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Abstract

This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245
ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and
others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits
such as IQ, EA and autism spectrumdisorder (ASD), alongside negative selection for anxiety and depression. The results for height weremixed
and showed nonlinear relationships with Years Before Present (BP). These trends were partially mediated by genetic components linked to
distinct ancestral populations. Regressionmodels incorporating admixture, geography, and temporal variables were used to account for biases
in population composition over time. Latitude showed a positive effect on ASD PGS, EA and height, while it had a negative effect on skin
pigmentation scores. Additionally, latitude exhibited significant nonlinear effects onmultiple phenotypes. The observed patterns highlight the
influence of climate-mediated selection pressures on trait evolution. Spline regression revealed that several polygenic scores had nonlinear
relationships with years BP. The findings provide evidence for complex evolutionary dynamics, with distinct selective pressures shaping
phenotypic diversity across different timescales and environments.
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Recent advances in molecular data acquisition from archaeological
remains have revolutionized the genetic study of human
population history. Evidence suggests that polygenic selection,
particularly during the last 10,000–15,000 years encompassing the
Holocene, has influenced genetic markers linked to phenotypic
traits such as height, skin pigmentation, and psycho-social
characteristics, including educational attainment (EA), intelligence
(IQ), and autism. These findings support a gene-culture co-
evolutionary model, where sociocultural transformations follow-
ing the agricultural revolution reshaped selective pressures on
human populations (Kuijpers et al., 2022; Piffer & Kirkegaard,
2024a; Woodley et al., 2017).

A recent analysis of 2500 ancient genomes identified significant
positive temporal trends for traits such as height, EA, IQ, and, to a
lesser extent, autism and socioeconomic status (SES), along with a
negative trend for schizophrenia and depression (Piffer &
Kirkegaard, 2024a). However, this research was limited to samples
from Europe and parts of the Middle East.

This article aims to replicate these findings using samples from
populations of Eastern Eurasian origins. The dataset covers a
diverse range of geographical regions, including the equatorial
zone (e.g., Malaysia and Indonesia), tropical regions (e.g., Vietnam,
Laos, Thailand), temperate areas (e.g., central and northern
China), and extends into Siberia and the Arctic. It also includes

Central Asia (e.g., Mongolia, Xinjiang), Tibet, and regions as far
east as Japan.

A limitation of this approach is that the predictive validity of
polygenic scores (PGSs) declines with increasing genetic distance
from the genomewide association study (GWAS) reference
population. Consequently, PGSs derived from European GWASs
may exhibit lower predictive validity for African populations
compared to Europeans (Martin et al., 2017). This issue also affects
East Asian populations, albeit to a lesser degree. For instance, a
recent GWAS on EA conducted in East Asian cohorts reported
significant genetic correlations and transferability of findings
between East Asian and European populations (genetic correlation
between GWASs = .87), alongside similar patterns of gene
expression and cross-trait genetic correlations (Chen et al., 2024).
Furthermore, Piffer and Kirkegaard (2024b) demonstrated that
PGSs for IQ, EA, and height derived from European-ancestry
GWASs predict differences in mean phenotypic traits across
contemporary Chinese provinces, achieving a correlation of
approximately .7 between height PGS and average height. These
findings support the utility of European-derived PGSs for
predicting variation within East Asian populations.

Our model predicts that PGSs associated with cognitive abilities
relevant to academic and intellectual achievement, including IQ
and EA, will show a positive trend over time (indicating a negative
correlation with years before present [BP]) due to the adaptive
advantages conferred by such traits in complex societies. This
hypothesis is supported by findings that East Asians, whose
populations have historically developed highly organized, large-
scale societies, tend to score higher in average IQ and indices of EA
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compared to other global populations (Lynn & Vanhanen, 2012)
and to have higher EA PGSs than other ancestral groups (Piffer,
2015, 2019). Such patterns suggest that prolonged exposure to the
selective pressures of complex hierarchical societies may have
amplified traits associated with cognitive performance and
academic success. Conversely, given the generally lower average
height observed in East Asian populations (NCD Risk Factor
Collaboration [NCD-RisC]), 2020) and recent findings from a
global study on the genetic determinants of height (Piffer &
Kirkegaard, 2024c), we do not expect to observe a positive
temporal trend in height PGSs.

We predict a positive correlation between latitude and height
PGS, supported by findings from a recent study reporting a
correlation of .72 between height PGS and the average height of
Chinese provinces (Piffer & Kirkegaard, 2024b), as well as the
positive correlation observed at the phenotypic level (Lu
et al., 2022).

In contrast, anxiety and depression are predicted to exhibit
negative selection due to their negative correlation with intelli-
gence—as reported by a recent large meta-analysis (Anglim et al.,
2022). In fact, the Smoke Detector principle posits that natural
selection favors systems that are hypersensitive to potential threats,
even at the cost of frequent false alarms, because the cost of missing
a real danger (a false negative) is much higher than the cost of
responding to a nonthreat (a false positive). In ancestral settings,
heightened sensitivity to threats would have increased survival
chances by prompting individuals to avoid dangers. However, in
contemporary urban environments, where immediate physical
threats are less prevalent, this heightened sensitivity can lead to
maladaptive responses, manifesting as anxiety and depression
(Nesse, 2001). We predict negative selection on schizophrenia,
supported by evidence of negative correlations between schizo-
phrenia and intelligence at both genetic and phenotypic levels
(Comes et al., 2019; Hill et al., 2016; Lam et al., 2017; Lencz et al.,
2014; Smeland et al., 2017). Conversely, we anticipate positive
selection on autism spectrum disorder (ASD). This contrast may
reflect differing adaptive contexts: psychotic tendenciesmight have
conferred advantages in traditional societies where mystical beliefs
and hallucinatory experiences were integrated into cultural norms.
In contrast, modern societies, which emphasize sustained focus,
specialization and structured cognition, may favor traits associated
with autism.

