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Abstract. This paper presents an investigation of the filamentation process of a
uniform plane Alfvén wave for a compressible magnetohydrodynamics case, when
a transverse perturbation (perturbation having non-uniform intensity distribution
in a plane perpendicular to the direction of wave propagation) is present on it. The
physical mechanism of the filament formation is discussed in detail with the applic-
ations to the Solar wind turbulence and the coronal heating. The dependence of the
critical field of the perturbation, its critical transverse size and the formation of fila-
ments, on the plasma β, main Alfvén field and other parameters has been studied in
detail.

1. Introduction
Alfvén waves are well-known solutions of ideal magnetohydrodynamics (MHD)
equations, which assumes the concept of frozen-in field lines. These waves are
believed to play a significant role in space plasmas, since they can propagate
over large distances without dissipating (Spangler 1990; Spangler et al. 1988).
The surface temperature of the Sun is about 6000 K. While the temperature of

the Solar corona is in excess 106 K. It has remained a mystery as to why the Solar
corona is hotter than the Sun’s surface. Closely related to the high temperature
of the corona is the problem of the high speed of the Solar wind. Solar wind
turbulence is a crucial element in coupling the lower coronal plasma and the Earth’s
magnetosphere, and in the transport of energetic particles throughout the Solar
terrestrial environment. Hot high-speed Solar wind tends to contain highly Alfvénic
fluctuations (i.e. the magnetic and velocity fluctuations are nearly equipartitioned
in energy, and are heated as they move outwards in the heliosphere; see Tu and
Marsch (1995) and Goldstein et al. (1995) for reviews). The filamentation process
(hot spots formation) may provide a clue to the dissipation problem, because
it is fast (catastrophic) way to transport energy at small scales. Therefore, the
filamentation of Alfvén waves is important in the context of the Solar wind and
the Solar corona.
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The filamentation process has been studied in detail in the context of laser–
plasma interaction (Kruer 1988). For a non-uniform laser beam, because of finite
size of the beam, diffraction takes place. Nonlinearity present in the plasma also
leads to a reduction of beam size. When these two effects balance each other,
the laser beam will propagate without diverging or converging and is said to be
in a self-trapped mode. The corresponding laser field (power) can be calcula-
ted and is termed as the critical field (power). If the laser field is more than
the critical field, intense regions of the beam results, termed as filaments or hot
spots. The filament formation is also expected to take place if the main laser
beam is uniform and a non-uniform perturbation is present on the main laser
beam.
Champeaux et al. (1997, 1998) have studied the filamentation of Alfvén waves

in the framework of the Hall-MHD. Champeaux et al. (1998) studied the filament
formation numerically when the transverse perturbation is periodic. Lavender et al.
(2001) studied the filamentation of Alfvén waves numerically within the framework
of a derivative nonlinear Schrödinger equation (DNLS), in three dimensions, when
the initial circular Alfvén wave is perturbed by a broad-spectrum noise. Recently,
Laveder et al. (2002) have also studied the filamentation of dispersive Alfvén waves
by numerically solving the full Hall-MHD equations. They superimpose to the
Alfvén pump density disturbances whose Fourier modes have random phases and
random amplitudes bounded from above by a Gaussian profile. However, Alfvén
waves in a resistive MHD plasma also show filamentation following the parametric
instability (Del Zanna et al. 2001). Most of these works deal with the numerical
simulations, and the details such as the coupling between the main Alfvén wave and
the perturbation, different parameters governing this coupling, the dynamics of the
perturbation and the parameters on which its filamentation depends need more
research. In the present paper, we have investigated the filamentation of Alfvén
waves in a compressible MHD plasma.
This paper presents an investigation of the filamentation process of a uniform

plane Alfvén wave in a compressible MHD case when a transverse perturbation
(perturbation having non-uniform intensity distribution in a plane perpendicular
to the direction of propagation) is present on it. The physical mechanism of filament
formation is discussed in detail with applications to the Solar wind turbulence and
coronal heating. The dependence of the critical field of the perturbation, its critical
transverse size and the formation of filaments on the plasma β, main Alfvén field
and other parameters have been studied in detail.
In the present study, we have considered a plane Alfvén wave propagating along

