on N vertices contains a monochromatic
directed path of length at least cN/(logN). They also showed that every tournament of order N
can be 2-coloured without creating monochromatic paths of length 3N/

√
logN, using the follow-

ing 2-colouring of a given tournament G of order N. It is well known and easy to see that any
tournament of orderN has a transitive subtournament of order logN. Using this, we can partition
the vertices of G into transitive subtournaments Ai of order (logN)/2 and a remainder A0 of at
most

√
N vertices. We now 2-colour each of Ai, as described above, to ensure that the longest

monochromatic path within Ai is of length
√|Ai|, and we colour the edges in A0 arbitrarily. We

then colour all edges from Ai to Aj blue if i< j and red if i> j. In this colouring, the longest
monochromatic path has length at most

2N
logN

√
logN
2
+√N � 3N√

logN
.

In a later paper Bucić, Letzter and Sudakov [5] showed that, with high probability, any
2-colouring of a random tournament on N vertices contains a monochromatic directed path of
order at most cN/

√
logN, which is tight up to a constant factor, due to the above upper bound

from [2]. They also showed that the same result holds for oriented paths, which are paths in which
edges are not required to follow the same direction. Following up in this direction, they asked
whether the same holds for general oriented trees. The main result of this paper answers this
question in the affirmative.

Theorem 1.1. There is a constant c> 0 such that, with high probability, a random tournament G
on N vertices satisfies G→ T, where T is any oriented tree on at most cN/

√
logN vertices.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

320 M. Bucić et al.

Note that unlike for the standard Ramsey numbers, where the ground graph is complete on N
vertices, the oriented Ramsey numbers allow any tournament on N vertices as a ground graph.
This suggests that taking the ground graph to be the complete directed graph is perhaps a more
natural directed analogue of the standard Ramsey theory, where the complete directed graph on
n vertices, denoted by←→K N , is the graph in which, between any two vertices i �= j, both directed
edges, ij and ji, are present. Harary and Hell [13] and Bermond [3] introduced the notion of the
directed Ramsey number of an oriented graphH, which is defined to be the leastN such that every
2-edge-colouring of←→K N contains a monochromatic copy of H. The directed Ramsey numbers
of directed paths were determined by Gyárfás and Lehel [12], based on a result of Raynaud [16],
and, independently, by Williamson [20]. Bucić, Letzter and Sudakov [4] generalized these results
to oriented trees, and also to the r-coloured variant. This result plays a role in our argument of the
proof for Theorem 1.1.

Note that while the problem for random tournaments is seemingly more similar to the oriented
Ramsey numbers, as the base graphs in both cases are tournaments, it turns out that the directed
Ramsey numbers are more relevant for our arguments. The main reason is that for random tour-
naments and complete directed graphs between any two not-too-small sets of vertices A and B
there are many edges from A to B. However, because this does not hold for smaller sets (i.e. of
order at most about logN), the bound for random tournaments is somewhat worse than for com-
plete graphs. Our proof of Theorem 1.1 relies only on a property of this kind, so the conclusion of
Theorem 1.1 actually holds for any sufficiently pseudorandom tournament; we refer the reader to
Section 3 for more details.

1.1 Organization of the paper
In the next section we give an overview of the proof of Theorem 1.1. In Section 3 we introduce
some results that we will need throughout the rest of the paper. We then turn to the proof of
the asymmetric generalization of Theorem 1.1, which we split into two parts. The first part is
presented in Section 4 and deals with the special case when one of the trees is assumed to be a
directed path. The second part of the argument, presented in Section 5, shows how to use this
special case to obtain the general result.

We do not make any effort to optimize the constants presented in this paper. We also neglect
rounding whenever it is not relevant for the argument. Given a 2-colouring of a graph, we call the
colours red and blue. When we consider paths and trees we always assume they are oriented, that
is, between two vertices there is at most one directed edge. Logarithms are always taken in base 2,
unless stated otherwise.

2. Overview
In this section we give an overview of our arguments. Our aim is to prove that, given n and m,
a random tournament G on N vertices satisfies G→ (T, S) for every oriented tree T and S of
order n andm, respectively, where N � c(n+m+√

nm log (n+m)) and c is an absolute positive
constant. Our proof is divided into two main parts: in the first, we prove it under the assumption
that one of T and S is a directed path, and in the second we deduce the general result. In the
remainder of this section, we outline the arguments we use in each of these cases.

Tree versus path. This is the longest part of the proof, and more difficult; here T is assumed to be
a directed tree (i.e. its edges are directed from a root or vice versa) onm vertices, and S is a directed
path −→Pn . We first prove the desired result under the assumption that T has not-too-many leaves
(namely, at mostm1/6 leaves). Our aim is to find a red copy of T or a blue copy of−→Pn .

We distinguish three types of cycle: long cycles (length at least bm1/3), short cycles (length
at most am1/3) and medium cycles (all remaining cycles). We now consider two cases: when

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 321

there exist many pairwise vertex-disjoint medium or long blue cycles, or when there is a large
set spanning no medium or long blue cycles. It is easy to see that one of these cases holds.

Case 1: many disjoint medium or long blue cycles. In this case we aim to find a specific structure,
which we call red–blue pairs. These consist of many pairwise disjoint sets, A1, B1, . . . ,At , Bt , of
suitable size, such that all Ai − Bi edges are red and each set Ai is contained in a blue path Pi,
where the Pi are pairwise vertex-disjoint (see Figure 4 below).

We show how to use this structure to find the red tree or the blue path of desired length. To
this end, we construct a 2-edge-coloured auxiliary complete directed graph, where the edge ij is
coloured blue if there are many blue edges going from Ai to Aj in G and red otherwise. Applying
the directed Ramsey result for trees (see Theorem 4.5) to this auxiliary graph, we find a long blue
path or a certain carefully chosen red tree (this is obtained from a suitable split of the tree into
smaller subtrees, which we call a tree-split: see Section 4.1 and Figure 1 below).

If we find a blue path, we lift it to a blue −→Pn in G, making use of the blue paths Pi from our
structure. If, instead, we find the red tree, we make use of the red bipartite graphs G[Ai, Bi] to
embed a subtree of T within it and connect these embeddings in an appropriate fashion to obtain
the full T.

Finally, we explain how to find red–blue pairs by exploiting assumptions on the blue cycle
structure in each of the following two subcases.

1(a) Many disjoint medium blue cycles. We define an auxiliary 2-coloured complete directed
graphH whose vertices are medium blue cycles, and for cycles C1 and C2, edge C1C2 is blue
if a constant fraction of the vertices in C1 have a blue out-neighbour in C2, and otherwise
the edge is red.

It is easy to see that there is either a large red–red matching in H, which translates into
the desired red–blue pairs structure, or there is a long blue path, which translates into a
blue−→Pn in the original tournament.

1(b) Many disjoint long blue cycles that span no medium blue cycles. In this case we observe that
we can find many disjoint blue cycles with no long blue chords. This allows us to obtain a
red–blue pairs structure, by letting the sets Ai and Bi be intervals of the long blue cycles.

Case 2: a large set of vertices spanning no medium or long blue cycle. We first show that, in this case,
there exist many pairwise disjoint sets U1, . . . ,U� of suitable size such that very few of the edges
from Ui to Uj, with i< j, are blue. Using the version of Theorem 1.1 for paths, which was proved
in [5], each set Ui contains many pairs of vertices joined by a long blue path in Ui, or many pairs
joined by a long red path; in the former case we say that the set Ui is blue, and otherwise we say
that it is red. We now consider two subcases.

2(a) Most of the sets are red. In this case we consider a split of the tree T into subpaths (in
Section 4.1 we show how to obtain such a path-split). We embed each subpath within a
specific Ui, where we exploit the fact that we have many options for both start- and end-
vertex of the subpath, and the fact that most of the forward edges between the Ui are red,
to embed and connect the paths and obtain a red T.

2(b) Most of the sets are blue. We define an auxiliary 2-coloured complete directed graph K
whose vertices are the blue Ui, and an edge UiUj is coloured blue if i> j and if there is a
blue edge from every large subset of Ui to every large subset of Uj, and red otherwise.

As before, we note that K contains either a large red–red matching, or a long blue
directed path. In the latter case we lift the path to a blue −→Pn in G. If the former holds, we
find many large bipartite graphs, corresponding to edges of the matching, such that almost

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

322 M. Bucić et al.

all of their edges are red. We use these graphs and the fact that almost all forward edges
between sets Ui are red to embed a red T, similarly to the first case.

Removing the restriction on the number of leaves. Throughout Section 4.2 we were assuming that T
has at mostm1/6 leaves, which was necessary in order to control the number of subtrees we obtain
in various splits ofT. In Section 4.3 we show how to remove this assumption. For this we introduce
another kind of split of T, which we call the core-split (see Section 4.1 for details) which splits T
into not too many subtrees, each of which has at mostm1/6 leaves. Assuming there is no blue −→Pn ,
we find a short sequence of large sets such that each has a large number of red out-neighbours
in the next set of the sequence. This we can do because otherwise we show there is a set which
has a lot of blue edges which allow us to find the blue −→Pn . Finally, we iteratively find parts of the
core-split (or find a blue−→Pn) within these sets using the result from the previous subsection, where
we use the large red out-degree towards the next set to ensure we can join all the pieces into a red
copy of T.

Tree versus tree. The rest of the argument consists of three intermediate steps, which generalize
the result obtained in the previous section, with the final goal being a version of Theorem 1.1 for
general trees T and S.

Step 1: directed tree versus directed tree with O(1) leaves. Let T be out-directed with O(1) leaves, and
let S be a directed tree. We observe that if we remove paths from a directed tree T, that start at any
leaf and stop right before a branching vertex or the root, then the resulting tree T′ has at most half
the number of leaves of T. We iterate a procedure which reduces the search for a red T or a blue S
to a search of red T′ or blue S, using the previous case of path versus tree.

Step 2: directed tree versus directed tree. Let T and S be out-directed trees. Our aim is to iterate a
procedure that reduces the search of a red T or a blue S to a search for a red T1 or a blue S1, where
the order of T1 and S1 is smaller than the order of T and S by at least a constant factor. To that end,
we consider the k-core of a tree T, which is the subtree T′ consisting of vertices whose number
of descendants is at least |T|/k. One can show that T′ has at most k leaves and that the trees in
the forest T \V(T′) have order at most |T|/k (see Definition 3.4). We make use of the previous
step, which tells us that we can find a red T′ or a blue S if T′ is the k-core of T, where k=O(1).
Subsequently, we try to embed the trees in T \V(T′) within the correct out-neighbourhoods. If we
succeed, we have found a red T; otherwise the tree at which we fail is our T1. We repeat in blue to
obtain S1 and iterate until one of the trees drops to constant size, when we once again appeal to
the previous result.