Methods

Polygenic Scores

PGSs were calculated using the most recent and extensive GWAS
for each trait. To filter variants, we applied clumping and
thresholding (Cþ P) using PLINK 1.9 (Chang et al., 2015), setting
a standard GWAS p-value threshold of p< 5 × 10^-8 with a
linkage disequilibrium (LD) of r^2< 0.1. Allele frequencies were
computed using PLINK 2.0 (Chang et al., 2020). The frequency
files were loaded into R (version 4.4.1; R Core Team, 2023) and
merged with the GWAS summary files to compute the PGSs.

Educational attainment (EA). we used PGS derived from two
major European ancestry GWAS datasets: (1) The multitrait
analysis of European genomewide association summary statistics,
which includes years of education, cognitive performance, self-
reported math ability, and highest math class taken, encompassing
approximately 1.1 million individuals (Lee et al., 2018), referred to
here as ‘EA3’; (2) The largest European-based GWAS to date,
involving about 3 million individuals (Okbay et al., 2022), referred

to as ‘EA4’. To enhance robustness and minimize error, we
averaged EA3 and EA4, yielding a more stable indicator.

EUR-IQ. The most recent and largest GWAS of general
cognitive function (Davies et al., 2018) identified 434 independent
SNPs at p< 5 × 10-8.

EAS-EA1. The GWAS of EA trained on East Asians (T. T. Chen
et al., 2024) relied on 180k samples from the Taiwan Biobank
(TWB; Feng et al., 2022) and Korean Genome and Epidemiology
Study (KoGES; Y. Kim et al., 2017).

MIX-Height. For height, we used the significant SNPs from the
largest GWAS to date (Yengo et al., 2022), which comprised a
multi-ancestry sample (after LD pruning with a threshold of
r2 < .1).

EAS-Height. Akiyama et al. (2019) identified 573 independent
variants with p< 5 × 10-8 using a relatively large sample (>190K)
of Japanese individuals.

Height-direct. Tan et al. (2024) carried a family-based GWAS
(FGWAS) on 34 phenotypes, including body height. We used the
within-family (‘direct’) beta of 565 independent SNPs significant at
p< 5 × 10^-8.

Schizophrenia (SCZ). A recent schizophrenia GWAS by
Trubetskoy et al. (2022) identified 342 independent SNPs in a
combined, multi-ancestry GWAS that were significant at a
genomewide level (p< 5 × 10-8) with a LD of r2 < .1.

Autism spectrum disorder (ASD). The largest GWAS of ASD
was employed (Grove et al., 2019), which identified 88 top loci, 69
of which had p< 5 × 10^−8.

Depression. The most recent and extensive meta-analysis was
used (Als et al., 2023). After executing Cþ T, 305 SNPs remained.

Anxiety. A recent GWAS of anxiety disorders based on a large
(∼1.2 million), multi-ancestry sample identified 55 significant
independent loci (Friligkou et al., 2024).

Skin Color-UKBB. We utilized the GWAS on skin color from
the pan-UKBB dataset (https://pan.ukbb.broadinstitute.org/
GWAS; phenocode: 1717). After applying clumping and thresh-
olding (C þ T) for SNP selection, 1323 SNPs remained.

Light Skin-EAS. This analysis employed findings from a recent
GWAS on skin color conducted by B. Kim et al. (2024) in an East
Asian sample. The study identified 26 independent SNPs
associated with skin luminance, as well as red/green and yellow/
blue components of skin color. For this study, we selected the 15
SNPs significantly associated with skin luminance.

Datasets

Ancient DNA data was obtained from the Genome Sequence
Archive for Human (GSA-Human; National Genomics Data
Center, & Partners, 2017) at the National Genomics Data Center
(NGDC), Beijing Institute of Genomics, Chinese Academy of
Sciences (https://ngdc.cncb.ac.cn/gsa-human) and from the
European Nucleotide Archive (ENA) (2022) at the European
Bioinformatics Institute (EBI) (https://www.ebi.ac.uk/ena)

Accession numbers were the following: HRA000123 (M. A.
Yang et al., 2020); HRA000411 (Mao et al., 2021); HRA000451
(C. C. Wang et al., 2021); HRA001777 (Kumar et al., 2022);
HRA002378 (H. Wang et al., 2023); HRA004375 (Xiong et al.,
2024); HRA005606 (Bai et al., 2024); HRA005681 (Guo et al.,
2024); HRA005990 (Ma et al., 2024); HRA006574 (Shen et al.,
2024); HRA007236 (Zhang et al., 2024); HRA007527 (Li et al.,
2024); PRJEB2671 (McColl et al., 2018); PRJEB29700 (Sikora et al.,
2019); PRJEB30575 (Flegontov et al., 2019); PRJEB35748 (Jeong
et al., 2020); PRJEB36297 (Ning et al., 2020); PRJEB41752 (Liu
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et al., 2022); PRJEB42781 (Wang et al., 2021); PRJEB43762 (Cooke
et al., 2021); PRJEB45573 (Gelabert et al., 2022); PRJEB55185 (Lee
et al., 2023); PRJEB72297 (Lee et al., 2024); PRJEB20217 (M. A.
Yang et al., 2017).

