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The present paper represents a continuation of Sofonea and Matei’s paper (Sofonea, M. and

Matei, A. (2011) History-dependent quasivariational inequalities arising in contact mechanics.

Eur. J. Appl. Math. 22, 471–491). There a new class of variational inequalities involving

history-dependent operators was considered, an abstract existence and uniqueness result was

proved and it was completed with a regularity result. Moreover, these results were used in

the analysis of various frictional and frictionless models of contact. In this current paper we

present a penalization method in the study of such inequalities. We start with an example

which motivates our study; it concerns a mathematical model which describes the quasistatic

contact between a viscoelastic body and a foundation; the material’s behaviour is modelled

with a constitutive law with long memory, the contact is frictionless and is modelled with

a multivalued normal compliance condition and unilateral constraint. Then we introduce

the abstract variational inequalities together with their penalizations. We prove the unique

solvability of the penalized problems and the convergence of their solutions to the solution of

the original problem, as the penalization parameter converges to zero. Finally, we turn back

to our contact model, apply our abstract results in the study of this problem and provide

their mechanical interpretation.

Key words: History-dependent operator; Variational inequality; Penalization; Viscoelastic ma-

terial; Frictionless contact; Normal compliance; Unilateral constraint; Weak solution

1 Introduction

The theory of variational inequalities plays an important role in the study of non-

linear boundary value problems arising in mechanics, physics and engineering science.

At the heart of this theory is the intrinsic inclusion of free boundaries in an elegant

mathematical formulation. For instance, general results on the analysis of variational

inequalities, including existence and uniqueness results, can be found in [1,2,11,13,17,22].

Details concerning the numerical analysis of variational inequalities, including solution

algorithms and error estimates, can be found in [6, 10]. References to the study of

mathematical and numerical analysis of variational inequalities arising in hardening

plasticity include [7, 8].

Phenomena of contact between deformable bodies abound in industry and everyday

life. For this reason, considerable progress has been achieved recently in modelling,
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mathematical analysis and numerical simulations of various contact processes and, as a

result, a general mathematical theory of contact mechanics is currently emerging. It is

concerned with the mathematical structures which underlie general contact problems with

different constitutive laws, i.e. materials, varied geometries and different contact condi-

tions. To this end, it uses various mathematical concepts which include both variational

and hemivariational inequalities and multivalued inclusions. An early attempt to study

frictional contact problems within the framework of variational inequalities was made

in [4]. An excellent reference on analysis and numerical approximations of contact prob-

lems involving elastic materials with or without friction is [12]. The variational analysis of

various contact problems can be found in [5,9,10,12,16,17,20]. The state of the art in the

field can be found in the proceedings of [14, 18, 24] as well as in the special issue of [19].

Existence, uniqueness and regularity results in the study of a new class of variational

inequalities were proved in [21]. There the first trait of novelty lies in the fact that, unlike

the results obtained in literature, the variational inequalities considered were defined on an

unbounded interval of time. The second novelty was related to their special structure, which

involves two non-differentiable convex functionals, one of them depending on the history

of the solution. This class of variational inequalities represents a general framework in

which a large number of quasistatic contact problems, associated with various constitutive

laws and frictional contact conditions, can be cast, as exemplified in [22].

Our intention in this current paper is to present a penalization method in the study

of the variational inequalities introduced in [21] and to apply it to a new model of

contact. Penalization methods in the study of elliptic variational inequalities were used

by many authors, mainly for numerical reasons. Details can be found in [6] and the

references therein. The main ingredient of these methods arises from the fact that they

remove the constraints by considering penalized problems defined on the whole space;

these approximative problems have unique solutions which converge to the solutions of

the original problems, as the penalization parameter converges to zero.

The rest of the paper is structured as follows. In Section 2 we present a new mathematical

model of contact which is of applied interest and which motivates the abstract study we

present in this paper. In Section 3 we state the abstract problem and recall its unique

solvability obtained in [21]. Then we state the penalized problems and prove our main

result, Theorem 3.2. The proof of this theorem is given in Section 4. Further, we illustrate

the use of abstract results in the study of the contact model introduced in Section 2.

To this end, in Section 5 we list the assumptions on the data and derive the variational

formulation. Then we state and prove Theorem 5.1 which concerns the unique weak

solvability of the model. Next, in Section 6, we use our abstract penalization method. Our

main result in this section is given by Theorem 6.1 which states the existence of a unique

weak solution of the penalized contact problems and its convergence to the weak solution

of the original contact model. Finally, in Section 7, we present some concluding remarks.

2 A viscoelastic contact problem

The physical setting is as follows. A viscoelastic body occupies a bounded domain

Ω ⊂ �d (d = 1, 2, 3) with a Lipschitz continuous boundary Γ , which is divided into three

measurable parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0. The body is subject to the action
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of body forces of density f0. We also assume that it is fixed on Γ1, and surface tractions

of density f2 act on Γ2. On Γ3, the body is in frictionless contact with a deformable

obstacle, the so-called foundation. We assume that the contact process is quasistatic, we

study it in the interval of time �+ = [0,∞), and we denote by ν and �d the outward unit

normal at Γ and the space of the second order symmetric tensors on �d, respectively.

The following is the classical formulation of the contact problem that we consider in the

rest of this paper.

Problem Q Find a displacement field u : Ω × �+ → �d and a stress field σ : Ω × �+ → �d

such that

σ(t) = Aε(u(t)) +

∫ t

0

B(t − s)ε(u(s)) ds in Ω, (2.1)

Div σ(t) + f0(t) = 0 in Ω, (2.2)

u(t) = 0 on Γ1, (2.3)

σ(t)ν = f2(t) on Γ2, (2.4)

στ(t) = 0 on Γ3, (2.5)

for all t ∈ �+, and there exists ξ : Γ3 × �+ → � which satisfies

uν(t) � g, σν(t) + p(uν(t)) + ξ(t) � 0,

(uν(t) − g)
(
σν(t) + p(uν(t)) + ξ(t)

)
= 0,

0 � ξ(t) � F,

ξ(t) = 0 if uν(t) < 0,

ξ(t) = F if uν(t) > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

on Γ3, (2.6)

for all t ∈ �+.

