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Abstract

The two-sided nonlinear boundary crossing probabilities for one-dimensional Brownian
motion and related processes have been studied in Fu and Wu (2010) based on the
finite Markov chain imbedding technique. It provides an efficient numerical method
to computing the boundary crossing probabilities. In this paper we extend the above
results for high-dimensional Brownian motion. In particular, we obtain the rate of
convergence for high-dimensional boundary crossing probabilities. Numerical results
are also provided to illustrate our results.
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1. Introduction

Several fundamental theorems for the boundary crossing probabilities (BCPs) or the first
passage time distributions have been established in, for example, [1], [6], and [12]. Erdős and
Kac [6] derived the invariant theorem for constant boundaries. Robbins and Siegmund [12] and
Anderson [1] obtained the BCPs for one-sided and two-sided linear boundaries, respectively.
For piecewise linear boundaries, BCPs have been studied by Robbins and Siegmund [12] and
Scheike [14]. Approximations for nonlinear BCPs can be found in [3], [4], [5], [9], [11],
and [13].

In contrast to the above mentioned results for one-dimensional BCPs, only limited results
are known for high-dimensional BCPs; see, for example, [2], [15], and [17]. For the two-
dimensional case, Iyengar [8] and Metzler [10] derived the first passage time distribution as an
infinite series associated with the modified Bessel function of the first kind.

Recently, Fu and Wu [7] developed a computationally efficient method for BCPs based on
the finite Markov chain imbedding (FMCI) technique. In this paper we extend the approach
in [7] to high-dimensional Brownian motion. The reason for adopting the method are four
fold: conceptually simple, flexible toward the boundaries, easy to program, and efficient in
computation. The paper is organized in the following way. In Section 2, notation and results
in [7] are reviewed, including the approximate BCPs for one-dimensional Brownian motion
and their convergence rates. In Section 3, two-dimensional and higher-dimensional Brownian
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motions are considered and their BCPs are studied. The rate of convergence is derived in
Section 4. Numerical results, examples, and discussions are given in Section 5.

2. Preliminary results: one-dimensional Brownian motion

Throughout this paper, we denote the lower and upper boundaries by a(t) and b(t), respec-
tively. We assume that a(t) and b(t) satisfy the following conditions:

(A) a(t) and b(t) are continuous for t ∈ [0, 1] except finite k (k = 0, 1, . . .) discontinuous
points of the first kind 0 = t∗0 < t∗1 < · · · < t∗k < t∗k+1 = 1,

(B) a(0) < 0 < b(0), and

(C) there exists a constant K such that |a(t + ε) − a(t)| < Kε and |b(t + ε) − b(t)| < Kε

for t, t + ε ∈ (t∗i , t∗i+1), i = 0, 1, . . . , k, except finite t∗1 < · · · < t∗k points (the Lipschitz
condition).

Without loss of generality, we also assume that the initial probability of the process P(W(0) =
0) = 1. Let h = max(sup0≤t≤1 |a(t)|, sup0≤t≤1 |b(t)|).

Given large positive integers m and n, define �x = h/m and �t = 1/n in such a way that
�t = �x2, i.e. n = m2/h2, or n = �m2/h2� if n is not an integer. Let us define a family of
discrete distributions F = {fγ } on {0, ±1�x, ±2�x, . . .} as

fγ (k�x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C−1

kγ
√

2π
exp

(
−k2

2

)
if k �= 0,

C−1

√
2π

∑
��=0

(
1

�γ−2 − 1

�γ

)
exp

(
−�2

2

)
if k = 0,

(1)

where C = (1/
√

2π)
∑

��=0(1/�γ−2) exp(−�2/2) and γ is an even nonnegative integer. For
any given t , n, and γ , we define

Ŵn(t : γ ) =
�nt�∑
i=1

X̂i(γ ),

where X̂i(γ ) are independent and identically distributed (i.i.d.) random variables having com-
mon distribution fγ ∈ F . For given γ , {Ŵn(t : γ )} is a homogeneous Markov chain. For
example, if γ = 0, it has transition probabilities

p(k | j) = P(Ŵn(t + �t : 0) = k�x | Ŵn(t : 0) = j�x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C−1

√
2π

exp

(
− (k − j)2

2

)
if k − j �= 0,

C−1

√
2π

∑
��=0

(�2 − 1) exp

(
−�2

2

)
if k − j = 0.

