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Time-resolved imaging of a compressible air disc
under a drop impacting on a solid surface
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When a drop impacts on a solid surface, its rapid deceleration is cushioned by
a thin layer of air, which leads to the entrapment of a bubble under its centre.
For large impact velocities the lubrication pressure in this air layer becomes large
enough to compress the air. Herein we use high-speed interferometry, with 200 ns
time-resolution, to directly observe the thickness evolution of the air layer during
the entire bubble entrapment process. The initial disc radius and thickness shows
excellent agreement with available theoretical models, based on adiabatic compression.
For the largest impact velocities the air is compressed by as much as a factor of 14.
Immediately following the contact, the air disc shows rapid vertical expansion. The
radial speed of the surface minima just before contact, can reach 50 times the impact
velocity of the drop.
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1. Introduction
The capture of a bubble under an impacting drop can have detrimental effects

on the uniformity of spray coatings and interfere with precision inkjet-based
manufacturing, like the printing of organic displays. For the lowest impact velocities
or superhydrophobic surfaces, the air cushion can allow rebounding of the drop and
prevent molecular contact with the substrate (Richard, Clanet & Quéré 2002; Kolinski
et al. 2012; de Ruiter et al. 2012; van der Veen et al. 2012). However, above a
modest impact velocity the drop always makes contact along a ring, entrapping a
central bubble. Early snapshots of these bubbles are due to Chandra & Avedisian
(1991) and Thoroddsen & Sakakibara (1998), but without any dynamical details.
Van Dam & Le Clerc (2004) also observed bubbles under small inkjet droplets.
Thoroddsen et al. (2005) used high-speed video imaging to capture the air-disc
formation and its contraction into a central bubble. They also observed pinch-off of a
micro-droplet inside the entrapped bubble. This occurs when capillary waves converge
to the axis of symmetry and their apex touches the substrate. Lee et al. (2012) used
X-ray imaging to confirm these dynamics in renewed detail.

Previous time-resolved interferometric measurements of the air-layer shape under
the drop have been limited to very low impact velocities (60.22 m s−1) mostly in
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Time-resolved imaging of compressible air disc under impacting drop 637

the bouncing regime. These are by de Ruiter et al. (2012) who used a two-colour
setup and by van der Veen et al. (2012) who used white-light colour interferometry.
Kolinski et al. (2012) used a total internal reflection (TIR) setup to characterize
the closest approach of the drop to the substrate. The focus has been either on the
incompressible bouncing dynamics, which can occur even for hydrophilic surfaces
(Kolinski, Mahadevan & Rubinstein 2014; de Ruiter et al. 2014), or on predicting
the size of the entrapped bubble. Bouwhuis et al. (2012) showed that there exists a
maximum in the entrapped bubble size for a fairly low impact velocity. Klaseboer,
Manica & Chan (2014) formulated a unifying theory for drops entrapping bubbles,
proposing a slightly different power law, based on a different velocity potential within
the drop.

Driscoll & Nagel (2011) used interferometry to image the central air disc for drop
impacts under a reduced pressure environment and showed that it becomes flatter. Liu,
Tan & Xu (2013) have recently reported the first interference imaging under similar
impact conditions to those herein. However, the imaging in these studies was not time-
resolved.

Theoretical modelling of the air cushioning under the drop started with the
two-dimensional (2-D) theories of Smith, Li & Wu (2003) and Korobkin, Ellis &
Smith (2008). These are based on the lubrication approximation for the air flow within
the thin film, while using inviscid potential theory for the deformations within the
drop. Later, Hicks & Purvis (2010) reformulated the theory for the three-dimensional
(3-D) axisymmetric configuration, which allows for a more direct comparison with
experiments.