Here and below, in order to simplify the notation, we do not indicate explicitly the

dependence of various functions on the spatial variable x. Equation (2.1) represents the

viscoelastic constitutive law with a long memory in which A is the elasticity operator,

B represents the relaxation tensor and ε(u) denotes the linearized strain tensor. Equation

(2.2) represents the equation of equilibrium in which Div denotes the divergence operator

for tensor-valued functions. Conditions (2.3) and (2.4) are the displacement boundary

condition and the traction boundary condition, respectively. Condition (2.5) is the fric-

tionless condition and shows that the tangential stress on the contact surface, denoted by

στ, vanishes. More details on equations and conditions (2.1)–(2.5) can be found in [22].

We now describe the contact condition (2.6), in which our main interest lies and

represents the main novelty of the model. Here σν denotes the normal stress, uν is the

normal displacement and u+
ν may be interpreted as the penetration of the body’s surface

asperities and those of the foundation. Moreover, p is a Lipschitz continuous increasing

function which vanishes for a negative argument, F is a positive function and g > 0. This

condition can be derived in the following way. Let t ∈ �+ be given. Firstly, we assume

that the penetration is limited by the bound g and therefore the normal displacement
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satisfies the inequality

uν(t) � g on Γ3. (2.7)

Next, we assume that the normal stress has an additive decomposition of the form

σν(t) = σD
ν (t) + σR

ν (t) + σM
ν (t) on Γ3, (2.8)

in which the function σD
ν (t) describes the deformability of the foundation, and the functions

σR
ν (t), σM

ν (t) describe the rigidity properties of the foundation. We assume that σD
ν (t)

satisfies a normal compliance contact condition, that is

−σD
ν (t) = p(uν(t)) on Γ3. (2.9)

The part σR
ν (t) of the normal stress satisfies the Signorini condition in the form with a

gap function, i.e.

σR
ν (t) � 0, σR

ν (t)(uν(t) − g) = 0 on Γ3. (2.10)

Finally, the function σM
ν (t) satisfies the condition

⎧⎨
⎩

|σM
ν (t)| � F, σM

ν (t) = 0 if uν(t) < 0

−σM
ν (t) = F if uν(t) > 0

on Γ3. (2.11)

We combine (2.8), (2.9) and write −σM
ν (t) = ξ(t) to see that

σR
ν (t) = σν(t) + p(uν(t)) + ξ(t) on Γ3. (2.12)

Then we substitute equality (2.12) in (2.10) and use (2.7) and (2.11) to obtain the contact

condition (2.6).

We now present additional details of the contact condition (2.6). The inequalities and

equalities below in this section are valid at an arbitrary point x ∈ Γ3. Firstly, we recall

that (2.6) describes a condition with unilateral constraint, since inequality (2.7) holds at

each moment of time. Next, assume that at a given moment t there is separation between

the body and the foundation, i.e. uν(t) < 0. Then, since p(uν(t)) = 0, (2.6) shows that

σν(t) = 0, i.e. the reaction of the foundation vanishes. Note that the same behaviour of

the normal stress is described in both the classical normal compliance condition and the

Signorini contact condition, when there is separation. Assume now that at the moment t

there is penetration which did not reach the bound g, i.e. 0 < uν(t) < g. Then (2.6) yields

−σν(t) = p(uν(t)) + F. (2.13)

This equality shows that, at moment t, the reaction of the foundation depends on the

penetration and represents a normal compliance-type condition. Note that (2.6) also shows

that if at moment t we have penetration which satisfies 0 < uν(t) < g, then −σν(t) � F .

Indeed, if 0 < uν(t) < g then (2.13) holds, and this implies that −σν(t) � F . We conclude

from above that if −σν(t) < F then there is no penetration and therefore F represents a

yield limit of the normal pressure, under which the penetration is not possible. This kind

of behaviour characterizes a rigid-elastic foundation.
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In conclusion, condition (2.6) shows that when there is separation between the body’s

surface and the foundation, the normal stress vanishes; the penetration arises only if

the normal stress reaches the critical value F; when there is penetration, the contact

follows a normal compliance condition of the form (2.13) but up to limit g and when this

limit is reached, the contact follows a Signorini-type unilateral condition with gap g. For

this reason we refer this condition as a multivalued normal compliance contact condition

with unilateral constraint. It can be interpreted physically as follows. The foundation is

assumed to be made of a hard material covered by a thin layer of a soft material with

thickness g. The soft material has a rigid-elastic behaviour, i.e. it is deformable and allows

penetration, but only if the normal stress arrives to the yield value F; the contact with this

layer is modelled with normal compliance, as shown in equality (2.13). The hard material

is perfectly rigid and therefore does not allow penetration; the contact with this material

is modelled with the Signorini contact condition.

Two questions arise in the study of the unilateral contact problem Q. The first one

concerns its unique solvability; the second one concerns the approach of the solution

by the solution of a contact model with normal compliance without unilateral con-

straint. The answers to these questions are provided by the variational analysis of this

contact problem presented in Sections 5 and 6. This analysis is carried out based on

the abstract existence, uniqueness and convergence result that we present in the next

section.

3 Abstract problem and main result

Everywhere below we use notation �∗ for the set of positive integers and �+ = [0,∞).

For each normed space X we use notation C(�+;X) for the space of continuous functions

defined on �+ with values in X. For a subset K ⊂ X we still use symbol C(�+;K) for

the set of continuous functions defined on �+ with values in K . It is well known that if

X is a Banach space, then C(�+;X) can be organized in a canonical way as a Fréchet

space, i.e. as a complete metric space in which the corresponding topology is induced by

a countable family of seminorms. Details can be found in [3] and [15], for instance. Here

we only need to recall that the convergence of sequence (xk)k to element x in the space

C(�+;X) can be described as follows:

⎧⎪⎨
⎪⎩

xk → x in C(�+;X) as k → ∞ if and only if

max
r∈[0,n]

‖xk(r) − x(r)‖X → 0 as k → ∞, for all n ∈ �∗.
(3.1)

Consider now a real Hilbert space X with inner product (·, ·)X and associated norm

‖ · ‖X . Also, let K be a subset of X, let A : X → X, S : C(�+;X) → C(�+;X) be two

operators, and let j : X → �, f : �+ → X be two functions. We assume in what follows

that

K is a non-empty closed convex subset of X, (3.2)

https://doi.org/10.1017/S0956792513000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792513000363


160 M. Sofonea and F. Pătrulescu

and A is strongly monotone and Lipschitz continuous operator, i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) there exists m > 0 such that

(Au1 − Au2, u1 − u2)X � m ‖u1 − u2‖2
X

∀ u1, u2 ∈ X.