Step 3: tree versus tree. Here we rely on the following idea: if A and B are sets such that every vertex
in A has large out-degree in B and the vertices in B have large in-degree in A, then given a general
tree in T, we can aim to embed in-directed subtrees of T in A and out-directed subtrees of T in
B, using the large degrees between the two sets to connect such subtrees. This idea allows us to go
from the previous step, where we search for monochromatic directed trees, to a search for a red
directed tree or a blue general tree. We then use this idea again to obtain the desired result for two
general trees.

3. Prerequisites
In this section we mention some useful facts which we shall use throughout the proof. First, we
introduce the notion of pseudorandomness. Let G be an oriented graph. For two disjoint subsets
A, B of the vertices, we let eG(A, B) denote the number of edges directed from A towards B; when

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 323

the graph G is clear from the context, we omit the subscript G. For a vertex v we denote the out-
and in-degree of v by d+(v) and d−(v).

Definition 3.1. Let 0< ε < 1/2 and let k be an integer. An oriented graph G is (ε, k)-pseudo-
random if, for any disjoint sets A, B⊆V(G) of size at least k, we have e(A, B)� ε|A||B|.

It is easy to see, for example by Chernoff ’s inequality, that a random tournament is pseudoran-
dom with high probability, as stated in the following lemma (see Lemma 6 in [5]). In fact, this is
the only property of a random tournament that we shall use in our argument.

Lemma 3.2. Let 0< ε < 1/2. There exists a constant σ such that a random tournament T is
(ε, σ log |T|)-pseudorandom, with high probability.

We shall investigate 2-colourings of graphs, where the colours are called red and blue.
Therefore, we extend the notation related to edges by an index b for blue and r for red edges.
For example, er(A, B) denotes the number of red edges going from A to B and similarly d+b (v) is
the blue out-degree of vertex v.

The following lemma gives a lower bound on the number of blue edges in a subset of the
vertices which contains no red copy of a particular tree. This will allow us to find large sets where
every vertex has many red neighbours.

Lemma 3.3. Let G be an (ε, σ logN)-pseudorandom 2-coloured tournament on N vertices. Suppose
that U ⊆V(G) has the following properties:

(i) the induced graph G[U] has at most (ε2/32)|U|2 blue edges, and
(ii) (ε/4)|U|� σ logN.

Then the graph G contains a red copy of any tree of size (ε/4)|U|.

Proof. Let us consider two sets

X+ =
{
v ∈U

∣∣∣ d+r (v)< 3ε
4
|U|

}
and X− =

{
v ∈U

∣∣∣ d−r (v)< 3ε
4
|U|

}
,

where the degrees are with respect to the induced subgraph G[U]. We are going to show that both
sets have size at most (ε/4)|U|. If this is the case then the induced graph G[U \ (X+ ∪ X−)] has
minimum red in- and out-degree at least

3ε
4
|U| − 2ε

4
|U| = ε

4
|U|,

and then we can greedily find any red tree of size at most (ε/4)|U|.
So let us assume that |X+|� (ε/4)|U|; the argument for X− is analogous. Let us pick any

(ε/4)|U| vertices from X+ and denote this set by Y . Then

er(Y ,U \ Y)< |Y| · 3ε4 |U| =
3ε2

16
|U|2.

By the first assumption on U, we have

e(Y ,U \ Y)� er(Y ,U \ Y)+ eb(Y ,U \ Y)<
(

3
16
+ 1

32

)
ε2|U|2 = 7ε2

32
|U|2. (3.1)

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

324 M. Bucić et al.

However, by pseudorandomness and the lower bound on |U|, we have

e(Y ,U \ Y)� ε|Y|(|U| − |Y|)� ε2

4

(
1− ε

4

)
|U|2 � 7ε2

32
|U|2,

where the last inequality follows as ε < 1/2. This is a contradiction to (3.1), which implies that

|X+|< ε

4
|U|,

as required.

A rooted tree is a tree with a special vertex which we call the root. By removing a vertex v in a
rooted tree T we obtain a forest F. The descendants of v are the vertices of T that are not in the
tree in F which contains the root; note that each vertex is a descendant of itself.

Definition 3.4. Let T be a rooted tree on n vertices and let k> 1. The k-core of T is the subtree of
T consisting of vertices that have more than n/k descendants in T.

Observation 3.5. Let T be a tree on n vertices and let T′ be its k-core for k> 1. Then T′ has at
most k leaves and every tree of the forest T \V(T′) has order at most n/k.

Proof. Suppose that T′ has k non-root leaves (the root of T′ is the root of T). The sets of descen-
dants in T of each leaf of T′ are disjoint and have size greater than n/k. This implies that T has
order greater than n, a contradiction. Therefore, T′ has at most k− 1 non-root leaves, so in total
it has at most k leaves.

Let S be a tree in the forest T \V(T′). Suppose |S|> n/k, then the root v of S has more than n/k
descendants, but then v should be in T′, a contradiction.

The next result makes it possible to bound the number of vertices with degree at least 3 in the
underlying graph; we call such vertices branching. Note that a tree is a path if and only if it has no
branching vertices. Let lf (T) be the number of leaves in a tree T.

Lemma 3.6. The number of branching vertices is at most lf (T)− 1.

Proof. We argue by induction on the number of leaves k := lf (T). If k� 2, the tree is a path, and
paths do not have any branching vertices.

For the induction step we assume that the statement holds for all trees with k− 1 leaves. Let v
be any leaf of T and P a path from v to the first vertex adjacent to a branching vertexw, which exists
as k� 3. Then T \V(P) is a tree with k− 1 leaves and by induction has at most k− 2 branching
vertices. It follows that the number of branching vertices in T is at most k− 1 (as w is the only
vertex that is branching in T but need not be branching in T \V(P)).

We call an oriented tree T out-directed if there is a vertex v, which we call the root of T, such
that all the edges in T are directed away from v. Similarly we define an in-directed tree to have all
edges directed towards v. A directed tree is an out-directed tree or an in-directed tree.

Observation 3.7. Let T be a directed tree on n vertices. Then it is a subgraph of any transitive
tournament G on at least n vertices.

Proof. We assume, without loss of generality, that T is out-directed. LetN = |G|. SinceG is transi-
tive, there exists an ordering of the vertices u1, u2, . . . , uN , such that all edges are directed towards
the higher index. Let v1, v2, . . . , vn be an ordering of the vertices of T obtained by a depth-first

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 325

search algorithm starting at the root v of T. Since T is out-directed, the ordering has the prop-
erty that all edges of T are directed towards a higher index and we can embed vi in ui for every
i ∈ [n].

A leaf of an oriented tree is an out-leaf if its out-degree is 0 and an in-leaf if its in-degree is 0.
Note that for an out-directed tree the only in-leaf is the root and all other leaves are out-leaves. In
fact every out-leaf is a leaf itself.

4. Tree versus path
In this section we prove a special case of Theorem 1.1 for a directed tree versus a directed path;
here the random tournament is replaced by a pseudorandom tournament.

Theorem 4.1. Given 0< ε < 1/2 and σ > 0, there exists a constant c> 0 such that the following
holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom. Then G→ (−→Pn , T),
where T is any directed tree on m vertices, as long as n,m�N/c and nm�N2/(c2 logN).

As an intermediate result we prove it first for trees with relatively few leaves (see Section 4.2);
we then prove Theorem 4.1 in Section 4.3. Before turning to the proofs, we discuss three types of
tree-splits, which we shall use in the proofs.

4.1 Tree-splits
Our proofs in this section make use of several tree-splits; we present them here.

The (c, α)-tree-split. Let T be an out-directed tree and let T′ be a subtree of T. An extending-leaf
of T′ with respect to T is an out-leaf (i.e. a non-root leaf) of T′, which is not a leaf of T. Whenever
T is clear from the context we do not mention it.

Lemma 4.2. Let c� 2 and 0< α � (2c)−1. Let T be an out-directed tree on m vertices with at most
mα leaves. Then there is a partition of the vertices into subtrees T1, . . . , T� such that the following
properties hold.

(i) For every i ∈ [�] there is at most one in-edge towards a vertex of Ti in T, and if present it is
towards the root of Ti.

(ii) The only vertices with out-edges leaving Ti are extending-leaves of Ti.
(iii) Each extending-leaf of Ti lies in an even level (i.e. its distance to the root of Ti is even) and it

has out-degree exactly one in T.
(iv) |Ti|� 6mcα , for all i ∈ [�].
(v) �� 2m1−cα .

Given a partition of T into subtrees T1, . . . , T� as in Lemma 4.2, if we contract each subtree
Ti to a single vertex, the resulting graph T′ is again an out-directed tree with no multiple edges.
We call this graph a (c,α)-tree-split of T (see Figure 1); note that this split need not be unique. A
subtree Ti in such a split that does not have extending-leaves, that is, the vertex corresponding to
Ti in T′ is a leaf, is called a leaf-tree.

Proof of Lemma 4.2. For each i� 2m1−cα we construct a subtree Ti in two stages. At step i we
assume we have already found T1, . . . , Ti−1 for which the conditions (i)–(iv) hold, and V(T1)∪
· · · ∪V(Ti−1) induces a subtree T′ of T with the same root. In the first stage we choose the root of
Ti and ensure that Ti is big enough (or a leaf-tree), so that we are later able to deduce (v), and in

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

326 M. Bucić et al.

Figure 1. A tree-split of a tree.

the second stage we extend Ti further to ensure that it satisfies (i)–(iv). We stop the process when
all the vertices of T are covered by the subtrees T1, . . . , Ti, and for such i we denote � := i.

Stage 1. First we choose the root v of Ti. For i= 1 we take the root of T and for i> 1 we pick the
only out-neighbour of an extending-leaf (there is only one out-neighbour by (iii)) of T′ (this is the
subtree of T induced by V(T1)∪ · · · ∪V(Ti−1)).

Assume first that v has at most mcα descendants in T. Then we let Ti be the subtree consisting
of all descendants of v in T. In this case Ti is a leaf-tree of order at most mcα + 1 and there is no
second stage.

Otherwise, we start with a subtree T′i consisting only of the vertex v. As long as |T′i |<mcα ,
we pick an extending-leaf of T′i and add all its children to T′i . Note that such an extending-leaf
always exists because there are more than mcα descendants of v in T and each non-leaf vertex of
T′i has all its children from T in T′i . Since the maximum out-degree of T is bounded from above
by the number of out-leaves of T (every out-neighbour eventually leads to a different out-leaf
by following out-edges), in each step of the construction of T′i we add at most mα vertices. This
implies that when we stop (i.e. right after |T′i |�mcα holds), we have the following:

mcα � |T′i |�mcα +mα � 2mcα .

