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Abstract. A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik
representation whose number of vertices per level is uniformly bounded. We prove that
if the topological rank of a minimal dynamical system on a Cantor set is finite, then all
its minimal Cantor factors have finite topological rank as well. This gives an affirmative
answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a
consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of
finite-rank Cantor minimal systems: they are either odometers or subshifts.

Key words: Cantor minimal system, topological rank, topological factor, ordered Bratteli
diagram, ordered premorphism
2020 Mathematics Subject Classification: 54H20 (Primary); 37B05, 37B10 (Secondary)

1. Introduction
A Cantor minimal system is a pair (X, T ), where T is a minimal homeomorphism of
the Cantor space X. Inspired by the definition of Rokhlin towers for approximating an
ergodic system by a finite union of towers of measurable sets [21], the definition of
Kakutani–Rokhlin towers for Cantor minimal systems was established [20, 22]. As a
topological analogue, a Kakutani–Rokhlin partition for a Cantor minimal system is a
finite union of towers of closed and open (clopen) sets in which every level of a tower
is mapped onto its upper level up to the top level. The difference in this analogy is
that a Kakutani–Rokhlin partition topologically covers the space X and the dynamical
system is generated pointwise by a nested sequence of Kakutani–Rokhlin partitions so
that the intersection of bases of their towers converges to a point. When the number
of towers of each partition in the sequence is uniformly bounded (equivalently, when
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the Bratteli–Vershik diagram associated to the sequence of Kakutani–Rokhlin partitions
has uniformly bounded number of vertices per level), the associated system has finite
topological rank or ranktop(X, T ) < ∞.

A system of finite topological rank has zero entropy and bounded number of invariant
ergodic measures [4]. Moreover, the rank of the additive group of the continuous spectrum
(that is, the eigenvalues of the Koopman operator UT (f ) = f ◦ T defined on C(X)) as an
abelian group is not more than the topological rank of the system [5, 15].

Examples of finite topological rank Cantor minimal systems include symbolic sys-
tems generated by the coding of interval exchange transformations, substitution sub-
shifts, and linearly recurrent systems on Cantor sets [2, 8, 9, 18]. It is folklore that
odometers (minimal isometries on Cantor sets) are the only rank-one minimal Cantor
systems.

The Kakutani–Rokhlin partition associated to the minimal Cantor system (X, T )

‘approximates’ T by a shift map up to the top levels of the towers. However, as the system
is eventually generated by a sequence of partitions, it can be far from being a subshift [17].
A remarkable theorem of Downarowicz and Maass [7] states that when a Cantor minimal
system is of finite topological rank, then it is either an odometer or a subshift. The latter
holds if the rank is bigger than one. Although odometers are the only topological factors
of odometers, a topological factor of a subshift is not necessarily a subshift. For instance,
odometers are topological factors of any dynamical system with non-trivial continuous
rational spectrum. Moreover, there are minimal dynamical systems on Cantor sets that are
neither subshifts nor conjugate to any odometer [17]. Even though a minimal factor of a
finite topological rank system is a subshift, it is not clear whether it is of finite topological
rank [6]. As a corollary of our main theorem, one can guarantee this for all Cantor
factors of (essentially) minimal systems. We recall that a dynamical system is essentially
minimal if it has a unique minimal subsystem and thus every minimal system is essentially
minimal.

THEOREM 1.1. Let (X, T ) be an essentially minimal Cantor system of finite topological
rank and (Y , S) be a minimal system on a Cantor set such that for some continuous map
α : X → Y , α ◦ T = S ◦ α. Then

ranktop(Y , S) < ∞.

Indeed, we prove that ranktop(Y , S) ≤ 3 ranktop(X, T ).
After submitting this article, for the case that (X, T ) is minimal and (Y , S) is a subshift

system (which means that S is a shift map on a Cantor space, such a system being called
a symbolic system in some literature), Espinoza proved that ranktop(Y , S) ≤ ranktop(X, T )

in [13]. He had previously proved that for the case of subshifts ranktop(Y , S) < ∞ [12].
Here, though, we do not have subshift assumptions for (Y , S) and it can be any minimal
factor of (X, T ) on the Cantor set. Moreover, a weaker condition for (X, T ) is considered,
which is essential minimality. In Remark 4.7, we discuss some special cases in which the
inequality ranktop(Y , S) ≤ ranktop(X, T ) holds.

As a corollary of Theorem 1.1, one can get the dichotomy of the main result of [7] for
the Cantor factors of finite topological rank Vershik systems.
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COROLLARY 1.2. Let (X, T ) be an essentially minimal system on a compact totally
disconnected metrizable space. Then every minimal Cantor factor of (X, T ) is an
odometer or a subshift.

From the algebraic point of view, given the assumptions of Theorem 1.1, rankalg(Y , S),
the algebraic rank (that is, the dimension of the Q-vector space on the abelian group) of
the dimension group K0(Y , S) associated to (Y , S) as an (essentially) minimal Cantor
system, does not exceed rankalgK

0(X, T ). In fact, every factor map α : X → Y between
two Cantor minimal systems induces an order embedding α∗ : K0(Y , S) → K0(X, T )

[19] and this implies that rankalg(Y , S) ≤ rankalg(X, T ). Therefore, it seems reasonable
to ask whether ranktop(Y , S) ≤ ranktop(X, T ) (although the topological rank of a system
is an upper bound for its algebraic rank). We will consider this question in Remark 4.7
after the proof of Theorem 1.1. This theorem answers Question 8.4 of [6] affirmatively and
in full generality.

Recently, S-adic subshifts, which are Cantor systems generated by sequences of
morphisms between finite alphabets, have also been studied by those who are interested
in ‘approximating’ finite-rank minimal subshifts with primitive substitutions [10, 6]. In
[6, Theorem 4.1], the authors proved that every minimal S-adic subshift with bounded
alphabet rank is a topological factor of a finite topological rank minimal Cantor system.
Combining this result with Theorem 1.1, one obtains the following statement.

COROLLARY 1.3. Every minimal aperiodic S-adic subshift with bounded alphabet rank
is conjugate to a subshift of finite topological rank.

To prove Theorem 1.1, we use Bratteli–Vershik representations of (X, T ) and (Y , S).
Then we apply the representation of the factor map α in terms of an ordered premorphism
between the associated ordered Bratteli diagrams. This notion has been recently defined in
[1]. Here, we will show how the existence of an ordered premorphism from an ordered
Bratteli diagram B1 to B2 may reduce the number of vertices of levels of B1 needed
to construct an ordered Bratteli diagram equivalent to B1 whose rank is dominated by
3 rank(B2).

The paper starts by recalling basic definitions and tools in §2. In §3, the notion of an
ordered premorphism via a sequence of morphisms is defined and the main result of [1]
that is also a main tool of this paper is presented. Then, in §4, Theorem 1.1 will be proved.
In §5, a combinatorial condition will be given for the verification of conjugacy.

2. Preliminaries
2.1. Topological dynamical systems on Cantor sets. A topological dynamical system is
a pair (X, T ), where X is a compact metric space and T is a homeomorphism on X. If
Z is an invariant closed subset of X, then (Z, T ) is called a subsystem. The orbit of a
point x ∈ X, denoted by O(x), is the sequence (T nx)n∈Z. If X is a Cantor space (that
is, a non-empty compact metrizable totally disconnected space with no isolated points),
then the system is called a Cantor system. Two topological dynamical systems (X, T ) and
(Y , S) are semi-conjugate if there exists a surjective continuous map α : X → Y such that
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α ◦ T = S ◦ α. In this case (Y , S) is called a factor of (X, T ), (X, T ) is called an extension
of (Y , S), and α is called a factor map.