the z-direction. The main Alfvén wave and the perturbation are collinear and
propagating in the same direction. The initial structure of the perturbation is taken
to be Gaussian in a plane transverse to the direction of propagation. The main
Alfvén wave and the perturbation are not necessarily in phase initially. Therefore,
we have assumed a finite phase angle between the two (denoted by an angle ϕ).
In Sec. 2, we present the model equations governing the dynamics of the main
Alfvén wave and the perturbation. We have also obtained a solution of these model
equations. The formation of filaments and the dependence of their intensity and
their separation on various parameters for the Solar wind and Solar corona para-
meters is illustrated. A discussion of the results and their physical interpretation
is presented in Sec. 3, where conclusions for the present investigation are also
given.
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2. Model equations and solutions
Consider a small amplitude Alfvén wave propagating along the magnetic field,
assumed in the z-direction. Introducing the new set of variables, X = µx, Y = µy,
ξ = µ2z, using multi-scale expansion, and taking the linear polarization along y-
axis (i.e. B (0, B, 0) of the Alfvén wave), one can write the following equation in the
steady state (Champeaux et al. 1999) in compressible MHD, without the Hall term,

i∂ξB +
1

2k(1 − β)
∂2B

∂y2
+

(4β + 1)
4β

k|B|2B = 0. (1)

Here the symbols have their usual meanings (Champeaux et al. 1998). Let a perturb-
ation (B1), polarized along the y-axis, be superimposed on the main plane Alfvén
wave (B0). The intensity distribution of the perturbation at ξ = 0, is assumed to
be of the form

B1 · B∗
1 = B2

100 exp
(

−y2

r2
0

)
. (2)

It should be mentioned here that the perturbation B1 (modulating agent) can be
any perturbation, for example due to fluctuation of the background field.
Here r0 is the transverse scale size of the perturbation. Using (1), the perturbation

field will satisfy the following equation:

i∂ξB1 +
1

2k(1 − β)
∂2B1

∂y2
+

(4β + 1)
4β

k(|B|2 − |B0|2)B0 +
(4β + 1)

4β
k|B|2B1 = 0.

(3)

Here B is the sum of the fields due to main Alfvén wave and the perturbation
(B = B0 + B1). In order to obtain the solution of (3), we express the perturbation
field as

B1 = B10(y, ξ) exp(−ikS1(y, ξ)). (4)

Here B10 and the eikonal (S1) are real functions of y and ξ.
Using (4) in (3), we obtain the following equations, after separating the real and

imaginary parts:

∂S1

∂ξ
+

1
2(β − 1)

(
∂S1

∂y

)2

+
(4β + 1)

4β
k(2B2

00 cos2(φ) + |B|2)

+
1

2k2(1 − β)
B10

∂2B10

∂y2
= 0. (5)

and

∂B10

∂ξ
− 1

(1 − β)
∂B10

∂y

∂S1

∂y
− B10

2(1 − β)
∂2S1

∂y2
+

(4β + 1)
4β

kB2
00B10 sin(2φ) = 0. (6)

Here B00 is amplitude of the main Alfvén wave and ϕ is the angle between the main
Alfvén wave field and the perturbation field. The value of ϕ depends on the phase
angle between the main Alfvén wave field and that of the perturbation field at ξ = 0,
and the phase shift introduced in the perturbation field due to the nonlinearity in
the medium. Using the paraxial approximation (y�r0f1), one can write the solution
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of (5) and (6) as (Akhmanov et al. 1968)

B2
10 =

B2
100

f1
exp

(
− y2

r2
0f

2
1

)
exp(−2kiξ). (7)

Here the growth rate is given by

ki =
(4β + 1)

4β
kB2

00 sin(2φ),

and

S1 = β1(ξ)
y2

2
+ φ1(ξ), (8)

where

β1(ξ) = (β − 1)
1
f1

(
df1

dξ

)
. (9)

Here f1 is the dimensionless beam-width parameter of the perturbation field, which
depends on ξ. The inverse of β represents the radius of the curvature of a wavefront.
Using (7) and (8), we obtain the following equation for f1, after equating the
coefficients of y2 in (5):

d2f1

dξ2
=

1
k2(1 − β)2r4

0f
3
1

− [(4β + 1)]

2β(1 − β)r2
0f

3/2
1

B00 cos(φ)B100 exp(−kiξ). (10)

In the right-hand side of (10), the first term accounts for the diffraction of the
perturbation because of its finite transverse size, while the second term accounts
for the nonlinearity. The nonlinear term is governed by the fields of the main Alfvén
wave and that of the perturbation, the phase angle between these two fields, the
plasma beta and the spatial growth rate ki . A self-trapping mode is obtained when
the two terms in the right-hand side of (10) balance each other. The wave then
propagates without convergence or divergence (namely f1 = 1). The expressions for
the critical magnetic field (B100(cr)) or the critical value of transverse size [r0(crit)] of
perturbation is obtained by balancing the two terms in the right-hand side of (10).
The expression for the critical magnetic field of the perturbation obtained from (10)
is

B100(cr) =
2β

[(1 − β)(4β + 1)]
1

B00 cos(φ)
1

k2r2
0

(11)

and the critical value of the transverse size of the perturbation is obtained from
(10) as

r0(cr) =
(

2β

[(1 − β)(4β + 1)]k2B00B100 cos(φ)

)1/2

. (12)

Now we would like to make an estimate of this critical magnetic field in two
astrophysical situations.

