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An optimal sensor placement procedure is proposed within the framework of
variational data assimilation (DA) for unsteady flows, with the aim of maximizing
the efficiency of the DA procedure. It is dedicated to the a priori design of a sensor
network, and relies on a first-order adjoint approach. The proposed methodology
first consists in identifying, via optimal control, the locations in the flow that have
the greatest sensitivity with respect to a change in the initial condition, boundary
conditions or model parameters. In a second step, sensors are placed at these locations
for DA purposes. The use of this optimal sensor placement procedure does not require
extra development in the case where a variational DA suite is available. The proposed
methodology is applied to the reconstruction of unsteady bidimensional flows past
a rotationally oscillating cylinder. More precisely, the possibilities of reconstructing
the rotational speed of the cylinder and the initial flow, which here encompasses
upstream conditions, from various types of observations are investigated via variational
DA. Then, the observation optimization procedure is employed to identify optimal
locations for placing velocity sensors downstream of the cylinder. Both reduction
in the computational cost and improvement in the quality of the reconstructed flow
are achieved through optimal sensor placement, encouraging the application of the
proposed methodology to more complex and realistic flows.

Key words: variational methods, vortex shedding, wakes

1. Introduction

Data assimilation (DA) (Lewis, Lakshmivarahan & Dhall 2006) is being increasingly
applied to fluid mechanics problems. In essence, DA allows us to merge experimental
fluid dynamics (EFD) and computational fluid mechanics (CFD) in order to improve
the prediction of real-world flows (Hayase 2015). More generally, DA can be
considered as an appropriate tool to solve large-scale inverse problems in both
deterministic and stochastic frameworks. In particular, DA can be used to determine
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initial condition, boundary conditions or model parameters for a CFD code from
synthetic or EFD information (observations) about a given flow, thus improving the
numerical prediction of complex realistic flows (Kato et al. 2015). Among other
possible applications, flow reconstruction through DA may be employed to complete
experimental observations through the enforcement of dynamical constraints (Heitz,
Mémin & Schnörr 2010), to build robust reduced order models (Artana et al. 2012),
or to perform detailed sensitivity analyses (Mons et al. 2014). DA could be also
considered in flow control problems to design efficient estimators (Hoepffner et al.
2005; Chevalier et al. 2006; Colburn, Cessna & Bewley 2011). Two classes of
state-of-the-art DA methods, as developed in the meteorology community, have
been applied to CFD: variational DA, which relies on an optimal control approach
(Lions 1971; Le Dimet & Talagrand 1986), and the Kalman filter and its ensemble
variant (Kalman 1960; Evensen 1994), which are derived from a stochastic (Bayesian)
formulation of the DA problem (van Leeuwen & Evensen 1996; Wikle & Berliner
2007).

Bayes’ theorem provides an appropriate framework to take into account badly
known dynamics and noisy observations. Besides, an advantage of Kalman filter
techniques is to provide not only an assimilated state of the flow, but also the
associated statistics. However, the assimilation process requires the prescription of
prior statistics, which may be difficult to characterize. Furthermore, the ensemble
Kalman filter, which is more suitable for large-scale nonlinear problems than the
standard Kalman filter (Evensen 1994), may require significant ad hoc adjustments
to ensure the stability of the filter and to counteract finite ensemble size effects
originating from the use of Monte Carlo techniques to propagate the statistics of the
flow field (Anderson & Anderson 1999; Houtekamer & Mitchell 2001). On the other
hand, variational DA schemes (Le Dimet & Talagrand 1986) rely on the use of adjoint
techniques to enforce the governing equations of the flow and to compute the gradient
of a cost function evaluating the discrepancies between available observations and
numerical estimation of the flow. Such methodology ensures robustness and scalability
of the DA algorithm, but requires the development of the adjoint model associated
to the CFD code (Peter & Dwight 2010). Hybrid approaches merging a variational
framework with ensemble methods, as the ensemble-based variational schemes (Liu,
Xiao & Wang 2008), appear to be interesting alternatives to variational DA and
Kalman filter techniques, since they combine the robustness of the former and the
non-intrusive character of the latter. In the context of the Navier–Stokes equations,
variational DA was considered in Bewley & Protas (2004), Papadakis & Mémin
(2008), Gronskis, Heitz & Mémin (2013), Foures et al. (2014), while Kalman filter
techniques were employed in Colburn et al. (2011), Suzuki (2012), Kato et al. (2015).
A comparison between variational DA, ensemble Kalman filtering and ensemble-based
variational DA was proposed in Mons et al. (2016). A summary of the characteristics
of the above-mentioned studies is presented in table 1. In the present study, we adopt
the variational approach, which proved to be efficient in terms of quality of the
reconstructed flow for a given computational cost.

Aside from the question of the choice of the DA methodology, one may wonder
which measurements of the reference flow to be reconstructed are the most appropriate
to solve the DA problem. This question may arise in the design of an experimental
sensor network, and is of crucial importance since these measurements represent
the only available information about the reference flow. Of course, the issue of
determining an ‘optimal’ observation network goes beyond the DA framework and
may be relevant in any estimation problem. For example, efficient sensor placement
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has been considered in the context of flow reconstruction based on the proper
orthogonal decomposition (Mokhasi & Rempfer 2004; Cohen, Siegel & McLaughlin
2006; Willcox 2006; Yildirim, Chryssostomidis & Karniadakis 2009). This is also
a topic of interest to the flow control community (Chen & Rowley 2011; Belson
et al. 2013; Juillet, Schmid & Huerre 2013; Akhtar et al. 2015) since the locations
of sensors used to measure the flow are critical for the design of the estimator, and
thus determine the success of the control strategy.

As regards variational DA applications, the impact of the observations on the DA
process, or observation sensitivity, was often examined relying on the adjoint-based
techniques developed in Baker & Daley (2000), Langland & Baker (2004) for ‘3D’
(static) DA and in Le Dimet et al. (1997), Daescu (2008) for ‘4D’ (dynamic) DA.
In these studies, observation sensitivity is understood as the gradient of the solution
of the DA problem (the assimilated state), i.e. the flow solution that minimizes
the discrepancies with the available measurements, with respect to the values or
to the locations of the observations. In this framework, optimal measurements
may be obtained through the minimization of a cost function that quantifies the
discrepancies between the solution of the DA problem and a ‘verification’ state
(reference assimilated state). Solving this optimization problem constrained by
both the governing equations of the flow and the first-order optimality condition
associated to the DA problem involves the use of a second-order adjoint model
(Wang et al. 1992; Le Dimet, Navon & Daescu 2002), implying additional coding
effort and computational burden. Such methodology was developed and applied to
the optimization of observation locations with the two-dimensional shallow-water
equations in Cioaca & Sandu (2014). Aside from the above techniques, one may
wonder how it is possible to optimize observation locations a priori, i.e. before
assimilating measurements. This question was examined by Kang & Xu (2012),
where appropriate observation locations are derived from the optimization of an
empirical observability Gramian matrix. The proposed methodology proved to be
efficient with the Burgers equation in a low-dimensional test case (the dimension of
the control vector in the DA problem is 13), but its extension to high-dimensional
systems may be problematic, since evaluating observability for nonlinear large-scale
systems remains difficult. On the other hand, an important advantage of the adjoint
technique is to provide sensitivities at a computational cost similar to that of a forward
integration of the dynamical model, regardless of the dimension of the problem.