When X = AZ, where A is a finite alphabet of cardinality n ≥ 2 and X is equipped with
the compact product topology that makes X homeomorphic to the Cantor set, together
with the shift map T acting on the bi-infinite sequences of X, then (X, T ) is called a shift
system. Every subsystem of a shift is called a subshift system.

For a topological dynamical system (X, T ), if the orbits of all points are dense in X,
then the system is called minimal. This is equivalent to the absence of non-trivial invariant
closed subsets. When (X, T ) has a unique minimal subsystem, the system is called
essentially minimal. Every essentially minimal system on a Cantor set has realizations
by sequences {Tn}n≥1 of Kakutani–Rokhlin (briefly called K-R) partitions [20]. Each K-R
partition Tn = ⋃k

i=1
⋃h

j=1 Bij is a finite union of towers,
⋃h

j=1 Bij , of clopen sets, Bij , so

that T (Bij ) = Bij+1 for j < h. The base of the tower is
⋃k

i=1 Bi1. The towers construction
is based on the first return time of the points of bases to them.

2.2. Ordered Bratteli diagrams. A Bratteli diagram is an infinite directed graph B =
((Vi)i≥0, (Ei)i≥1), where V = ⋃̇

i≥0Vi is the set of vertices with V0 = {v0} and, for each
i ≥ 1, Ei is the set of edges between Vi−1 and Vi . Each Vi and each Ei is a finite non-empty
set. There are two maps r , s : E → V , called the range and the source maps, respectively,
with r(Ei) ⊆ Vi and s(Ei) ⊆ Vi−1. A vertex v ∈ Vi is connected to a vertex w ∈ Vi−1 if
there exists an edge e ∈ Ei such that r(e) = v and s(e) = w. In this way, for each n ≥ 1
there is a |Vn| × |Vn−1| incidence matrix An whose entry aij counts the number of edges
between vi ∈ Vn and wj ∈ Vn−1. We assume that every row and every column of each An

is non-zero.
For m, n ≥ 0 with m < n, let Em,n be the set of finite paths from Vm to Vn, that is, Em,n

consists of the tuples (em+1, . . . , en), where ei ∈ Ei for i = m + 1, . . . , n and r(ei) =
s(ei+1) for i = m + 1, . . . , n − 1. In particular, Em,m = {(v, v) | v ∈ Vm} is an edge set
from Vm to itself.

For a strictly increasing sequence of integers n = {nk}k≥0 with n0 = 0, one can
define the telescoping of the diagram along n by defining a new Bratteli diagram B ′ =
((V ′

i )i≥0, (E′
i )i≥1) in which for every i ≥ 1, V ′

i = Vni
, E′

i = Eni ,ni+1 , and V ′
0 = V0. So,

the incidence matrices of B ′ are A′
i = Ani

× Ani−1 × · · · × Ani−1+1. A Bratteli diagram
is called simple if there exists a telescoping of that along a sequence such that all the
incidence matrices have just positive entries.

An ordered Bratteli diagram, B = ((Vi)i≥0, (Ei)i≥1, ≥), is a Bratteli diagram
((Vi)i≥0, (Ei)i≥1) together with a partial ordering on the set of its edges in which
two edges e and e′ are comparable if and only if r(e) = r(e′). In fact, for every
n ≥ 1 and every v ∈ Vn \ V0, r−1(v) is linearly ordered. For each v, the edge with
the largest (smallest) number in the ordering of r−1(v) is called the max edge (min
edge). For every telescoping of B, there is an induced ordering on the edge set. In fact,
(ek+1, ek+2, . . . , el) > (fk+1, fk+2, . . . , fl) as two finite paths in Ek,� if r(e�) = r(f�)

and there exists some i with k + 1 ≤ i ≤ l such that for all j with i < j ≤ l, ej = fj and
ei > fi .
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Let B = ((Vi)i≥0, (Ei)i≥1, ≥) be an ordered Bratteli diagram. The set of infinite paths
is

XB = {(e1, e2, . . .) | ei ∈ Ei , r(ei) = s(ei+1), i = 1, 2, . . .}.
Two paths are cofinal if all but finitely many of their edges agree. The set XB is equipped
with the usual compact product topology so that its basis consists of cylinder sets of the
from

U(e1, e2, . . . , ek) = {(f1, f2, . . .) ∈ XB : fi = ei , 1 ≤ i ≤ k}.
The set XB is a compact Hausdorff space with a countable basis consisting of clopen sets
and is homeomorphic to the Cantor set if it is infinite and B is simple. Let Xmax

B denote
the set of all those elements (e1, e2, . . .) in XB such that each en is a max edge and define
Xmin

B analogously. An ordered Bratteli diagram is called properly ordered if it is simple
and Xmax

B and Xmin
B each contains only one element; when this occurs, the max and min

paths are denoted by xmax and xmin, respectively. For any Bratteli diagram, there exists an
ordering which makes it properly ordered [20].

Let B = ((Vi)i≥0, (Ei)i≥1, ≥) be a properly ordered Bratteli diagram. The Vershik (or
adic) map is the homeomorphism ϕB : XB → XB wherein ϕB(xmax) = xmin and, for any
other point (e1, e2, . . .) �= xmax, the map sends the path to its successor [20]; in particular,
let k be the smallest number that ek is not a max edge and let fk be the immediate successor
of ek . Then ϕB(e1, e2, . . .) = (f1, . . . , fk−1, fk , ek+1, ek+2, . . .), where (f1, . . . , fk−1)

is the min path in E0,k−1 having the range s(fk).
A Bratteli diagram is of bounded rank if the number of vertices at every level is

uniformly bounded, that is, maxn#Vn = d < ∞. When a finite-rank diagram B is properly
ordered, the Vershik system (XB , TB) on that is said to be of finite topological rank and
the minimum such d (as there are equivalent ordered Bratteli diagrams) is called the rank
of (XB , TB) [6].

Using Kakutani–Rokhlin partitions for Cantor minimal systems, Herman, Putnam, and
Skau proved the following result.

THEOREM 2.1. [20] Let (X, T ) be a Cantor minimal system. Then T is topologically
conjugate to a Vershik map on a Bratteli compactum XB of a simple properly ordered
Bratteli diagram B. Furthermore, given x0 ∈ X, we may choose the conjugating map β :
X → XB so that β(x0) is the unique infinite max path in B.

We use the notation ranktop(X, T ) = d when the conjugate Vershik system to (X, T ) is
of rank d .

2.3. Dimension groups. Here we recall some preliminaries about dimension groups in
as much detail as we need in the following (mainly in Example 3.4). For more detailed
information, we refer the reader to [11, 20].

Every Bratteli diagram B = ((Vn)n≥0, (En)n≥1) can be represented by a sequence
of ordered groups Z|Vn| mapped into each other by a sequence of positive group
homomorphisms {An}n:

Z|V0| A0−→ Z|V1| A1−→ Z|V2| A2−→ · · · .
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One can associate a dimension group, denoted by K0(V , E), which is the direct limit of the
above system of ordered groups and homomorphisms [11]. There will be a partial ordering
induced on K0(V , E) inducing a positive cone K0+(V , E). Each non-zero element of
K0+(V , E) can be considered as an order unit. The order unit corresponding to the class
of 1 ∈ Z|V0| is called the distinguished order unit. By definition, the dimension group of
a Bratteli diagram is independent of the choice of ordering on the diagram. This gives an
equivalence relation between two Vershik systems called strong orbit equivalence in terms
of the ordered isomorphism of dimension groups with order unit. Let us recall that two
Cantor minimal systems are orbit equivalent if there exists a homeomorphism between
them preserving the orbits.