(b) There exists M > 0 such that

‖Au1 − Au2‖X � M ‖u1 − u2‖X ∀ u1, u2 ∈ X.

(3.3)

Moreover, we assume that the operator S satisfies the following condition:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

For every n ∈ �∗ there exists dn > 0 such that

‖Su1(t) − Su2(t)‖X � dn

∫ t

0

‖u1(s) − u2(s)‖X ds

∀ u1, u2 ∈ C(�+;X), ∀ t ∈ [0, n].

(3.4)

Following the terminology in [21, 22], we refer to operator S which satisfies (3.4) as a

history-dependent operator. Finally, we suppose that

j : X → � is a proper convex lower semicontinuous function. (3.5)

f ∈ C(�+;X). (3.6)

With the data above, we consider the following problem.

Problem P. Find a function u : �+ → X such that, for all t ∈ �+, the inequality below

holds:

u(t) ∈ K, (Au(t), v − u(t))X + (Su(t), v − u(t))X

+ j(v) − j(u(t)) � (f(t), v − u(t))X ∀ v ∈ K. (3.7)

Following [21, 22], we refer to (3.7) as a history-dependent variational inequality. It

represents the framework in which the variational formulation of a large number of

contact problems can be cast with the appropriate choice of spaces and operators. Details

can be found in [9, 21–23] and the references therein. The solvability of Problem P is

provided by the following existence and uniqueness result, proved in [21].

Theorem 3.1 Let X be a Hilbert space and assume that (3.2)–(3.6) hold. Then Problem P
has a unique solution u ∈ C(�+;K).

In order to formulate the penalized problems associated with Problem P we consider

an operator G : X → X which satisfies the following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) (Gu − Gv, u − v)X � 0 ∀ u, v ∈ X.

(b) There exists L > 0 such that

‖Gu − Gv‖X � L ‖u − v‖X ∀ u, v ∈ X.

(c) (Gu, v − u)X � 0 ∀ u ∈ X, v ∈ K.

(d) Gu = 0X iff u ∈ K.

(3.8)
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Note that conditions (3.8)(a) and (3.8)(b) show that G is a monotone Lipschtz continuous

operator. Also note that such an operator G always exists. For example, consider the

operator G : X → X defined by

Gu = u − PKu, ∀ u ∈ K,

where PK : X → K represents the projection operator onto K . Then using the properties

of the projections, it is easy to see that the operator G satisfies condition (3.8).

Next, for each μ > 0 we consider the following problem.

Problem Pμ. Find a function uμ : �+ → X such that, for all t ∈ �+, the inequality below

holds:

(Auμ(t), v − uμ(t))X + (Suμ(t), v − uμ(t))X +
1

μ
(Guμ(t), v − uμ(t))X

+ j(v) − j(uμ(t)) � (f(t), v − uμ(t))X ∀ v ∈ X. (3.9)

Note that, in contrast to Problem P, in Problem Pμ the constraint u(t) ∈ K is removed

and replaced with an additional term which contains the penalization parameter μ. For

this reason, we refer to Problem Pμ as a penalized problem associated with Problem P.

We have the following existence, uniqueness and convergence result, which represents

the main result of this section.

Theorem 3.2 Let X be a Hilbert space and assume that (3.2)–(3.6), (3.8) hold. Then:

(1) For each μ > 0, Problem Pμ has a unique solution which satisfies uμ ∈ C(�+;X).

(2) The solution uμ of Problem Pμ converges to the solution u of Problem P, that is

‖uμ(t) − u(t)‖X → 0 as μ → 0, (3.10)

for each t ∈ �+.

Note that convergence (3.10) above is understood in the following sense: For each

t ∈ �+ and for every sequence {μn} ⊂ �+ converging to 0 as n → ∞ we have uμn(t) → u(t)

as n → ∞.

4 Proof of Theorem 3.2

The proof of Theorem 3.2 will be carried out in several steps that we present in what

follows. To this end, below in this section we assume that (3.2)–(3.6), (3.8) hold and

we denote by c a positive constant which may depend on t, A, S, j, f and u, but is

independent of μ, and whose value may change from line to line. The following lemma

shows the unique solvability of the non-linear inequality (3.9).

Lemma 4.1 For each μ > 0 there exists a unique function uμ ∈ C(�+;X) which satisfies

inequality (3.9) for all t ∈ �+.
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Proof Let μ > 0. Using (3.3) and (3.8) it is easy to show that the operator

v 
−→ Av +
1

μ
Gv

is a strongly monotone Lipschitz continuous operator on X. Lemma 4.1 is now a con-

sequence of Theorem 3.1 used with K = X. �

Next, we consider the following intermediate problem.

Problem P̃μ. Find a function ũμ : �+ → X such that, for all t ∈ �+, the inequality below

holds:

(Aũμ(t), v − ũμ(t))X + (Su(t), v − ũμ(t))X +
1

μ
(Gũμ(t), v − ũμ(t))X

+ j(v) − j(ũμ(t)) � (f(t), v − ũμ(t))X ∀ v ∈ X. (4.1)

Note that inequality (3.9) is a history-dependent variational inequality, since the operator

S is applied to the unknown uμ. In contrast, the variational inequality (4.1) is a time-

dependent variational inequality, since here Su is a given function. The following lemma

shows the unique solvability of the non-linear inequality (4.1).

Lemma 4.2 For each μ > 0 there exists a unique function ũμ ∈ C(�+;X) which satisfies

inequality (4.1) for all t ∈ �+.

Proof The proof is obtained by similar arguments as those used in the proof of Lemma

4.1. �

Next, we investigate the properties of sequence {ũμ(t)} for a fixed t ∈ IR+.

Lemma 4.3 For each t ∈ �+ there exists a subsequence of sequence {ũμ(t)}, again denoted

by {ũμ(t)}, which converges weakly to u(t), i.e.