(1) Solar wind: typical Solar wind parameters are T = 1.5 × 105 K, B0 = 7.2 ×
10−5 G, proton (and electron) density = 5 particles cm−3 and β = 0.5. We find
that vA = 7.0 × 106 cm s−1 and ΩI = 0.7 rad s−1.
For these parameters, the characteristic normalizing distance comes out to be
L ≈ 40×106 cm, the characteristic normalizing wavenumber ≈ 2.5×10−8 cm−1

and the characteristic normalizing frequency ≈ 1.1 s−1.
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(2) Solar corona: for the Solar corona, typical parameters are T = 0.4 × 106 K,
B0 = 32 G, proton (and electron) density = 108 particles cm−3, β = 1.35×10−4.
From these we find that vA = 6.98 × 108 cm s−1 and ΩI = 3.065 × 10−5 rad s−1.

For these parameters, the characteristic normalizing distance comes out to be
L ≈ 9.114×103 cm, the characteristic normalizing wavenumber≈ 1.097×10−4 cm−1

and the characteristic normalizing frequency ≈ 1.305 × 10−5 s−1.

3. Discussion
In this paper we have studied the nonlinear coupling between the perturbation and
the plane Alfvén wave. The perturbation takes energy from the main Alfvén wave,
may grow and finally can result in filament (hot spot) formation. For the filamenta-
tion, the critical magnetic field is very important and the value of magnetic field of
fluctuations should be more than the critical value. Using (11), we have calculated
the critical magnetic field for typical parameters of the Solar wind and the Solar
corona.
Figure 1(a) depicts the variation of the critical magnetic field of the perturbation

against its transverse size (r0) for different values of β in the case of the Solar
wind. It is evident from the figure that for a particular value of β, as the transverse
size increases, the value of the critical field decreases. This can be explained using
(10). As the transverse size (r0) increases, the nonlinear term (the second term in
the right-hand side of (10)) dominates over the diffraction term (the first term in the
right-hand side of (10)). Hence, from (10), the critical field required to balance the
nonlinear and diffraction terms decreases. We can also see from Fig. 1(a) that as
the value of β increases, the critical field increases. In (10), for higher values of β,
the nonlinear term decreases and hence the critical field increases.
A similar trend for the critical magnetic field, as in Fig. 1(a), is obtained for

typical parameters of the Solar corona, as shown in Fig. 1(b). Figure 1(b) displays
the variation of the critical magnetic field of the perturbation against its transverse
size for different values of β, for the Solar corona parameters. As we can see from the
figure, the magnitude of the critical magnetic field for the Solar corona parameters
is much lower than for the Solar wind parameters. For the Solar corona, the value
of the background field is much more than the Solar wind. This decreases the value
of β (β = 8πn0T/B2

0 ), hence decreases the value of the critical field.
Figure 2(a) exhibits the critical magnetic field of the perturbation against its

transverse size for different values of the main Alfvén wave field for the Solar wind
parameters. From this figure, we see that as the main Alfvén wave field increases,
the critical field decreases. With the increase in the main Alfvén wave field, the
nonlinear term increases, hence results in a decrease in the critical field. Figure 2(b)
shows the critical field against the transverse size for different values of the main
Alfvén wave field and for the Solar corona parameters.
Figures 3(a)–(c) illustrate the intensity pattern of the perturbations at different

distances along the direction of propagation, but in a direction (plane) transverse to
the direction of propagation, for the Solar wind for different values of β. Figure 3(b)
is the case for β = 0.5. As observed in this figure, filamentary structures are seen at
different locations in space. This can be explained using (10). When the magnetic
field of the perturbation is more than its critical magnetic field, the nonlinear term
dominates and the value of f1 decreases with the distance of the propagation.
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Figure 1. (a) The variation of the critical magnetic field (normalized against background field)
of the fluctuation against its transverse size (r0) for different values of β in the case of the
Solar wind. (b) The variation of the critical magnetic field (normalized against background
field) of the fluctuation against its transverse size (r0) for different values of β in the case of
Solar corona.
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Figure 2. (a) The variation of the critical magnetic field (normalized against background
field) of the fluctuation against its transverse size (r0) for different values of main Alfvén
wave field B00 in the case of the Solar wind. (b) The variation of the critical magnetic field
(normalized against background field) of the fluctuation against its transverse size (r0) for
different values of main Alfvén wave field B00 in the case of the Solar corona.
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Figure 3. The intensity distribution of perturbations (normalized against background field)
at different distances along the normalized direction of propagation z (≡ ξ/Rd, Rd = kr2