The dimension group can be defined abstractly as an ordered group [11] or for the
Vershik system (X, T ) on a properly ordered Bratteli diagram B = (V , E, ≥) [20]. There
is also an equivalent ‘dynamical definition’ for K0(X, T ). That is,

K0(X, T ) = C(X, Z)/(1 − T )(C(X, Z)), K0+(X, T ) = {[f ] | f ≥ 0}, 1 = [1X],

where (1 − T )(C(X, Z)) denotes the subgroup of C(X, Z) containing all the
integer-valued co-boundaries:

(1 − T )(C(X, Z)) = {f ∈ C(X, Z) | there exists g ∈ C(X, Z) f = g − g ◦ T }.

Let MT (X) denote the set of all invariant measures of (X, T ). Then the infinitesimal
subgroup of K0(X, T ) is defined by

Inf(K0(X, T )) =
{

[f ] | for all μ ∈ MT (X)

∫
f dμ = 0

}
.

The equivalence of these definitions was established in the following remarkable results.

THEOREM 2.2. [20] Let (G, G+, u) be a dimension group with distinguished order unit.
Then the following are equivalent.
(1) There exists an essentially minimal Cantor system (X, T ) such that K0(X, T ) ∼= G

as ordered groups with order units.
(2) There is a properly ordered Bratteli diagram B = (V , E, ≥) such that K0(V , E) ∼=

G as ordered groups with order units.

THEOREM 2.3. [16] Two Cantor minimal systems (X, T ) and (Y , S) are:
(1) strongly orbit equivalent if and only if K0(X, T ) and K0(Y , S) are isomorphic as

ordered groups with order units;
(2) orbit equivalent if and only if K0(X, T )/Inf(K0(X, T )) and K0(Y , S)/

Inf(K0(Y , S)) are isomorphic as ordered groups with order units.

The rank of a dimension group (as an abelian group) is defined as the dimension of its
vector space over Q. For a Cantor minimal system (X, T ), the rank of K0(X, T ) is called
the algebraic rank of (X, T ).
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2.4. S-adic representation of minimal subshifts. One of the models to represent a
minimal system of finite topological rank is the S-adic representation [10, 6]. We use the
definitions of [6].

Let {An}n≥0 be a sequence of finite alphabets and suppose that τ = (τn : An+1 →
A∗

n)n≥0 is a directive sequence of morphisms such that for every a ∈ An+1, τn(a) is not
the empty word. Then there is a sequence of |An+1| × |An| matrices Mn (also denoted
by Mτn) so that for every n ≥ 0 each entry (Mn)ij counts the number of occurrences of
the j th letter of An in τn(ai), ai ∈ An+1. When all the matrices are positive, the sequence
of morphisms is called positive. The sequence τ is proper if every τn is proper and the
latter means that for every n, there exist letters a, b in An such that for all c ∈ An+1,
τn(c) starts with a and ends with b. Moreover, τ is called primitive if for every n ≥ 1 there
exists some N ≥ n such that Mτ[n,N)

> 0, where τ[n,N) = τn ◦ τn+1 ◦ · · · ◦ τN−1. For every
n ≥ 0, let

L(n)(τ ) = {w ∈ A∗
n | there exists N > n there exists a ∈ AN w occurs in τ[n,N)(a)}.

Suppose that X
(n)
τ is the set of points x ∈ AZ

n so that all the factors of x belong to
L(n)(τ ). Then (X

(n)
τ , σ) is a subshift and, if τ is primitive, it will be a minimal subshift.

The minimal subshift (X, S) := (X
(0)
τ , S) is called the S-adic subshift generated by the

directive sequence τ .
Let B = ((Vk)k≥0, (Ek)k≥1, ≥) be an ordered Bratteli diagram. There exists a sequence

of morphisms σB = (σB
i : Vi → V ∗

i−1)i≥1 defined by, for i ≥ 2,

σB
i (v) = s(e1(v))s(e2(v)) · · · s(ek(v)),

where {ej (v) | j = 1, . . . , k(v)} is the ordered set of edges in Ei with range v and, for
i = 1, σB

1 : V ∗
1 → E∗

1 , σB
1 (v) = e1(v) · · · e�(v), where e1(v), . . . , e�(v) are all the edges

with range v.
Each σB

i extends to V ∗
i by concatenation. For every i, j ∈ N with i < j , we define

σB
[i,j ] : V ∗

j → V ∗
i by σB

[i,j ] = σB
i+1 ◦ σB

i+2 ◦ · · · ◦ σB
j . Also, let σB

[i,i] : V ∗
i → V ∗

i be the
identity map.

PROPOSITION 2.4. [6, Proposition 4.6] Let (X, T ) be a minimal Cantor system given by
a Bratteli–Vershik representation B. If (X, T ) is a subshift, then, after an appropriate
telescoping, the S-adic subshift generated by the sequence of morphisms σB = (σB

n :
Vi → V ∗

i−1)i≥1 read on B is conjugate to (X, T ).

2.5. Fine–Wilf theorem. One of the well-known theorems of symbolic dynamics that we
need in the following is a form of the so-called Fine–Wilf theorem [14] that follows easily
from an induction argument and the original form of that theorem, and we state it here for
the sake of completeness. Let us first recall that if A is an alphabet and if w = w1 · · · wn

with w1, . . . , wn ∈ A, then w is called periodic with period p ≤ n whenever wi = wi+p

for every 1 ≤ i ≤ n − p.
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LEMMA 2.5. Let A be a finite alphabet and let k ∈ N. If w ∈ A∗ has periods
p1, p2, . . . , pk such that |w| ≥ p1 + p2 + · · · + pk − gcd(p1, p2, . . . , pk), then w is
periodic with period gcd(p1, p2, . . . , pk).

3. Factoring and Bratteli diagrams
Let (X, T ) and (Y , S) be two Cantor minimal systems such that for some continuous
map α : X → Y , α ◦ T = S ◦ α. It is natural to realize this relation between the two
systems in terms of a relation between their associated Bratteli diagrams. For the special
case that α is almost one-to-one (that is, α is one-to-one for a generic point in X),
some characterizations have been proved in [23]. For the general case, in [1] the authors
defined the notion of an ordered premorphism between two ordered Bratteli diagrams and
proved the equivalence of the existence of an ordered premorphism between two properly
ordered Bratteli diagrams with the existence of a factor map between their associated
Bratteli–Vershik systems. Here for the sake of completeness and to be more precise we
first recall the definition of an ordered premorphism and Proposition 4.6 of [1] and then, to
be prepared for the proof of Theorem 1.1, we will show how such an ordered premorphism
induces a sequence of morphisms between the two diagrams. There will be an example at
the end of this section.