Mandre, Mani & Brenner (2009) expanded the lubrication theory to allow for
compression of the gas, when the impact velocity becomes large enough. They used
the ideal gas law to predict the minimum air-disc thickness for either isothermal or
adiabatic gas compression. Their subsequent work used the same equation of state
with various values of the ratio of the specific heats γ to describe drop skating on a
thin layer of air (Mani, Mandre & Brenner 2010) and then focused on the isothermal
case, to study the related precursors of splashing (Mandre & Brenner 2012). Hicks &
Purvis (2013) followed up the studies of gas compression, with full analysis of the
energy conservation in the gas. They further tested their theories by comparison with
large-scale experiments on the impact of spherical solid sections (Hicks et al. 2012).

Herein we exploit the latest high-speed video technology to observe the air
entrapment at about two orders of magnitude faster frame rates than in earlier
observations (Driscoll & Nagel 2011; Kolinski et al. 2012; de Ruiter et al. 2012; van
der Veen et al. 2012; Liu et al. 2013). This allows us, for the first time, to obtain
time-resolved interface shapes over the entire process, for high impact velocities well
into the regime where gas compressibility is important (Mandre et al. 2009).

2. Experimental setup
Our imaging is made possible by the Kirana-05M ultra-high-speed video camera

(Specialised imaging, Tring, UK), see Crooks et al. (2013), which is capable
of capturing 180 frames at up to 5 million frames per second (Mf.p.s.). The
sensor has 910 × 764 active pixels, irrespective of the frame rate. Triggering is
accomplished by the falling drop cutting the view of a horizontal line sensor
(SI-OT3). The optical setup is sketched in figure 1(b). In combination with a
long-distance microscope (Leica Z16 APO) at magnification of 29.5 we achieve
a spatial resolution of 1.03 µm pixel−1, even at the highest frame rates. We use
1-mm-thick microscope glass slide (Corning micro-slides 2947–75 × 50) as the
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FIGURE 1. Experimental setup. (a) Definition of the radial width Lo and h(r, t) is the
air-layer thickness profile with the characteristic thickness H at the centerline. (b) Optical
setup and a range of drop shapes (scale bar is 5 mm). We use either lighting from below
with a half-silvered pellicle beam splitter, or a solid bottom mirror with lighting from the
top going through the drop. Drop shapes are shown at t= 86 ms (top left); 106 ms (top
right); 111 ms (bottom left) and 116 ms (bottom right) after pinch-off from the nozzle.

substrate. The root-mean-square (r.m.s.) roughness measured with an atomic force
microscope (AFM) is of the order of 7 nm, with the largest asperities around
20 nm. The impact is viewed from below, through the glass slide, with columnated
illumination coming either through the drop, or through a bottom beam-splitter. Top
lighting gives clearer images of the initial contact line. To minimize angular deflection
of the columnated beam, we align it close to the vertical. For illumination we use
180 pulsed diode lasers (SI-LUX640) with monochrome light, with λ = 640 nm
wavelength. This gives us depth resolution, or spacing between a bright and dark
fringe, of λ/4 = 160 nm. The laser pulses can be synchronized with the framing
and their duration controlled down to 50 ns, thereby freezing the motion of the
fringes. The 200 ns interframe time allows us to follow the individual fringes and
thereby extract the shape evolution with time from the initial drop deformation
through the contact with the solid surface and during the subsequent decompression
and contraction of the entrapped air disc. This removes some of the ambiguity in
tracking the absolute layer thickness, without applying the more sophisticated colour
interferometry techniques employed by Mugele’s and Lohse’s research groups (de
Ruiter et al. 2012; van der Veen et al. 2012).

We use large water drops to increase the space and time scales of the impact,
thereby extracting the best resolution from the instrumentation. This is characterized
by a global Reynolds number, Re = ρlRV/µl ∼ 2600–15 700, and Weber number
We= ρlRV2/σ ∼ 36–1300, where R is the equivalent spherical drop radius (2.6 mm)
and V is the impact velocity (∼1–6 m s−1); ρl, µl and σ are respectively the density,
dynamic viscosity and surface tension of the liquid. Equivalently, a subscript g is
used to indicate gas properties.