For contemporary genomes, we used a sample of 383
individuals from Han Chinese, Tibeto-Burman, Tai-Kadai,
Austroasiatic, Mongolic, Turkic, Tungusic, and Indo-European
speaking groups from China and Nepal, published by T. Wang
et al. (2021); samples from 4 native North American and 12 north
Asian populations published by Rasmussen et al. (2010); 42
Mongols from Inner Mongolia (C. C. Yang et al., 2021); 41 Tai–
Kadai-speaking Maonan people (J. Chen et al., 2022); and 157
individuals from four Tibeto-Burman-speaking groups from the
Guizhou province in Southwest China (J. Chen et al., 2023). Our
sample also comprised 1104 individuals indigenous to the high-
altitude regions in the Himalayas in Nepal, including 344 ethnic
Tibetans and 103 Sherpa (Jeong et al., 2018).

We used the TOPMed Imputation Server to perform genotype
imputation, leveraging the TOPMed reference panel (Taliun
et al., 2021).

Merging

For each sample, metadata were collected from the supplementary
material of the relative publication, and the following variables
were extracted (if present) from the metadata: Population/Culture
(‘pop’); Years Before Present (Years BP); Autosomal Coverage;
Latitude and Longitude.

Genome Imputation

The ancient genomes were imputed using GLIMPSE2 (Rubinacci
et al., 2023), using 1000 Genomes Project phase3 as reference panel
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).
For this, raw sequence data in.bam format were processed to
generate imputed genotypes. The imputation process aimed to

infer missing genotypic information and provide a more
comprehensive set of genetic variants for each individual. The
output BCF files were then merged with BCF tools (Danecek
et al., 2021).

Data Transformation

In our analysis, we combined GWAS summary statistics with allele
frequency information based on SNP identifiers (chr:pos). SNPs
that did not overlap between datasets were excluded. We then
compared the GWAS effect allele (A1) with the allele data to
ascertain whether it corresponded with the reference (REF) or
alternative (ALT) allele in the 1000 Genomes Project (1KG; 1000
Genomes Project Consortium; 2015). We computed a weighted
PGS, which we refer to as the Genetic Value Score (GVS), for each
SNP, taking into account its allele frequency and effect size (β).
Following this, a merged dataset was constructed containing one
PGS value for each individual by taking the average GVS across all
SNPs. The individual’s data were then augmented with additional
attributes, including their dataset source and other relevant
metadata, extracted using a custom string parsing function.

Admixture Analysis

Admixture components for the samples were computed using
ADMIXTURE software (Alexander et al., 2009), a powerful tool for
estimating individual ancestries from multilocus SNP genotype
datasets. The ADMIXTURE analysis works by decomposing
genotype data of each individual into fractions representing
potential ancestral populations. Admixture data was merged with
the PGS dataset in R by organizing individuals based on their FAM
identifiers.

Statistical Analysis

A correlation analysis was conducted to examine the relationship
between the PGS values and their corresponding dates, expressed
as Years BP.

Regression analyses were carried out to investigate the effects of
various predictors on PGS values. The first regression model
included Coverage as a covariate, the second introduced geo-
graphic variables (Latitude and Longitude) to the predictors, and
the fourth introduced ancestry components estimated with
ADMIXTURE.

In our regression analysis, we aimed to include the eight
ancestry components estimated by ADMIXTURE as predictors.
However, since the ancestry proportions output by ADMIXTURE
sum to 1 for each individual, including all eight components
introduces a situation of perfect multicollinearity. This means that
the value of one component can be perfectly predicted from the
values of the others, leading to computational difficulties and
unstable coefficient estimates in the regression model. To
circumvent this issue, and based on standard analytical practices
in such situations, we opted to include only seven of the eight
components in the model. By doing this, the effect of the dropped
component is effectively absorbed into the intercept of the
regression, and the coefficients of the included components are
interpreted relative to it. This adjustment ensures amore stable and
interpretable model without compromising the integrity of our
analysis.

Table 1. Characteristics of the polygenic scores

GWAS
N independent

SNPs
N matching

IDs % matching

IQ (Davies et al.,
2018)

433 433 100

EA3 (Lee et al., 2018) 3269 3269 100

EA4 (Okbay et al.,
2022)

3951 3936 99.6

MIX-Height 13,621 13,621 100

Height-direct 565 564 99.9

EAS-Height 573 508 88.7

Schizophrenia 342 333 97.4

ASD 69 56 81.16

Anxiety 40 40 100

Depression 305 305 100

Skin Color-UKBB 1323 1021 77.17

Light Skin-EAS 15 15 100

Note: GWAS, genomewide association study; SNPs, single nucleotide polymorphisms; ASD,
autism spectrum disorder.
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Results

In total, there were 1245 individuals in the merged dataset. After
excluding individuals with no metadata and duplicate samples,
there were 1133 individuals.

Dates (in Years BP) for these samples spanned a wide historical
range. The minimum date was 141.5, with a mean date of 3101.8.
The oldest sample was 40,000 years old and belonged to the
Tianyuan individual. Finally, 181 samples lacked date information.

The PGSs were computed for each individual for different traits.
The percentage of SNPs matching between the GWAS and the
samples ranged from 77.2% for Skin Color-UKBB to 100% for IQ,
EA3, MIX-Height, Anxiety and Depression, Light Skin-EAS
(Table 1).