In the present study, the development of an optimal sensor placement procedure in
the context of variational DA of viscous unsteady flows is investigated. The proposed
approach can be performed before assimilating measurements and independently of
the DA problem as in Kang & Xu (2012), i.e. is dedicated to the a priori design
of an observation network. It relies on the use of adjoint-based techniques as in Le
Dimet et al. (1997), Daescu (2008), Cioaca & Sandu (2014), but without the need of
a second-order adjoint model. Indeed, the present methodology is designed to use the
first-order adjoint model only, which is already involved in the variational DA scheme,
and is based on the maximization of the norm of the gradient of the observations with
respect to the control variables in the DA problem. In other words, observations are
here designed in order to maximize their first-order sensitivity with respect to changes
in the control vector for the DA process.

The proposed technique is applied to the reconstruction of flows in the presence
of a cylinder performing rotary oscillations (Tokumaru & Dimotakis 1991; Baek &
Sung 2000; Choi, Choi & Kang 2002; Thiria, Goujon-Durand & Wesfreid 2006;
Thiria & Wesfreid 2007; Kumar et al. 2013). The interest of considering the flow
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past a rotationally oscillating cylinder as the benchmark problem in the present study
is threefold. Firstly, this flow configuration is of relevance for flow control and drag
reduction purposes (Choi, Jeon & Kim 2008), and has been examined with both
Riccati-based (Stoyanov 2009; Akhtar et al. 2010; Borggaard, Stoyanov & Zietsman
2010) and adjoint-based optimal control (He et al. 2000; Homescu, Navon & Li 2002;
Protas & Styczek 2002; Bergmann, Cordier & Brancher 2005; Flinois & Colonius
2015). In this context, DA may be considered as a tool to solve the following inverse
problem: determine the boundary forcing, here the rotational speed of the cylinder,
from measurements of the resulting unsteady forced flow. More precisely, this study
investigates here the possibility of reconstructing the rotational speed of the cylinder
and the upstream flow, here included in the initial condition, from observations of the
flow downstream or around the cylinder through variational DA. Secondly, compared
to previous studies dealing with the application of DA to the reconstruction of flows
past a fixed cylinder (Gronskis et al. 2013; Foures et al. 2014; Mons et al. 2016),
considering the possibility of rotary oscillations allows us to study flows exhibiting
richer physics, with here the existence of two regimes: the lock-on case, where the
wake flow is synchronized with the oscillations of the cylinder, and the non-lock-on
regime, where the frequency of the vortex shedding is not directly imposed by that
of the oscillations of the cylinder. Accordingly, this study may both illustrate the
potential of reconstructing unsteady forced flows through DA and the fact that these
techniques do not exempt one from the need of a good knowledge of the physics
of the flow. Finally, it is expected that the choice of this flow configuration will
facilitate the interpretation of the results obtained with the proposed optimal sensor
placement procedure. Indeed, it could be anticipated that the domains in the flow
associated to an important sensitivity with respect to a change in the rotational speed
of the cylinder are located relatively close to the latter and into or at the boundaries
of the regions with high vortical activity. Furthermore, we study here flows at a
Reynolds number of Re = 100, which allows us to consider them as laminar and
bidimensional (Williamson 1996). This will enable us to perform a large number of
numerical experiments with various reconstruction scenarios in order to assess the
proposed observation optimization procedure and to quantify the enhancement in the
performances of the DA process obtained through optimal sensor placement. Indeed,
the proposed methodology will here be applied to identify optimal locations for
velocity measurements in order to obtain a better reconstruction of the flow and also
a decrease in the computational cost in terms of calls to the adjoint code compared
to a first-guess observation network.

The paper is organized as follows. The observation optimization procedure is
derived in § 2. The physical set-up of the DA experiments is presented in § 3,
along with the numerical method used. Section 4 is dedicated to the results of
DA experiments, and the possibilities of reconstructing flows in the presence of
a rotationally oscillating cylinder are delineated. The optimal sensor placement
procedure is deployed and assessed by DA experiments in § 5. Section 6 is dedicated
to conclusions. Appendix A furnishes the discrete formulation of the observation
optimization procedure, along with details about its numerical implementation.

2. Observation optimization, variational data assimilation and sensor selection
procedures

The present optimal sensor placement procedure is derived as follows. First,
a response function of the system under consideration, here flow obeying the
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Navier–Stokes equations, is defined as the squared norm of observations of the system.
The observation operator, which maps the state space to the observation space, is
parameterized by a vector here formed by locations of sensors. The sensitivity
(gradient) of this response function with respect to initial/boundary conditions and/or
model parameters, which will form the control vector in the DA problem, is then
computed using the adjoint technique. In a second step, the parameters of the
observation operator are optimized through the maximization of the sensitivity of the
response function, relying again on the adjoint technique. This method also provides a
way to quantify the impact of each sensor in the sensitivity of the observations, and to
select the most important ones. Besides the derivation of the proposed methodology,
the principle of variational DA is also recalled in this section, and optimization
algorithms to solve the optimal sensor placement and DA problems are discussed.

2.1. Dynamical model
For the sake of generality in the derivation of the proposed observation optimization
procedure, we consider a dynamical model under the generic form

∂q
∂t
= f (q, β), (2.1)

where q refers to the model variables, here a flow field, which are defined for a spatial
domain Ω of any dimension (typically one to three) and a time interval [0, T]. q
belongs to the model space denoted by M whose scalar product is defined by

〈q, p〉M =
∫ T

0

∫
Ω

q(x, t)p(x, t) dx dt ∀q, p ∈M. (2.2)

The associated norm is given by ‖q‖M =
√
〈q, q〉M ∀q ∈M. Equation (2.1) also

involves the nonlinear operator f , which corresponds here to the Navier–Stokes
equations, and the vector β belonging to the parameter space denoted by P . β
may refer to parameters of the dynamical model, boundary conditions, or shape
design parameters. In the present study, β refers to the rotational speed of the
cylinder. Given (2.1), the solution q is uniquely specified by the initial condition
q0 (q0(x) = q(x, 0) ∀x ∈ Ω) and the parameters β. Before proceeding further, let
us introduce a few notations. Given an operator g from vector space A to B, the
Gâteaux derivative of g at a in the direction c, with both a and c in A, is denoted
by

∂g
∂a

∣∣∣∣
a

(c)= lim
ε→0

d
dε

g(a+ εc). (2.3)

In the case where g is a functional (B = R), the Gâteaux derivative defined in (2.3)
may be related to the Fréchet derivative (referred to as gradient in the following)
∂g/∂a at a according to

∂g
∂a

∣∣∣∣
a

(c)=
〈
∂g
∂a
(a), c

〉
A
. (2.4)

If g is a linear operator, one can define the adjoint operator g∗ according to

〈g(a), b〉B = 〈a, g∗(b)〉A ∀a ∈A, ∀b ∈B. (2.5)