Stage 2. We start with Ti = T′i , produced by the first stage. Call an extending-leaf contained in
Ti bad if it lies in an odd level or has out-degree not equal to one in T. As long as there is a bad
extending-leaf in Ti, we add all its children to Ti. Eventually there are no bad extending-leaves left,
since by going deep enough we reach a leaf of T, which by definition is not an extending-leaf.

Note that during the procedure of both stages (i) is always satisfied by the choice of the root.
Moreover, at the end of the procedure, (ii) and (iii) hold as well, since there are no bad extending-
leaves in Ti.

Now let us prove that condition (iv) holds, i.e. that |Ti|� 6mcα . From the first stage we know
that |T′i |� 2mcα . Furthermore, every vertex in Ti \ T′i is either a leaf in T or it was a bad vertex
for some T′i . In the latter case such a vertex is either branching or has out-degree 1 in T and is
on an odd level; in the second case its child is either a branching vertex or a leaf of T itself. Recall
that there are at most mα leaves in T, so by Lemma 3.6 there are at most mα branching vertices.
Finally, as each vertex has a unique parent, the number of vertices of Ti \ T′i of the last type (i.e.
vertices on odd levels of T whose out-degree is 1) is bounded by the number of leaves of T plus
the number of branching vertices of T. This implies that

|Ti| = |T′i | + |Ti \ T′i |� 2mcα +mα +mα + 2mα � 6mcα .

To see that the last condition (v) holds, we note that each leaf-tree contains at least one out-
leaf of T. Thus, the number of leaf-trees is bounded by mα . In addition to that we can bound the
number of non-leaf-trees bym/mcα , since each one has order at leastmcα . This implies that

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 327

Figure 2. The path-split of a tree.

��mα +m1−cα � 2m1−cα ,
where the last inequality follows from c� 2 and 0< α � (2c)−1.

The α-path-split. In the following lemma we are interested in a similar split, but this time we
want the subtrees in the split to be paths. The graph obtained by contracting the paths in the
following lemma will be called an α-path-split (see Figure 2). We call a vertex of a tree a junction
if it is a leaf or a branching vertex.

Lemma 4.3. Let 0< α � 1/4. Let T be an out-directed tree on m vertices with at most mα leaves.
Then there is a partition of the vertices into subpaths P1, . . . , P� such that the following properties
hold.

(i) If Pi contains a junction then |Pi| = 1.
(ii) For every i ∈ [�] there is at most one in-edge towards Pi, which is directed towards the start-

vertex of Pi. Furthermore, unless Pi is a junction, there is at most one out-edge away from Pi
which is directed from the end-vertex of Pi.

(iii) |Pi|�m3α .
(iv) �� 5m1−3α .

Proof. We define the paths in the split as follows. First we let each junction be a separate trivial
path of size 1. We then remove all junctions from the tree; thus we are left with a collection of
disjoint subpaths, which we call long subpaths. Finally, we split each such path into smaller sub-
paths, called short subpaths, such that each has order at most m3α . We let these shorter paths be
the remaining subpaths of our split. We now show that this split satisfies the desired conditions.

First note that the number of junctions is at most 2mα , since by assumption there are at most
mα leaves and therefore at most mα branching vertices, by Lemma 3.6. If we consider a graph
whose vertex set is the set of junctions and put an edge between a pair of junctions whenever they
are joined by a long subpath, we obtain a forest. Therefore, the number of long subpaths, denoted
by d, satisfies the following:

d� # of junctions − 1� 2mα .

For i ∈ [d], letmi denote the order of the ith long subpath. Then we split the ith long subpath into

ri :=
⌈

mi
m3α

⌉
� mi

m3α + 1

shorter subpaths of order at most m3α each. Hence, the total number of paths used is bounded
from above by ∑

i∈[d]
ri + 2mα �

∑
i∈d

mi
m3α + d+ 2mα �m1−3α + 4mα � 5m1−3α ,

as required.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

328 M. Bucić et al.

Figure 3. The 3-core-split of a tree on 19 vertices.

The k-core-split. We now define the k-core-split F1, . . . , F� of a tree T (see Figure 3); this will be
used in Section 4.3 to remove the requirement on the number of leaves of T in order to prove
Theorem 4.1. Let T′ be the k-core of T. We set F1 = T′. For i> 1, let S1, S2, . . . , S�i be the trees
of the forest T \⋃j∈[i−1] Fj. For every j ∈ [�i] we define Tj to be the k-core of Sj and set the forest
Fi :=⋃

j∈[�i] Tj.

Proposition 4.4. Let F1, . . . , F� be the k-core-split of a tree T. If T′ is a tree in the forest Fi then

(i) T′ has order less than |T|/ki−1 and
(ii) lf (T′)� k.

Proof. Let us prove (i) by induction over i. The statement is clearly true for i= 1. Let us assume
that it holds for some i< l; then every tree S from Fi has size less than |T|/ki−1 and is a k-core of
some subtree of T. Therefore, every tree in Fi+1 has order at most |T|/ki−1 · k−1 = |T|/ki, using
Observation 3.5, as desired. Property (ii) follows, because every tree in Fi is a k-core of some
subtree of T.

4.2 Tree with few leaves
Wewill make use of the following theorem (Theorem 3.17 in [4]). In fact, we will only use a special
case of this theorem, when one of the trees is a path.

Theorem 4.5. There exists a constant c such that, for any oriented trees T1 and T2, in any
2-colouring of the complete directed graph on c(|T1| + |T2|) vertices there exists a red T1 or a blue T2.

Furthermore, our proof makes use of the special case of Theorem 4.1 for path versus path,
proved in [5] as Theorem 12.

Theorem 4.6. Given 0< ε < 1/2 and σ > 0, there is a constant c> 0 such that the following holds.
Let G be an (ε, σ logN)-pseudorandom tournament on N vertices. Then G→ (−→Pn ,−→Pm) provided
n,m�N/c and nm�N2/(c2 logN).

This theorem is tight up to the constant factor. This result is the main bottleneck for our proof,
as it will rely on this result as a black box.

The following theorem is an intermediate result, leading to the proof of Theorem 4.1. Its proof
introduces some interesting new ideas about how to deal with trees in place of paths.

Theorem 4.7. Given 0< ε < 1/2 and σ > 0, there exists a constant c> 0 such that the following
holds. Let G be a tournament onN vertices, which is (ε, σ logN)-pseudorandom. ThenG→ (−→Pn , T),

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 329

Figure 4. Red–blue pairs.

where T is any directed tree on m vertices, with at most m1/6 leaves, as long as n,m�N/c and
nm�N2/(c2 logN).

Proof. Let α= 1/6.Without loss of generality wemay assume that T is out-directed, because once
we prove this, since directed paths are both in-directed and out-directed, we can apply it to the
tournament with opposite orientation of every edge to conclude the other case.

Consider a fixed 2-colouring ofG. Write a= 128ε−2, b= 8a andmake the following definition:

a cycle C is

⎧⎪⎨
⎪⎩
short if |C|< am2α ,
medium if am2α � |C|� bm2α ,
long if bm2α < |C|.

We will prove the theorem under assumptions thatN � c2 and n,m�N/(c logN), for some value
of c. We start by arguing how to conclude the theorem in general, assuming we know it under
these conditions. To see this with only the first assumption, let n′ =max (n,N/(c logN)) and
m′ =max (m,N/(c logN)). It is easy to see that n′,m′ �N/c and n′m′ �N2/(c2 logN) still hold.
The required result for m and n now follows from the result for n′ and m′, which satisfy both
assumptions. So there is a c such that the general result holds, given N � c2. Now if N < c2, then
c2 >N � cn, cm implying n,m< c, so the result follows, with a larger constant, by appealing to
the fact that oriented Ramsey numbers of acyclic graphs are finite.

So, from now on we assume N � c2 and n,m�N/(c logN). In particular, this implies mα �
σ logN.
Case 1: many disjoint medium or long blue cycles.We shall consider two subcases.

1(a) There is a collection of vertex-disjoint medium blue cycles covering at least N/4
vertices.

1(b) There is a collection of vertex-disjoint long blue cycles covering at least N/4 vertices,
such that they span no medium blue cycle and all the large blue cycles are as short as
possible.

We resolve both subcases by finding the following structure. Given k and t, a (k, t)-red–blue
pair is a collection of pairwise disjoint subsets of vertices A1, B1, . . . ,At , Bt , each of size k, such
that for every i ∈ [t] the following holds (see Figure 4):

(i) the bipartite graph G[Ai, Bi] contains only red edges,
(ii) for every i ∈ [t] there exists a blue path Pi that contains all vertices of Ai, such that Pi and

Pj are vertex-disjoint for all j �= i.

We start by showing how to conclude the argument once we find this structure, and then we
show how to find it in each of the two cases.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

330 M. Bucić et al.

Proposition 4.8. Let 3
4am

2α � k� am2α and t�N/(256k). If G contains (k, t)-red–blue pairs then
G→ (−→Pn , T).

Proof. Let us define an auxiliary complete directed graph K on vertex set [t]. We colour the edge
ij blue if at least (1− ε/4)k vertices in Ai have at least (ε/2)k blue out-neighbours in Aj and red
otherwise.

Theorem 4.5 implies that in the auxiliary graph K there is a directed blue path of order t/(2c1)
or any oriented red tree of order t/(2c1), for some positive constant c1. We claim that the constant
c can be chosen such that the following two inequalities hold:

(1) t� 8c1/(εk)n,
(2) t� 4c1m1−2α .

Inequality (1) follows, since, by the assumptions of Proposition 4.8 and Theorem 4.7, t�
N/(256k) and N � cn� 256 · 8ε−1c1n, where the last inequality holds under the assumption that
c� 211c1ε−1. We obtain inequality (2) by using N � cm, under the assumption that c� 210ac1 =
217ε−2c1 as follows:

t� N
256k

� N
256am2α � cm1−2α

256a
� 4c1m1−2α .

Suppose that there exists a blue path P= i1i2 · · · i� of order � := t/(2c1) in K. We will explain
how to lift this path to a blue path in G by using subpaths of order at least s := (ε/4)k from each
of the blue paths Pij associated to Aij for j ∈ [�].

For every j ∈ [�], let Ej ⊆Aij denote the set of vertices with at least 2s= (ε/2)k blue out-
neighbours in Aij+1 . Note that |Ej|� (1− ε/4)k, since the edge ijij+1 is blue in K.

We start with an initial subpath P′ of the path Pi1 associated to Ai1 which ends in the last vertex
from Pi1 contained in E1. Note that |P′|� |E1|� s, since Pi1 covers Ai1 , so also E1.