Sample locations were globally dispersed. Latitude ranged from
3.533 to 70.700, with amean of 40.4, centering aroundmid-latitude
regions, and the median latitude was slightly higher at 43.08.

Longitude spanned from -170.10 to 159.10, with a median at
100.46. The lowest longitude belonged to the Old Bering Sea
samples found at Ekven. Because a negative value would not make
sense in this context, we compute longitude east on a 0−360 scale.
The lowest latitude samples (3.5−5.47) came from Indonesian and
Malaysian genomes.

Depth of coverage, which indicates the number of times a
specific base (nucleotide) in the DNA is read during the sequencing
process, ranged from 0.001x to 32.29x, with a mean of 1.75x.

Admixture

The analysis explored various models, and the one with the lowest
cross-validation (CV) error incorporated eight components. The
selection of eight ancestral populations (K) was based on rigorous
cross-validation. The eight-component model exhibited the lowest
CV error, suggesting that it most accurately captures the genetic

Figure 1. ADMIXTURE plot showing ancestry components (K = 8) by group.
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Table 2. Pearson’s correlation between Years BP and PGS*

r (all); p r (12K); p

EA −.195; p < .001 −.132; p < .001

IQ −.085; p < .01 −.091; p < .01

MIX-Height −.013; p = .683 −.013; p = .692

EAS-Height −.049; p = .136 −.019; p = .559

DIR-Height −.028; p = .395 −.002; p = .945

Schizophrenia .062; p = .058 .007; p = .838

ASD −.080; p = .014 −.080; p = .014

Depression .058; p = .072 .08; p = .015

Anxiety .066; p = .043 .102; p < .01

Skin Color-UKBB .089; p < .01 .077; p = .019

Light Skin-EAS −.097; p < .01 −.05; p = .127

Note: BP, before present; PGS, polygenic score; EA, educational attainmennt; ASD, autism spectrum disorder.
*Significant correlations are shown in bold type.

Figure 2. Educational attainment (EA): stand-
ardized beta coefficients.
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structure of our dataset without overfitting. Consequently, we
employed this eight-component model to interpret the genetic
ancestry of our population in the subsequent analysis (see
Figure 1).

Based on the distribution of these components among different
cultural groups, we identified their most probable ancestral origins.
For instance, the second component (V2) stood out distinctly,
comprising over 90% of the ancestry in the Afanasievo and Finnish
individuals, while representing only a small proportion of the East
Asian samples. It accounted for more than 50% of the ancestry in
the Xinjiang samples and exceeded 25% in the Turkic and Upper
Paleolithic Siberian samples. Given these patterns, we labeled this
component as ‘Afanasievo-Yamnaya’. Similarly, the fifth compo-
nent comprised about 90% of the ancestry of the Jomon samples,
but was present at around 10% among Koreans, and was much

smaller among the other mainland East Eurasian populations.
Hence, we labeled this component as ‘Jomon’.

Temporal Trends

We computed the correlation between Years BP and the PGS to
identify any potential temporal trends, such as an increase or
decrease in the PGS over time. This method allows for a
straightforward and intuitive visualization of the temporal trend
by plotting the PGS values against the corresponding time points,
making it easy to observe any general upward or downward
movement in the data.

However, this approach has notable limitations due to the
variability in the ethnic composition of our sample over time.
Specifically, different geographical regions and ethnic groups were
not uniformly represented across all periods, which introduces

Figure 3. Partial effect of latitude on educational attainment (EA) and partial effect of Years Before Present (BP) on EA.
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biases into our analysis. For example, certain timeframes may have
predominantly sampled individuals from one region or ethnic
group, while other periods may have samples with different
regional or ethnic backgrounds. This inconsistency means that any
detected trend might be influenced by underlying shifts in the
population structure rather than a genuine temporal change in the
PGS. Thus, interpreting the correlation without considering these
compositional differences could lead to misleading conclusions
about the temporal dynamics of polygenic traits.

To circumvent these limitations, we employed regression
models that included Admixture Components, Longitude,
Latitude, and Coverage as co-predictors. By incorporating these
additional variables, we aimed to account for the effects of
population structure, spatial distribution, and sampling coverage,
thereby providing a more accurate and nuanced analysis of the
temporal trends in PGSs. This approach helps to mitigate the
confounding effects of uneven sampling across time and ensures
that the observed trends are not merely artifacts of changing ethnic
compositions or sampling biases.

We performed linear regression using the full dataset, but for
the spline regression model incorporating Date, we restricted the
analysis to samples younger than 12,000 years. This adjustment
was necessary due to the sparse data available for older samples
(N= 8), which could have obscured more nuanced temporal
trends. To fully utilize the dataset, we applied spline effects for
Latitude, including the oldest samples.

The correlations and the p-values are reported in Table 2 and
the temporal trend is visualized in Figures S1 to S11.

Regression Models

EA Analysis. The effects of Years BP and Arctic admixture were
significantly negative (β = -0.274 and -0.239 respectively). The
other significant effects were positive: Northeast Chinese admix-
ture (.348); Afanasievo (.153); Siberian (.215); Southeast Asian
(.199) and coverage (.079). The results are visualized in Figure 2.