Definition 3.1. [1, Definition 3.1] Let B1 = (V , E, ≥) and B2 = (W , S, ≥′) be ordered
Bratteli diagrams. By an ordered premorphism (or just a premorphism if there is no
confusion) f : B1 → B2, we mean a triple (F , (fn)

∞
n=0, ≥), where (fn)

∞
n=0 is a cofinal

(that is, unbounded) sequence of positive integers with f0 = 0 ≤ f1 ≤ f2 ≤ · · · , F

consists of a disjoint union of sets of edges, say F0 ∪ F1 ∪ F2 ∪ · · · together with a pair
of range and source maps r : F → W , s : F → V , and ≥ is a partial ordering on F such
that:
(1) each Fn is a non-empty finite set, s(Fn) ⊆ Vn, r(Fn) ⊆ Wfn , F0 is a singleton,

s−1{v} is non-empty for all v in V , and r−1{w} is non-empty for all w in W ;
(2) e, e′ ∈ F are comparable if and only if r(e) = r(e′), and ≥ is a linear order on

r−1{w} for all w ∈ W ;
(3) the following diagram of f : B1 → B2

V0
E1 ��

F0

��

V1
E2 ��

F1

��

V2
E3 ��

F2

��

· · ·

Wf0 Sf0,f1

�� Wf1 Sf1,f2

�� Wf2 Sf2,f3

�� · · ·

commutes. The ordered commutativity of the diagram of f means that for each
n ≥ 0, En+1 ◦ Fn+1 ∼= Fn ◦ Sfn,fn+1 , that is, there is a (necessarily unique) bijective
map from En+1 ◦ Fn+1 to Fn ◦ Sfn,fn+1 preserving the order and intertwining the
respective source and range maps.

To see how the ordered premorphism f : B1 → B2 induces a factoring α : XB2 → XB1

between the two Vershik systems, let x = (s1, s2, . . .) be an infinite path in XB2 . Define
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the path α(x) = (e1, e2, . . .) in XB1 as follows. Fix n ≥ 1. By Definition 3.1, the diagram

V0
E0,n ��

F0

��

Vn

Fn

��
W0

S0,fn

�� Wfn

commutes, that is, F0 ◦ S0,fn
∼= E0,n ◦ Fn. Thus, there is a unique path (e1, e2, . . . , en, dn)

in E0,n ◦ Fn (in fact, (e1, e2, . . . , en) ∈ E0,n and dn ∈ Fn) corresponding to the path
(d0, s1, . . . , sfn) in F0 ◦ S0,fn , where d0 is the unique element of F0. So, the path
α(x) = (e1, e2, . . .) in XB is associated to the path x = (s1, s2, . . .) in XB2 .

The correspondence of factor maps between two Vershik systems and ordered premor-
phisms between the associated properly ordered Bratteli diagrams was established in the
proof of the following proposition.

PROPOSITION 3.2. [1, Proposition 4.6] Let (X, T ) and (Y , S) be Cantor minimal systems,
and let x ∈ X and y ∈ Y . Suppose that B1 and B2 are Bratteli–Vershik models for (Y , S, y)

and (X, T , x), respectively. The following statements are equivalent:
(1) there is a factor map α : (X, T ) → (Y , S) with α(x) = y;
(2) there is an ordered premorphism f from B1 to B2.
More precisely, there is a one-to-one correspondence between the set of factor maps α as
in (1) and the set of equivalence classes of ordered premorphisms f from B1 to B2.

Definition 3.3. Let B1 = (V , E, ≥) and B2 = (W , S, ≥′) be two ordered Bratteli
diagrams with an ordered premorphism f : B1 → B2 between them. One can describe
an induced sequence of morphisms

τ = (τn : Wn → V ∗
n )n≥0

between the two diagrams as follows. Let f = (F , (fn)
∞
n=0, ≥). Assume that fn = n for

every n ≥ 0. (We can always make this assumption using a telescoping of B2 along a
strictly increasing subsequence of (fn)

∞
n=0.) Let V = ⋃∞

n=0 Vn and W = ⋃∞
n=0 Wn be the

sets of vertices of B1 and B2, respectively. Then, for every n ≥ 0, the morphism τn is
a map τn : Wn → V ∗

n such that for every vertex w ∈ Wn, τ(w) represents the ordered
set of vertices of Vn connected to w via f . More precisely, let F = ⋃∞

n=0 Fn be the
decomposition of the set of edges of f and let {g1, g2, . . . , gm} be the ordered set of
edges in Fn with range w. Then

τn(w) = s(g1)s(g2) · · · s(gm).

We extend τn to W ∗
n by concatenation. Observe that the essential property of the ordered

premorphism f , which is the ordered commutativity, reads as

τn ◦ σ
B2
n+1 = σ

B1
n+1 ◦ τn+1 (3.1)

for all n ≥ 1. Conversely, every sequence of morphisms satisfying (3.1) induces an ordered
premorphism between the two diagrams; however, this direction is not needed in this note.
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FIGURE 1. An ordered premorphism f : B1 → B2 inducing a factor map α : XB2 → XB1 . The thick path
(s1, s2, s3, . . .) in the right-hand diagram is mapped by α to the thick path (e1, e2, e3, . . .) in the left-hand

diagram.

Example 3.4. Figure 1 shows an example of an ordered premorphism f : B1 → B2

between two ordered Bratteli diagrams which induces a factor map α : XB2 → XB1 . An
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infinite path (s1, s2, s3, . . .) on B2 and its image (e1, e2, e3, . . .) on B1 under α are
drawn in Figure 1 to illustrate the formula of α as explained in the remarks following
Definition 3.1. Note that the orderings on the two diagrams as well as the orderings
of the premorphisms are repeated at every other level. In fact, the two diagrams are
stationary. The left-hand diagram is associated to the Sturmian system with rotation
number θ = 1 + √

5 and the right-hand diagram, which is a substitution, is in fact orbit
equivalent to the Sturmian system with rotation number θ . To see the orbit equivalence
(for the sake of completeness) by Theorem 2.3(3), it is sufficient to compute the dimension
group K0(B2) and to show that K0(B2)/Inf(K0(B2)) ∼= Z + θZ. The direct limit system
associated to K0(B2) is

Z
A0−→ Z3 A1−→ Z3 A2−→ · · · −→ K0(V , E)

with

A0 =
⎡
⎣34

21
21

⎤
⎦ , An = A =

⎡
⎣3 1 1

2 1 0
2 0 1

⎤
⎦ , n ≥ 1.

The Perron eigenvalue of A is θ = 2 + √
5 associated to the (normalized) eigenvector

γ = (2/(5 + √
5))((1 + √

5)/2, 1, 1). As for all stationary systems, by the well-known
Perron–Frobenius theorem, the positive cone is

K0+(B2) = {v ∈ Z3 | there exists k ∈ N, Akv ≥ 0} = {v ∈ Z3 | γ · v ≥ 0}
and the unique invariant measure (which is associated to the unique state of K0(B2)) is
determined by

τ([v]) = (γ · v)/λn,

where v is in the nth group of the direct system and [v] is its corresponding equivalence
class in K0(B2). Then it is not hard to see that

for all v = (0, n, −n) with n ≥ 1, τ([v]) = 0.

So, the infinitesimal subgroup is non-trivial and isomorphic to Z; hence, K0(B2)/

Inf(K0(B2)) ∼= Z + θZ.
Now let us show how to determine the sequence of morphisms induced by the ordered

premorphism f between the two diagrams. To do that, we first label the vertices of the two
diagrams by Vi = {ui , vi} and Wi = {xi , yi , zi} for every i ≥ 1. Then the morphisms are

τi(xi) = uiui , τi(yi) = viui , τi(zi) = uivi , if i is odd,

τi(xi) = uiui , τi(yi) = uivi , τi(zi) = viui , if i is even.

Let us examine the order commutativity in terms of the morphisms on a fixed vertex of the
right-hand diagram. Consider for example y2 ∈ W2. Then

τ1 ◦ σ
B2
2 (y2) = τ1(x1x1y1) = τ1(x1)τ1(x1)τ1(y1) = u1u1u1u1v1u1
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and

σ
B1
2 ◦ τ2(y2) = σ

B1
2 (u2v2) = σ

B1
2 (u2)σ

B1
2 (v2) = u1u1u1u1v1u1.

We refer the reader to [1] to see more examples of ordered premorphisms.