3. Results
3.1. Shape evolution of the air disc

Figure 2 shows examples of the interference fringes for different impact velocities and
drop sizes. Figure 2(a) uses bottom reflection interferometry, which gives us better
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Time-resolved imaging of compressible air disc under impacting drop 639

(a)

(b)

(c)

FIGURE 2. The observed interference fringes taken from 5 Mf.p.s. video clips. (a) For
impact velocity V = 1.06 m s−1 and bottom radius of curvature of the drop Rb= 4.1 mm.
Shown at times t = −15.6, 0 and 2.2 µs (from left to right) relative to first contact
along the ring. Lighting from bottom. (b) Fringes for V = 2.53 m s−1, Rb = 1.6 mm, at
t = −3.8, 0 and 2.2 µs from first contact. Lighting from top. (c) Fringes for V =
4.05 m s−1, Rb = 3.2 mm, at t = −1.6, 0 and 2 µs from first contact. Lighting
from top. The middle column shows in all cases the frame closest to first contact,
whereas the last panel in each row shows the first maximum expansion at the
centerline. Scale bars are all 200 µm long. See supplementary movies available online
at http://dx.doi.org/10.1017/jfm.2015.466.

image contrast, compared to the top transmission-light interference fringes shown in
figure 2(b,c). Furthermore, the liquid–solid contact zone in the right-most panel of
figure 2(a) appears dark as most of the light passes directly through this liquid–solid
interface and shines away from the camera. On the other hand, this contact zone is
bright in figure 2(b,c) as the light passes through the liquid–solid interface towards the
camera. The wiggled circular lines in the right-most column represent the location of
the inner contact lines at the edge of the enclosed air disk. The smooth circular lines
in the upper right corners of figure 2(a,b) are the outer edges of the wet region.
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640 E. Q. Li and S. T. Thoroddsen

Keep in mind that we use the bottom radius of curvature, Rb, as the characteristic
drop dimension, to account for the large shape oscillations following the release
from the nozzle, as has been highlighted in other impact studies (Thoroddsen et al.
2005; Hicks & Purvis 2010; Liu et al. 2013; Thoraval et al. 2013; Wang, Kuan &
Tsai 2013). The shape at impact was monitored from a side view, with a separate
high-speed video camera (Phantom V1610), at 20 kf.p.s. and with a 3 µs exposure.
Figure 1(b) shows some of the varied shapes of drops studied. The fringes remain
axisymmetric, both for top and bottom illumination. Note that for the largest V , at
first contact there are many fewer fringes, which indicates a thinner air disc.

Figure 3 shows the surface shapes, h(r, t), extracted from the fringes, when the
drop approaches, deforms and contacts the glass substrate. The deceleration of the
drop bottom is very abrupt, the drop retaining at least 80 % of V to within 10 µm
from the solid surface. The measured deceleration of the bottom of the drop for V =
4.05 m s−1 is '3× 105 g. Then the motion at the axis of symmetry reverses and a
dimple forms under its centre, which is bounded at the outer edge by a kink in the
surface, highlighted schematically in figure 1(a). The kink moves radially outwards at
rapid horizontal velocity U. This kink makes the first circular contact with the solid,
thereby entrapping the air disc (Korobkin et al. 2008; Mandre et al. 2009; Duchemin
& Josserand 2011; Hicks & Purvis 2013). From the video clips we can measure U. In
figure 4 we plot this velocity normalized by the drop impact velocity. For the largest
impact velocity, V= 6 m s−1, we get U/V' 50, which is even larger than the velocity
of the ejecta moving along the substrate, see Thoroddsen, Takehara & Etoh (2012).

Mandre et al. (2009) found a self-similar solution of the simplified equations for
the shape and radial velocity of this kink at the outer edge of the dimpled region.
This solution makes contact with the solid surface in finite time and the horizontal
velocity of the kink location is dominated by radial advection within the liquid. The
similarity gives the scaling U ∼ V(hmin/R)−1/2, where hmin is the minimum gap under
the kink, while hmin/R∼ St2/3, resulting in

U ∼ V St−1/3 (3.1)

with a prefactor of O(1). Here St is defined as the inverse of the conventional Stokes
number, i.e.