Nonlinear trends with Latitude and Years BP. The scatterplot
inspection suggested that the temporal trend deviated from
linearity, prompting the use of a spline function to capture
potential nonlinear patterns between PGSs and Years BP. This was
implemented using the splines package in R, utilizing natural
splines (ns) with three degrees of freedom for flexibility. By
incorporating a natural spline with three degrees of freedom for
Date, we aimed to model complex, nonlinear associations that
could elucidate spatial relationships more effectively. Regression
results showed significant nonlinear effects for the first, second and
third spline components of Date (p < .001, p < .01, and p < .001
respectively). For latitude, a significant nonlinear effect was found
for the first spline component (p < .001). To facilitate
interpretation, we generated partial effect plots for Latitude and
Date from the fitted model, displaying the predicted effects on
PGSs with confidence intervals (Figure 3). These plots provide a
clearer view of the nonlinear influence of both latitude and
temporal trends on PGSs.

Comparison withmodern genomes from Eastern Eurasia. To
confirm the positive trend in recent times, we computed PGSs
from several samples of contemporary Eastern Eurasians. We then

Figure 4. Interaction effect: Educational attainment (EA) by
period for each region.
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Figure 5. IQ: Standardized beta coefficients.

Figure 6. Partial effect of Years Before Present (BP) on IQ.
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carried a regressionmodel with EA as the outcome and with period
(modern vs. ancient) and geographical region as predictors.

The main effect of the modern period (relative to ancient) was
positive and significant (β = 0.398, p= .032), indicating an increase
in EA scores in modern times. Central Asia, Mongolia, NE China,
North Siberia, South China, SE Asia, and Tibetan regions all
showed positive and significant effects on EA scores compared to
the baseline region, suggesting higher EA PGSs in these regions.

The interaction between the modern period and Mongolia
(β= 0.874; p< .001), South China (β = 1.120, p< .001) and SEAsia
(β= 0.590, p < .001) is positive and significant. This suggests that,
in the modern period, EA scores have increased notably in these
regions, especially in South China. The presence of an interaction
between region and period can be seen in Figure 4.

Since the average age of the samples from each period and
geographical region differed, we added Date (Years BP) as a
covariate, and assigned a value of zero to the modern samples. The
interaction results were very similar, but Date replaced Period as a
significant predictor (β = -0.157, p < .001).

IQ Analysis

Regression model results. The regression results indicated
several significant effects (Figure 5). Date had a significant
negative effect (β = -0.096, p = .012), indicating a trend of lower
PGSs further back in time. Northeast Chinese ancestry
showed a significant positive effect (β = 0.146, p = .001),
suggesting a positive contribution to the outcome variable.

Figure 7. Partial effect of latitude on MIX-Height and partial effect of Years Before Present (BP) on MX-Height.
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Afanasievo-Yamnaya and Siberian ancestry components did
not show significant effects (p = .180 and p = .280 respectively).
The Arctic component also showed no significant influence (p =
.920). Longitude and Latitude were not significant predictors
(p = .613 and p = .077 respectively), although latitude approached

significance. Coverage did not have a significant effect (p = .636),
and SE Asian, Tibetan, and Jomon components were also
nonsignificant, with p-values ranging from .127 to .850.

Nonlinear trends with Years BP. The regression model results
indicated a significant nonlinear effect for the first spline

Figure 8. MIX-Height, EAS-Height and DIR-Height: Standardized beta coefficients.
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component of Date (p < .001; Figure 6), while the spline
components for Latitude did not show significant effects.

Height Analysis

MIX-Height. Years BP did not have a significant effect on MIX-
Height (p = .485). Afanasievo-Yamnaya admixture had a strong

positive effect on it (β = 0.556), whereas Jomon and Southeast
Asian had negative coefficients (−.20 and −.144, respectively)

Nonlinear trends with latitude andYears BP.The results from
the regression model indicated significant nonlinear effects for the
first spline component of latitude (p< .01) and the second spline of
Date (p < .01) (Figure 7). The effect of the second spline of Date
was negative, implying negative selection on height.

EAS-Height. The regression results indicated several signifi-
cant effects. The influence of Date on the outcome was not
significant (p = .077). Northeast Chinese admixture had a negative
effect on the outcome (β = −0.083, p = .048), suggesting a
significant but relatively small influence. The Afanasievo-Yamnaya
component did not significantly affect the outcome (p = .188). In
contrast, Jomon admixture showed a strong negative effect
(β = −0.283, p < .001), as did Siberian (β = −0.152, p = .002),
Arctic (β= -0.255, p= .001), and Southeast Asian (β =−0.135, p=
.009) components. Longitude had a significant positive effect
(β = 0.185, p = .018). Other predictors, such as Latitude and
Coverage, did not show significant effects (p = .511 and p = .526
respectively). The effect of latitude on EAS-Height had a similar
curvilinear trend toMIX-Height, and the first spline component of
latitude was barely significant (p = .042).

DIR-Height. The regression results indicated several signifi-
cant effects. Date had a significant negative effect (β = -0.080, p =
.027), suggesting a higher PGS in more recent times. Northeast
Chinese ancestry also showed a significant negative effect on the
outcome (β = −0.125, p = .002). Afanasievo-Yamnaya admixture
had a strong positive effect (β = 0.354, p < .001), indicating a
substantial contribution to the outcome variable. Jomon ancestry
showed a negative effect (β = −0.109, p = .003), while Arctic
ancestry also had a significant negative impact (β = −0.192, p =
.008). Longitude exhibited a positive effect (β= 0.217, p= 0.004),
indicating a spatial trend across longitudinal gradients. Other
predictors, such as Tibetan, Siberian, SE Asian, Latitude, and
Coverage, did not show significant effects (p-values ranging from
.088 to .850).