2.2. Sensitivity of observations
We now examine observations of the state q and their sensitivity with respect to a
change in the initial condition q0 or the parameters β. More precisely, we consider a
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response R of the model defined as the norm of the observations of the state vector q

R= 1
2‖h(q, λ)‖

2
O, (2.6)

where h is the observation operator that maps the model space M to the observation
space O. It may be worth noting that the scalar product associated to the observation
space in (2.6) includes time dimension, as for the model space in (2.2). The operator
h will allow us to compare the estimation of the state q with available measurements
in the data assimilation (DA) procedure described in § 2.4. It is assumed that this
operator is parameterized by the vector λ. This vector allows us to tune the operator h,
and thus to tune the observations performed on the system (2.1). In the present study,
λ will refer to the observation locations. To evaluate the change in the values of the
observations resulting from a change in the state q, and more precisely to quantify the
first-order sensitivity of the response R with respect to the initial condition q0 and the
parameters β, the adjoint technique (Lions 1971) is employed to compute the gradient
of R with respect to q0 and β. The constraint (2.1) on the dynamics of q is taken into
account through the introduction of the Lagrangian L1 defined by

L1 =
1
2
‖h(q, λ)‖2

O −

〈
q̃,
∂q
∂t
− f (q, β)

〉
M
, (2.7)

where q̃ is referred to as the adjoint state. The variation of L1 in the direction p∈M
is given by〈

∂L1

∂q
, p
〉

M
=

〈
h(q, λ),

∂h
∂q

∣∣∣∣
q,λ

(p)

〉
O

−

〈
q̃,
∂p
∂t
−
∂f
∂q

∣∣∣∣
q,β

(p)

〉
M

=

〈(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ)), p

〉
M

−

〈
−
∂ q̃
∂t
−

(
∂f
∂q

∣∣∣∣
q,β

)∗
(q̃), p

〉
M

−

∫
Ω

(q̃(x, T)p(x, T)− q̃(x, 0)p(x, 0)) dx. (2.8)

The derivations in (2.8) involve the tangent linear model operator (∂f /∂q)|q,β and its
adjoint, which both depend on the state q if the model operator f is nonlinear, as
is the case here. From (2.8), we can deduce the gradient of the Lagrangian L1 with
respect to the initial condition q0 and the parameters β of the model (2.1) according
to the following system of equations

q̃(x, T)= 0 ∀x ∈Ω, (2.9a)

−
∂ q̃
∂t
−

(
∂f
∂q

∣∣∣∣
q,β

)∗
(q̃)= h̃(λ), h̃(λ)=

(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ)), (2.9b,c)

∂L1

∂q0
= q̃0, q̃0(x)= q̃(x, 0) ∀x ∈Ω, (2.9d,e)

∂L1

∂β
=

(
∂f
∂β

∣∣∣∣
q,β

)∗
(q̃). (2.9f )
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The governing equation (2.9b,c) for the adjoint state has to be solved backward in
time with the terminal condition (2.9a) in order to obtain the gradients (2.9d,e)–(2.9f ).
This backward integration requires the storing of the state q, as detailed in § 3.2
and appendix A. The gradients (2.9d,e)–(2.9f ) allow us to quantify the first-order
sensitivity of the response R defined in (2.6). For example, the change 1R in the
value of R resulting from a change 1β in the parameters in (2.1) can be estimated
through the first-order approximation

1R'
〈
∂L1

∂β
, 1β

〉
P
. (2.10)

2.3. Observation optimization problem
In any control or DA problem, it is crucial that the observation operator h, which
represents the available information on the system (2.1), allows us to effectively
measure the state q. A desirable property of h is thus its sensitivity with respect to
a change in the control variables, here the initial condition q0 and the parameters
β. Indeed, if a variation in the control vector entails no change in the values of
the observations, i.e. changes in the system are not observable, the DA problem
cannot be solved satisfactorily. It is therefore preferable to design the operator h with
maximum sensitivity with respect to the control vector. The first-order sensitivity of
the observations with respect to the initial condition q0 and the parameters β can
be estimated through the gradients (2.9d,e)–(2.9f ). Accordingly, in the present work,
we propose to formulate the observation optimization problem as the maximization
of the norm of these gradients with respect to the vector λ that parameterizes the
observation operator h. More precisely, this problem is expressed as

max
λ

{
G=

1
2

∫
Ω

(
∂L1

∂q0

)2

(x) dx+
1
2

∥∥∥∥∂L1

∂β

∥∥∥∥2

P

}
. (2.11)

Once again, we use the adjoint technique to solve (2.11) and define the following
Lagrangian L2 using (2.9)

L2 =
1
2

∫
Ω

q̃2
0(x) dx+

1
2

∥∥∥∥∥
(
∂f
∂β

∣∣∣∣
q,β

)∗
(q̃)

∥∥∥∥∥
2

P

−

〈
r,−

∂ q̃
∂t
−

(
∂f
∂q

∣∣∣∣
q,β

)∗
(q̃)− h̃(λ)

〉
M

−

∫
Ω

s(x)q̃(x, T) dx, (2.12)

where r and s are Lagrange multipliers that are introduced to take into account the
constraints (2.9a) and (2.9b,c) on the dynamics of the adjoint variable q̃, the operator
h̃ is defined in (2.9b,c). By setting〈

∂L2

∂ q̃
, p̃
〉

M
=

∫
Ω

q̃0(x)p̃(x, 0) dx+

〈(
∂f
∂β

∣∣∣∣
q,β

)∗
(q̃),

(
∂f
∂β

∣∣∣∣
q,β

)∗
(p̃)

〉
P

+

〈
r,
∂ p̃
∂t
+

(
∂f
∂q

∣∣∣∣
q,β

)∗
(p̃)

〉
M

−

∫
Ω

s(x)p̃(x, T) dx
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=

〈
∂f
∂β

∣∣∣∣
q,β

((
∂f
∂β

∣∣∣∣
q,β

)∗
(q̃)

)
, p̃

〉
M

+

〈
−
∂r
∂t
+
∂f
∂q

∣∣∣∣
q,β

(r), p̃

〉
M

+

∫
Ω

((q̃0(x)− r(x, 0))p̃(x, 0)+ (r(x, T)− s(x))p̃(x, T)) dx

= 0 ∀p̃ ∈M, (2.13)

we obtain the system of equations that allows us to compute the gradient of the
Lagrangian L2 with respect to λ

r(x, 0)= q̃0(x) ∀x ∈Ω, (2.14a)

∂r
∂t
−
∂f
∂q

∣∣∣∣
q,β

(r)=
∂f
∂β

∣∣∣∣
q,β

((
∂f
∂β

∣∣∣∣
q,β

)∗
(q̃)

)
, (2.14b)

∂L2

∂λ
=

(
∂ h̃
∂λ

∣∣∣∣∣
λ

)∗
(r). (2.14c)

Once (2.14b) is integrated forward in time with the initial condition (2.14a), the
gradient (2.14c) is available and can be used in a gradient-based optimization
procedure to solve the maximization problem (2.11), as described in § 2.5. Equation
(2.14c) can be also employed to select the most important sensors in a observation
network, as detailed in § 2.6.