The following theorem is cited directly from [7] with the minor modification of condition (A)
by allowing finite discontinuous points of the first kind. We do not repeat the proof here.
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Theorem 1. Given fγ ∈ F , γ = 0, 2, 4, . . . ,

(i) we have Ŵn(t : γ )
d−→ W(t) as n → ∞, where ‘

d−→’stands for convergence in distribution,

(ii) the BCP can be approximated by

P(W(t) ≤ a(t) or W(t) ≥ b(t) for some t ∈ [0, 1]) = 1 − lim
m→∞ ξ0

(�m2/h2�∏
i=1

Ni (γ )

)
1�,

where 1� is the transpose of the row vector 1 = (1, . . . , 1), and Ni (γ ), i = 1, . . . ,

�m2/h2� are essential transition matrices of the imbedded Markov chain associated
with discrete boundaries induced by a(t) and b(t) and can be constructed using (1), and

(iii) if the boundaries a(t) and b(t) satisfy the conditions (A), (B), and (C), then the error
bounds are ∣∣∣∣P

(
a∗

(
k

n

)
< Ŵn(tk : γ ) < b∗

(
k

n

)
, k = 1, . . . , n

)

− P(a(t) < Ŵn(tk : γ ) < b(t), t ∈ [0, 1])
∣∣∣∣ = O

(
1

m

)
,

and
∣∣∣∣P

(
a∗

(
k

n

)
< Ŵn(tk : γ ) < b∗

(
k

n

)
, k = 1, . . . , n

)

− P(a(t) < W(t) < b(t), t ∈ [0, 1])
∣∣∣∣ = O

(
1

m

)
as n → ∞,

where n = �m2/h2�, a∗(k/n), and b∗(k/n) are the boundaries for Ŵn(tk : γ ).

Note that for γ = 0, fγ is a discrete normal distribution and for γ = ∞, (1) reduces to a
simple random walk moving one step in either the right or left with probability 1

2 . It is known
that for γ = 0 the imbedded Markov chain Ŵn(t : 0) has the smallest error bound among all
Ŵn(t : γ ), γ = 0, 2, 4, . . . (see [7, Table 1]). If there is no special specification, throughout
this paper, we will use the notation Ŵn(t) for Ŵn(t : 0).

Figure 1: Y-type time tunnels.
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Basically, the above theorem shows that the BCPs of Brownian motion W(t) are casted as
limiting probabilities of the imbedded Markov chain Ŵn(t) staying in the absorbing state. One
can see the simplicity and flexibility of the method toward the shape of the boundaries. Hence,
we expect that the above results could be extended toY-type time tunnels illustrated in Figure 1.
Further using a one-to-one transformation, we also expect that the above results are able to
extend Y-type time tunnels for certain diffusion processes satisfying dX(t) = b(t, X(t)) dt +
σ(t, X(t)) dW(t), for example the Ornstein–Uhlenbeck (OU) processes and the Brownian
bridge; see [7]. Numerical examples of BCPs of Y-type time tunnels for Brownian motion and
the OU process will be provided to illustrate the theoretical results in Section 5.

3. High-dimensional Brownian motion

In this section we extend our results to the high-dimensional Brownian motion. If the high-
dimensional Brownian motion is not a standard but correlated one, then it can be transformed
into a standard one. We consider the two-dimensional Brownian motion first, and the higher-
dimensional one would follow in a similar fashion.