ũμ(t) ⇀ u(t) in X as μ → 0. (4.2)

Proof Let t ∈ �+, μ > 0 and let v0 ∈ K . We use (4.1) to obtain

(Aũμ(t), v0 − ũμ(t))X + (Su(t), v0 − ũμ(t))X +
1

μ
(Gũμ(t), v0 − ũμ(t))X

+ j(v0) − j(ũμ(t)) � (f(t), v0 − ũμ(t))X

and therefore,

(Aũμ(t) − Av0, ũμ(t) − v0)X � (Av0, v0 − ũμ(t))X

+ (Su(t), v0 − ũμ(t))X +
1

μ
(Gũμ(t), v0 − ũμ(t))X

+ j(v0) − j(ũμ(t)) + (f(t), ũμ(t) − v0)X. (4.3)
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We use (3.5) to see that there exist ω ∈ X and α ∈ �, which do not depend on t, such

that

j(v) � (ω, v)X + α ∀ v ∈ V

and therefore,

j(ũμ(t)) � (ω, ũμ(t))X + α. (4.4)

Then we combine (4.3), (3.3), (3.8)(c) and (4.4) to find that

m ‖ũμ(t) − v0‖2
X

�
(

‖Av0‖X + ‖Su(t)‖X + ‖f(t)‖X + ‖ω‖X
)

‖ũμ(t) − v0‖X
+ |j(v0)| + |α| + ‖ω‖X‖v0‖X. (4.5)

We now use (4.5), the elementary inequality

x, a, b � 0 and x2 � ax + b =⇒ x2 � a2 + 2b

and the triangle inequality

‖ũμ(t)‖X � ‖ũμ(t) − v0‖X + ‖v0‖X.

As a result we deduce that there exists c > 0 which depends on v0 but does not depend

on μ such that

‖ũμ(t)‖X � c. (4.6)

Inequality (4.6) shows that the sequence {ũμ(t)} is bounded in X. Therefore, it follows

that there exists a subsequence of the sequence {ũμ(t)}, again denoted as {ũμ(t)}, and an

element ũ(t) ∈ X such that

ũμ(t) ⇀ ũ(t) in X as μ → 0. (4.7)

Next, we investigate the properties of the element ũ(t) ∈ X. First of all we show that

ũ(t) ∈ K . To this end, we use (4.1) to deduce that

1

μ
(Gũμ(t), ũμ(t) − v)X � (Aũμ(t), v − ũμ(t))X + (Su(t), v − ũμ(t))X

+ j(v) − j(ũμ(t)) + (f(t), ũμ(t) − v)X ∀ v ∈ X. (4.8)

We now write

Aũμ(t) = Aũμ(t) − A0X + A0X,

then we use the Lipschitz continuity of operator A and inequality (4.4) to obtain

1

μ
(Gũμ(t), ũμ(t) − v)X � (Aũμ(t) − A0X, v − ũμ(t))X + (A0X, v − ũμ(t))X

+ (Su(t), v − ũμ(t))X + j(v) − j(ũμ(t)) + (f(t), ũμ(t) − v)X

�
(
M‖ũμ(t)‖X + ‖A0X‖X + ‖Su(t)‖X + ‖f(t)‖X

)(
‖v‖X + ‖ũμ(t)‖X

)
+ |j(v)| + ‖ũμ(t)‖X‖ω‖X + |α|.
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We now combine this inequality and (4.6) to see that there exists a positive constant c

which depends on t, A, f, S, j, u and v, but is independent on μ, such that

(Gũμ(t), ũμ(t) − v)X � cμ ∀ v ∈ X. (4.9)

We now take v = ũ(t) in (4.9), then we pass to the upper limit as μ → 0 in the resulting

inequality to obtain

lim
μ→0

sup (Gũμ(t), ũμ(t) − ũ(t))X � 0.

Therefore, using assumptions (3.8)(a), (3.8)(b), convergence (4.7) and standard arguments

on pseudomonotone operators (see Proposition 1.23 in [22], for instance), we deduce that

lim
μ→0

inf (Gũμ(t), ũμ(t) − v)X � (Gũ(t), ũ(t) − v)X ∀ v ∈ X. (4.10)

On the other hand, inequality (4.9) implies that

lim
μ→0

inf (Gũμ(t), ũμ(t) − v)X � 0 ∀ v ∈ X. (4.11)

We combine inequalities (4.10) and (4.11) to see that

(Gũ(t), ũ(t) − v)X � 0 ∀ v ∈ X,

and taking v = ũ(t) − Gũ(t) in this inequality yields ‖Gũ(t)‖2
X � 0. We conclude that

Gũ(t) = 0X , and using assumption (3.8)(d) it follows that

ũ(t) ∈ K. (4.12)

Next, from inequality (4.1) and assumption (3.8)(c) we find that

(Aũμ(t), v − ũμ(t))X + (Su(t), v − ũμ(t))X

+ j(v) − j(ũμ(t)) � (f(t), v − ũμ(t))X ∀ v ∈ K. (4.13)

We now take v = ũ(t) ∈ K in (4.13) and obtain

(Aũμ(t), ũμ(t) − ũ(t))X � (Su(t), ũ(t) − ũμ(t))X

+ j(ũ(t)) − j(ũμ(t)) + (f(t), ũμ(t) − ũ(t))X,

then we pass to the upper limit as μ → 0 in this inequality and use the weak convergence

(4.7) and assumption (3.5). As a result we obtain

lim
μ→0

sup (Aũμ(t), ũμ(t) − ũ(t))X � 0, (4.14)

and using again the argument on pseudomonotonicity employed in the proof of Lemma

4.3, it follows that

lim
μ→0

inf (Aũμ(t), ũμ(t) − v)X � (Aũ(t), ũ(t) − v)X ∀ v ∈ X. (4.15)
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On the other hand, passing to the lower limit as μ → 0 in (4.13) and using (4.7) yields

lim
μ→0

inf (Aũμ(t), ũμ(t) − v)X � (Su(t), v − ũ(t))X

+ j(v) − j(ũ(t)) + (f(t), ũ(t) − v)X ∀ v ∈ K. (4.16)

We now combine inequalities (4.15) and (4.16) to see that

(Aũ(t), v − ũ(t))X + (Su(t), v − ũ(t))X

+ j(v) − j(ũ(t)) � (f(t), v − ũ(t))X ∀ v ∈ K. (4.17)

Next, we take v = u(t) in (4.17) and v = ũ(t) in (3.7). Then adding the resulting inequalities

and using the strong monotonicity of operator A we obtain

ũ(t) = u(t), (4.18)

which concludes the proof. �

The next step is provided by the following weak convergence result.