St= µg

ρlVRb
. (3.2)

Our data in figure 5 show good correspondence with this scaling with a prefactor of
0.42. Mandre & Brenner (2012) (their figure 3) show the same power law with a
similar prefactor of 0.34 for the 2-D case, at lower impact velocities. See also the
axisymmetric simulations of the surface shapes by Duchemin & Josserand (2011).

The shape evolution shown in figure 3(b, f ) is very similar to those obtained from
solutions of the lubrication theory, see for example figure 2 in Duchemin & Josserand
(2011) and figure 2(a) in Hicks & Purvis (2013).

The subsequent contraction of the air disc, after liquid–solid contact, into a bubble
was successfully modelled by Thoroddsen et al. (2005) assuming an increasing but
uniform disc thickness. However, the edge of the contracting air disc grows in size,
forming a rim. Liu et al. (2013) improved upon this model by taking into account
this thickening of the edge.
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FIGURE 3. (Colour online) The air-layer thickness profiles under the drops, measured from
the interferometric video clips at 5 Mf.p.s. The black dashed horizontal line marks the
surface of the solid glass substrate. (a–c) For V= 2.43 m s−1 and Rb= 8.2 mm (ε−1= 6.0,
St= 9.2× 10−7). (a) The bottom deformation of the approaching drop. The black curves
are spaced by 400 ns, with the bottom curve at 2.2 µs before touchdown, which is shown
by the red curve. The dots mark the centre locations of the dark or bright fringes, with
interpolations at the centreline and at the tip of the downwards kink in (b, f ). (b) Detail
of the formation of the bottom dimple and touchdown of the outer kink, to entrap the
air disc. Note the different vertical scales. The dashed red curve denotes the last profile
in (a). Profiles spaced by 200 ns. (c) Rapid expansion of the air disc, after first contact.
Profiles spaced by 400 ns. The thickness of the edge of the contracting air disc cannot
be measured and we simply draw it as a flat segment, but it is much thicker than the
disc, see Thoroddsen et al. (2005), Lee et al. (2012) and Liu et al. (2013). (d) Shapes for
V = 4.05 m s−1 and Rb = 3.2 mm (ε−1 = 14.4, St= 1.4× 10−6). Profiles shown at t=−2,
−1.8, −1.6, −1.4, −1.2, −1, −0.8, 0, 2.2 µs relative to first contact. In this case the last
three profiles before contact (not shown) cannot be determined accurately. The open red
squares show the shape of the air disc at first contact and the open blue circles at the end
of the rapid expansion. (e, f ) Shapes for V = 1.06 m s−1 and Rb = 4.1 mm (ε−1 = 0.69,
St= 4.3× 10−6). (e) Bottom deformation of the drop, at t=−22, −20, −18, −16, −14,
−12.6, −11 and −10.4 µs before contact (red curve). (f ) Closeup of central dimple and
downwards kink. Times shown at t =−10.4, −9.8, −9.2, −8.6, −8, −7.4, −6.4, −5.6,
−4.6 −3.8, −2.8, −1.6 and 0 µs relative to first contact (red curve).

3.2. Size of the initial air disc
The deformation of the bottom of the drop, leading to the dimple formation and
entrapment of the air disc, is governed by a balance between the lubrication pressure
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10−6 10−5
101

102

St

FIGURE 4. The radial velocity of the minimum thickness kink in the bottom surface,
which first touches the substrate, compared with the theoretically predicted power law from
(3.1). The data encompass the entire range of impact velocities, including the compressible
regime.

in the air trying to escape the oncoming drop P∼ µgVRb/H2, and the inertia of the
drop, which must be decelerated before contact, ρlV2/H∗, where H∗ is the thickness
of the air layer at the start of drop deformation. This gives a layer height H∗∼RbSt2/3.
Based on this, one can use simple geometric arguments for the horizontal size of the
air disc (L = √RbH, Mandre et al. 2009) to get L/Rb ∼ St1/3, in the incompressible
case. However, the horizontal extent of the air disc, where the drop contacts the
solid, is determined by the touchdown of the kink in the free surface, described by
the above-mentioned similarity solution from Mandre et al. (2009). The drop liquid
deforms inviscidly, funnelling liquid away from the central stagnation point, thereby
increasing the velocity components of the kink, which in turn is resisted from contact
by the increased pressure in the air layer. This is repeated on ever smaller length
scales until contact is made in finite time, see discussion in Mandre & Brenner
(2012).