Suppose that we already have a path P′ of order at least s(j− 1) in
⋃

r∈[j−1] Air whose last
vertex v is contained in Ej−1.

Let Sj be the blue out-neighbourhood of v in Aij and let u1, u2, . . . , uk denote the vertices of the
blue path Pij in Aij ordered according to their order in Pij . We extend P′ by the path Q consisting
of up, up+1, . . . , uq, where p is the smallest index among the vertices in Sj and q the largest index
among the vertices in Ej. Note that Q has order at least s, since

|Ej ∩ Sj| = |Ej| + |Sj| − |Ej ∪ Sj|� |Ej| + |Sj| − |Aij |�
(
1− ε

4

)
k+ ε

2
k− k= ε

4
k= s.

The blue path in K has order t/(2c1), so this process produces a blue path in G of order at least

ts
2c1

� 8c1n/(εk) · εk/4
2c1

= n,

where we used inequality (1); this completes the proof of Proposition 4.8 in the case where K
contains a long blue path.

Otherwise, i.e. if K does not have a blue path of order t/(2c1), then K contains a red copy of
a (2, α)-tree-split of T (obtained from Lemma 4.2), since t/(2c1)� 2m1−2α , by inequality (2). We
now explain how to lift the tree-split from K to a red copy of T in G. We relabel the vertices of
K in such a way that the vertices of the tree-split we found in K are [�], for � being the order of
the tree-split, and vertex i representing a subtree Ti of T. Our aim is to embed the subtrees Ti in
Ai ∪ Bi. To that end we pick ‘candidate sets’ Di ⊆Ai which satisfy some useful properties.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 331

Claim 4.9. Suppose that for each vertex i of the tree-split we have a non-empty set of candidates
Di ⊆Ai, such that for any v ∈Di there is a tree T(v) with the following properties:

(i) T(v) is a red copy of Ti embedded in Ai ∪ Bi and rooted at v,
(ii) each vertex u in T(v) that corresponds to an extending-leaf w in Ti (as a subtree of T) is in Ai

and has a red out-edge towards Dj if j is such that there is an edge from w to Tj in T.

Then we can find a red copy of tree T inside the tournament G.

Proof. Let T′ denote the subtree of the tree-split containing the root v of T. From the set of
candidates for the root of T′ we can pick any vertex we want and set T′ := T(v). By property (ii)
we can choose the roots of the adjacent subtrees in the corresponding candidate sets and by (i)
we can embed the subtrees themselves as well. Note that as all Ai and Bi are disjoint, we do not
use any of the vertices twice. Repeating this argument eventually produces a red copy of T in the
tournament G.

We now show how to construct appropriate candidate sets consisting of at least k/2 vertices.
For this we begin with the leaves of the tree-split and then make our way up, in the sense that we
deal with the candidate set of a particular vertex from the tree-split only if we have already defined
the candidate sets for all its out-neighbours.

Let us define the candidate set Di, where the out-neighbours of vertex i in the tree-split are js
for s ∈ [h] (if Ti is a leaf-tree then h= 0). Note that by the assumption on the number of leaves of
the tree T and the definition of a tree-split, h�mα . Furthermore, by construction, the candidate
sets Djs have already been defined (this condition also holds, in particular, for leaf-trees).

For each s ∈ [h], let Xs ⊆Ai be the set of vertices with at least one red out-neighbour in Djs .
These sets will host the extending-leaves and guarantee property (ii) of Claim 4.9. Let Y be the set
of vertices in Bi that send at least |Ti| + σ logN red edges into each set Xs; if there are no such
sets Xs (i.e. Ti is a leaf-tree), we let Y be the set of vertices in Bi with at least |Ti| + σ logN red
out-neighbours in Ai. Finally, let Di be the set of vertices in Ai that send at least |Ti| red edges
into Y .

Claim 4.10. |Di|� |Ai| − σ logN � k/2.

Proof. Firstly, we show that |Xs|� (ε/8)k for every s ∈ [h]. Indeed, as |Djs |� k/2� σ logN, by
pseudorandomness, all but at most σ logN vertices of Ai send at least ε|Djs |� (ε/2)k edges into
Djs . Since ijs is a red edge in the auxiliary graph K, at most (1− ε/4)k of these vertices send at least
(ε/2)k blue edges into Djs . It follows that there are at least |Ai| − (1− ε/4)k− σ logN � (ε/8)k
vertices in Ai with at least one red out-neighbour in Djs , i.e. |Xs|� (ε/8)k, as claimed.

We now claim that |Y|� k/2. Indeed, since all edges between Ai and Bi are red, by pseudoran-
domness, all but at most σ logN vertices of Bi send at least ε|Xs|� (ε2/8)k� |Ti| + σ logN red
edges into Xs, for every s ∈ [h]. Hence,

|Y|� |Bi| − h · σ logN � k−mα · σ logN � k/2.
A similar argument shows that |Y|� k/2 if Ti is a leaf-tree.

Finally, by pseudorandomness and since all edges from Ai to Bi are red, we find that |Di|�
|Ai| − σ logN � k/2, as required.

Now let us explain why each vertex in Di is a candidate for the root of Ti. Note that the bipar-
tite graph G[Di, Y] has minimum red out-degree at least |Ti|, allowing us to greedily embed a
copy T′ of the subgraph of Ti obtained by removing its extending-leaves. By the property that all

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

332 M. Bucić et al.

extending-leaves lie at even distance from the root of their corresponding subtree, the parent of
such a leaf u is embedded in Y and has at least |Ti| red out-neighbours in the corresponding set
Xs. Since we have not embedded all the vertices of Ti yet, we can embed u in Xs.

These candidate sets Di satisfy conditions of Claim 4.9, so we can find a red copy of the desired
tree in G. This completes the proof of Proposition 4.8.

In order to complete the proof of Theorem 4.7 in Case 1, it now remains to show how to find
(k, t)-red–blue pairs in Cases 1(a) and 1(b).

Case 1(a): many disjoint medium blue cycles.We assume that there is a collection of vertex-disjoint
medium blue cycles C1, C2, . . . , Ct′ which cover at least N/4 vertices. Since the medium cycles
have length at most bm2α , we get that t′ �N/(4bm2α).

LetH be an auxiliary 2-coloured complete directed graph on vertex set [t′]. We colour the edge
ij blue if at least (a/4)m2α vertices in Ci have a blue out-neighbour in Cj and red otherwise. Now
we consider a maximal red–red matchingM, namely a matching that consists of edges that are red
in both directions.

First we suppose that the matchingM covers at most t′/2 vertices. Since this matching is max-
imal, for every two vertices i and j not covered by M, at least one of the directed edges ij and ji
is blue. In particular, there is a blue subtournament on at least t′/2 vertices. Since every tourna-
ment contains a directed Hamiltonian path, we thus find a blue directed path of order t′/2 in the
auxiliary graph H. The following claim explains how to lift this path to the tournament G.

Claim 4.11. Let G be an oriented graph with pairwise vertex-disjoint cycles C1, C2, . . . , Ck such that,
for each i< k, there are at least r vertices in Ci that have an out-neighbour in Ci+1 and |Ck|� r. Then
G contains a directed path of order k · r.

Proof. If k= 1 the claim is immediate since we assume |C1|� r. We show that for every 1� i� k
there is a path Pi of order at least r(i− 1) whose vertices are in

⋃
j∈[i−1] V(Cj) and whose last

vertex has an out-neighbour wi in Ci. Indeed, for i= 1 we can take P1 to be the empty path. For
1� i< k− 1, suppose that Pi andwi satisfy the required properties, letQi+1 be the path that starts
at wi and follows Ci until the last vertex of Ci that has an out-neighbour in Ci+1, let wi+1 be one
such out-neighbour of the last vertex in Qi+1, and form Pi+1 by concatenating Pi and Qi+1. It is
easy to check that Pi+1 and wi+1 satisfy the required properties.

Now, given a path Pk and a vertex wk as above, extend Pk by a path that starts at wk and follows
Ck until the last vertex before wk. This extends Pk by at least r vertices, as |Ck|� r, to give a path
in G of order at least k · r, as required for the claim.

By applying Claim 4.11 to the induced blue subgraph of G we find a blue path of order at
least

a
4
m2α · t

′

2
� a

32b
N � N

256
� n

(where the last inequality holds by assuming that c� 256), as desired.
Therefore, we can assume that the matching M covers at least t′/2 vertices of H. This cor-

responds to t := t′/4 disjoint pairs of cycles (Cis , Cjs), for s ∈ [t], where at least k := (3/4)am2α

vertices in Cis do not have a blue out-neighbour in Cjs and vice versa. Hence we can find subsets
As and Bs of Cis and Cjs , respectively, of size k each, with only red edges between them. Each As
lies in a different cycle Cis from the original collection of disjoint medium blue cycles. Thus, we
can define Ps to be the cycle Cis minus one edge. This way Ps contains all vertices of As and the
paths Ps are pairwise disjoint.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 333

Note that

t� 3N
512k

,

since

t′ � N
4bm2α � N

32am2α =
3N
128k

.

So Proposition 4.8 applies and concludes the proof of Theorem 4.7 in this case.

Case 1(b): a large set with many disjoint long blue cycles but no blue medium cycle. Suppose
Case 1(a) does not hold; thus there exists a set U of at least 3N/4 vertices which does not contain
any medium blue cycle.

Let us consider the following process, which starts with U ′ :=U. As long as there exists a long
blue cycle in U ′ we pick a shortest one, say C, and define U ′ =U ′ \ C. This process eventually
terminates and produces a sequence of disjoint long blue cycles C1, C2, . . . , Ct′ . In this case we are
going to assume that these cycles cover at leastN/4 vertices. Note that t′ �N/(4bm2α), since each
long cycle contains at least bm2α vertices.

Note that, for every i ∈ [t′], all chords in Ci of length at least am2α are red, since otherwise
we would find a blue cycle inside Ci which is either a medium cycle, or a shorter long cycle,
contradicting our choice of Ci as the shortest remaining long cycle.

Write Ci = (v1v2 · · · vr) and k := am2α . Define sets

Ai = {v1, v2, . . . , vr/2−2k} and Bi = {vr/2−k, vr/2−k+1, . . . , vr−k}.
By the argument above we have that G[Ai, Bi] spans red edges only. Let Ai,1, . . . ,Ai,r(i), where
r(i)= �|Ai|/k, be pairwise disjoint sets of k consecutive vertices (with respect to Ci) in Ai, and let
Bi,1, . . . , Bi,r(i) ⊆ B be defined similarly. The sets Ai,j, Bi,j cover all but at most 4k vertices of each
cycle Ci, hence they cover at least N/4− t′ · 4k vertices in total. Since the number of sets Ai,j and
sets Bi,j is the same, and each set has size k, it follows that the number t of sets Ai,j satisfies

t� N
8k
− 2t′ � N

8k
− N

2bm2α =
N
8k
− N

16k
= N

16k
,

where the first equality follows from the choice b= 8a which implies that bm2α = 8k. Note that
the collection of pairs (Ai,j, Bi,j) forms a (k, t)-red–blue pairs structure, as each set Ai,j contains a
spanning blue path (which is a part of the cycle Ci), which are mutually disjoint. Proposition 4.8
can now be used to complete the proof of Theorem 4.7 in this case as well.