4. Rank of factors
In this section we prove Theorem 1.1. To be prepared we firstly mention some observations
and facts about microscoping of ordered Bratteli diagrams.

The following ‘packing lemma’ is useful for reducing the rank of an ordered Bratteli
diagram. Also, it is of interest in its own right. As it is a form of microscoping of an
ordered Bratteli diagram, one may conclude that from the results of S-adic sequences of
morphisms [3]. Here, not losing the consistency of our literature, we make a proof for
that using the ‘traditional’ language of Bratteli diagrams that is in fact for the sake of
completeness.

LEMMA 4.1. Let B = ((Vn)n≥0, (En)n≥1, ≥) be an ordered Bratteli diagram for which
there exist some k ≥ 1 and a set of words W ⊆ V ∗

k−1 such that

σB
k (v) ∈ W ∗ for every v ∈ Vk . (4.1)

Suppose that W is a minimal subset of V ∗
k−1 (with respect to the inclusion relation)

satisfying (4.1). Then there is an ordered Bratteli diagram B ′ isomorphic to B which is
constructed from B by adding W as a set of vertices between levels Vk−1 and Vk .

Proof. Let W = {w1, . . . , ws}, where the wi are distinct. Define the set of vertices of
B ′ = ((V ′

n)n≥0, (E′
n)n≥1, ≥′) by

V ′
n = Vn for 0 ≤ n < k, V ′

k = W , and V ′
n = Vn−1 for n > k.

For the set of edges of B ′, first we set

E′
n = En for 1 ≤ n < k and E′

n = En−1 for n ≥ k + 2.

It remains to define E′
k and E′

k+1. Since every w ∈ W is a word in V ∗
k−1, we can define

(uniquely) a partially ordered set of edges E′
k from V ′

k−1 = Vk−1 to V ′
k = W such that

σB ′
k (w) = w for every w ∈ W . To define E′

k+1, first note that for every v ∈ V ′
k+1 = Vk we

have

σB
k (v) = wi1wi2 · · · wir (4.2)

for some wi1 , wi2 , . . . , wir in W depending on v. (Note that this representation of σB
k (v)

in terms of the words of W is not necessarily unique but we fix one representation.) Then
we can define a partially ordered set of edges E′

k+1 from V ′
k = W to V ′

k+1 = Vk such that
σB ′

k+1(v) = wi1wi2 · · · wir , where wi1 , wi2 , . . . , wir are considered as vertices of V ′
k here.

The minimality of W guarantees that for very w ∈ W there is at least one edge in E′
k+1 with

source w. The resulting ordered Bratteli diagram B ′ is isomorphic to B since E′
k ◦ E′

k+1
is order isomorphic to Ek . In fact, if v ∈ Vk and if we consider the representation in (4.2)
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B = (V, E, ≥) B′ = (V ′, E ′, ≥′)

1 2 3 1 2

1 21 1

Vk−1

Vk

V ′
k−1

V ′
k

V ′
k+1

v1 v2 v3

u1 u2 u3

v1 v2 v3

w1 w2

u1 u2 u3

1 2 3 1 2 3 4 5 1 2

...

...

...

...

FIGURE 2. Applying Lemma 4.1 to the left-hand diagram will make the right-hand diagram.

for σB
k (v), then

σB ′
[k−1,k+1](v) = σB ′

k (σB ′
k+1(v)) = σB ′

k (wi1wi2 · · · wir ) = wi1wi2 · · · wir = σB
k (v).

It follows that B ′ is isomorphic to B.

Example 4.2. Let B = (V , E, ≥) be an ordered Bratteli diagram in which the levels
Vk−1 = {v1, v2, v3} and Vk = {u1, u2, u3} are as in the left-hand diagram in Figure 2.

So,

σB
k (u1) = v1v2v2, σB

k (u2) = v1v2v2v2v3, σB
k (u3) = v2v3.

The described procedure in the proof of the previous lemma to construct the diagram
B ′ = (V ′, E′, ≥′) can be implemented by letting

w1 = v1v2v2, w2 = v2v3

that is shown in the right-hand diagram in Figure 2. Hence,

σB ′
k+1(u1) = w1, σB ′

k+1(u2) = w1w2, σB ′
k+1(u3) = w2.

As it is easy to check, the telescoping of the right-hand diagram between levels V ′
k−1 and

V ′
k+1 is the same as the left-hand diagram.
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s t

s1
t1

s t

s2

t2

x x x x′

w

w

x x x x′

FIGURE 3. The two thick line segments represent the periodic word w.

The following lemma enables us to control the size of the generating set of a
certain set of words. It can be considered as a generalization of the classical Fine–Wilf
theorem [14].

LEMMA 4.3. Let A be a finite alphabet and let p ∈ N. Let s1, . . . , sp, t1, . . . , tp, and w

be words in A∗ such that

w = s1t1 = s2t2 = · · · = sptp.

Suppose that there are two words s and t in A∗ with |s|, |t | ≥ |w| such that for any 1 ≤
i ≤ p, si is a suffix of s and ti is a prefix of t . Then there exists a set of words B ⊆ A∗ such
that:
(1) card(B) ≤ 3;
(2) si , ti ∈ B∗ for every 1 ≤ i ≤ p.

Proof. We may assume that each si and each ti is non-empty. Also, we may assume that
si �= sj for i �= j . If p = 1, we take B = {s1, t1}. Hence, in the following we assume
that p ≥ 2. Note that for every 1 ≤ i, j ≤ p, since both si and sj are suffixes of s,
either si is a suffix of sj or sj is a suffix of si . Suppose that the si are sorted by their
lengths:

|s1| > |s2| > · · · > |sp|. (4.3)

This implies that |t1| < |t2| < · · · < |tp| (since |si | + |ti | = |w|). We claim that w is
periodic with period |s1| − |s2|. To prove the claim, first note that both s1 and s2 are
suffixes of s and |s1| > |s2|. Hence, there is a non-empty word x such that s1 = xs2. See
Figure 3.

Similarly, since t1 and t2 are prefixes of t and |t1| < |t2|, there is a non-empty word y

such that t2 = t1y. Note that |x| < |s1| < |w| and |y| = |t2| − |t1| = |s1| − |s2| = |x|. We
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have

wy = s1t1y = s1t2 = xs2t2 = xw. (4.4)

Let |w| = k|x| + r , where k ∈ N and 0 ≤ r < |x|. It follows from (4.4) that wyk = xkw.
Since |yk| = |xk| = k|x| ≤ |w|, we see that yk is a suffix of w. So, there is a word x′
such that w = x′yk . Then wyk = xkw = xkx′yk and so w = xkx′. Note that |x′| = |w| −
k|x| = r < |x|. Moreover, x′yk = w = xkx′ implies that x′ is a prefix of x. Therefore, w

is periodic with period |x|. The claim is proved.
Using w = si ti = si+1ti+1, a similar argument shows that w is periodic with period

|si | − |si+1| for all 1 ≤ i < p. We have

p−1∑
i=1

(|si | − |si+1|) = |s1| − |sp| < |w|.

Applying Lemma 2.5, it follows that w is periodic with period

h = gcd(|s1| − |s2|, . . . , |sp−1| − |sp|).
Thus, we can write w = uku′ for some u, u′ ∈ A∗ and k ∈ N, where |u′| < |u| = h and u′
is a prefix of u. See Figure 4.

Since each si is a prefix of w, we can write si = uki ui , where ki ≥ 0, |ui | < |u|, and ui

is a prefix of u. We claim that u1 = u2 = · · · = up. To see this, let 2 ≤ i ≤ p. Since si is
a suffix of s1 and h divides |s1| − |si |, we can write s1 = u�si for some � ≥ 1. Hence,

uk1u1 = s1 = u�si = u�uki ui = u�+ki ui .