2.4. Data assimilation problem
In this subsection, the type of observations is fixed (operator h with fixed parameters
λ), and it is assumed that observations y of a reference flow realization are
available. To reconstruct the reference solution, the DA problem is formulated as
the minimization of the discrepancies between the observations y and the estimation
of the state q, as proposed by Le Dimet & Talagrand (1986). Accordingly, if both
the initial condition q0 and the parameters β for the reference evolution are unknown,
the DA problem is expressed as

min
q0,β

{
J = 1

2‖h(q, λ)− y‖2
O
}
. (2.15)

As in §§ 2.2 and 2.3, the problem (2.15) is solved with the adjoint technique, and
the corresponding adjoint equations are similar to those in (2.9) but with a different
forcing term in (2.9b,c). Following the derivations of § 2.2, see also Le Dimet &
Talagrand (1986), Lewis et al. (2006), the gradient of the cost function J in (2.15)
with respect to the initial condition q0 and the parameters β is computed from the
following system of equations

q̌(x, T)= 0 ∀x ∈Ω, (2.16a)

−
∂ q̌
∂t
−

(
∂f
∂q

∣∣∣∣
q,β

)∗
(q̌)=

(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ)− y), (2.16b)

∂L3

∂q0
= q̌0, q̌0(x)= q̌(x, 0) ∀x ∈Ω, (2.16c)

∂L3

∂β
=

(
∂f
∂β

∣∣∣∣
q,β

)∗
(q̌), (2.16d)
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with

L3 = J −
〈

q̌,
∂q
∂t
− f (q, β)

〉
M
. (2.17)

After the backward integration of (2.16b) with the terminal condition (2.16a), the
gradients (2.16c)–(2.16d) can be used in a gradient-based optimization procedure to
solve (2.15) in order to recover the initial condition q0 and parameters β associated to
the observations y. The cost function J in (2.15) will be used in all the following DA
experiments, except in one case where we will consider the cost function K defined
as

K = J +
ϑ

2

∫
Ω

(q0(x)− q(e)0 (x))
2 dx. (2.18)

The supplementary contribution in (2.18) allows us to penalize the modification of the
initial condition with respect to the first guess q(e)0 used to initialize the optimization
procedure (see § 2.5). The choice of the value of the weight ϑ associated to this
contribution will be discussed in § 4.1.3. Such a penalization term, which is often used
in DA applications and whose introduction can be rigorously justified in the stochastic
formulation of DA (van Leeuwen & Evensen 1996; Talagrand 1997), may help to
regularize the reconstructed unknowns of the DA problem (a similar contribution for
the parameters β could have been added in (2.18) but will not be considered here).
However, in a context of perfect observations (observations are not corrupted by noise)
and perfect model (the model can reproduce exactly the observed flow), as is the case
here, the cost function J in (2.15) appears to be the most natural choice for the DA
problem (Lewis et al. 2006; Foures et al. 2014; Mons et al. 2014).

2.5. Optimization algorithms
The gradients (2.14c) and (2.16c)-(2.16d) obtained with the adjoint method can
be used in a generic gradient-based iterative procedure to solve the observation
optimization and DA problems defined in (2.11) and (2.15), respectively. For these
two optimization problems, the corresponding control vector γ is updated every
iteration according to

γ (i+1)
= γ (i) + θ (i)d(i). (2.19)

γ (i) refers to the parameters λ of the observation operator h for the observation
optimization problem, while it refers to the initial condition q0 and the parameters
β of the dynamical model (2.1) for the DA problem, evaluated at the ith iteration
of the optimization procedure. d(i) is the ascent/descent direction which is obtained
by the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method in its
low-memory formulation (Nocedal 1980). The step length θ (i) is evaluated with a
backtracking-Armijo line search (Armijo 1966). The iterative procedures to solve
the observation optimization and DA problems are summarized in tables 2 and 3,
respectively.

2.6. Sensor selection procedure
In the case where the vector λ in (2.6) refers to the locations where the observations
are performed (sensors), as in the present study, the gradient (2.14c) can be also used
to quantify the change in the sensitivity of the observations with respect to the initial
condition q0 and the parameters β that results from a change in the location of each
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Observation optimization procedure (problem (2.11))

(1) Choose initial condition q0 and parameters β and compute the corresponding solution
q with a forward integration of the dynamical model (2.1);

(2) choose the observation operator h and start the optimization procedure with a first
guess for its parameters λ;

(3) at the ith iteration, solve backward the adjoint equations (2.9a)–(2.9b,c) with the direct
solution q evaluated in step 1;

(4) solve forward equations (2.14a)–(2.14b) using the adjoint solution q̃ obtained at step 3;

(5) compute the gradient (2.14c) in order to update the parameters λ according to (2.19);

(6) return to step 3 until stopping criterion reached (minimum relative difference in the
value of the cost function G in (2.11) between two successive iterations).

TABLE 2. Summary of the proposed observation optimization procedure.

Variational DA with synthetic observations (problem (2.15))

(1) Choose reference initial condition q0 and parameters β, compute the corresponding
solution q with a forward integration of the dynamical model (2.1), and generate the
observations y;

(2) start the optimization procedure with a first guess for the reference initial condition q0

and parameters β;
(3) at the ith iteration, solve forward the direct problem (2.1);

(4) solve backward the adjoint equations (2.16a)–(2.16b) using the direct solution q
obtained at step 3;

(5) compute the gradients (2.16c)–(2.16d) in order to update the initial condition q0 and
the parameters β according to (2.19);

(6) return to step 3 until stopping criterion reached (maximum decrease in the value of
the cost function J in (2.15) or maximum number of iterations).

TABLE 3. Summary of the variational DA algorithm.

sensor. In other words, equation (2.14c) provides the first-order sensitivity with respect
to each sensor of the sensitivity of the observations, enabling us to identify the sensors
that contribute the most to the observability of changes in the state q. The importance
of the ith sensor in the sensitivity of the observations can thus be estimated through
the quantity ρi defined by

ρi =

(
∂L2

∂xi

)2

+

(
∂L2

∂yi

)2

, ρ1 > ρ2 > · · ·> ρNs, (2.20a,b)

where ∂L2/∂xi and ∂L2/∂yi are the derivatives of the Lagrangian L2 defined in
(2.12) with respect to the coordinates (xi, yi) of the ith sensor in the 2D case,
these derivatives correspond to components of the gradient in (2.14c). The scalars
ρ1, ρ2, . . . , ρNs are sorted in decreasing order, and Ns refers to the total number of
sensors. Accordingly, the number Nδ of the most important sensors that account for
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a ratio δ of the squared norm of the gradient in (2.14c) is given by

Nδ =min

k

∣∣∣∣∣∣∣∣∣∣

k∑
i=1

ρi

Ns∑
i=1

ρi

> δ

 , 0< δ 6 1. (2.21)

Equations (2.20)–(2.21) allow us to define a sensor selection procedure that is
parameterized by the scalar δ.