0)
for fixed B00 = 0.1 in the case of the Solar wind and for fixed: (a) β = 0.4; (b) β = 0.5; and
β = 0.6.
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Figure 4. The intensity distribution of perturbations (normalized against background field)
at different distances along the normalized direction of propagation z (≡ ξ/Rd, Rd = kr2

0)
for fixed B00 = 0.1 in case of the Solar corona and for fixed: (a) β = 0.0867 × 10−3;
(b) β = 1.355 × 10−3; and (c) β = 0.3468 × 10−3.
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Figure 5. The intensity distribution of perturbations (normalized against background field)
at different distances along the normalized direction of propagation z (≡ ξ/Rd, Rd = kr2

0)
for fixed β = 0.5 in the case of the Solar wind and for fixed: (a)B00 = 0.05; and (b)B00 = 0.2.

However when f1 becomes very small, the diffraction term starts dominating and
f1 starts diverging. Therefore, f1 increases with the distance of the propagation until
f1 becomes so large that the diffraction term becomes smaller in comparison with
the nonlinear term. Then, f1 again decreases due to the nonlinear effects, until it
becomes so small that the diffraction term again dominates and f1 starts diverging
and this process repeats. Hence, the perturbation attains a certain minimum beam-
width parameter (f1), and the intensity of the perturbation in these small size
structures becomes very high.
Figures 3(a)–(c) display the intensity distribution of the perturbation for β values

0.4, 0.5 and 0.6, respectively, in the case of the Solar wind. As observed in these
figures, intensity of the filaments increases with decreasing values of β. This can
be explained as follows. With decreasing β, the nonlinear term increases; hence
the nature of f1 is more affected through the nonlinear term in (10). An increase in
the nonlinear term causes more rapid changes in f1 with ξ. Also, the balancing of the
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Figure 6. The intensity distribution of perturbations (normalized against background field)
at different distances along the normalized direction of propagation z (≡ ξ/Rd, Rd = kr2

0)
(for fixed β = 1.355 × 10−3) in the case of the Solar corona and for fixed: (a) B00 = 0.05;
and (b) B00 = 0.2.

nonlinear and diffraction terms takes place at lower f1. This results in the formation
of more intense filaments with earlier formation and less separation between them.
The same behavior (as in Figs 3(a)–(c)) is observed for different values of β in the
Solar corona, as shown in Figs 4(a)–(c).
Finally, we have studied the effect of the main Alfvén wave field (B00) on the

intensity distribution of perturbations. Figures 3(b), 5(a) and (b) show the intensity
distribution of perturbation for the main Alfvén wave field (B00) for values 0.1, 0.05
and 0.2, respectively, for the Solar wind. As seen in the figures, with increasing B00,
the number of filaments as well as their intensity increases. This is because of the
increase in the nonlinear term in (10). The same is observed with changes in B00

for the Solar corona as shown in Figs 4(b), 6(a) and (b).
The above results show that the perturbations present on the main Alfvén wave

may lead to the filamentation process. These filaments may further act as a source
of decay waves, as well as a source of further collapse of the main Alfvén wave,
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changing the spectrum of the Alfvénic turbulence. Hence, the spectral index (slope)
is also expected to change. This mechanism may be useful in the coronal heating,
may even have some relevance about the initiation of turbulence in the Solar wind
and, specifically at the small scales, may provide the nonlinear means of dissipation
and heating of the ambient Solar wind plasma. Although rough estimates to find the
enhancement in the ion temperature have been made earlier, rigorous models based
on a quasi-linear theory should be used to find these estimates. This will require the
wavenumber spectrum of the excited Alfvén waves in hot filaments, calculating the
velocity space diffusion coefficient and using this in the Fokker–Planck equation
(Marsch 1998). Perhaps the discrepancies between the experimentally measured
spectra and theory can be explained by using these phenomena.
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