Lemma 4.4 For each t ∈ �+ the whole sequence {ũμ(t)} converges weakly in X to u(t) as

μ → 0.

Proof Let t ∈ �+. A careful examination of the proof of Lemma 4.3 shows that any weak

convergent subsequence of sequence {ũμ(t)} ⊂ X converges weakly to u(t), where, recall,

u(t) is the element of X which solves the variational inequality (3.7) at moment t. This

inequality has a unique solution, and, moreover, estimate (4.6) shows that the sequence

{ũμ(t)} is bounded in X. Lemma 4.4 is now a consequence of a standard compactness

argument. �

We proceed with the following strong convergence result.

Lemma 4.5 For each t ∈ �+ the sequence {ũμ(t)} converges strongly in X to u(t), that is

ũμ(t) → u(t) in X as μ → 0. (4.19)

Proof Let μ > 0 and t ∈ �+. We take v = ũ(t) in (4.15) to see that

lim
μ→0

inf (Aũμ(t), ũμ(t) − ũ(t))X � 0,

then we combine this inequality with (4.14) to obtain that

lim
μ→0

(Aũμ(t), ũμ(t) − ũ(t))X = 0.

Finally, we use (4.18) to find that

lim
μ→0

(Aũμ(t), ũμ(t) − u(t))X = 0. (4.20)
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On the other hand, from the weak convergence of the sequence {ũμ(t)} to u(t), guaranteed

by Lemma 4.4, it follows that

lim
μ→0

(Au(t), ũμ(t) − u(t))X = 0. (4.21)

Next, from the strong monotonicity of operator A we have

m ‖ũμ(t) − u(t)‖2 � (Aũμ(t) − Au(t), ũμ(t) − u(t))X

= (Aũμ(t), ũμ(t) − u(t))X − (Au(t), ũμ(t) − u(t))X. (4.22)

The strong convergence (4.19) is now a consequence of (4.20)–(4.22). �

The last step is provided by the following strong convergence result.

Lemma 4.6 For each t ∈ �+ the sequence {uμ(t)} converges strongly in X to u(t), that is

uμ(t) → u(t) in X as μ → 0. (4.23)

Proof Let t ∈ �+ and n ∈ �∗ be such that t ∈ [0, n]. Also, let μ > 0. We take v = uμ(t) in

(4.1) and v = ũμ(t) in (3.9). Then adding the resulting inequalities we deduce that

(Auμ(t) − Aũμ(t), ũμ(t) − uμ(t))X + (Suμ(t) − Su(t), ũμ(t) − uμ(t))X

+
1

μ
(Guμ(t) − Gũμ(t), ũμ(t) − uμ(t))X � 0.

Next, we use the monotony of operator G, (3.8)(a), to obtain

(Auμ(t) − Aũμ(t), uμ(t) − ũμ(t))X � (Suμ(t) − Su(t), ũμ(t) − uμ(t))X.

Therefore, using (3.3)(a) yields

‖uμ(t) − ũμ(t)‖X �
1

m
‖Suμ(t) − Su(t)‖X. (4.24)

We now combine (4.24) and (3.4) to find that

‖uμ(t) − ũμ(t)‖X �
dn

m

∫ t

0

‖uμ(s) − u(s)‖X ds.

It follows from here that

‖uμ(t) − u(t)‖X � ‖ũμ(t) − u(t)‖X +
dn

m

∫ t

0

‖uμ(s) − u(s)‖Xds,

and using Gronwall’s argument, we obtain

‖uμ(t) − u(t)‖X � ‖ũμ(t) − u(t)‖X +
dn

m

∫ t

0

e
dn
m

(t−s)‖ũμ(s) − u(s)‖X ds. (4.25)
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Note that e
dn
m

(t−s) � e
dn
m
t � e

ndn
m for all s ∈ [0, n] and, therefore, (4.25) yields

‖uμ(t) − u(t)‖X � ‖ũμ(t) − u(t)‖X +
dn

m
e
ndn
m

∫ t

0

‖ũμ(s) − u(s)‖X ds. (4.26)

On the other hand, by estimate (4.6), Lemma 4.5 and Lebesgue’s convergence theorem,

it follows that ∫ t

0

‖ũμ(s) − u(s)‖X ds → 0 as μ → 0. (4.27)

We now use (4.26), (4.27) and (4.19) to obtain convergence (4.23), which concludes the

proof. �

We end this section with the remark that points (1) and (2) of Theorem 3.2 correspond

to Lemmas 4.1 and 4.6, respectively. Therefore, we conclude from here that the proof of

Theorem 3.2 is complete.

5 Existence and uniqueness

We now turn to the variational analysis of Problem Q. To this end, we need further

notation and preliminaries. Firstly, we use the notation x = (xi) for a typical point in

Ω ∪ Γ and denote by ν = (νi) the outward unit normal at Γ . Here and below, the indices

i, j, k, l run between 1 and d and, unless stated otherwise, the summation convention over

repeated indices is used. An index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j = ∂ui/∂xj .

Recall that the inner product and norm on �d and �d are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀ u, v ∈ �d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀ σ, τ ∈ �d.

We use standard notation for the Lebesgue and Sobolev spaces associated with Ω and Γ ,

and, moreover, we consider the following spaces:

V = { v = (vi) ∈ H1(Ω)d : vi = 0 on Γ1 },
Q = { τ = (τij) : τij = τji ∈ L2(Ω) },
Q1 = { τ ∈ Q : τij,j ∈ L2(Ω) }.

These are real Hilbert spaces endowed with the inner products

(u, v)V =

∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω

σ · τ dx,

(σ, τ )Q1
= (σ, τ )Q + (Div σ,Div τ )L2(Ω)d .

Here and below, ε and Div are the deformation and the divergence operators, respectively,

defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).
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Completeness of the space (V , ‖ · ‖V ) follows from the assumption meas(Γ1) > 0, which

allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary and denote by

vν and vτ the normal and tangential components of v on Γ , given by vν = v ·ν , vτ = v−vνν .