Let {X(t) = (X1(t), X2(t)), t ≥ 0} be a two-dimensional correlated Brownian motion with
mean tμ and covariance matrix t�. It is well known that

(i) W (t) = (X(t) − tμ)�−1/2 is a standard two-dimensional Brownian motion, and

(ii) if B(t) is a compact convex set then B̃(t) = {(b − tμ)�−1/2 : b ∈ B(t)} remains a
compact convex set; see, for example, [16].

Hence, it suffices to study the boundary crossing probabilities for the standard Brownian motion
for compact convex sets.

3.1. Two-dimensional standard Brownian motion

Let {W (t) = (W1(t), W2(t)), t ≥ 0} be a standard two-dimensional Brownian motion with
drift 0, where 0 = (0, . . . , 0), and covariance matrix t� = tI . Throughout this paper we
let P(W (0) = (0, 0)) = 1 and assume the compact convex set B(t) satisfies the following
conditions:

(i) for every t ∈ [0, 1], B(t) is a compact convex set in R
2,

(ii) the boundary of B(t) is a continuous function in t for t ∈ [0, 1] and satisfies the Lipschitz
conditions, and

(iii) (0, 0) ∈ B(0).

For example, B(t) � {(ω1, ω2, t) : ω2
1 + ω2

2 ≤ 1 + t, t ∈ [0, 1] ⊂ R
2 × [0, 1]}, where ‘�’

stands for ‘defined as’. To simplify the notation further, we define B = int{B(t) : t ∈ [0, 1]}
and its complement is denoted by Bc. Hence, the BCP is given by

P(W (t) ∈ Bc for some t ∈ [0, 1]) = 1 − P(W (t) ∈ B for all t ∈ [0, 1]).

Given B(t), let h = sup0≤t≤1 sup{‖b‖: b ∈ B(t)}, where ‖ · ‖ is the Euclidean norm in R
2.

Choose a large integer m, define �x = h/m and discretize R
2 as R

2
m = {(k1�x, k2�x),

k1, k2 = 0, ±1, ±2, . . .}. The time interval [0, 1] is correspondingly partitioned into n equal
sub-intervals, preserving the scale relationship �x2 = �t , i.e. n = m2/h2, or n = �m2/h2�
if n is not an integer.
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Let {0 = t0 < t1 < · · · < tn = 1} be an equal-spaced partition of [0, 1] with ti = i�t . The
partial sums

Ŵjn(t) =
�nt�∑
i=1

X̂ji , j = 1, 2,

where X̂1i and X̂2i are i.i.d. random variables having common distribution f0 ∈ F , converge
in distribution to independent one-dimensional Brownian motions. Since the components are
independent, it follows from the construction in Section 2 that the transition probabilities of the
two-dimensional Markov chain Ŵn(t) = (Ŵ1n(t), Ŵ2n(t)) are given by

p((k1, k2) | (j1, j2)) = P(Ŵn(t + �t) = (k1�x, k2�x) | Ŵn(t) = (j1�x, j2�x))

= p(k1 | j1)p(k2 | j2), (2)

where, for i = 1, 2,

p(ki | ji) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C−1 exp

(
− (ki − ji)

2

2

)
if ki − ji �= 0,

C−1
∑
��=0

(�2 − 1) exp

(
−�2

2

)
if ki − ji = 0,

and C = ∑
��=0 �2 exp(−�2/2). Note that any distribution in the family F can be used to

construct the partial sums and transition probabilities.

Theorem 2. Given t ∈ [0, 1] and �t = �x2 (n = m2/h2), we have

Ŵn(t)
d−→ W (t) as n → ∞.

Proof. We show that the characteristic function of Ŵn(t) converges to that of W (t) for all t .
From the proof of Theorem 1, we know that

E[ei(s1,s2)(X̂11,X̂21)
�] = E[eis1X̂11 ]E[eis2X̂21 ] = 1 − s2

1h2 + s2
2h2

2m2 + O

(
1

m4

)
.