Case 2: a large set of vertices spanning no blue medium or long cycle. In the remaining case, the pro-
cess of picking the sequence of disjoint long blue cycles in Case 1(b) terminated before it covered
at least N/4 vertices. Hence, we are left with a set U that covers at least N/2 vertices and spans
neither medium nor long blue cycles.

Let us start this case with an elementary observation.

Observation 4.12. Every directed graph G with minimum out-degree d contains a cycle of length
at least d+ 1.

Proof. Let v1 · · · v� be a longest directed path in G. By the maximality of this path we get that
v� has no out-neighbour outside this path. Since the out-degree of v� is at least d it has at least d
out-neighbours among v1, . . . , v�−1. Let s be the smallest index among these out-neighbours of
v�. Then (vsvs+1 · · · v�) is a cycle of length at least d+ 1.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

334 M. Bucić et al.

This observation allows us to obtain an ordering of the vertices inU with ‘few’ blue edges going
forward.

Claim 4.13. There exists an ordering u1, u2, . . . , u|U| of the vertices in U such that, for every i, there
are at most am2α indices j> i such that there is a blue edge from ui to uj.

Proof. Suppose that there exists a subgraph of G[U] which has minimum blue out-degree at
least am2α . Then by Observation 4.12 we find a blue cycle of order at least am2α , a contradiction.
Therefore, any subgraph of G[U] has a vertex of blue out-degree at most am2α .

In particular, there exists a vertex u1 ∈U with blue out-degree at most am2α . Now suppose
that u1, u2, . . . , ui−1 are defined. We define ui to be a vertex with blue out-degree at most am2α in
G[U ′], whereU ′ =U \ {u1, u2, . . . , ui−1}. We repeat this as long as i� |U|. The resulting ordering
u1, u2, . . . , u|U| satisfies the requirement of the claim.

Let k=N/(32m1−3α). We set t := |U|/k and denote Ui = {u(i−1)k+1, . . . , uik} for i ∈ [t]. We
claim that we can choose the constant c such that the following two inequalities hold:

(1) t� 16m1−3α ,
(2) k� 128ε−2am3α .

Indeed, inequality (1) follows independently from c, as

t= |U|
k

� N
2k
= 16m1−3α .

We obtain inequality (2) from N � cm, given c� 212ε−2a, as

k= N
32m1−3α � cm

32m1−3α =
c
25

m3α � 27ε−2am3α .

Let c2 be the constant from Theorem 4.6 with parameters ε and σ/(3α). By choosing c� 128c2,
we obtain from N � cn, cm that

k/4= N
128m1−3α � c2

n
m1−3α , c2m3α .

Similarly, we get

k/4� c2
√

n
m1−3α m

3α log (k/4),

from N � c
√
nm logN.

Also note that

k/4= N
128m1−3α �N3α

so σ log (k/4)� 3ασ logN. Thus any subtournament of G of order k/4 is (ε, (σ/(3α)) log (k/4))-
pseudorandom. Therefore, Theorem 4.6 applies for paths of order n/(m1−3α) andm3α , within any
subset of vertices of size at least k/4.

Claim 4.14. One of the following holds, for each set Ui.

(i) There are at least k/8 pairwise disjoint pairs of vertices in Ui that are joined by a blue path,
contained in Ui, of order n/(m1−3α).

(ii) For each 2� ��m3α , there are at least k/4 pairwise disjoint pairs of vertices in Ui that are
joined by a red path, contained in Ui, of order �.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 335

Proof. Consider the following process. As long as there is a blue path of order n/(m1−3α)� 2 in
Ui (where the inequality follows since n�N/(c logN) and m�N/c), we remove its first and last
vertex. If this process runs for at least k/8 rounds then (i) holds.

Otherwise, there is a subset W ⊆Ui of size at least 3
4k with no blue path of order n/(m1−3α).

Consider the following process. As long as there are k/4 vertices left in W we can apply
Theorem 4.6 to find a red path of order � (since ��m3α) and remove its first and last vertex.
Since we remove only two vertices in each round, this process runs for at least k/4 rounds. Thus
(ii) holds.

If (i) holds, we say that Ui is blue; otherwise, we say that Ui is red. We now distinguish two
cases depending on the majority colour of the sets Ui.

Case 2(a): most of the sets Ui are red. In this case there are at least t/2 red sets Ui so, while pre-
serving the ordering, we rename t/2 red sets Ui as V1,V2, . . . ,Vt/2. Note that when i< j we have
by Claim 4.13 that every vertex in Vi has at most am2α blue out-neighbours in Vj. Let us view
V1,V2, . . . ,Vt/2 as vertices of a transitive tournament with edges pointing always towards the
bigger index. Let T′ be an α-path-split of T (see Lemma 4.3). By Observation 3.7, we can find a
copy of T′ inside this transitive tournament, since inequality (1) implies that t/2� 5m1−3α .

We now show that if we define appropriate candidate sets for each start-vertex of a path in the
path-split, then we can greedily find a red copy of T in G, in a similar manner to Case 1. Let Pi
denote the path corresponding to the vertex i of the embedded path-split.

Claim 4.15. Suppose that for each vertex i of the path-split we have a non-empty set of candidates
Di ⊆Vi, such that, for any v ∈Di, there is a subpath P(v) of T which satisfies the following:

(i) P(v) is a red copy of Pi embedded within Vi with start-vertex v,
(ii) the end-vertex u of P(v) has a red out-edge towards Dj for each j which is a child of i in the

path-split.

Then we can find a red copy of tree T inside the tournament G.

Proof. Use a greedy embedding, analogous to that used in the proof of Claim 4.9.

We now define such candidate sets, each of size at least k/8. We start with the leaves of the
path-split and then move upwards, in such a way that we are always defining the candidate set for
the vertex all of whose out-neighbours have already had their candidate sets defined.

If i is a leaf of the path-split, then Pi is a leaf of T, and we can set Di :=Vi.
In the case of i being a non-leaf we apply Claim 4.14 with �= |Pi|, and define Ei, Si ⊆Vi to be

the sets of end- and start-vertices of a red path of length |Pi|, such that |Ei| = |Si|� k/4 (note that
if Pi is a singleton, then we can take Ei = Si =Vi). We distinguish two cases for each non-leaf i in
the path-split, depending on whether or not i is a branching vertex of T′.

Suppose that Pi corresponds to a non-branching vertex of T′. Then its end-vertex has out-
degree exactly 1 in T; denote this out-neighbour by j. Let X be the subset of Ei, consisting of
vertices that have at least one red out-neighbour in the candidate set Dj. We define the candidate
set Di to be the set of vertices in Si that correspond to the vertices in X. In this case it remains
to show that |X|� k/8. Indeed, by pseudorandomness, all but at most σ logN vertices in Ei send
at least ε|Dj|� εk/8> am2α edges to Dj. Recall that by the choice of the ordering of the vertices,
every vertex in Ei has at most am2α blue out-neighbours in Dj, hence all but at most σ logN
vertices in Ei have a red out-neighbour in Dj, i.e. |X|� |Ei| − σ logN � k/8.

Now suppose that Pi is a branching vertex in the path-split, i.e. it corresponds to a branching
vertex v in T. The maximum out-degree of T is bounded by the number of leaves, so i has at most

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

336 M. Bucić et al.

mα out-neighbours in T′; denote them by j1, . . . , jh (so h�mα). Let Di be the set of vertices in
Vi which have a red out-neighbour in each of the sets Djs for s ∈ [h]. As before, all but at most
σ logN vertices in Vi have at least one red out-neighbour in Djs for each s. Hence |Di|� |Vi| − h ·
σ logN � k/8.

We defined candidate sets required by Claim 4.15, so in the case when most of the sets Ui are
red, we find a red copy of T.

Case 2(b): most of the sets Ui are blue. In this case we assume that at least t/2 of the Ui are blue; let
us now rename t/2 blue Ui as V1,V2, . . . ,Vt/2, while preserving the ordering, and let Ei, Si ⊆Vi
be the sets of end- and start-vertices of the (blue) paths given by Claim 4.14; then |Ei| = |Si|� k/8
for every i.

Define an auxiliary complete directed graph K on vertex set [t/2], where vertex i corresponds
to Vi. We define the following 2-colouring of its edges. Every edge ij with i< j is coloured red. We
colour an edge ij with i> j blue if, for every choice of subsetsWi ⊆Vi andWj ⊆Vj of size at least
k/16, there is a blue edge fromWi toWj; otherwise, we colour the edge red.

Let M be a maximal red–red matching in K. We now distinguish two cases: M covers at least
t/4 of the vertices of K, or there is a blue directed path of order at least t/4 (we have seen in
Case 1(a) that one of these possibilities occurs).

There is a long blue path in K. In this case, we assume that there is a blue path i1i2 · · · it/4 in K.
Let Xj ⊂ Eij denote the set of vertices which are end-vertices of blue paths of order at least j · � in⋃

r∈[j] Vir , where � := n/(m1−3α).

Claim 4.16. For every j ∈ [t/4], we have |Xj|� k/16.

Proof. We prove this by induction. In the case j= 1 every vertex in Ei1 is an end-vertex of a path
of order � in Vi1 . So, let us assume that the statement is true for some j� 1. Let Yj+1 ⊆ Sij+1 be the
set of vertices that have a blue in-neighbour in Xj.

We now show that |Xj+1|� |Yj+1|. Let v ∈ Yj+1 ⊆ Sij+1 and u ∈ Eij+1 be its corresponding end-
vertex of a path Q of order �. Since v ∈ Yj+1, there exists a vertex w in Xj such that the edge wv is
blue in G. By definition of Xj,w is the end-vertex of a path P of order at least j · �. Then PwvQ is a
path of order at least (j+ 1) · � in ⋃

r∈[j+1] Vir , hence u ∈ Xj+1. This shows that |Xj+1|� |Yj+1|.
As there are no blue edges between Xj and Sij+1 \ Yj+1 and since |Xj|� k/16 (by induction) we

have |Sij+1 \ Yj+1|< k/16, by the definition of the auxiliary graph K. This implies that |Yj+1|>
k/8− k/16� k/16, so |Xj+1|� |Yj+1|� k/16, as required.