By the Sobolev trace theorem, there exists a positive constant c0 which depends on Ω, Γ1

and Γ3 such that

‖v‖L2(Γ3)d � c0 ‖v‖V ∀ v ∈ V . (5.1)

Also, for a regular function σ ∈ Q we use notations σν and στ for normal and tangential

traces, i.e. σν = (σν) · ν and στ = σν − σνν . Moreover, we recall that the following Green’s

formula holds: ∫
Ω

σ · ε(v) dx +

∫
Ω

Div σ · v dx =

∫
Γ

σν · v da ∀ v ∈ V . (5.2)

Finally, we denote by Q∞ the space of the fourth-order tensor fields given by

Q∞ = {E = (Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 � i, j, k, l � d},

and we recall that Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1�i,j,k,l�d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q � ‖E‖Q∞ ‖τ‖Q ∀ E ∈ Q∞, τ ∈ Q. (5.3)

Next, we list the assumptions on the data, derive the variational formulation of Problem

Q and then state and prove its unique weak solvability. To this end we assume that the

elasticity operator A and the relaxation tensor B satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A : Ω × �d → �d.

(b) There exists LA > 0 such that

‖A(x, ε1) − A(x, ε2)‖ � LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ �d, a.e. x ∈ Ω.

(c) There exists mA > 0 such that

(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) � mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ �d, a.e. x ∈ Ω.

(d) The mapping x 
→ A(x, ε) is measurable on Ω,

for any ε ∈ �d.

(e) The mapping x 
→ A(x, 0) belongs to Q.

(5.4)

B ∈ C(�+; Q∞). (5.5)

The densities of body forces and surface tractions are such that

f0 ∈ C(�+;L2(Ω)d), f2 ∈ C(�+;L2(Γ2)
d). (5.6)
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Finally, the normal compliance function p and the surface yield function F satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) p : � → �+.

(b) There existsLp > 0 such that

|p(r1) − p(r2)| � Lp |r1 − r2| ∀ r1, r2 ∈ �.

(c) (p(r1) − p(r2))(r1 − r2) � 0 ∀ r1, r2 ∈ �.

(d) p(r) = 0 iff r � 0.

(5.7)

F ∈ L2(Γ3), F(x) � 0 a.e. x ∈ Γ3. (5.8)

In what follows, we consider a set of admissible displacements defined by

U = { v ∈ V : vν � g on Γ3 }. (5.9)

Moreover, we define operator P : V → V and functions j : V → IR+, f : �+ → V by

equalities

(Pu, v)V =

∫
Γ3

p(uν)vν da ∀ u, v ∈ V , (5.10)

j(v) =

∫
Γ3

Fv+
ν da ∀ v ∈ V , (5.11)

(f(t), v)V =

∫
Ω

f0(t) · v dx +

∫
Γ2

f2(t) · v da ∀ v ∈ V , t ∈ [0, T ]. (5.12)

Here and below, for r ∈ � we denote by r+ its positive part, i.e. r+ = max {r, 0}. Note

that assumptions (5.6)–(5.8) imply that integrals in (5.10)–(5.12) are well defined.

Assume in what follows that (u, σ) are sufficiently regular functions that satisfy (2.1)–

(2.6), and let v ∈ U and t > 0 be given. Firstly, we use Green’s formula (5.2) and

equilibrium equation (2.2) to see that

∫
Ω

σ(t) · (ε(v) − ε(u(t))) dx =

∫
Ω

f0(t) · (v − u(t)) dx +

∫
Γ

σ(t)ν · (v − u(t)) da.

We split the surface integral over Γ1, Γ2 and Γ3 and since v − u(t) = 0 a.e. on Γ1,

σ(t)ν = f2(t) on Γ2, we deduce that

∫
Ω

σ(t) · (ε(v) − ε(u(t))) dx =

∫
Ω

f0(t) · (v − u(t)) dx

+

∫
Γ2

f2(t) · (v − u(t)) da +

∫
Γ3

σ(t)ν · (v − u(t)) da.

Moreover, since

σ(t)ν · (v − u(t)) = σν(t)(vν − uν(t)) + στ(t) · (vτ − uτ(t)) on Γ3,
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taking into account the frictionless condition (2.5), we obtain∫
Ω

σ(t) · (ε(v) − ε(u(t))) dx =

∫
Ω

f0(t) · (v − u(t)) dx

+

∫
Γ2

f2(t) · (v − u(t)) da +

∫
Γ3

σν(t)(vν − uν(t)) da. (5.13)

We now write

σν(t)(vν − uν(t)) = (σν(t) + p(uν(t)) + ξ(t))(vν − g)

+ (σν(t) + p(uν(t)) + ξ(t))(g − uν(t))

− (p(uν(t)) + ξ(t))(vν − uν(t)) on Γ3,

then we use the contact conditions (2.6) and definition (5.9) of set U to see that

σν(t)(vν − uν(t)) � −(p(uν(t)) + ξ(t))(vν − uν(t)) on Γ3. (5.14)

We use (2.6), again, and hypothesis (5.8) on function F to deduce that

F (v+
ν − u+

ν (t)) � ξ(t)(vν − uν(t)) on Γ3. (5.15)

Then we add inequalities (5.14) and (5.15) and integrate the result on Γ3 to find that∫
Γ3

σν(t)(vν − uν(t)) da

� −
∫
Γ3

p(uν(t))(vν − uν(t)) da −
∫
Γ3

F (v+
ν − u+

ν (t)) da. (5.16)

Finally, we combine (5.13) and (5.16) and use definitions (5.10)–(5.12) to deduce that

(σ(t), ε(v) − ε(u(t)))Q + (Pu(t), v − u(t))V + j(v) − j(u(t))

� (f(t), v − u(t))V ∀ v ∈ U. (5.17)

We now substitute the constitutive law (2.1) in (5.17) to obtain the following variational

formulation of Problem Q.

Problem QV . Find a displacement field u : �+ → U such that, for all t ∈ �+, the inequality

below holds:

(Aε(u(t)), ε(v) − ε(u(t)))Q +
(∫ t

0

B(t − s)ε(u(s)) ds, ε(v) − ε(u(t))
)
Q

+ (Pu(t), v − u(t))V + j(v) − j(u(t)) � (f(t), v − u(t))V ∀ v ∈ U. (5.18)

In the study of Problem QV we have the following existence and uniqueness result.