Since |u1|, |ui | < |u|, this implies that u1 = ui and the claim is proved. Since u1 is a prefix
of u, there is a word u′

1 such that u = u1u
′
1. See Figure 4.

We consider the following three cases.
Case I: u1 is the empty word. Then si = uki and hence ti = u�i u′ for some �i ≥ 0. We

set B = {u, u′} \ {∅}. (Note that u′ may be the empty word.) Then B generates all the si

and ti .

Case II: u1 is non-empty and |u′
1| > |t1|. This is equivalent to |u1t1| < |u| since u =

u1u
′
1. Then u′ = u1t1 and, for every 2 ≤ i ≤ p, since t1 is a prefix of ti , there exists some

�i ≥ 0 such that ti = u′
1u

�i u′. All together, these imply that B = {u1, u′
1, t1} generates all

the si and ti .

Case III: u1 is non-empty and |u′
1| ≤ |t1|. This means that |u1t1| > |u|. It follows that

t1 = u′
1u

�1u′ for some �1 ≥ 0 and, for every 2 ≤ i ≤ p, there exists �i ≥ 1 such that ti =
u′

1u
�i u′. Hence, B = {u1, u′

1, u′} \ {∅} generates all the si and ti .
Therefore, in each case we obtained a set of words B satisfying Conditions (1) and (2).

This finishes the proof.

Remark 4.4. In the preceding lemma, the upper bound 3 for the cardinality of the set B is
sharp. For example, let A = {x, y, z, w}, w = xyzwxyzwxyzwx, and

s1 = xyzwxyzwxy, t1 = zwx, s2 = xyzwxy, t2 = zwxyzwx,

s3 = xy, t3 = zwxyzwxyzwx, s = s1, t = t3.
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FIGURE 4. A depiction of the idea of the proof of Lemma 4.3.

Then the argument in the proof of the preceding lemma gives the set of words
B = {u1, u′

1, u′} = {xy, zw, x} generating all the si and ti . However, it is not hard to
see that there is no generating set B ′ with card(B ′) < 3.

Remark 4.5. Let B be a properly ordered Bratteli diagram. Then there exists a telescoping
of B, say B ′ = ((Vk)k≥0, (Ek)k≥1, ≥), such that for each k ≥ 0 there are (necessarily
unique) vertices vk

min and vk
max in Vk such that for every v ∈ Vk+1, σB ′

k+1(v) starts with vk
min

and ends with vk
max, that is, the min edge in Ek+1 to v comes from vk

min and the max edge
to v comes from vk

max. This simple fact follows easily from an argument using König’s
lemma similar to the argument showing that every ordered Bratteli diagram has at least
one min infinite path.

PROPOSITION 4.6. Let f : B1 → B2 be an ordered premorphism between two properly
ordered Bratteli diagrams such that B1 is simple. Consider the Vershik system on B1.
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Then

ranktop(XB1 , TB1) ≤ 3 rank(B2).

Proof. Let B1 = (V , E, ≥), B2 = (W , S, ≥), and f = (F , (fn)
∞
n=0, ≥). Let V =⋃∞

n=0 Vn and W = ⋃∞
n=0 Wn be the canonical decompositions of V and W , respectively.

Also, let the morphisms τn associated to the ordered premorphism f be as in
Definition 3.3.

If ranktop(XB1 , TB1) = 1, then there is nothing to prove. Thus, we suppose that
ranktop(XB1 , TB1) ≥ 2. In particular, B1 has infinitely many levels each of which has at
least two vertices.

By making telescopings of the two diagrams along appropriate subsequences if
necessary, we can (and do) make the following assumptions.
(1) For every n ∈ N, every v ∈ Vn, and every v′ ∈ Vn+1, there is an edge in En+1 with

source v and range v′ (since B1 is simple).
(2) For every n ≥ 0, there are vertices vn

min and vn
max in Vn such that for every v ∈ Vn+1,

σ
B1
n+1(v) starts with vn

min and ends with vn
max (by Remark 4.5).

(3) card(Vn) ≥ 2 for all n ∈ N (by the preceding paragraph).
(4) For every n ≥ 0, fn = n, and for every v ∈ Vn and every w ∈ Wn, there is an edge

in F with source v and range w. (This follows from (1) and Definition 3.3 and an
appropriate telescoping of B2.)

The following claim contains the main part of the proof.

Claim. For every n ≥ 1, there exist some � > n and a set of words Cn ⊆ V ∗
n such that:

(5) σ
B1
[n,�](v) ∈ C∗

n for all v ∈ V�;
(6) card(Cn) ≤ 3 card(Wn).

To prove the claim, fix n ≥ 1. First, using (1) and (3), there is � > n + 1 such that:
(7) |σB1

[n,�−1](v
�−1
min )|, |σB1

[n,�−1](v
�−1
max)| > max{|τn(w)| : w ∈ Wn}.

Fix an arbitrary vertex w0 ∈ W�. Suppose that τ�(w0) = v1v2 · · · vm, where
v1, v2, . . . , vm ∈ V�. By (4), every vertex of V� appears at least one time in the word
τ�(w0) and hence V� = {v1, v2, . . . , vm} as sets. As card(V�) ≥ 2, we see that m ≥ 2.
Suppose that σ

B2
[n,�](w0) = w1w2 · · · wr , where w1, w2, . . . , wr ∈ Wn. Set zj = τn(wj )

for all 1 ≤ j ≤ r . Using the ordered commutativity of f at the second step (see equality
(3.1)), we get

σ
B1
[n,�](v1)σ

B1
[n,�](v2) · · · σ

B1
[n,�](vm) = σ

B1
[n,�](τ�(w0))

= τn(σ
B2
[n,�](w0))

= τn(w1w2 · · · wr)

= z1z2 · · · zr . (4.5)

For all 1 ≤ k ≤ m, by (2), the word σ
B1
� (vk) starts with v�−1

min and ends with v�−1
max . Hence,

for all 1 ≤ k ≤ m:
(8) σ

B1
[n,�](vk) starts with σ

B1
[n,�−1](v

�−1
min ) and ends with σ

B1
[n,�−1](v

�−1
max).
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In particular, by (7), |σB1
[n,�](vk)| > |zj | for all 1 ≤ j ≤ r and all 1 ≤ k ≤ m. Using this

and (4.5), it follows that there are words s1, s2, . . . , sm−1 and t1, t2, . . . , tm−1 in V ∗
n and

words T1, T2, . . . , Tm in {z1, . . . , zr}∗ such that

σ
B1
[n,�](v1) = T1s1, σ

B1
[n,�](vk) = tk−1Tksk , σ

B1
[n,�](vm) = tm−1Tm (4.6)

for all 1 < k < m, where, for every i = 1, . . . , m − 1, si = ti = ∅ or both si and ti are
non-empty and si ti = zj for some 1 ≤ j ≤ r . This means that we can write

σ
B1
[n,�](τ�(w0)) = T1s1t1T2s2t2T3s3 · · · sm−1tm−1Tm = z1z2 · · · zr .

Now we want to analyze the si and ti to see how one can generate all of them by a set
of words Cn of cardinality less than or equal to 3 card(Wn). Set

s = σ
B1
[n,�−1](v

�−1
max) and t = σ

B1
[n,�−1](v

�−1
min ).