Thus, as m → ∞,

ϕ
Ŵn(t)

(s) =
(

1 − (s2
1 + s2

2 )h2

2m2 + O

(
1

m4

))m2t/h2

→ exp

(
− tss�

2

)
,

where ϕW (t)(s) = exp(−tss�/2) is the characteristic function of the bivariate normal distribu-
tion with mean 0 and covariance matrix t� = tI . �

Imbedding procedure. Given an open set A ⊆ R
2, we introduce an oriented distance function

g(x, A) = d(x, A)−d(x, Ac), where d(x, A) = inf{‖x−y‖: y ∈ A} and ‖·‖ is the Euclidean
norm in R

2. The function g is continuous since d is continuous. It is easy to see that if x ∈ A

then g(x, A) < 0, and if x ∈ Ā then g(x, A) ≥ 0. In the sequel, we construct an imbedded
Markov chain with absorbing states induced by Bc. For each ti , we define the inner and outer
approximations of B(ti) as follows. Let Q be the collection of all squares whose lengths are
�x and whose centers are in R

2
m. Then, the inner and outer approximations of B(ti) are,

respectively, given by

Bi(�x) = ∪{q ∈ Q : q ⊂ B(ti)} and B̄i(�x) = ∪{q ∈ Q : q ∩ B(ti) �= ∅},
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Figure 2: Inner and outer approximations at ti .

and Bi(�x) ⊂ B(ti) ⊂ B̄i(�x), Bi(�x) ↑ B(ti), and B̄i(�x) ↓ B(ti); see Figure 2. We can
use either the inner or outer approximations of B(ti). Here we choose the inner approximation
and define the set B̂i(t) to be the collection of centers of squares in Bi(�x). Thus for inner
approximation, we can define a finite Markov chain {Yn(i)}ni=0 on the state spaces; i = 1, . . . , n,


i = B̂i(t) ∪ {αi},where αi stands for all values outside B̂i(t).
Then {Yn(i)}ni=0 forms a nonhomogeneous Markov chain having transition probabilities

P(Yn(i) = (k1, k2) | Yn(i − 1)) = (j1, j2))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p((k1, k2) | (j1, j2)) if (j1, j2) ∈ 
i−1 \ αi−1, (k1, k2) ∈ 
i \ αi ,

p(αi | (j1, j2)) if (j1, j2) ∈ 
i−1 \ αi−1, (k1, k2) = αi ,

1 if (j1, j2) = αi−1, (k1, k2) = αi ,

0 if (j1, j2) = αi−1, (k1, k2) ∈ 
i \ αi,

(3)

where p((k1, k2) | (j1, j2)) is given by (2), and 
0 = {(0, 0)} and P(Yn(0) = (0, 0)) ≡ 1. For
given (j1, j2) ∈ 
i−1 \ αi−1, the absorption probabilities are given by

p(αi | (j1, j2)) = 1 −
∑

(k1,k2)∈B̂i (t)

p((k1, k2) | (j1, j2)).

Again, all the transition probability matrices of the imbedded Markov chain {Yn(i)}ni=0 have
the form

Mi =
[

p((k1, k2) | (j1, j2)) p(αi | (j1, j2))

0 1

]
=

[
Ni Ci

0 1

]
, i = 1, 2, . . . , n.

Together with Theorem 2, we are now in a position to prove our main theorem.

Theorem 3. Let W (t) be a standard two-dimensional Brownian motion. Given a compact
convex set B(t), then

P(W (t) ∈ B for all t ∈ [0, 1]) = lim
m→∞ ξ0

(m2/h2∏
i=1

Ni

)
1�,

where the transition probabilities are given in (3).
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Proof. Let h(x) = sup0≤t≤1 x(t). From the definition of function g, it is not difficult to see
that the following two sets are equal:

{
max

1≤i≤n
g(Ŵn(ti), int(Bi(�x))) < 0

}
⇐⇒

{
max

1≤i≤n
g(Ŵn(ti), B̂i(t)) < 0

}
.