Theoreticians prefer to tackle the 2-D configuration (Mandre et al. 2009; Hicks &
Purvis 2013), representing cylindrical drops. While their scaling arguments carry over
from 2-D, only the axisymmetric theory allows quantitative comparison to experiments.
Hicks & Purvis (2010) formulated such a theory for the incompressible case, where
they predicted the initial contact radius of the disc,

Lo = 3.8
(

4µg

ρlV

)1/3

R2/3
b . (3.3)

Hicks et al. (2012) showed this to be in reasonable agreement with impacting solid
spheres and the available droplet data of Thoroddsen et al. (2005), without any
adjustable constants. However, while their compressible theory (Hicks & Purvis
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FIGURE 5. The size of the initial air disc, measured at first contact with the wall, versus
(3.3), which is based on the theory of Hicks et al. (2012). Rb is the bottom radius of
curvature of the drop.

2013) is limited to 2-D, they have also shown that Lo is not dependent on the
gas compressibility. This is indeed born out by our data, in figure 5, which shows
a perfect fit of Lo to their expression, over a large range of impact values. This
contradicts earlier results by Liu et al. (2013), where smaller water drops were used
and Lo was essentially independent of V .

Hicks & Purvis (2013) mention that the adiabatic case of Mandre et al. (2009)
predicts that Lo should decrease when ε−1 increases, where ε is the compressibility
factor, defined below. Teasing out these subtle differences will require future
experiments at reduced pressure.

3.3. Thickness of the disc and compression of the gas
Building on previous incompressible theory (Smith et al. 2003; Korobkin et al.
2008), Mandre et al. (2009) derived conditions for when compressibility of the gas
will come into play for higher impact velocities. This formulation compares the
static atmospheric pressure to the lubrication pressure, the ratio of which forms a
compressibility factor

ε = Patm

(RV7ρ4
l /µg)1/3

. (3.4)

If ε−1 > 3 one expects significant compression of the air disc and thereby smaller
values of H∗. According to Mandre et al. (2009), when using adiabatic compression,
the normalized thinning should scale with the compressibility factor as H∗/(RbSt2/3)
= 3.2ε1/3. For isothermal compression the power law is different, i.e. ∼ε1. Our values
of ε−1 reach ∼40 for the large impact velocities V and large bottom radii of curvature
Rb, which takes us well into the compressible regime.

In figure 6 we plot the air-layer height at the centreline h = H∗, at the instant of
first contact. Note that our definition of H∗, taken at first contact, differs from that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.466


644 E. Q. Li and S. T. Thoroddsen

100 101 102

100

3.4

FIGURE 6. (Colour online) The air-film thickness at the centreline, measured at the instant
of contact along the outer ring, versus the compressibility parameter in (3.4). Compared
to the theory of Mandre et al. (2009) for isothermal conditions (γ = 1) (blue dashed line)
and for adiabatic conditions (γ = 1.4) (red dashed line).

used in Smith et al. (2003) and Mandre et al. (2009), where they look at H∗ at the
onset of deformation. The two should only differ by a small factor, but our definition
is much easier to quantify experimentally. The data fit the theory and numerics of
Mandre et al. (2009) reasonably closely, when we use their adiabatic case, γ = 1.4
(see their figure 2). Our incompressible asymptote is at 3.4 versus 4.3 in their 2-D
case. Our measurements show that the thinning of the air layer, as compressibility sets
in, follows an empirical power law of 4.2ε0.40. This mirrors closely their numerical
results when using the ratio of specific heats γ = 1.4, for an adiabatic process, where
they see essentially the same exponent of 0.40. This is significantly steeper than their
theoretical prediction of an asymptote of ε1/3, which may be realized at much larger
ε−1 than in our experiments. Here again our prefactor differs from the value of 3.2
observed in their 2-D case. Liu et al. (2013) observed a much smaller exponent for
their impacts of water drops. Note that our results are far from the isothermal (γ = 1)
power law ∼ε1, which is also drawn in the figure.