2.7. Comments on the present observation optimization procedure
We can make the following comments about the observation optimization procedure
proposed in §§ 2.3 and 2.5. Firstly, as for other sensor placement strategies (Kang
& Xu 2012; Cioaca & Sandu 2014) applied to nonlinear systems, the results of
this procedure depend on the chosen direct solution q in (2.6) that is fixed in the
optimization process. Several solutions q will be thus considered in this study to test
the present observation optimization procedure, as detailed in § 3.3. Secondly, the
choice of the cost function G in (2.11) is not unique. In particular, one could want
to optimize the sensitivity of the observations with respect to only some components
of the control vector for the DA problem. For example, if we are only interested
in recovering parameters β of the dynamical model (2.1) for an observed reference
solution, G may be defined as

G=
1
2

∥∥∥∥∂L1

∂β

∥∥∥∥2

P
. (2.22)

This will be the case in the numerical experiments where the observation optimization
procedure is used to increase the sensitivity of the observations with respect to only
the rotational speed of the cylinder. In the present study, the observations of the
reference flows we want to reconstruct are generated synthetically, and one may
wonder how to extend the proposed methodology to the use of real (experimental)
observations. For the sake of simplicity, and without loss of generality, we consider
in the rest of this section observations y ∈Rm with associated observation operator h.
For perfect observations, as is the case here, the scalar product in observation space,
which is involved in (2.6) and (2.15), is simply given by

〈a, b〉O = aTb ∀a, b ∈O. (2.23)

In the case of real observations, it may be necessary to take into account the fact that
available measurements are not perfect but may be vitiated by errors. If these errors
are modelled as additive random variables ξ , observations are related to the state of
the flow according to

y= h(q, λ)+ ξ , E[ξ ] = 0, E[ξξT
] = C, (2.24a−c)

where E is the esperance operator. It is assumed in (2.24a-c) that measurements are
unbiased, and their second-order statistics are characterized by the covariance matrix
C. In accordance with the Gaussian assumption for the observation errors, which is
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FIGURE 1. Schematic of the flow configuration. Full and dashed lines delineate the
computational domain and the region with a higher refinement level, respectively.

often employed in DA applications (van Leeuwen & Evensen 1996; Talagrand 1997;
Wikle & Berliner 2007), the extension of the proposed methodology to the use of real
measurements may therefore consist in replacing the definition of the scalar product
in observation space (2.23) with

〈a, b〉O = aTC−1b ∀a, b ∈O, (2.25)

which allows us to ponderate the components of the observations relatively to the
associated degree of uncertainty. The influence of noise in the available measurements
on variational DA has been studied in, e.g. Mons et al. (2016). In terms of numerical
implementation, if an adjoint code with the tangent linear model (∂f /∂q)|q,β is
already available, the system (2.14) only requires the development of the operator in
the right-hand side of (2.14c). The practical implementation of the present observation
optimization procedure is further discussed in § 3.2 and appendix A.

3. Physical and numerical set-up of the numerical experiments
3.1. Flow configuration and numerical method

We consider the bidimensional flow around a cylinder of diameter dr. The oncoming
flow is assumed to be uniform at infinity and the corresponding velocity magnitude
is ur. The Reynolds number of the flow is defined as Re = urdr/ν, where ν is the
kinematic viscosity of the fluid. The cylinder can rotate around its axis with rotational
speed ωc(t). This flow configuration is illustrated in figure 1. In this study, we consider
rotary oscillations of the form (Tokumaru & Dimotakis 1991; Baek & Sung 2000;
Choi et al. 2002; Thiria et al. 2006; Thiria & Wesfreid 2007; Kumar et al. 2013)

ωc(t)= A sin(2πft+ ϕ), α(t)=
ωc(t)dr

2ur
, A=

Adr

2ur
, F =

fdr

ur
. (3.1a−d)

These oscillations are characterized by their dimensionless amplitude A and frequency
F . We also introduce a phase term ϕ since flows with finite-time evolution are
considered. α(t) in (3.1) is the dimensionless rotational speed of the cylinder. It
is assumed that the flow is solution of the two-dimensional unsteady compressible
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Navier–Stokes equations for perfect gas, their integral form over a bounded domain
of interest Ω is given by

∂

∂t

∫
Ω

w dV +
∫
∂Ω

(F (w)−G(w)) · n dS= 0, w= (ρ ρu ρv E)T, (3.2a,b)

F (w)=


ρu ρv

ρu2
+ p ρuv

ρuv ρv2
+ p

u(E+ p) v(E+ p)

 , G(w)=


0 0
τxx τxy

τxy τyy

uτxx + vτxy − qx vτyy + uτxy − qy

 ,
(3.2c,d)

τxx =µ

(
2
∂u
∂x
−

2
3

(
∂u
∂x
+
∂v

∂y

))
, τyy =µ

(
2
∂v

∂y
−

2
3

(
∂u
∂x
+
∂v

∂y

))
, (3.2e,f )

τxy =µ

(
∂u
∂y
+
∂v

∂x

)
, (3.2g)

qx =−κ
∂T
∂x
, qy =−κ

∂T
∂y
, p= ρrT = (γ − 1)ρe, E= ρ

(
e+ 1

2(u
2
+ v2)

)
,

(3.2h−k)

where n, ρ, u, v, p, e, T , γ , µ, κ and r refer to the outer unit normal vector to
the boundary ∂Ω , density, x-wise and y-wise components of the velocity vector,
pressure, specific internal energy, temperature, ratio of specific heats, dynamic
viscosity, thermal conductivity and a constant in the ideal gas law, respectively.
Equation (3.2) is discretized using a cell-centred finite-volume formulation on
unstructured grids. Convective fluxes F (w) are evaluated using Roe’s approximate
Riemann solver (Roe 1981). Second-order spatial accuracy is achieved with the
reconstruction procedure of Jawahar & Kamath (2000). Time integration is performed
with a fully implicit second-order scheme that combines dual time stepping (Jameson
1991) and the LU-SGS method (Sharov & Nakahashi 1997; Luo, Baum & Löhner
2001). The unstructured mesh is formed by 1.4 × 104 elements with 96 nodes over
the surface of the cylinder. The physical time step 1t of the simulations is chosen
as 1t = 1.33 × 10−3dr/(0.165ur), where the value 0.165 refers to the dimensionless
frequency of the oscillations in the vortex shedding at Re= 100 when the cylinder is
stationary (Williamson 1996). The simulations are performed with a Mach number of
0.2, corresponding to a nearly incompressible flow dynamics in which acoustic waves
are taken into account. In what follows, we define the drag coefficient CD and the
lift coefficient CL as

CD =
f · ex

1
2ρru2

r dr
, CL =

f · ey
1
2ρru2

r dr
, f =

∫
Γ

(−pI + τ) · n dS, (3.3a,b)

where ρr refers to a reference density, ex and ey are the unit vectors in the x and
y coordinate directions (the inflow is along the x-axis), Γ is the boundary of the
cylinder, I is the identity matrix, and the components of the symmetric matrix τ are
given in (3.2).