By applying Claim 4.16 with j= t/4, we find a blue path of order t/4 · n/(m1−3α) in G. By
inequality (1) this blue path has order at least n, as desired.

There is a large red–red matching in K. Now we consider the case where there is a red–red
matchingM, which covers t/4 vertices of K. Let us denote the edges ofM by

(Vi1 ,Vj1), (Vi2 ,Vj2), . . . , (Vit/8 ,Vjt/8),

where is < js for every s ∈ [t/8] and i1 < · · ·< it/8. By definition of the auxiliary graph K, there
are subsets As ⊆Vis and Bs ⊆Vjs of size k/16 each, such that all edges from Bs to As are red; fix
such subsets. The vertices i1, . . . , it/8 form a red transitive tournament that respects this ordering,
i.e. isir is an edge if s< r. By Observation 3.7, we may find within this tournament a copy of a
(3, α)-tree-split T′ of T, since T′ is an out-directed tree of size smaller than 2m1−3α � t/8 (by
inequality (2)).

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 337

It remains to find appropriate candidate sets Di for each vertex i from the tree-split so that
we can find a red copy of T in G, by Claim 4.9. We will construct Di such that they have size at
least k/32. As before, we start with leaf-trees and work our way up the tree, in such a way that
when we are about to define a candidate set Di, the candidate sets of subtrees corresponding to
out-neighbours of the vertex i in the tree-split are already defined.

Let j1, . . . , jh be the out-neighbours in the tree-split of a vertex i. We assume that Djs ⊆Ajs has
been defined and has size at least k/32. Note that h�mα due to the bound on the number of leaves
of T, and possibly h= 0 if i corresponds to a leaf-tree. Let Xs be the set of vertices in Ai which have
at least one red out-neighbour in Dis , for s ∈ [h]. Let Y be the set of vertices in Bi which have at
least |Ti| + σ logN red out-neighbours in Xs for every s ∈ [h]; if h= 0 we define Y to be the set of
vertices in Bi that have at least |Ti| + σ logN red out-neighbours in Ai. Finally, let Di be the set of
vertices in Ai that have at least |Ti| red out-neighbours in Y .

Claim 4.17. |Di|� |Ai| − σ log N.

Proof. Firstly, note that every vertex in Ai has at most am2α blue out-neighbours in Ajs (as js
corresponds to a set that appears later in the ordering V1, . . . ,Vt/8 than the set that contains Ai).
It follows from pseudorandomness that all but at most σ logN � k/32 vertices in Ai have at least
ε|Ajs |> am2α out-neighbours in Ajs , at least one of which is red. In particular, |Xs|� k/32.

Secondly, again by pseudorandomness and by the fact that all edges from Bi toAi are red, all but
at most σ logN vertices in Bi have at least ε|Xs|� |Ti| + σ logN red neighbours in Xs. It follows
that |Y|� |Bi| − h · σ logN � k/32. If h= 0, then, similarly, |Y|� k/32.

Finally, recall that the vertices in Ai have at most am2α blue out-neighbours in Bi. Hence, by
pseudorandomness, all but at most σ logN vertices in Bi have at least ε|Y| out-neighbours in Y ,
at least ε|Y| − am2α � |Ti| of which are red. It follows that |Di|� |Ai| − σ logN, as required.

By Claim 4.9 we may find a red copy of T in G. This completes the proof of Theorem 4.7.

4.3 General trees
We are now ready to prove Theorem 4.1, without the constraint on the number of leaves. Our
proof strategy is to consider them1/6-core-split F1, . . . , F� of a tree onm vertices. Then each tree
in the split has at most m1/6 leaves, so we can use the intermediate result, Theorem 4.7, to find it
in the right neighbourhood.

Proof of Theorem 4.1. Without loss of generality, we assume that T is out-directed, as otherwise
we can look at in-neighbourhoods instead of out-neighbourhoods in G. Suppose that G, together
with a fixed 2-colouring, has no blue copy of −→Pn . Let c1 be the constant from Theorem 4.7 for
parameters ε and 2σ . Define δ = ε2/(32 · 6). We assume that c�max (2c1δ−1, 4δ−2).

Claim 4.18. Let U ⊆V(G) be a set of size at least δN −m and let T′ be an out-directed tree on at
most m vertices with at most m1/6 leaves. Then G[U] contains a red copy of T′.

Proof. Firstly, we claim that G[U] is (ε, 2σ logM)-pseudorandom, where M= |U|. Indeed, note
that

M� δN −m� (δ− 1/c)N � δ

2
N � δ

√
c

2
√
N �
√
N,

using N � c and c� 4/δ2. Thus 2σ logM� σ logN, so G[U] is (ε, 2σ logM)-pseudorandom,
using (ε, σ logN)-pseudorandomness of G. Next, note that

n,m� N
c
� 2

δc
M� M

c1
,

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

338 M. Bucić et al.

and

nm� N2

c2 logN
� 4

c2δ2
M2

logM
� M2

c21 logM
,

as c� 2c1/δ. Hence, by Theorem 4.7, U contains either a red T′ or a blue −→Pn ; by assumption it
follows that U contains a red T′, as required.

Let F1, . . . , F� be them1/6-core-split of T. By Proposition 4.4, �� 6 and each tree in a forest Fi
has at mostm1/6 leaves.

Define U0 =V(G), and for i� 5 let Ui be the set of vertices in V(G) that have at least δN red
out-neighbours in Ui−1.

Claim 4.19. |Ui|�N/6 for i� 5.

Proof. We prove by induction on i that |Ui|� (1− i/6)N. This holds trivially for i= 0, as
U0 =V(G). Now let 1� i� 5, and suppose that the statement holds for i− 1. Consider the set
W :=Ui−1 \Ui. Suppose that |Ui|< (1− i/6)N, then by induction |W|�N/6. Also, by the def-
inition of Ui, the number of red edges in W is at most |W| · δN � (ε2/32)|W|2 (recall that δ =
ε2/(32 · 6)). It follows from Lemma 3.3 thatW contains a blue−→Pn , as (ε/4)|W|�max (σ logN, n),
a contradiction. Hence, |Ui|� (1− i/6)N �N/6, as required.

We now show how to find a red copy of T. We first find a red copy of F1 in U5; this is possible
due to Claim 4.18 and the fact that F1 is an out-directed tree on at most m vertices with at most
m1/6 leaves. Suppose that we found a red copy of T \ (V(F�)∪ · · · ∪V(Fi)) for some 2� i� �,
such that the vertices corresponding to Fi−1 are in U7−i. We embed the trees in Fi one by one.
Let T′ be one such tree, and let u be the vertex in U7−i that corresponds to the parent of T′ in
T. Let W be the set of red out-neighbours of u in U6−i that are still available. By choice of Ui,
|W|� δN −m, so by Claim 4.18 there is a red T′ in W. Continuing in this way, we find a copy
of T \ (V(F�)∪ · · · ∪V(Fi+1)) such that the vertices corresponding to Fi are in U6−i. Doing this
until �= 6, we find a red copy of T. This completes the proof of Theorem 4.1.

5. Tree versus tree
In this section we extend Theorem 4.1 to the case of two general (i.e. not necessarily directed) trees.
We start by proving it for a directed tree with few leaves versus any directed tree (see Theorem 5.1).
We then remove the assumption that one of the trees has few leaves (Theorem 5.5). Finally, we also
remove the assumption that the trees are directed (Theorem 5.8).Wewill often start by embedding
a subtree T′ of a tree T, and then attempt to embed the trees in T \V(T′) in the neighbourhood
of a suitable vertex in T′.

5.1 Directed tree versus directed tree with few leaves
Our first goal is to prove the following theorem.

Theorem 5.1. Given 0< ε < 1/2 and k, σ > 0 there exists a constant c> 0 such that the following
holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom, let S be a directed
tree on n vertices, and let T be a directed trees on m vertices with at most k leaves, where m, n�N/c
and nm�N2/(c2 logN). Then G→ (S, T).

Before turning to the proof, we give a definition. Let T be an out-directed tree. The disjoint
paths layer of T, denoted L (T) (see Figure 5), is the collection of paths of T that end at a non-root

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 339

Figure 5. The disjoint paths layer of a tree.

leaf u and start one vertex after the last branching vertex, or root, between the root and u; in
the case where T consists of a single vertex (which is the root), we instead define L (T)= T. In
particular, the vertices in L(T), except for the leaves of T, have degree exactly 2 in T.

Proposition 5.2. The following properties hold for every out-directed tree T:

(i) L (T) is a union of pairwise vertex-disjoint directed paths of T,
(ii) T \V(L (T)) is an out-directed tree,
(iii) the number of non-root leaves in T \V(L (T)) is at most half the number of non-root leaves

in T.

Proof. The first two properties are immediate from the definition. Property (iii) follows as each
non-root leaf in T \V(L (T)) sends at least two edges to paths of L (T).

Proof of Theorem 5.1. Without loss of generality, suppose that T is out-directed. We assume
that G has no blue S. Let c1 be the constant from Theorem 4.1 with parameters ε and 2σ ,
set δ := ε2/(32(log k+ 2)), and pick c such that c�max{2c1/δ, 4(log k+ 2)/ε}. We use the
following claim.

Claim 5.3. Let U be a set of at least δN −m vertices. Then U contains a red−→Pm.

Proof. LetM := |U|� δN −m. Then, using c� 2c1/δ � 2/δ,

M� δN − N
c
� δ

2
·N �

√
N.

Since G, and thus G[U], is (ε, σ logN)-pseudorandom, G[U] is (ε, 2σ logM)-pseudorandom.
Using c� 2c1/δ, we haveM� (δ/2)N � (c1/c)N. Thus, by the assumptions on n andm,

n,m� N
c
� M

c1
and nm� N2

c2 logN
� M2

c21 logM
.

Hence, by definition of c1 (according to Theorem 4.1), U contains a red −→Pm or a blue S. Since we
assumed that the latter does not hold, U contains a red−→Pm, as required.

Our plan is to embed a red copy of T layer by layer. To this end, define T0 := T and, for i� 1,
Ti := Ti−1 \V(L (T)), and let h be the largest i such that Ti is non-empty. Note that Th is a single-
ton (as the root is not removed unless the root is the only vertex) and, by Proposition 5.2(iii), Ti
has at most k · 2−i non-root leaves; in particular, h� log k+ 1.

Define U0 :=V(G), and for 1� i� h let Ui be the set of vertices in Ui−1 whose red out-degree
in Ui−1 is at least δN. We shall need the following claim.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

340 M. Bucić et al.

Claim 5.4. Uh �= ∅.