Since W (t) is continuous and W (0) ∈ B(0), sup0≤t≤1 g(W (t), B) < 0 represents that W (t)

stays in B for all t ∈ [0, 1]. Thus, due to the continuity of the probability measure and of the
functions h and g, the boundary crossing probabilities can be obtained by

P(W (t) ∈ Bc for some t ∈ [0, 1]) = 1 − lim
m→∞ P(Yn(1) �= α1, . . . ,Yn(n) �= αn)

= 1 − lim
m→∞ ξ0

(m2/h2∏
i=1

Ni

)
1�.

For the second last equality, g(Ŵn(ti), B̂i(t)) < 0 represents Ŵn(ti) stays inside B̂i(t). In
other words, it is equivalent to saying that Yi �= αi . The last equality follows from the FMCI
technique. This completes the proof. �

The above result is proved for a two-dimensional Brownian motion; however, it is straightfor-
ward to extend to a higher-dimensional Brownian motion. It is important to point out that for four
and up dimensional Brownian motions their corresponding state spaces of imbedded Markov
chains are very large and a high-speed computer is required in order to obtain a numerical
solution.

4. Convergence rate

Note that the convergence rate of the approximation depends on the geometry of the bound-
ary B(t). First we introduce a product topology T on the R

2 × [0, 1] space. Let us define a
family of open sets on R

2 × [0, 1] as

O = {(ω1, ω2, t) : a(t) < ω1 < b(t), and c(t) < ω2 < d(t), t ∈ [0, 1]}, (4)

where a(t), b(t), c(t), and d(t) are continuous functions defined on R × [0, 1] and satisfy the
Lipschitz condition. Let

F = {O : all open sets defined on R
2 × [0, 1] by (4)},

and T be the topology induced by the open sets in F. For any small δ > 0, it follows from
convexity of set B, finite covering theorem, and continuity of the probability that there exist outer
and inner approximations B̄ = ⋃k1

i=1 Oi and B = ⋃k2
j=1 Oj for B and such that B̄ ⊇ B ⊇ B

and
|P(W (t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])| < δ.

To show the convergence rate remains O(1/m) for d = 2, we need the following lemma.

Lemma 1. For any O ∈ T , we have

|P(Ŵn(t) ∈ O for all t ∈ [0, 1]) − P(W (t) ∈ O for all t ∈ [0, 1])| = O

(
1

m

)
as n → ∞.
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Proof. From the independence between Ŵ1n(t) and Ŵ2n(t), W1(t) and W2(t), the triangle
inequality, and Theorem 1(iii), we have

|P(Ŵn(t) ∈ O for all t ∈ [0, 1]) − P(W (t) ∈ O for all t ∈ [0, 1])|
= |P(a(t) < Ŵ1n(t) < b(t) for all t ∈ [0, 1])P(c(t) < Ŵ2n(t) < d(t) for all t ∈ [0, 1])

− P(a(t) < W1(t) < b(t) for all t ∈ [0, 1])P(c(t) < W2(t) < d(t) for all t ∈ [0, 1])|
≤ |P(a(t) < Ŵ1n(t) < b(t) for all t ∈ [0, 1])

− P(a(t) < W1(t) < b(t) for all t ∈ [0, 1])|
+ |P(c(t) < Ŵ2n(t) < d(t) for all t ∈ [0, 1])

− P(c(t) < W2(t) < d(t) for all t ∈ [0, 1])|
= O

(
1

m

)
. �

Lemma 2. As n → ∞, we have

(i) |P(Ŵn(t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B̄ for all t ∈ [0, 1])| = O(1/m), and

(ii) |P(Ŵn(t) ∈ B for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])| = O(1/m).

Proof. Note that

|P(Ŵn(t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B̄ for all t ∈ [0, 1])|

=
∣∣∣∣P

(
Ŵn(t) ∈

k⋃
i=1

Oi for all t ∈ [0, 1]
)

− P

(
W (t) ∈

k⋃
i=1

Oi for all t ∈ [0, 1]
)∣∣∣∣.