Figure 2 and table 4 report results obtained with the present numerical method
for flows past a cylinder under rotary oscillation according to (3.1) at Re = 100.
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FIGURE 2. (Colour online) Lock-on (E) and non-lock-on (u) regions in (A, F) space
for the unsteady flow past a rotating cylinder at Re = 100. The reference (@ or p)
and first-guess (A or q) flows of table 5 are also reported. A second first-guess flow
(C) is also investigated in a DA experiment involving the same reference flow as in
configuration A. Solid lines approximately denote the boundary between the lock-on and
non-lock-on regions obtained by Choi et al. (2002).

A F Regime Study CD C′L Fvs

0 — — Liu, Zheng & Sung (1998) 1.350 0.339 0.165
Ding et al. (2007) 1.356 0.287 0.166

Posdziech & Grudmann (2007) 1.350 0.331 0.167
Qu et al. (2013) 1.326 0.310 0.166

Choi et al. (2002) 1.327 0.326 0.165
Present study 1.355 0.326 0.165

2 0.4 Lock-on Choi et al. (2002) 1.231 0.299 0.4
Present study 1.266 0.313 0.4

1.4 0.5 Non-lock-on Choi et al. (2002) 1.253 0.340 0.154
Present study 1.289 0.374 0.156

TABLE 4. Time-averaged drag coefficient CD, maximum amplitude of the lift-coefficient
fluctuations C′L, and dimensionless frequency of the vortex shedding Fvs obtained in several
studies on the unsteady flow past a cylinder at Re = 100 and for various dimensionless
amplitudes A and frequencies F in (3.1). When possible, the results of previous studies
corresponding to the spatial and temporal resolutions that are the closest to the present
ones are reported (run Lb|i/D= 20 in Posdziech & Grudmann (2007) and run D4 in Qu
et al. (2013)).

These predictions are compared with those of Choi et al. (2002) where the same flow
configuration was investigated numerically. Two flow regimes can be identified. In
the lock-on regime, the frequency of the vortex shedding is identical to that of the
oscillations of the cylinder. On the other hand, for flows in the non-lock-on regime,
the vortex shedding is not synchronized with the rotary oscillation forcing. The
regions of lock-on and non-lock-on in (A,F ) space are given in figure 2. The effect
of rotary oscillation on characteristic flow quantities is further investigated in table 4.
For the sake of comparison, the case where the cylinder is stationary (A= 0) is also
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reported. With A= 2 and F = 0.4, the flow is in the lock-on regime and the decrease
in the value of the drag coefficient compared with the stationary case is significant –
there is also a decrease in the maximum amplitude of the lift coefficient. In the case
where A= 1.4 and F = 0.5, the decrease in the value of the drag coefficient is less
important and the maximum amplitude of the lift coefficient is increased. The flow
is in the non-lock-on region, and the frequency of the vortex shedding is close, but
not identical, to the natural frequency (i.e. when the cylinder is stationary).

3.2. Adjoint code
The observation optimization and DA procedures discussed in § 2 require the
development of the tangent linear operator associated to the Navier–Stokes equations
(3.2) and that of its adjoint, respectively. In addition, due to the nonlinearity of (3.2)
and due to the fact that (2.1) and (2.14b) are evaluated forward in time while (2.9b,c)
and (2.16b) are evaluated backward, the storage of the direct solution q is required
for the adjoint problems (2.9) and (2.16), while both q and the adjoint variable
q̃ need to be stored for the adjoint problem (2.14) associated to the observation
optimization procedure. In order to decrease memory requirements, the formulation
of the observation optimization procedure proposed in appendix A is used. This
formulation avoids the storage of the adjoint variable q̃ and involves the adjoint
of the tangent linear model. Accordingly, the gradients (2.9d,e)–(2.9f ), (2.14c) and
(2.16c)–(2.16d) are all obtained with the adjoint operator ((∂f /∂q)|q,β)∗, where f
refers to the Navier–Stokes equations (3.2), and different forcing terms. To further
limit memory requirements for the backward integrations with the adjoint operator,
the direct solution q is stored only at a few times during the integration of the
direct problem (3.2), and the missing snapshots are recomputed during the backward
integrations. The adjoint operator for (3.2) is hand-coded following the discrete
adjoint approach (Nadarajah & Jameson 2001; Carpentieri, Koren & van Tooren
2007; Peter & Dwight 2010). The same adjoint code has been used and assessed
in Mons et al. (2016). Even if the discrete adjoint approach is considered here to
compute the gradients required by the optimization procedures in § 2, there is a priori
no restriction in employing other techniques such as automatic differentiation (AD)
tools (Green, Newman & Haigler 1996; Mohammadi & Pironneau 2010) to derive the
tangent linear model and its adjoint for the application of the present methodologies.
An example of the use of AD in the context of variational DA may be found in
Gronskis et al. (2013).

3.3. Set-up of the observation optimization and data assimilation experiments
The different methodologies presented in § 2 are applied to the reconstruction of
flows past a rotationally oscillating cylinder at Re = 100. More precisely, they are
used for the determination of optimal initial flow field and/or rotational speed of
the cylinder given observations of a reference flow. Unless otherwise stated, the size
of the assimilation window T , i.e. the duration of observation of the reference flow,
is fixed to T = 16dr/ur, and the time interval between two observations is always
0.2dr/ur. These choices ensure that for the lowest frequencies f in (3.1) investigated
in the present DA experiments, the size of the assimilation window is greater than
one period 1/f , and that for the highest frequencies at least ten observations are
performed per period. The influence of the size of the assimilation window and
the frequency of observation on the results obtained with the DA and observation
optimization procedures are nonetheless studied in the following. As illustrated in
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Configuration Reference flow First-guess flow
A F Regime A F Regime

A 1.8 0.2 Lock-on 2 0.165 Lock-on
B 0.475 0.525 Non-lock-on 0.5 0.5 Non-lock-on
C 2.5 0.475 Lock-on 2 0.375 Lock-on
D 0.8 0.12 Lock-on 1 0.1 Lock-on

TABLE 5. Different configurations of reference and first-guess flows considered in the DA
experiments of table 6. These flows correspond to a rotationally oscillating cylinder at
Re = 100 with a rotational speed given by (3.1), the corresponding flow regime is also
reported.

figure 1, the distance between inflow conditions and the cylinder in the computational
domain is 20dr, while the size of the assimilation window is T= 16dr/ur. Accordingly,
the initial flow field here encompasses the full upstream flow to the cylinder and the
considered observations (performed in the vicinity or downstream of the cylinder) in
the investigated temporal domain. In other words, changes in the inflow conditions
for the computational domain do not have the time to affect the flow in the vicinity
and downstream of the cylinder and the values of the measurements. There is
therefore no need here to consider the far-field conditions in the control vector for
the DA problem, and the characteristic velocity ur imposed at the boundaries of the
computational domain in figure 1 is fixed in the numerical experiments. The control
vector in the DA experiments is thus formed by the solid boundary conditions for
the cylinder and/or by the full initial flow field.