By (7), |s|, |t | > |zj | for all j = 1, . . . , r . Also, by (8), every σ
B1
[n,�](vk) starts with t and

ends with s. Then (4.6) implies that each si is a proper suffix of s and each ti is a proper
prefix of t . Note that we have

{si ti | 1 ≤ i < m} \ {∅} ⊆ {zj | 1 ≤ j ≤ r} ⊆ {τn(w) | w ∈ Wn}.
Let w ∈ Wn. If there is no i with si ti = τn(w), then we simply set Cw = {τn(w)}.
Otherwise, we apply Lemma 4.3 with τn(w) in place of w, with s and t as above, and
with the si and ti satisfying si ti = τn(w) to obtain a set of words Cw ⊆ V ∗

n such that:
(9) card(Cw) ≤ 3;
(10) si , ti ∈ C∗

w for every 1 ≤ i < m with si ti = τn(w).
Now consider the set of words

Cn =
⋃

w∈Wn

Cw ⊆ V ∗
n .

First note that τn(w) ∈ C∗
n for every w ∈ Wn and hence z1, . . . , zr ∈ C∗

n . Moreover,
si , ti ∈ C∗

n for every 1 ≤ i < m, because if si and ti are non-empty then there is some j

with si ti = zj = τn(wj ) and hence si , ti ∈ C∗
wj

by (10). Therefore, σ
B1
[n,�](vk) ∈ C∗

n for all

1 ≤ k ≤ m. Since V� = {v1, v2, . . . , vm}, this implies that σ
B1
[n,�](v) ∈ C∗

n for all v ∈ V�.
This is (5). Also, (6) follows from (9). This finishes the proof of the claim.

To complete the proof of the proposition, we will find an ordered Bratteli diagram
B ′′

1 equivalent to B1 such that rank(B ′′
1 ) ≤ 3 rank(B2). For this, first we put �1 = 1 and

we apply the claim with n = �1 to obtain a natural number �2 > �1 and a set of words
C�1 ⊆ V ∗

�1
such that σ

B1
[�1,�2](v) ∈ C∗

�1
for all v ∈ V�2 and card(C�1) ≤ 3 card(W�1). Then

we apply the claim with n = �2 to obtain �3 > �2 and C�2 . Continuing this procedure, we
obtain a strictly increasing sequence (�k)

∞
k=1 and a sequence (C�k

)∞k=1 such that C�k
⊆ V ∗

�k
,

σ
B1
[�k ,�k+1](V�k+1) ⊆ C∗

�k
, and card(C�k

) ≤ 3 card(W�k
). By passing to a subset of C�k

if
necessary, we may assume that C�k

is a minimal subset of V ∗
�k

(with respect to the inclusion

relation) with the property σ
B1
[�k ,�k+1](V�k+1) ⊆ C∗

�k
.
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Now define an ordered Bratteli diagram B ′
1 = (V ′, E′, ≥′) (which will be a microscop-

ing of a telescoping of B1) as follows. Set �0 = 0 and C�0 = V0. The vertices of B ′
1 are

defined by

V ′
2k = C�k

and V ′
2k+1 = V�k+1 , k ≥ 0.

For the set E′ = ⋃∞
k=1 E′

k of edges of B ′
1, first we set E′

1 = E1. Next, let k ≥ 1. Applying
Lemma 4.1 to the telescoping of B1 along the sequence (�n)

∞
n=0 (with V�k

, V�k+1 , C�k
in

place of Vk−1, Vk , W in that lemma, respectively), we obtain two sets E′
2k and E′

2k+1 of
edges, one from V�k

to C�k
and the other from C�k

to V�k+1 , such that E′
2k ◦ E′

2k+1 is order
isomorphic to E�k ,�k+1 (see the proof of Lemma 4.1). Thus, E′

2k is a set of edges from
V ′

2k−1 to V ′
2k and E′

2k+1 is a set of edges from V ′
2k to V ′

2k+1. In this way, we obtain an
ordered Bratteli diagram B ′

1 = (V ′, E′, ≥′).
Let B ′′

1 = (V ′′, E′′, ≥′′) be the telescoping of B ′
1 along the even levels. Thus, V ′′

k = C�k

for every k ≥ 0. Since the telescoping of B ′
1 along the odd levels is isomorphic to the

telescoping of B1 along the sequence (�k)
∞
k=0, it follows that B ′

1 is simple and properly
ordered and hence so is B ′′

1 . Moreover, B1, B ′
1 and B ′′

1 are isomorphic as ordered Bratteli
diagrams, so their associated Vershik systems are conjugate. Therefore,

ranktop(XB1 , TB1) = ranktop(XB ′′
1
, TB ′′

1
)

≤ rank(B ′′
1 )

= sup{card(C�k
) | k ≥ 0}

≤ sup{3 card(W�k
) | k ≥ 0}

≤ 3 rank(B2).

This finishes the proof.

Now we have all the tools for the proof of our main result.

Proof of Theorem 1.1. Choose a point x ∈ X so that the properly ordered Bratteli diagram
B2 associated to (X, T ) with base on xmin := x realizes the topological rank of (X, T ),
that is, ranktop(X, T ) = rank(B2). Suppose that y := α(x) ∈ Y and let B1 be the simple
properly ordered Bratteli diagram associated to (Y , S) based on the point ymin := y. Then
by Proposition 3.2 there exists an ordered premorphism f : B1 → B2. Using the conjugacy
of (Y , S) and (XB1 , TB1) and Proposition 4.6, one can conclude that

ranktop(Y , S) = ranktop(XB1 , TB1) ≤ 3 rank(B2) = 3 rank(X, T ),

as desired.

Remark 4.7. In Theorem 1.1, instead of ranktop(Y , S) ≤ 3 ranktop(X, T ), it is likely that
ranktop(Y , S) ≤ ranktop(X, T ). For example, it is known that this is the case if (X, T )

is an odometer. Our proof guarantees this inequality in some special cases. For instance,
assuming the notation in the proof of Proposition 4.6, if there is an ordered premorphism
f : B1 → B2 for the factor map α : X → Y (as in the proof of Theorem 1.1) such that

vn
maxv

n
min is not a subword of τn(w) for all n ≥ 1 and all w ∈ Wn, (4.7)
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then si = ti = ∅ for all i (since every non-empty si ends with vn
max and every non-empty ti

starts with vn
min, and si ti = τn(w) for some w ∈ Wn) and hence we can take Cn = τn(Wn).

(Recall that vn
max and vn

min are the vertices of Vn carrying the max and min infinite
paths, respectively.) Therefore, ranktop(XB1 , TB1) ≤ rank(B2) and so ranktop(Y , S) ≤
ranktop(X, T ). In Example 5.3, we will see that Condition (4.7) holds for the premorphism
f as vn

maxv
n
min = znxn is not a subword of τn(un) and τn(vn) for all n.

Another wide class of systems (Y , S) that the inequality ranktop(Y , S) ≤ ranktop(X, T )

holds for them, when (X, T ) is a finite-rank subshift extension of them, is the class of
minimal subshifts. This is the result of Espinoza [13], who improved his previous result
in [12] and made the proof of the above inequality for the case that (Y , S) is a minimal
subshift. In this recent work, besides other nice results, Espinoza has translated the notion
of ordered premorphism into the S-adic language.

5. Ordered premorphisms and conjugacy
In this section we obtain a combinatorial criterion for conjugacy of two Cantor minimal
systems in terms of the aforesaid premorphisms. Suppose that (X, T ) and (Y , S) are
Cantor minimal systems (or, more generally, essentially minimal systems) for which
there are Bratteli–Vershik models B2 and B1, respectively, with an ordered premorphism
f : B1 → B2. This gives a factor map α : X → Y , by Proposition 3.2. However, if f

satisfies the conditions of the following proposition, then B1 is equivalent to B2 and hence
(X, T ) is conjugate to (Y , S).