Theorem 5.1 Assume that (5.4)–(5.8) hold. Then Problem QV has a unique solution which

satisfies u ∈ C(�+;U).
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Proof To solve the variational inequality (5.18) we use Theorem 3.1 with X = V and

K = U. To this end we consider operators A : V → V and S : C(�+;V ) → C(�+;V )

defined by

(Au, v)V = (Aε(u), ε(v))Q + (Pu, v)V ∀ u, v ∈ V , (5.19)

(Su(t), v)V =
(∫ t

0

B(t − s)ε(u(s)) ds, ε(v)
)
Q

∀ u ∈ C(�+;V ), v ∈ V . (5.20)

It is easy to see that condition (3.2) holds. Next, we use (5.4), (5.7) and (5.1) to see that

operator A satisfies conditions (3.3) with M = LA + c2
0Lp and m = mA. Let n ∈ �∗. Then

a simple calculation based on assumption (5.5) and inequality (5.3) shows that

‖Su1(t) − Su2(t)‖V � max
r∈[0,n]

‖B(r)‖Q∞

∫ t

0

‖u1(s) − u2(s)‖V ds

∀ u1, u2 ∈ C(�+;V ), ∀ t ∈ [0, n]. (5.21)

This inequality shows that operator S, defined by (5.20), satisfies condition (3.4) with

dn = max
r∈[0,n]

‖B(r)‖Q∞ .

Next, we use condition (5.8) to see that the function j defined by (5.11) is a seminorm

on V and moreover it satisfies

j(v) � c0‖F‖L2(Γ3)‖v‖V ∀ v ∈ V . (5.22)

Inequality (5.22) shows that the seminorm j is continuous on V and therefore (3.5) holds.

Finally, using assumption (5.6) and definition (5.12) we deduce that f ∈ C(�+;V ), which

shows that (3.6) holds too.

It now follows from Theorem 3.1 that there exists a unique function u ∈ C(�+;V )

which satisfies inequality

u(t) ∈ U, (Au(t), v − u(t))V + (Su(t), v − u(t))V

+ j(v) − j(u(t)) � (f(t), v − u(t))V ∀ v ∈ U (5.23)

for all t ∈ �+. And using (5.19) and (5.20) we deduce that there exists a unique function

u ∈ C(�+;V ) such that (5.18) holds for all t ∈ �+, which concludes the proof. �

Let σ be the function defined by (2.1). Then it follows from (5.4) and (5.5) that

σ ∈ C(�+;Q). Moreover, it is easy to see that (5.17) holds for all t ∈ �+ and, using

standard arguments, it results from here that

Div σ(t) + f0(t) = 0 ∀ t ∈ �+. (5.24)

Therefore, using the regularity f0 ∈ C(�+;L2(Ω)d) in (5.6) we deduce that Div σ ∈
C(�+;L2(Ω)d), which implies that σ ∈ C(�+;Q1). A couple of functions (u, σ) which
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satisfies (2.1), (5.18) for all t ∈ �+ is called a weak solution to the contact problem Q. We

conclude that Theorem 5.1 provides the unique weak solvability of Problem Q. Moreover,

the regularity of the weak solution is u ∈ C(�+;U), σ ∈ C(�+;Q1).

6 Penalization

In this section we show how the abstract result in Theorem 3.2 can be used in the study

of the contact problem Q. To this end, for each μ > 0 we consider the following contact

problem.

Problem Qμ. Find a displacement field uμ : Ω×�+ → �d and a stress field σμ : Ω×�+ → �d

such that

σμ(t) = Aε(uμ(t)) +

∫ t

0

B(t − s)ε(uμ(s)) ds in Ω, (6.1)

Div σμ(t) + f0(t) = 0 in Ω, (6.2)

uμ(t) = 0 on Γ1, (6.3)

σμ(t)ν = f2(t) on Γ2, (6.4)

σμτ(t) = 0 on Γ3, (6.5)

for all t ∈ �+, and there exists ξμ : Γ3 × �+ → � which satisfies

σμν(t) + p(uμν(t)) +
1

μ
p(uμν − g) + ξμ(t) = 0,

0 � ξμ(t) � F,

ξμ(t) = 0 if uμν(t) < 0,

ξμ(t) = F if uμν(t) > 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on Γ3, (6.6)

for all t ∈ �+.

Here and below uμν and σμτ represent the normal and the tangential components

of the functions uμ and σμ, respectively. Note that the contact condition (6.6) can be

obtained from the contact condition (2.6) in the limit when g → ∞. For this reason, its

mechanical interpretation is similar to that of condition (2.6) and could be summarised

as follows: When there is separation between the body’s surface and the foundation, the

normal stress vanishes; the penetration arises only if the normal stress reaches the critical

value F; when there is penetration, the contact follows a normal compliance condition

of the form (2.13). For this reason we refer to this condition as to a multivalued normal

compliance contact condition. It models the case when the foundation is assumed to have

a rigid-elastic behaviour. Arguments similar to these used in [9, 20] show that μ can be

interpreted as a deformability coefficient of the hard layer of the foundation.

Using notations (5.10)–(5.12) by similar arguments as those used in the case of Problem

Q, we obtain the following variational formulation of Problem Qμ.
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Problem QV
μ . Find a displacement field uμ : �+ → V such that, for all t ∈ �+, the inequality

below holds:

(Aε(uμ(t)), ε(v) − ε(uμ(t)))Q +
( ∫ t

0

B(t − s)ε(uμ(s)) ds, ε(v) − ε(uμ(t))
)
Q

+ (Puμ(t), v − uμ(t))V +
1

μ

∫
Γ3

p(uμν(t) − g)(vν − uμν(t))da

+ j(v) − j(uμ(t)) � (f(t), v − uμ(t))V ∀ v ∈ V . (6.7)

We have the following existence, uniqueness and convergence result, which states the

unique solvability of Problem QV
μ and describes the behaviour of its solution as μ → 0.

Theorem 6.1 Assume that (5.4)–(5.8) hold. Then:

(1) For each μ > 0, Problem QV
μ has a unique solution which satisfies uμ ∈ C(�+;V ).