Various reference flow realizations and first-guess flows (flow solutions used to
initialize the optimization procedure for the DA problem, see table 3), which are
summarized in table 5, are used in the numerical experiments. We consider one
configuration of reference and first-guess flows in the non-lock-on regime (B), and
three configurations in the lock-on one (A, C and D). The comparison between the
results obtained with configuration B on one hand and with configurations A, C
and D on the other hand will allow us to identify the qualitative differences in the
reconstructed flow obtained through DA between the lock-on and non-lock-on cases.
Configurations D, A and C correspond to relatively low, medium and high frequencies
f compared to the natural frequency, respectively. They will therefore allow us to
perform DA experiments with various ratios between the size of the assimilation
window and the characteristic period of the oscillations, and to assess in detail the
performances of the DA and observation optimization procedures. Even if only one
first-guess flow is considered in these experiments, the impact of the choice of the
first guess on the DA procedure is investigated for configuration A and discussed in
the following.

Three types of observations of the reference flow are considered: (i) the velocity
field in a continuous region, (ii) the velocity field at discrete locations (probes), and
(iii) the aerodynamic coefficients CL and CD. After spatial discretization, the qualifying
term continuous refers to the case where the velocity field is observed at all the
elements of the mesh in a given region. Various control vectors for the DA problem
are considered. In the numerical experiments of type 4, the control vector is formed
by the rotational speed ωc(t) of the cylinder at all times, and the initial condition of
the reference flow is assumed to be known. In the numerical experiments of type 1,
3 and 5–6, the control vector is formed by the initial condition of the flow and by
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Experiments γ dim(γ ) y dim(y) Runs Principle
(configurations)

1 q0 + (A, f , ϕ) 5.5× 104 u, v (continuum) 2.2× 103 1A, B DA
2 q0 +ωc(t)∀t 5.7× 104 u, v (continuum) 2.2× 103 2A, B DA
3 q0 + (A, f , ϕ) 5.5× 104 CL,CD 2 3A, B DA
4 ωc(t)∀t 2× 103 u, v (4 probes) 8 4A, C OSP, DA
5 q0 + (A, f , ϕ) 5.5× 104 u, v (4 probes) 8 5A, B, C, D OSP, DA
6 q0 + (A, f , ϕ) 5.5× 104 u, v (20 probes) 40 6A, C OSP, DA

TABLE 6. Different types of numerical experiments performed in this study, which are
characterized by the control vector γ in the optimization procedure for the DA problem
(initial state q0 and/or rotational speed of the cylinder, parameterized or not), the type of
observations y (velocity field or aerodynamic coefficients), and the different configurations
of reference and first-guess flows investigated (see table 5). Experiments of type 1–3
correspond to generic twin-experiment DA procedures, while experiments of type 4–6
also involve optimal sensor placement (OSP). Note that dim(λ) = dim(y) in the latter
experiments, where λ refers to the parameters of the observation operator.

the rotational speed of the cylinder parameterized by the amplitude A, the frequency
f and the phase ϕ of the oscillations according to (3.1). Finally, in the experiments
of type 2, the control vector is formed by the initial condition of the flow and by the
rotational speed of the cylinder at all times. Given the present spatial and temporal
discretizations, the initial flow field is a vector of dimension 5.5 × 104, while the
unparameterized rotational speed of the cylinder is a vector of dimension 2× 103.

Two categories of numerical experiments can be identified. The first one corresponds
to experiments of type 1–3 where generic twin-experiment DA procedures, as
described in table 3, are carried out. The corresponding results are reported in § 4,
which allow us to delineate the possibilities of flow reconstruction in the presence
of a rotationally oscillating cylinder. For the second set of numerical experiments,
the observation optimization procedure depicted in table 2 is used to find optimal
locations for velocity sensors. It is combined with DA experiments, which are
performed in order to assess its efficiency. This observation optimization/DA procedure
is applied in experiments of type 4–6, whose results are discussed in § 5. A summary
of the numerical experiments performed in this study is given in table 6. In the
following, the performances of the observation optimization and DA procedures can
be estimated through the evolution of the cost functions G in (2.11) and J in (2.15),
respectively, during the corresponding optimization processes. Since the observations
of the reference flow are here generated synthetically, the quality of the reconstruction
of the reference flow in the DA experiments may be evaluated using the L2 norm
of the discrepancies between the reference rotational speed of the cylinder denoted
by ω(r)c and the assimilated one (i.e. obtained at the end of the DA procedure) ω(a)c
according to

εωc =

(∫ T

0
(ω(r)c (t)−ω

(a)
c (t))

2 dt
)1/2

. (3.4)

The values of G, J and εωc are generally compared to the ones at the beginning of the
corresponding optimization process, G0, J0 and εωc

0 , respectively. In the case where the
observations used in the DA process are the reference velocity field in a continuous
region, as in experiments of type 1 and 2, one may also consider the spatial mean ω
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of the vorticity field in the observation domain in order to assess the performances of
the DA procedure. ω is thus defined as

ω=
1
|Ωob|

∫
Ωob

ω dV, (3.5)

where ω= ∂v/∂x− ∂u/∂y is the vorticity field and Ωob is the observation domain. In
the figures that illustrate the temporal evolution of ω or that of the aerodynamic
coefficients CL and CD, the frequency of the symbols coincides with that of
observation.

4. Analysis of data assimilation experiments
In this section, we consider the numerical experiments of type 1–3 (see table 6),

which correspond to generic twin-experiment DA procedures. In a first step, a
reference numerical simulation of the flow past a rotating cylinder is carried out, and
observations of this reference flow are performed, without any additional treatment. In
a second step, the minimization problem (2.15) is solved in order to recover the initial
condition and/or the rotational speed of the cylinder for the reference flow, starting
from a first-guess flow. The latter is determined completely independently from the
reference flow and the available observations, and corresponds to a first-guess/a
priori choice for the rotation parameters in (3.1). This DA procedure is summarized
in table 3. The ability of flow reconstruction past a rotationally oscillating cylinder
are investigated by varying the observations of the reference flow, the control vector
in the DA optimization process, and the regime (lock-on/non-lock-on) of the reference
and first-guess flows.

4.1. Observation of the flow in a continuous region
4.1.1. Control on the initial condition and the parameterized rotational speed of the

cylinder (type 1)
The results of the DA experiments of type 1 are first examined. For these

simulations, the velocity field of the reference flow is observed in a continuous
region which is located downstream of the cylinder (see, e.g. figure 3a). The control
vector in the DA procedures is formed by the initial condition of the flow and the
triplet of parameters (A, f , ϕ) characterizing the rotary oscillations of the cylinder
according to (3.1). The corresponding results are reported in figures 3 and 4. The
case where both the reference and first-guess flows in the DA procedure belong to the
lock-on region (run 1A) is investigated in figures 3(a,c,e) and 4(a,c). Starting from a
first-guess flow corresponding to an error of ≈±10 % on the amplitude and frequency
of the oscillations of the cylinder, it appears that the DA procedure has correctly
fitted the observations of the velocity field (see figures 3a,e and 4a), and that it has
successfully reconstructed the rotational speed of the reference flow (see figure 4c).
The good reconstruction in the case where both the reference and first-guess flows
are in the lock-on region was expected, since in this case the frequency of the vortex
shedding is imposed by the frequency of the oscillations of the cylinder, which are
actually the same. In addition, observing the velocity field in a continuous region
downstream of the cylinder provides extensive information on the reference flow.
Other reference and first-guess flows in the lock-on region are considered in § 5.