We need the following notion in the following.

Definition 5.1. Let A be an alphabet. We say that a set of words B ⊆ A∗ is a code if every
word in B∗ has a unique representation in terms of the elements of B.

For example, if no word in B is a prefix of another word, then B is a code.

PROPOSITION 5.2. Let f : B1 → B2 be an ordered premorphism between two ordered
Bratteli diagrams. Assume the notation in Definitions 3.1 and 3.3. Suppose that for
infinitely many n ∈ N the following hold:
(1) the set Dn = {τn(w) | sw ∈ Wfn} ⊆ V ∗

n is a code;
(2) there is � > n such that σ

B1
[n,�](v) ∈ D∗

n, for all v ∈ V�, and Dn is a minimal subset of
V ∗

n (with respect to inclusion) having this property.
Then B1 is equivalent to B2.

Proof. By passing to appropriate telescopings of B1 and B2, we may assume that fn = n

for any n ≥ 0, (1) and (2) hold for every n ∈ N, and � = n + 1 in (2). To prove that B1 is
equivalent to B2, we will construct an ordered Bratteli diagram B whose telescoping along
the odd (respectively, even) levels is equivalent to B1 (respectively, B2).

In the following, by an ordered set Gn of edges from Wn to Vn+1 we mean a finite
non-empty set of edges with a pair of source and range maps s : Gn → Wn and r : Gn →
Vn+1, respectively, and with a partial ordering on Gn such that g, g′ ∈ Gn are comparable
if and only if r(g) = r(g′), the restriction of this ordering to each r−1{v}, v ∈ Vn+1, is a
linear ordering, and r−1{v} and s−1{w} are non-empty for all v ∈ Vn+1 and w ∈ Wn.
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We claim that for every n ∈ N there is an ordered set Gn of edges from Wn to Vn+1 such
that:
(3) Fn ◦ Gn is order isomorphic to En;
(4) Gn ◦ Fn+1 is order isomorphic to Sn;
(5) for every w ∈ Wn and every v ∈ Vn+1, there are g, g′ ∈ Gn with s(g) = w and

r(g′) = v.
In fact, (3) and (4) say that in the following diagram, the two triangles are ordered

commutative.

Vn
Fn ��

En

��

Wn

Sn

��

Gn

�����
��
��
��

Vn+1
Fn+1

�� Wn+1

To prove the claim, first note that by (1) and (2) (recall that � = n + 1 in (2)), for every
v ∈ Vn+1 the word σ

B1
n+1(v) has a unique representation with respect to Dn, which is

σ
B1
n+1(v) = τn(wi1)τn(wi2) · · · τn(wik ) (5.1)

for some wi1 , wi2 , . . . , wik in Wn. (Note that, since Dn is a code, we have implicitly
assumed that τn(w) �= τn(w

′) for w �= w′.) Hence, there is a (necessarily unique) ordered
set of edges Gn from Wn to Vn+1 that induces a morphism σn : Vn+1 → W ∗

n such that for
every v ∈ Vn+1 (by (5.1)),

σn(v) = wi1wi2 · · · wik . (5.2)

Moreover, since Dn is minimal, for every w ∈ Wn there exists some v ∈ Vn+1 such that w

occurs as a letter of σn(v). Thus, (5) holds.
To see (3), it is enough to show that the morphisms τn ◦ σn and σ

B1
n+1 (associated to

Fn ◦ Gn and En, respectively) are the same. Let v ∈ Vn+1 satisfy (5.1). Then

σ
B1
n+1(v) = τn(wi1) · · · τn(wik ) = τn(wi1 · · · wik ) = τn(σn(v)).

Thus, σ
B1
n+1 = τn ◦ σn, proving (3). For (4), first by (3) and the ordered commutativity of

f , we have

Fn ◦ Gn ◦ Fn+1 ∼= En ◦ Fn+1 ∼= Fn ◦ Sn (5.3)

(where ∼= means ordered isomorphism between the edge sets preserving the source and
range maps). Then by the assumption (1) one can eliminate Fn from (5.3) to get Gn ◦
Fn+1 ∼= Sn. In fact, for every w ∈ Wn+1, by (5.3), we have

τn(σn(τn+1(w))) = τn(σ
B2
n+1(w))

and the latter (by having codes by the assumption) implies that σn(τn+1(w)) = σ
B2
n+1(w).

This gives (3) and finishes the proof of the claim.
Now consider the following ordered Bratteli diagram B.

V0
E1 �� V1

F1 �� W1
G1 �� V2

F2 �� W2
G2 �� V3

F3 �� · · · .
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By (3), the telescoping of B along the odd levels (starting with V0 as the zeroth level)
is equivalent to B1 and, by (4), the telescoping along the even levels is equivalent to B2

(note that E1 ◦ F1 ∼= F0 ◦ S1 ∼= S1 by the ordered commutativity of f ). Therefore, B1 is
equivalent to B2.

It is worth noting that if the condition of Proposition 5.2 holds, then the ordered
premorphism f : B1 → B2 is invertible in the sense of [1]. More precisely, using the
Gn constructed in the proof of Proposition 5.2, we obtain an ordered premorphism
g : B2 → B1 such that f ◦ g ∼ idB2 and g ◦ f ∼ idB1 (by (3) and (4)), where ∼ denotes
the equivalence of ordered premorphisms (see [1, Proposition 2.19] and the remarks
preceding it). In particular, if (X, T ), (Y , S), f , and α are as in the first paragraph of
this section, where f satisfies the condition of the preceding proposition, then the factor
map α : X → Y is in fact a conjugacy.

Here is an example.

Example 5.3. Consider the ordered premorphism f : B → C ′ of [1, Example 2.11]. Its
diagram is drawn in Figure 3 of [1] and we draw it here in Figure 5 for the convenience
of the reader. Let us recall that C′ is a telescoping of the Bratteli diagram of the Chacon
system and B is a simple properly ordered Bratteli diagram. By Proposition 3.2, f induces
a factor map α : XC′ → XB . We use Proposition 5.2 to show that XC′ is conjugate to XB .
(In [1], another argument is given to show that these systems are conjugate by constructing
the inverse of f .) We label the vertices of the ith level of B by xi , yi , zi and those of C′
by ui , vi for i ≥ 1. Let (τi)i≥0 be the sequence of morphisms induced by f according to
Definition 3.3. For every i ≥ 1, we have

τi(ui) = xiyixiyizi and τi(vi) = xiyizizi .

Put Di = {τi(ui), τi(vi)}. It is easy to check that Di is a code (since no word in Di is a
prefix of another word). Moreover, for every i ≥ 1,

σB
i+1(xi+1) = xiyi , σB

i+1(yi+1) = xiyizi , and σB
i+1(zi+1) = xiyizizi .

We see that Di does not generate all three words above. So, we go one level down in the
diagram B and compute

σB
[i,i+2](xi+2) = xiyixiyizi , σB

[i,i+2](yi+2) = xiyixiyizixiyizizi , and

σB
[i,i+2](zi+2) = xiyixiyizixiyizizixiyizizi .

These words are generated by Di as σB
[i,i+2](xi+2) = τi(ui), σB

[i,i+2](yi+2) = τi(ui)τi(vi),
and σB

[i,i+2](zi+2) = τi(ui)τi(vi)τi(vi). Also, Di is a minimal subset of {xi , yi , zi}∗ having
this property. Now, Proposition 5.2 implies that B is equivalent to C′ and so XB is
conjugate to XC′ .
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FIGURE 5. The ordered premorphism f : B → C′ of Example 5.3.
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