Selecting the instant of first contact will not show the minimum value of H∗, as
figure 3(b,d, f ) shows that the height at the centre has rebounded somewhat from its
minimum. This is also seen in theoretical studies (Mandre et al. 2009; Duchemin
& Josserand 2011; Hicks & Purvis 2013). We estimate the minimum centreline
separation for the V = 4.05 m s−1 video (figure 3d), as being '480 nm. For the
highest impact velocity V ' 6 m s−1 we estimate the minimum height at only one
dark and one bright fringe, using top lighting, i.e. H∗ ' 320 nm.

Immediately following the contact, the trapped air disc undergoes a rapid expansion,
see figure 3(c,d). For V = 2.43 m s−1 the height at the centre has risen by a factor
of ∼2 in 5.6 µs after first contact, while for V = 4.05 m s−1 it has grown by a
factor of 3 in only 2.2 µs. This highlights the importance of our rapid imaging, to
catch the detailed dynamics. At the end of this expansion, we see some overshoot
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101100

101

FIGURE 7. (Colour online) Compression of the air disc versus the impact parameter in
(3.4). The compression of the air disc at the first contact along the ring (@) and after the
first vertical expansion at the centreline (A). Ωdisc comes from integrating the thickness
profile from the interferometry, whereas Ωb is the volume of the final bubble, left behind
after the contraction of the air disc.

and slight oscillations. For V = 2.43 m s−1, in figure 3(c), the time from first contact
to first maximum is 1T = 5.6 µs, while the duration until the subsequent expansion
maximum after the last curve in figure 3(c) is 1T = 15.6 µs. For the highest impact
velocity (V = 6.0 m s−1) the expansion is faster and we can observe more oscillation
cycles, with each subsequent expansion cycle to subsequent maxima, taking longer, i.e.
1T = 0.4, 3.4, 4.4 and 5.2 µs.

We integrate the air volume at first entrapment and after the maximum early
expansion, from the video frames. This can be compared to the theory of Mandre
et al. (2009), which gives the air-film thickness at the start of compression
as Hc ∼ R(µgV/(RP0))

1/2 = R St2/3ε−1/2 and maximal compression at Hmin ∼
R St2/3ε(2−γ )/(2γ−1) = R St2/3ε1/3, for γ = 1.4; P0 is the ambient pressure. The ratio
of these two gives the volume compression Ωb/Ωdisc ∼ ε−5/6, or incorporating our
experimentally obtained empirical result H∗ ∼ ε0.40 we get a slightly different power
law Ωb/Ωdisc∼ ε−0.9. Figure 7 shows reasonable correspondence with this theory, with
the ratio growing as large as a factor of 5 (A) for the largest V . However, comparing
this expanded air volume to that contained in the final spherical bubble detached from
the surface, additional volume increase is observed (@ in figure 7). This was also
observed by Liu et al. (2013), but their lower frame rate could not catch the earliest
part of the expansion. With dt = 7 µs their images are essentially snapshots of the
earliest evolution. We propose that the conical air disc is still subject to significant
dynamic pressure, due to the ongoing impact so soon after first contact. This pressure
is released later as the disc pulls into a bubble, further increasing the volume ratios.
We observe a total compression as large as a factor of 14 for the largest V .

The very large pressure produced just prior to the first contact could potentially
deform the solid locally. To probe possible effects on the air disc, we conducted a
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few separate experiments using a much thinner, 150 µm-thick, glass slide (Menzel-
Deckglacer), seeing no change in the thickness of the entrapped air disc.