The spline regression revealed no statistically significant effects
for either Date or Latitude.

The standardized coefficients of the regression models with
MIX-Height, EAS-Height and DIR-Height are visualized in
Figure 8.

Psychiatric Phenotypes Analysis

Schizophrenia. The regression results for schizophrenia revealed
several significant effects (Figure 9). Afanasievo-Yamnaya admix-
ture had a substantial positive impact (β = 0.288, p < .001),
indicating a strong contribution to the outcome. Jomon and
Siberian admixtures also had significant positive effects (β = 0.130,
p = .001, and β = 0.151, p = .002 respectively). Southeast Asian
admixture showed a significant positive effect (β= 0.108, p= .041).
The effect of Tibetan admixture was close to significance
(β = 0.115, p = .054), suggesting a potential influence that could
warrant further exploration. Other variables, such as Date,
Northeast Chinese, Arctic, Latitude, Longitude, and Coverage,
did not show significant effects, with p-values ranging from .133 to
.744. The spline regression revealed no statistically significant
effects for either Date or Latitude.

Autism spectrum disorder (ASD). The regression results for
ASD indicated multiple significant findings (Figure 9). Date had a
significant negative effect (β = −0.126, p = .001), pointing to lower
PGSs further back in time. Afanasievo-Yamnaya admixture had a

Figure 9. Partial effect of Years Before Present (BP) on autism spectrum disorder
(ASD).

Figure 10. Partial effect of Years Before Present (BP) on depression.
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significant positive impact (β = 0.192, p = .003). Jomon admixture
exhibited a significant negative effect (β = −0.088, p = .021), while
Arctic admixture also demonstrated a significant negative
influence (β = −0.251, p = .001). Latitude had a significant
positive effect (β= 0.170, p = .017), indicating the impact of
geographic variation.

The other predictors, including Northeast Chinese, Tibetan,
Siberian, SE Asian, Longitude and Coverage, did not show
significant effects, with p values between .107 and .488.

Nonlinear trends with Years BP. The regression model results
indicated significant nonlinear effects for the first and second
spline components of Date (p < .001 and p < .041, respectively;

Figure 11. Schizophrenia, depression, autism spectrum disorder (ASD) and anxiety: Standardized beta coefficients.
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Figure 9). In contrast, the spline components for Latitude were not
significant.

Depression. The regression analysis for Depression showed
several significant outcomes (Figure 9). Date had a significant
positive effect (β= 0.080, p = .033), indicating higher PGSs in
ancient times. Tibetan admixture had a significant negative impact
(β = −0.158, p = .007), while Jomon admixture showed a
significant positive effect (β= 0.080, p = .038). Arctic admixture
also had a significant positive effect (β= 0.171, p = .023).

Other predictors, such as Northeast Chinese, Afanasievo-
Yamnaya, Siberian, SE Asian, Latitude, Longitude, and Coverage,
did not demonstrate significant effects, with p-values ranging from
.068 to .922.

Nonlinear trends with Years BP. The regression model results
showed a significant nonlinear effect for the first spline component

of Date (p < .001; Figure 10), while the spline components for
Latitude were not significant.

Anxiety. The regression results for Anxiety highlighted several
significant effects (Figure 11). Date had a significant positive effect
(β = 0.080, p = .032), which indicates a reduction in PGSs over
time. Northeast Chinese admixture showed a significant negative
impact (β=−0.099, p= .019). Arctic admixture was also positively
significant (β= 0.167, p < .024), while Coverage had a significant
negative effect (β = −0.098, p < .014).

The remaining predictors, including Afanasievo-Yamnaya,
Tibetan, Jomon, Siberian, SE Asian, Latitude and Longitude, did
not show significant effects, with p-values ranging from 0.055
to 0.474.

The spline regression revealed no statistically significant effects
for either Date or Latitude.

Figure 12. Dark skin color and light skin color: Standardized beta coefficients.
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Skin Color

Skin Colour-UKBB. The regression results for Skin Colour-UKBB
indicated several significant effects (Figure 12). Years BP (Date) had
a significant positive effect (β= 0.102, p < .000), suggesting higher
PGSs for darker skin color in more ancient populations. Northeast
Chinese ancestry also had a significant positive effect (β= 0.392,
p < .001), indicating a substantial contribution to darker skin
pigmentation. Tibetan ancestry showed a significant positive effect
(β= 0.378, p< .001), as did the Jomon (β= 0.178, p< .001), Siberian
(β= 0.343, p < .001), Arctic (β= 0.332, p < .001), and Southeast
Asian (β= 0.223, p < .001) components, all indicating their
contributions to darker skin pigmentation.

Latitude showed a significant negative effect (β = −0.111, p <
.041), suggesting that populations further from the equator tend to
have lower PGSs for darker skin. In contrast, Afanasievo-Yamnaya
ancestry, Longitude, and Coverage did not show significant effects,
with p-values of .148, .818, and .704 respectively.

Nonlinear trends with Latitude. The regression model results
indicated significant nonlinear effects for the first and second
spline components of Latitude (p < .001 and p < .05, respectively),
suggesting a complex, nonlinear influence of Latitude on the PGS
that a linear model could not capture (Figure 13). In contrast, the
spline components for Date were not statistically significant.