Proof. The proof is essentially identical to that of Claim 4.19. We prove by induction that

|Ui|�
(
1− i

h+ 1

)
N

for 0� i� h. This is trivial for i= 0, as U0 =V(G). Let 0< i� h, and suppose that the statement
holds for i− 1, that is,

|Ui−1|�
(
1− i− 1

h+ 1

)
N.

SetW :=Ui−1 \Ui. Suppose that

|Ui|<
(
1− i

h+ 1

)
N,

so |W|�N/(h+ 1). We now wish to apply Lemma 3.3. To do so, note that, by definition of Ui,
the number of red edges inW is at most

|W| · δN = |W| · ε2

32(log k+ 2)
·N � ε2

32
|W| · N

h+ 1
� ε2

32
|W|2,

using the definition of δ and the bounds h� log k+ 1 and |W|�N/(h+ 1). We also have
(ε/4)|W|� σ logN (since N � c and we take c large enough, in terms of σ , ε, k). Thus, by
Lemma 3.3, G contains any blue tree on at most (ε/4)|W| vertices. Since

m� N
c
� ε

4
· N
h+ 1

� ε

4
|W|

(using c� 4(log k+ 2)/ε � 4(h+ 1)/ε), it follows that G contains a blue copy of T, a contradic-
tion.

We now show that there is a red copy of Ti in Ui, by induction on 0� i� h. Since Th is a
singleton and Uh is non-empty, there is indeed a red copy of Th in Uh. Now suppose that for
some 0� i< h, there is a red copy of Ti+1 in Ui+1. Recall that Ti+1 = Ti \V(L (Ti)); hence it
suffices to show that the paths in L (Ti) can be embedded in the red out-neighbourhoods of the
corresponding vertices in Ti+1. We embed the paths in L (Ti) one by one. Let P be a path in L (Ti)
of order �, let v be its start-vertex and let u be the vertex in Ui+1 that corresponds to the parent
of v in T. Let W denote the red out-neighbours of u in Ui which are still available. Then, since u
is in Ui+1 and at most m vertices are used, |W|� δN −m. By Claim 5.3, W contains a red P, as
required. We are thus able to embed each of the paths in L (Ti) in Ui so as to obtain a red copy of
Ti in Ui. In particular, by taking i= 0, we see that G has a red copy of T, as required for the proof
of Theorem 5.1.

5.2 Directed trees
With the next theorem we further generalize the result to the case of any directed trees S and T.
We once again obtain a reduction to the previous result, Theorem 5.1. This time we make use of
k-cores, which we have already encountered in the proof of Theorem 4.1 (see Definition 3.4).

Theorem 5.5. Given 0< ε < 1/2 and σ > 0, there exists a constant c> 0 such that the following
holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom. Then G→ (S, T)
for any directed trees S and T on n and m vertices, respectively, where n,m�N/c and nm�
N2/(c2 logN).

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 341

Proof. Our goal is to reduce the statement of this theorem to the case when one of the trees has
a constant number of leaves. We iteratively make the trees S and T smaller, using Theorem 5.1,
until one of them becomes a singleton.

Define δ = ε2/64, � := 8/δ2, k := �2, let c1 be the constant from Theorem 5.1 with parameters
ε, 3σ and k, and let c :=max{c1�, 8�/ε}. Set h := �logk N� for 0� i� h, and write ni := n · k−i,
mi :=m · k−i and Ni :=N · �−i. We shall use the following proposition.

Proposition 5.6. The following properties hold.

(i) Let U be a set of at least Ni+1 vertices, let S be a directed tree on ni vertices, and let T be a
directed tree on mi vertices with at most k leaves. Then U contains a blue S or a red T.

(ii) Let U be a set of at least Ni+1 vertices. Then either it contains a blue copy of any tree on ni
vertices, or the set of vertices in U whose red out-degree in U is at least δ|U| has size at least
|U|/2.

Proof. Firstly, note that for every 0� i� h

Ni �N · �− logk N−1 =N · k− 1
2 logk N · 1

�
=
√
N
�

�N1/3.

It follows that every subset U ⊆V(G) of size at least Ni, where 0� i� h, is (ε, 3σ log |U|)-
pseudorandom.

Note that

ni = nk−i � n�−i � (N/c)�−i =Ni+1�/c�Ni+1/c1
(using c� c1�). Similarly, mi �Ni+1/c1 and nimi �N2

i+1/c21 logNi+1. Property (i) thus follows
from the definition of c1 (via Theorem 5.1).

Property (ii) can be deduced from Lemma 3.3 as follows. Suppose that the set X of vertices in
U whose red out-degree is smaller than δ|U| has size at least |U|/2. Then the number of red edges
spanned by X is at most |X| · δ|U|� (ε2/32)|X|2. Thus, by Lemma 3.3, G[X] contains a blue copy
of any tree on at most (ε/4)|X|� ni vertices, as required, where we used the inequalities

ε

4
|X|� ε

8
Ni+1 �

εc
8�

ni � ni

(using ni �Ni+1�/c and c� 8�/ε) and
ε

4
|X|� ε

8
Ni+1 � σ logN.

We complete the proof with the following claim.

Claim 5.7. Let U ⊆V(G) be a set of size at least Ni, where 0� i� h, and let S and T be directed
trees of order ni and mi, respectively. Then U contains a blue S or a red T.

Proof. We prove the claim by induction on i. Note that when i= h the claim holds trivially as
nh,mh � 1 and Nh � 1. Now suppose that 0� i< h and the claim holds for i+ 1.

Suppose that U does not contain a blue S or a red T. For convenience, we assume that S and
T are out-directed; the remaining cases follow similarly. Let S′ and T′ be the k-cores of S and T,
respectively. Then S′ and T′ have at most k leaves, S \V(S′) is a forest of trees of order at most
ni+1, and T \V(T′) is a forest of trees of order at mostmi+1.

Let X be the set of vertices in U whose red out-degree in U is at least δ|U|. Then, by
Proposition 5.6(ii) and the assumption that U does not contain a blue S, we have |X|� |U|/2�
Ni/2�Ni+1. By Proposition 5.6(i) and the assumption that U does not have a blue S, X contains

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

342 M. Bucić et al.

a red T′. We attempt to extend the copy of T′ to a red T in U by attaching, one at a time, copies of
the trees in T \V(T′). AsU does not have a red copy of T, at some point we fail. Let T′′ be the tree
in T \V(T′) that we fail to embed (while T′ and some of T \V(T′) is already embedded). Denote
the root of T′′ by u, and let u′ be the vertex in X in which we embedded the parent of u in T.

Let Y denote the set of red out-neighbours of u′ in U which have not been used yet, so by
the failure to embed T′′, Y does not have a red T′′. Let Y ′ be the set of vertices in Y whose blue
out-degree in Y is at least δ|Y|. Then

|Y|� δ|U| −mi �
δ

2
|U|� δ

4
Ni �Ni+1

and hence, by Proposition 5.6(ii), with red and blue swapped,

|Y ′|� |Y|/2� δ

8
Ni �Ni+1.

As Y , and thus Y ′, does not contain a red T′′, it follows from Proposition 5.6(i) that Y ′ contains a
blue S′. Again, we try to extend this copy of S′ to a blue copy of S in Y ′, by attaching one tree of
S \V(S′) at a time. As there is no blue copy of S in Y ′, at some point we fail; let S′′ denote the tree
that we fail to embed. Let v be the root of S′′, and let v′ be the vertex in Y ′ where we embedded the
parent of v in S.

Let Z be the set of blue out-neighbours of v′ in Y ′ which are not used. Then

|Z|� δ|Y| − ni �
δ

2
|Y|� δ2

8
Ni =Ni+1

and Z does not have a red T′′ or a blue S′′, contrary to the induction hypothesis. It follows that U
contains a red T or a blue S, as required.

The proof of Theorem 5.5 follows immediately from Claim 5.7 by taking i= 0.

5.3 General trees
Our final aim is to generalize Theorem 5.5 to arbitrary oriented trees, as follows.

Theorem 5.8. Given 0< ε < 1/2 and σ > 0, there exists a constant c> 0 such that the following
holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom, and let S and T be
trees of orders n and m, respectively, where m, n�N/c and nm�N2/(c2 logN). Then G→ (S, T).

We will use the next definition and lemma in the proof.

Definition 5.9. Let G be an oriented graph and k a positive constant. We call a pair of disjoint
subsets (A, B)⊆V(G)2 a k-mindegree pair if every vertex in A has at least k out-neighbours in B
and every vertex in B has at least k in-neighbours in A.

Lemma 5.10. Let 0< δ < 1/4. In every oriented graph G with at least δ|G|2 edges, there is a
(δ/4)|G|-mindegree pair.

Proof. Let us define a partition (X, Y) of V(G) by putting each vertex independently with prob-
ability 1/2 either in X or in Y . Note that the expectation of e(X, Y) is at least e(G)/4� (δ/4)|G|2.
Thus, there exist disjoint sets X and Y with e(X, Y)� (δ/4)|G|2.

Now we consider the underlying subgraph of G whose edges are those going from X to Y .
We remove one by one all vertices with degree less than (δ/4)|G| in this underlying graph. Let
A⊆ X and B⊆ Y be the sets of remaining vertices. Note that both A and B are non-empty, since

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 343

v

F1

F2

F3

Figure 6. The in–out split of a tree.

otherwise all vertices would be removed by this process, each contributing less than (δ/4)|G| edges.
This would imply e(X, Y)< (δ/4)|G|2, a contradiction. Therefore, (A, B) is a (δ/4)|G|-mindegree
pair in G.

We shall use Theorem 5.5 in our proof of Theorem 5.8. For this we need a suitable split of T.
Let v be the root of T. Let F1 be the induced subtree of T containing v and all vertices of T,

which can be reached from v by following in-edges (it is possible that F1 contains only v). Let U2
be the set of roots of the trees in the forest T \V(F1). We define F2 to be the forest of induced
subtrees of T consisting of the vertices inU2 and all vertices in T \V(F1) that can be reached from
U2 by following out-edges. We continue this procedure and eventually we obtain a split of T into
layers of in- and out-forests F1, . . . , F�, such that the forest Fi consists of in-directed trees for odd
i ∈ [�] and out-directed trees for even i ∈ [�]. Moreover, all edges in T are either contained in a
forest Fi or are between consecutive layers Fi and Fi+1, and they are directed from Fi to Fi+1 if
i is odd, and are directed from Fi+1 to Fi if i is even. We call this split the in–out split of T (see
Figure 6).

Proof of Theorem 5.8. We first prove the theorem under the additional assumption that S is
directed, using Theorem 5.5, and then we use this to prove the theorem in full generality. In order
to avoid repeating the arguments, we use Proposition 5.11 below.