4. Discussion and conclusions
Herein we have used the latest high-speed video technology for time-resolved

interferometry to measure the lubricating air layer under an impacting drop, for higher
velocities than previously possible. We have thereby characterized the dynamics well
into the regime where the gas compressibility is significant. The results are overall in
good agreement with theoretical models based on the lubricating air layer and inviscid
drop dynamics (Mandre et al. 2009; Hicks & Purvis 2010; Mandre & Brenner 2012).
Our result for the size of the air disc Lo shows a perfect fit to the expression from
Hicks & Purvis (2010), without any adjustable constants.

Furthermore, our measurements of the air-layer thickness shed new light on the
thermodynamics of the gas. The compression and entrapment of the air disc occurs
very rapidly and one can thereby expect non-equilibrium thermodynamics within the
gas. Mandre et al. (2009) and Mani et al. (2010) used the ideal-gas equation of state,

p= P0

(
ρ

ρ0

)γ

, (4.1)

to model the compression of the gas, where p is the gas pressure, ρ is the gas density,
P0 is the ambient pressure of the gas at density ρ0. The value of γ is chosen to be 1.4
for adiabatic, or 1 for isothermal, gas compression. Later, Mandre & Brenner (2012)
argued that for highly thermally conducting substrates like metal or glass, the solid has
a much larger thermal capacity than the gas layer and the time scale of the impact is
larger than that required for the gas temperature to become uniform. Therefore, one
should use γ = 1. Liu et al. (2013) also argued for the use of the isothermal (γ = 1)
value in their study, estimating a typical conduction time of 30 ns, for atmospheric
gas density. We suggest that greatly increased gas density during the compression may
increase this time significantly.

On the other hand, Hicks & Purvis (2013) conducted a full thermodynamics analysis
of the energy conservation in the gas and found that ‘the previous use of either an
isothermal or an adiabatic equation of state is inappropriate in this regime’. Hicks
& Purvis (2013) demonstrated large differences in the temperature profiles and in
the density profiles at touchdown, between their compressible model and the earlier
isothermal or adiabatic theories. They also showed another key difference between
their compressible model and the earlier adiabatic case, i.e. the initial radius of the
air pocket (Lo in our study) is independent of the compressibility in their full analysis,
while they explain that Lo will decrease as compressibility rises in the adiabatic case,
as implied by Mandre et al. (2009).

Our comparison of the measured thickness of the air layer with the theory of
Mandre et al. (2009) shows that in the context of their simplified thermodynamic
model, the adiabatic dynamics (γ = 1.4) gives a much better fit than the isothermal
dynamics, where the power law should be much steeper, with an exponent of 1. We
find empirically that the best fit is H∗ = 4.2ε0.40, with a steeper exponent than the
theoretical prediction of 1/3 in Mandre et al. (2009). To test these power laws at
even larger values of the dynamic compression ε−1 will require future experiments at
reduced ambient pressures.

Experiments at even higher impact velocities than presented herein would be
of interest, but are challenging. This is especially true at the largest optical
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Time-resolved imaging of compressible air disc under impacting drop 647

magnifications, owing to the random lateral drift of the centre of the drop, which
over a 2 m free-fall is much larger than the 1 mm-wide field of view of the camera.
For the largest impact heights, we need dozens of trials to catch any part of the disc,
even for a reduced magnification of 2 µm pixel−1.

The leap in video frame rate and pixel numbers of the camera used in our study
(Crooks et al. 2013) opens many other aspects of the drop impact to future detailed
scrutiny. This includes the effects of reduced air pressure, Xu, Zhang & Nagel (2005),
or surface roughness, Latka et al. (2012). For example, for our drops of D= 2.6 mm,
impacting at V = 2.5 m s−1, Mandre & Brenner (2012) suggest that the air film can
stay intact and the drop skate on it, if the surface roughness is smaller than 10 nm.
This technique is also ideal to study the breakup of the levitated films at the outer
edge of the lamella, see Driscoll, Stevens & Nagel (2010) and Thoroddsen, Takehara
& Etoh (2010).
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