Light Skin-EAS. The regression results for Light Skin-WAS
indicated several significant effects. Years BP (Date) had a
significant negative effect β = −0.175, p < .001), suggesting lighter
skin pigmentation in more recent populations. Northeast Chinese
ancestry had a significant positive effect (β= 0.173, p < .001),
indicating a contribution to lighter skin pigmentation. Similarly,
Tibetan ancestry showed a significant positive effect (β = 0.102,
p < .046), as did the Jomon (β= 0.284, p < .001), Siberian
(β= 0.437, p < .001), Arctic (β= 0.173, p < .008), and Southeast
Asian (β = 0.253, p < .001) components, all pointing to their roles
in lighter skin pigmentation.

Longitude did not demonstrate a significant effect (p < .176).
While the effect of Latitude did not reach statistical significance
(p < .084), it trended in the expected positive direction. Similarly,
Coverage showed no significant effect (β= 0.038, p = .279).

Nonlinear trends with Latitude and Years BP. The regression
model results indicated significant nonlinear effects for the second
and third spline components of Latitude (p < .001 and p < .01
respectively), suggesting a complex, nonlinear influence of
Latitude on the PGS that a linear model could not capture
(Figure 14). The three spline components of Date were significant
(p < .01, .01 and .001 respectively).

Correlation Between PGS at the Group Level

The mean PGS for the traits were computed for each historical
culture group and the group-level correlations were computed
(Figure 15). Cognitive-related PGS (EA and IQ) had significant
negative correlations with Depression (r = −.66 and −.62
respectively). EA also had a strong negative correlation with
Anxiety (r = −.83). In turn, Depression and Anxiety were
positively correlated (r= 0.64). ASD had a negative correlation
with Depression (r = −085) and a positive one with Schizophrenia
(r = .61).

Skin Colour-UKBB PGS had negative correlations with the
Height PGS, and the correlation reached significance with DIR-
Height (r = −.73; p < .01). IQ PGS had significant positive
correlations with EAS-Height and MIX-Height.

Discussion

The temporal analysis of PGSs revealed significant patterns linking
sample age (Years BP) to evolutionary pressures on various traits.
EA, IQ, and ASD displayed negative correlations with sample age,
indicating increases over time likely driven by positive directional
selection. In contrast, PGSs of anxiety, depression, and (dark) skin
color PGSs showed positive correlations with Years BP, consistent
with decreases over time through negative directional selection.
These results replicate findings from prior research on ancient
West Eurasian genomes (Piffer & Kirkegaard, 2024a). The
temporal trend of the schizophrenia PGS was in the predicted
direction (negative) but it did not reach significance. Similarly, the
strong positive directional selection for Height previously reported
in West Eurasian samples was not confirmed. Positive selection
was detected in only one of the three PGSs for Height (DIR-
Height), while the effect of the second spline of Date on MIX-
Height was negative, indicating negative selection on height. This
suggests that the relatively shorter average stature of East Asians
may be attributable to negative selection or the absence of positive
selection on height-increasing alleles. A comparison between the
ancient genomes and modern samples revealed that ancient
samples had higher PGS for MIX-Height (Figure S12).

Importantly, these trends persisted after controlling for
potential confounding variables such as ancestry, latitude, and
longitude. In some cases, controlling for these variables strength-
ened the observed associations; for example, the effect size for EA
increased significantly from .195 to .274 (Figure 2). This enhanced
association suggests that the temporal trends for EA are
particularly robust, implying positive direction selection for
cognitive and noncognitive abilities related to education. Other
correlations remained consistent in magnitude, underscoring the
stability of these findings.

Figure 13. Partial effect of latitude on Skin Color-UKBB.
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Anxiety and depression showed negative temporal trends,
aligning with the Smoke Detector principle, which posits that
natural selection favors hypersensitivity to potential threats as a
survival mechanism. This hypersensitivity reduces the risk of
missing real dangers (false negatives) by tolerating frequent false
alarms (false positives), an adaptive strategy in ancestral
environments where immediate physical threats were prevalent.
However, in contemporary urban settings with fewer immediate
dangers, this heightened sensitivity becomes maladaptive, man-
ifesting as anxiety and depression (Nesse, 2001). These findings
suggest that while these traits may have been beneficial in the past,
they are subject to negative selection in modern contexts.

Latitude emerged as an important factor influencing PGS.
Traits such as EA and ASD were positively associated with latitude
(Figures 2 and 11), while (darker) skin color showed a negative

correlation. These patterns align with broader evolutionary and
environmental considerations. For instance, the relationship
between latitude and skin color reflects the well-documented
adaptation to UV exposure and the dietary shift associated with
agriculture, which reduced vitamin D intake and reinforced the
selection for lighter skin in higher latitudes (Deng & Xu, 2017;
Lucock, 2023). Interestingly, the partial effect of latitude on Skin
Colour-UKBB revealed a nonlinear trend for the UKBB-derived
PGS (indicating darker pigmentation), with scores decreasing until
approximately 48° latitude before increasing in northern regions.
This pattern corresponds to the darker pigmentation observed
among Arctic populations, such as the Inuit, and likely reflects
adaptations to the unique UV exposure and dietary conditions in
those regions. The extended daylight and snow-reflected UV in the
Arctic make darker skin advantageous for protection, while

Figure 14. Partial effect of latitude on Light Skin-EAS and partial effect of Years Before Present (BP) on Light Skin-EAS.
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traditional diets rich in vitamin D reduce the evolutionary pressure
for lighter skin. Moreover, although this PGS was based on a
sample composed mostly of European ancestry individuals with a
much smaller share of other ancestries, we were able to detect
significant temporal and spatial (i.e., with latitude) associations.
This is remarkable because unlike other polygenic traits, the

genetic loci associated with skin pigmentation are known to differ
among populations and to show substantial divergence between
East Asians and Europeans (B. Kim et al., 2024).