Let δ = ε2/32. Let c1 be the constant from Theorem 5.5 with parameters ε and 2σ . Without
loss of generality c1 � 8/δ, and let c= c31. Let N, n,m be fixed (such that the inequalities in the
statement of the theorem hold), and let G be a 2-coloured tournament on N vertices.

Proposition 5.11. Let N/c1 �M�N. Let U ⊆V(G) be a set of size M, and suppose that every
subset of U of size at least M/c1 contains a red copy of every directed tree of order at most m. Then
U contains a blue copy of every tree (not necessarily directed) of order n, or a red copy of every tree
of order m.

The same holds with the roles of red and blue, and the roles of n and m, swapped.

Proof. As we have done already several times, by Lemma 3.3 we can assume that U spans at least
δM2 red edges, since otherwise U contains a blue copy of every tree of order (ε/4)M� n. Then
by Lemma 5.10 there exist disjoint sets A, B⊆U such that (A, B) is a (δ/4)M-mindegree pair in
the red subgraph of G. Let T be a tree on m vertices, consider its in–out split F1, . . . , F�, and let
V1, . . . ,V� denote the corresponding partition of vertices of the tree T; recall that F1 is an in-
directed subtree of T. We will embed every in-directed tree of the in–out split inside A and every
out-directed tree in B.

Claim 5.12. For every i ∈ [�] there is a red copy of T[V1 ∪ · · · ∪Vi] such that Vi is embedded in A
if i is odd and in B if i is even.

Proof. We prove this by induction. For the basis, note that F1 is a single in-directed tree and
|A|� (δ/4)M�M/c1, thus by assumption there is a red copy of F1 inside A.

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

344 M. Bucić et al.

Now let us assume that the claim holds for 1� i− 1< �. For convenience we assume that i is
even; the case where i is odd follows similarly. So, we have found a red copy of T[V1 ∪ · · · ∪Vi−1]
such that Vi−1 is embedded in A. Now we need to show how to embed the trees of the forest
Fi. Let T′ be one of the trees in the forest Fi and let v ∈A be the vertex corresponding to the
parent of the roof of T′ in T[V1 ∪ · · · ∪Vi−1]. Since (A, B) is a (δ/4)M-mindegree pair, v has at
least (δ/4)M red out-neighbours in B. So far we embedded at most n vertices of the tree T, so
the number of available vertices in the neighbourhood is at least (δ/4)M− n� (δ/4)M−M/c1 �
M/c1. Therefore, by assumption, there is a red copy of T′ in B rooted at some vertex w, such that
edge vw is red.

This way we can embed all the trees in Fi and extend the red copy of T[V1 ∪ · · · ∪Vi−1] to a
red copy of T[V1 ∪ · · · ∪Vi] satisfying the conditions of the claim.

By Claim 5.12 with i= �,U contains a red T. As T was an arbitrary tree onm vertices, the proof
is complete. An analogous argument can be used to prove the statement of the proposition with
the roles of red and blue, and ofm and n, swapped.

We now show how to complete the proof of Theorem 5.8 using Proposition 5.11. Suppose that
there exists a subsetU ⊆V(G) of size at leastN/c1, whose subsets of size at least |U|/c1 all contain
a red copy of every directed tree of order m. Then, by Proposition 5.11, U contains a red copy of
every tree of orderm or a blue copy of every tree of order n, and we are done. Thus wemay assume
that every subsetU ⊆V(G) has a subsetWU of size at least |U|/c1 such thatWU does not contain a
red TU , for some directed tree TU of orderm. But then, by Theorem 5.5, every suchWU contains
a blue copy of every directed tree on n vertices (using the definition of c1, and the inequalities
n,m�N/c=N/c31 � |WU |/c1 and nm�N2/c2 logN � |WU |2/c21 log |WU |). In particular, every
set U ⊆V(G) of size at least N/c1 contains a blue copy of every directed tree on n vertices. By
Proposition 5.11 again (with the roles of red and blue and n and m swapped), either G contains a
red copy of every tree onm vertices, or a blue copy of every tree on n vertices, as required.

6. Concluding remarks and open problems
In this paper we have proved that, with high probability, in every 2-edge-colouring of a random
tournament on Cn

√
log n vertices there exists a monochromatic copy of any tree of order n.

Bucić, Letzter and Sudakov [4] proved tight results for both oriented and directed Ramsey
numbers of trees for the case of more than two colours as well. It seems that the methods used
in their proofs do not extend directly to the random tournament setting, so it could be very
interesting to extend our result to k-colours. In the case of paths they showed in [5] that, with
high probability, in any k-edge colouring of a random tournament on �(nk−1

√
log n) vertices,

there is a monochromatic path of length n. Moreover, an example by Ben-Eliezer, Krivelevich and
Sudakov [2] shows that there is a k-edge colouring of any tournament on cnk−1(log n)1/k vertices
with no monochromatic paths of length n, for some constant c> 0. We believe the upper bound
should be tight, for random tournaments, but the k-colour case is still open, even for directed
paths.

Burr and Erdős [6] initiated the study of Ramsey numbers of bounded degree graphs in 1975.
They conjectured that the Ramsey number of bounded degree graphs is linear in their size. This
was subsequently proved by Chvátal, Rödl, Szemerédi and Trotter [7]. The dependence of the
constant factor on the maximum degree in this bound was later improved, first by Eaton [9],
then by Graham, Rödl and Ruciński [11] and the current best bound is due to Conlon, Fox and
Sudakov [8]. Bucić, Letzter and Sudakov [4] pose an interesting analogous problem in the ori-
ented and directed Ramsey settings. They ask if, for every d, there is a constant c= c(d) such that
any tournament on cn vertices contains any acyclic graph on at most n vertices with maximum
degree at most d. This can be thought of as the one-colour version of the more general question of

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373

Combinatorics, Probability and Computing 345

determining the r-colour oriented Ramsey number of bounded degree acyclic graphs. A similar
question arises naturally in the random setting. Here the one-colour version is a simple conse-
quence of the directed version of Szemerédi’s Regularity Lemma [18] due to Alon and Shapira [1].
However, the question of the two colours is open and interesting, and it seems likely that a result
in any setting could also help with the other settings.

Theorem 1.1 is tight up to a constant factor, as long as the only information we are given on the
tree is its order. However, it is not tight for every tree of order n. For example, if the tree in question
T is a star of order n, then it is not hard to see that the random tournament G is only required to
have order �(n) in order to satisfy G→ T, as opposed to a bound of �(n

√
log n) which is needed

for a directed path on n vertices, or for trees which contain directed subpaths of order �(n). With
this in mind, it is natural to ask if the tight bound for a tree T depends only on the order of the tree
and the length of its longest directed subpath, denoted by �(T). More precisely, Bucić, Letzter and
Sudakov [4] ask if the directed Ramsey number of a tree isO(|T| · �(T)); if this holds, it can readily
be seen to be tight. They prove that this holds for oriented paths. It would also be interesting to
tackle this question in the random tournament setting.

Acknowledgements
We would like to thank the anonymous referee for helpful comments.

References
[1] Alon, N. and Shapira, A. (2004) Testing subgraphs in directed graphs. J. Comput. Syst. Sci. 69 354–382.
[2] Ben-Eliezer, I., Krivelevich, M. and Sudakov, B. (2012) The size Ramsey number of a directed path. J. Combin. Theory

Ser. B 102 743–755.
[3] Bermond, J.-C. (1974) Some Ramsey numbers for directed graphs. Discrete Math. 9 313–321.
[4] Bucić, M., Letzter, S. and Sudakov, B. (2019) Directed Ramsey number for trees. J. Combin. Theory Ser. B 137 145–177.
[5] Bucić, M., Letzter, S. and Sudakov, B. (2019) Monochromatic paths in random tournaments. Random Struct. Alg.

54 69–81.
[6] Burr, S. A. and Erdős, P. (1975) On the magnitude of generalized Ramsey numbers for graphs. Colloq. Math. Soc. János

Bolyai 10 215–240.
[7] Chvatál, V., Rödl, V., Szemerédi, E. and Trotter, W. T. (1983) The Ramsey number of a graph with bounded maximum

degree. J. Combin. Theory Ser. B 34 239–243.
[8] Conlon, D., Fox, J. and Sudakov, B. (2012) On two problems in graph Ramsey theory. Combinatorica 32 513–535.
[9] Eaton, N. (1998) Ramsey numbers for sparse graphs. Discrete Math. 185 63–75.
[10] Gallai, T. (1968) On directed paths and circuits. In Theory of Graphs (Proc. Colloq., Tihany, 1966) (P. Erdős and

G. Katona, eds), Academic Press, pp. 115–118.
[11] Graham, R. L., Rödl, V. and Ruciński, A. (2000) On graphs with linear Ramsey numbers. J. Graph Theory 35 176–192.
[12] Gyárfás, A. and Lehel, J. (1973) A Ramsey-type problem in directed and bipartite graphs. Period. Math. Hungar.

3 299–304.
[13] Harary, F. and Hell, P. (1974) Generalized Ramsey theory for graphs, V: The Ramsey number of a digraph. Bull. London

Math. Soc. 6 175–182.
[14] Hasse, M. (1965) Zur algebraischen Begründung der Graphentheorie, I.Math. Nachr. 28 275–290.
[15] Ramsey, F. P. (1930) On a problem of formal logic. Proc. London Math. Soc. 30 264–285.
[16] Raynaud, H. (1973) Sur le circuit hamiltonien bi-coloré dans les graphes orientés. Period. Math. Hungar. 3 289–297.
[17] Roy, B. (1967) Nombre chromatique et plus longs chemins d’un graphe. Rev. Française Informat. Recherche

Opérationnelle 1 129–132.
[18] Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes, Vol. 260 of Proc.

Colloq. Internat. CNRS, pp. 399–401.
[19] Vitaver, L. M. (1962) Determination of minimal coloring of vertices of a graph by means of Boolean powers of the

incidence matrix. Dokl. Akad. Nauk SSSR 147 758–759.
[20] Williamson, J. E. (1973) A Ramsey type problem for paths in digraphs.Math. Ann. 203 117–118.

Cite this article: Bucić M, Heberle S, Letzter S and Sudakov B (2020). Monochromatic trees in random tournaments.
Combinatorics, Probability and Computing 29, 318–345. https://doi.org/10.1017/S0963548319000373

https://doi.org/10.1017/S0963548319000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000373
https://doi.org/10.1017/S0963548319000373

	Monochromatic trees in random tournaments
	Introduction
	Organization of the paper

	Overview
	Prerequisites
	Tree versus path
	Tree-splits
	Tree with few leaves
	General trees

	Tree versus tree
	Directed tree versus directed tree with few leaves
	Directed trees
	General trees

	Concluding remarks and open problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