Since k is finite, Lemma 2(i) is an immediate consequence of the inclusive–exclusive identity,
the triangle inequality, and Lemma 1. The proof of Lemma 2(ii) is the same as given above.

�
Theorem 4. As n → ∞, we have

|P(Ŵn(t) ∈ B for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])| = O

(
1

m

)
.

Proof. From the triangle inequality, it follows that

|P(Ŵn(t) ∈ B for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])|
≤ |P(Ŵn(t) ∈ B for all t ∈ [0, 1]) − P(Ŵn(t) ∈ B̄ for all t ∈ [0, 1])|

+ |P(Ŵn(t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B̄ for all t ∈ [0, 1])|
+ |P(W (t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])|

= An + Bn + C. (5)

Further, since B̄ ⊇ B ⊇ B, it follows that the following inequality holds:

An ≤ |P(Ŵn(t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B̄ for all t ∈ [0, 1])|
+ |P(Ŵn(t) ∈ B for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])|
+ |P(W (t) ∈ B̄ for all t ∈ [0, 1]) − P(W (t) ∈ B for all t ∈ [0, 1])|

= Bn + En + F. (6)

https://doi.org/10.1017/jpr.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.19


Boundary crossing probabilities 551

It follows from Lemma 2(i) and (ii) that Bn = O(1/m) and En = O(1/m) as n → ∞. Since
C < F < δ for arbitrarily small δ (independent of n), hence the theorem follows from (5)
and (6). �

By the same token, the results hold for d ≥ 3. The convergence rate remains O(1/m).

5. Numerical results and discussions

To illustrate the procedure, we provide two numerical examples: BCP of Y-type time tunnel
for Brownian motion and the OU process, and BCP for two-dimensional Brownian motion.

Example 1. (Y-type time tunnel.) We consider a Y-type time tunnel Y(t) in Figure 3 with
a(t) = −1− t , b(t) = 1+ t , c(t) = 1−2t , and d(t) = 2t −1. The BCP of a Brownian motion
to Y(t) is

1 − P(W(t) ∈ int(Y(t)) for all t ∈ [0, 1]) ≈ 0.9046.

It is well known (see, for example, [7]) that the OU process can also be written as a time-
changed Brownian motion X(t) = e−μtW̃ (τt ), where W̃ (τt ) is a Brownian motion with τt =
σ 2(e2μt − 1)/2μ. Using time-change and the scaling property of a Brownian motion, we
convert the time interval back to [0, 1], and the transformed boundaries b′(t) and d ′(t) are
(1 + log(1 + t (e − 1)))(1 + t (e − 1))0.5(2(e − 1))−0.5 and (2 log(1 + t (e − 1)) − 1)(1 +
t (e − 1))0.5(2(e − 1))−0.5, respectively. Hence, using Theorem 1 the approximate crossing
probability for Y′(t) equals

1 − P(W(t) ∈ int(Y′(t)) for all t ∈ [0, 1]) ≈ 0.9854.

Example 2. (Cone.) Let W (t) be a standard two-dimensional Brownian motion starting at
the origin and B(t) = {(x1, x2) : x2

1 + x2
2 ≤ 1 + t}. Since the set B(t) is a function of t

(see Figure 4), the imbedded Markov chain is not homogeneous, and the boundary crossing
probability is obtained by multiplying the essential matrices which might not be square or might
not be of the same sizes. Take m = 50, and for each ti , collect the nodes inside the boundary as
the states associated with the essential transition matrices Ni which can be constructed using (3).

Figure 3: The boundaries a′(t), b′(t), c′(t), and d ′(t) (solid lines) are transformed boundaries.
The dashed lines are original boundaries for the OU process.
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Figure 4: Cone boundary.

Then, the boundary crossing probability can be approximated by

P(W (t) ∈ Bc for some t ∈ [0, 1]) ≈ 1 − ξ0

n∏
i=1

Ni1� = 0.7019.
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