The PGS for light skin pigmentation (Light Skin-EAS), derived
from a GWAS conducted on individuals of East Asian ancestry
(B. Kim et al., 2024), confirmed evidence of negative selection for

Figure 15. Group-level polygenic score correlations.
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darker skin (or positive selection for lighter skin) pigmentation.
This conclusion is supported by the positive effect of Years BP on
Light Skin-EAS (Figure 14).

B. Kim et al. (2024) reported correlations between the PGS for
skin luminance and geographic factors such as absolute latitude
and mean annual solar radiation, with correlation coefficients
around r = .5 for individual populations from the 1000 Genomes
Project phase 3. We successfully replicated this correlation in our
ancient sample. However, the positive effect of latitude was
significant only in the spline regression, suggesting nonlinear
relationships (Figure 14).

While the effect of latitude on MIX-height was in the predicted
direction, it did not reach statistical significance in the linear
regression analysis. However, using spline regression, the effect
became significant for bothMIX-Height (p< .01) and EAS-Height
(p < .05). This nonlinear relationship, which peaks at around 50°
latitude before decreasing, suggests a complex interplay between
environmental factors and human physiology.

One potential explanation for this curvilinear pattern involves
the trade-offs described by Bergmann’s and Allen’s rules (Allen,
1877; Bergmann, 1847). Bergmann’s rule states that individuals in
colder climates tend to have larger body masses to conserve heat,
while Allen’s rule suggests that shorter limbs are advantageous in
extreme cold to minimize heat loss. Therefore, populations living
near 50° latitude—where the climate is temperate—may have
evolved to be taller with larger body masses, as larger size is
beneficial for thermoregulation without the extreme pressures of
Arctic conditions.

In contrast, populations in Arctic regions beyond 50° latitude
might have developed a stockier build with shorter limbs to cope
with severe cold, resulting in a decrease in overall height. This
adaptation helps reduce surface area and conserve body heat,
aligning with Allen’s rule. Thus, the observed peak in height at mid
latitudes followed by a decrease in higher latitudes could reflect
evolutionary adaptations to varying climatic pressures, balancing
the need for heat conservation with other physiological demands.

Ancestral components further highlighted key associations
between genetic ancestry and phenotypic traits. Afanasievo-
Yamnaya ancestry showed a strong positive association with
height, aligning with previous findings of selection for tall stature
among Steppe populations (Mathieson et al., 2015). Conversely,
Jomon ancestry was negatively associated with height, consistent
with the shorter stature of modern Japanese populations compared
to other Northeast Asians, likely reflecting admixture with the
aboriginal Jomon (Figure 8). For cognitive traits, Northeast
Chinese ancestry showed the strongest effects on EA and IQ,
reinforcing the regional importance of this ancestry in shaping
these phenotypes (Figures 2 and 5). Psychiatric traits also exhibited
ancestry-specific effects; for instance, Afanasievo-Yamnaya ances-
try increased susceptibility to schizophrenia and ASD, while
Tibetan ancestry had a protective effect against depression. Arctic
ancestry reduced susceptibility to ASD, illustrating the diversity of
ancestry effects across phenotypes (Figure 11).

Regional and temporal interactions further nuanced the
observed trends. Modern genomes exhibited significantly higher
PGS for EA compared to ancient samples, although the magnitude
of these increases varied by region (Figure 4). Notably, interaction
effects suggested that positive directional selection on EA was
particularly intense in Mongolia, Southern China, and Southeast
Asia. These findings underscore the dynamic interplay between
environmental, cultural, and genetic factors across different
regions and time periods.

Correlations among PGS provided additional insights into
potential shared selection pressures (Figure 15). Cognitive traits,
such as IQ and EA, were negatively associated with psychiatric
traits like depression and anxiety, while IQ showed positive
correlations with height PGS. Anxiety and depression were
positively correlated, but ASD exhibited a strong negative
correlation with depression and a positive correlation with
schizophrenia. These relationships suggest that selection pressures
on cognitive and psychiatric traits may have operated in complex,
sometimes opposing directions.

Temporal effects on PGS, modeled with splines, revealed
nonlinear patterns that further contextualize these evolutionary
trends. For example, EA and IQ exhibited modest growth between
12,000 and 6000 BP, followed by an accelerated increase peaking
around 1500 BP. IQ, however, showed a distinct decline between
8000 and 6000 BP, a finding that may indicate a meaningful
historical trend requiring further investigation. While ASD PGS
demonstrated general increases across time periods, the
Depression PGS exhibited a marked decline between 6000 and
2000 BP before sharply increasing. These temporal dynamics
highlight the complex interplay of environmental, cultural, and
genetic factors influencing the evolution of these traits.

Overall, the findings provide robust evidence for evolutionary
changes in PGSs over time, shaped by both directional selection
and regional interactions. The intricate relationships between
ancestry, latitude, and time underscore the importance of
considering nonlinear and context-dependent factors in under-
standing the genetic architecture of human traits. Future research
should build on these results, exploring additional datasets and
refining models to further elucidate the evolutionary forces
shaping polygenic traits.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/thg.2024.49.
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