(2) The solution uμ of Problem QV
μ converges to the solution u of Problem QV , that is

‖uμ(t) − u(t)‖V → 0 as μ → 0, (6.8)

for all t ∈ �+.

Proof We use Theorem 3.2 with X = V and K = U. To this end we define operator

G : V → V by equality

(Gu, v)V =

∫
Γ3

p(uν − g)vνda ∀ u, v ∈ V . (6.9)

We use (5.1) and (5.7) to show that G is a monotone Lipschitz continuous operator

with Lipschitz constant M = c2
0Lp, i.e. it satisfies conditions (3.8)(a) and (3.8)(b).

Assume now that u ∈ V and v ∈ U. Then using (5.9) and (5.7) it is easy to see that

p(uν − g)(vν − g) � 0 a.e. on Γ3,

p(uν − g)(g − uν) � 0 a.e. on Γ3,

and therefore,

(Gu, v − u)V =

∫
Γ3

p(uν − g)(vν − uν)da

=

∫
Γ3

p(uν − g)(vν − g)da +

∫
Γ3

p(uν − g)(g − uν)da � 0,

which shows that (3.8)(c) holds too.

Finally, assume that Gu = 0V . Then (Gu, u)V = 0 and, therefore,

∫
Γ3

p(uν − g)uνda = 0. (6.10)
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We use (5.7) to obtain the inequality

p(uν − g)uν � p(uν − g)g � 0 a.e. on Γ3.

Therefore, since the integrand in (6.10) is positive, we deduce from (6.10) that

p(uν − g)uν = 0 a.e. on Γ3.

This equality combined with assumption (5.7)(d) implies that uν � g a.e. on Γ3 and,

therefore, we deduce that u ∈ U. Conversely, if u ∈ U, it follows that uν � g a.e. on Γ3

and using assumption (5.7)(d) we deduce that p(uν − g) = 0 a.e. on Γ3. From definition

(6.9) of operator G we deduce that (Gu, v)V = 0 for all v ∈ V , which implies that Gu = 0V .

It follows from above that G satisfies condition (3.8)(d).

We now turn back to (5.19) and (5.20). Thus, it is easy to see that uμ is a solution to

Problem QV
μ iff

(Auμ(t), v − uμ(t))V + (Suμ(t), v − uμ(t))V +
1

μ
(Guμ(t), v − uμ(t))V

+ j(v) − j(uμ(t)) � (f(t), v − uμ(t))V ∀ v ∈ V , (6.11)

for all t ∈ �+. Moreover, u is a solution to Problem QV iff u satisfies inequality (5.23) for

all t ∈ �+. Recall also that the operator G satisfies condition (3.8). Theorem 6.1 is now a

consequence of Theorem 3.2. �

Note that the convergence result (6.8) can be easily extended to the weak solutions

of Problems Qμ and Q. Indeed, let σμ and σ be the functions defined by (6.1) and (2.1),

respectively, and let t ∈ �+, n ∈ IN∗ be such that t ∈ [0, n]. Then, following the arguments

presented in Section 5, it follows that σμ, σ ∈ C(�+;Q) and, moreover,

Div σμ(t) = Div σ(t) = −f0(t). (6.12)

Therefore, using (2.1), (6.1) and (6.12) as well as the properties of operators A and B we

deduce that

‖σμ(t) − σ(t)‖Q1
= ‖σμ(t) − σ(t)‖Q � LA‖uμ(t) − u(t)‖V

+ max
r∈[0,n]

‖B(r)‖Q∞

∫ n

0

‖uμ(s) − u(s)‖V ds. (6.13)

Next, we take v = 0V in (6.11), then we use the properties of operators A, G combined

with those of functional j. As a result, we obtain

mA ‖uμ(t)‖V � ‖A0V‖V + ‖Suμ(t)‖V + ‖f(t)‖V .

We now use property (5.21) of operator S and the Gronwall argument to see that

‖uμ(t)‖V � cn, (6.14)

where cn represents the constant which depends on n but is independent on μ. Then we
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use inequality (6.13), convergence (6.8), estimate (6.14) and Lebesque’s theorem to deduce

that

‖σμ(t) − σ(t)‖Q1
→ 0 as μ → 0. (6.15)

In addition to the mathematical interest in the convergence result (6.8), (6.15), it is

important from the mechanical point of view, since it shows that the weak solution of the

viscoelastic contact problem with multivalued normal compliance and unilateral constraint

may be approached as closely as one wishes by the solution of the viscoelastic contact

problem with multivalued normal compliance, with a sufficiently small deformability

coefficient.

7 Conclusion

We presented a penalization method for a class of history-dependent variational

inequalities in Hilbert spaces. It contains the existence and uniqueness of the solution for

the penalized problems as well as its convergence to the solution of the original problem.

The proofs were based on arguments of compactness and monotonicity. The method

can be applied in the study of a large class of non-linear boundary value problems with

unilateral constraints. To provide an example, we presented a new model of quasistatic

frictionless contact with viscoelastic materials which, in the variational formulation,

leads to a history-dependent variational inequality for the displacement field. We applied

the abstract penalization method in the study of this contact problem and presented the

mechanical interpretation of the corresponding results. A numerical validation of the

convergence result included in this method will be provided in a forthcoming paper.
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[10] Hlaváček, I., Haslinger, J., Necǎs, J. & Lovı́šek, J. (1988) Solution of Variational Inequalities

in Mechanics, Springer-Verlag, New York, NY.

[11] Kikuchi, N. & Oden, J. T. (1980) Theory of variational inequalities with applications to

problems of flow through porous media, Int. J. Eng. Sci. 18, 1173–1284.

[12] Kikuchi, N. & Oden, J. T. (1988) Contact Problems in Elasticity: A Study of Variational

Inequalities and Finite Element Methods, SIAM, Philadelphia, PA.

[13] Kinderlehrer, D. & Stampacchia, G. (2000) An Introduction to Variational Inequalities and

their Applications, Classics in Applied Mathematics 31, SIAM, Philadelphia, PA.

[14] Martins, J. A. C. & Monteiro Marques, M. D. P. (editors) (2002) Contact Mechanics, Kluwer,

Dordrecht, Netherlands.
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