The case where both the reference and first-guess flows lie in the non-lock-on
region (run 1B), i.e. when the frequency of the vortex shedding is not directly
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FIGURE 3. (Colour online) Results for DA experiments of type 1: dimensionless vorticity
field at tur/dr = 10 for (a,b) reference, (c,d) first-guess and (e, f ) assimilated flows, the
observation domain is delineated in white lines. (a,c,e) Refer to run 1A (lock-on), while
(b,d, f ) refer to run 1B (non-lock-on).
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FIGURE 4. Results for DA experiments of type 1: (a,b) spatial mean ω of the vorticity
field in the observation domain and (c,d) dimensionless rotational speed α of the cylinder
for reference (E), first-guess (– – –) and assimilated (——) runs; (e) cost function J in
(2.15) versus the iteration of the optimization process for runs 1A (——) and 1B (– – – –).
(a,c) refer to run 1A (lock-on), while (b,d) refer to run 1B (non-lock-on).

related to that of the oscillations of the cylinder, is addressed in figures 3(b,d, f )
and 4(b,d). The first-guess run corresponds to an error of ±5 % on the amplitude
and frequency of the oscillations of the cylinder for the reference flow. If we only
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consider figure 3(b, f ), the reconstruction of the reference flow seems correct. In
particular, the DA procedure has properly modified the slight shift in the vortex
shedding between the reference and first-guess flows. The good reconstruction of the
reference velocity field is confirmed by figure 4(b), where is reported the temporal
evolution of the spatial mean ω of the vorticity field in the observation domain, as
defined in (3.5). In addition, the assimilation process has achieved a reduction in the
value of the cost function J in (2.15) by almost three orders of magnitude in 100
iterations of the optimization procedure (see figure 4e), which is similar to what is
obtained in run 1A. However, it appears from figure 4(d) that the DA procedure has
not recovered the reference rotational speed of the cylinder. It can be noticed that the
optimization procedure has drastically damped the amplitude of the oscillations. Such
behaviour could have been expected because the frequency of the vortex shedding is
very close to the natural one (i.e. when the cylinder is stationary) in this case. This
means that the DA procedure has been able to fit the observations of the reference
flow but has failed to solve the corresponding inverse problem, as illustrated in
figures 4(b) and 4(d), respectively, which may be ascribed to the physics of the
flow in the non-lock-on region. The qualitative difference between the lock-on and
non-lock-on regimes may be clearly visualized in figure 5(a,d), where is reported the
temporal Fourier transform of the velocity component u at x/dr= 2.5 and y/dr= 0.44.
In the non-lock-on regime, the forcing frequency seems to have a negligible signature
in the vortex shedding, while the latter is clearly dominated by a frequency almost
identical to the natural one, multiple frequencies may thus be identified. For the
lock-on case, it appears that the sole forcing frequency completely dictates the vortex
shedding. Note that additional DA experiments (results not shown here for the sake
of brevity) were performed with a better first guess for the optimization process or
with other reference flows in the non-lock-on region. They confirmed the difficulty of
correctly solving the DA inverse problem in the non-lock-on regime when observing
the wake flow behind the cylinder. However, it is shown in figure 5(c) that the
oscillations of the cylinder have a more direct and important influence on the flow
close to the cylinder, where the forcing frequency appears dominant. Accordingly, a
good identification of the rotational speed of the cylinder in the non-lock-on regime
could be expected in the case where observations are performed close enough to the
cylinder. This is confirmed in § 5.2.1 with run 5B.

4.1.2. Sensitivity to the data assimilation set-up
Complementary numerical experiments are performed in order to assess the

robustness of the results obtained with the present DA procedure with respect to
various characteristics of the DA set-up described in § 3.3, namely the size of the
observation domain, the spatial resolution of the measurements, the frequency of
observation, and the choice of the first guess for the optimization procedure. The
set-up of these experiments is similar to that of run 1A (see figures 3 and 4), and
the corresponding results are reported in figures 6 and 7.

We first consider the DA experiment illustrated in figure 6(a,c,e), which corresponds
to the use of an observation domain that is half the length of the observation domain
considered in figure 3. As confirmed by the comparison between figures 4(c) and 6(e),
the reconstruction of the reference rotational speed of the cylinder relying on the
reduced observation domain is as satisfactory as in run 1A, and the performances of
the assimilation process do not seem to depend on the size of the observation domain.

In order to investigate the influence of the spatial resolution of the observations,
the continuous observation domain used in run 1A is replaced with a sensor network
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FIGURE 5. Results for the reference flows of configuration B ((a–c), A= 0.475 and F =
0.525, non-lock-on) and configuration C ((d–f ), A=2.5 and F =0.475, lock-on): temporal
Fourier transforms û of the velocity component u at x/dr = 2.5 and y/dr = 0.44 (a,d), ĈL
of the lift coefficient (b,e), and of the velocity component u at x/dr= 0.44 and y/dr= 0.44
(c, f ). The dimensionless natural frequency of the vortex shedding Fn and frequency of the
oscillations of the cylinder F are also reported.

of the same extent formed by 20 sensors in the DA experiment illustrated in
figure 6(b,d, f ). Given the characteristics of the mesh used in the present simulations,
this corresponds to a decrease by a factor of almost 50 in the resolution of the
observations. Figure 7(e) and the comparison between figures 4(c) and 6( f ) illustrate
the slower convergence of the optimization process in this case compared to the use
of a continuous observation domain, which may be explained by the decrease in the
available information about the reference flow compared to the latter case. However,
the reconstructed rotational speed of the cylinder obtained with the sensor network
remains satisfactory after 100 iterations. Besides, it appears from figure 6(d) that the
reconstructed temporal evolution of the spatial mean ω of the vorticity field, which
is here evaluated on the same spatial domain as for run 1A, is as satisfactory as in
run 1A (see figure 4a), except at the very beginning of the assimilation window, where
the initial flow, whose dimension is here much higher than that of the observations,
has more influence on the value of ω. Accordingly, the present DA procedure seems
robust with respect to the spatial resolution of the observations, and the possibility of
enhancing the convergence speed of the optimization process in the case where the
reference flow is observed only at some discrete locations is investigated in § 5.2.2
and experiment 6A for the same set-up.

The DA experiments whose results are reported in figure 7 rely on the same
observation domain as in figure 3, and the impact of the frequency of observation is
first investigated with the DA experiment illustrated in figure 7(a,c), where the time
interval between two observations of the velocity field is 2dr/ur, instead of 0.2dr/ur.
The assimilated temporal evolutions of the spatial mean of the vorticity field ω and
of the rotational speed of the cylinder appear very satisfactory, which illustrates
the robustness of the DA procedure with respect to the frequency of observation.
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FIGURE 6. (Colour online) Results for DA experiments with a set-up similar to that of
experiment 1A but relying on a smaller observation domain (a,c,e, – · – · – in 7e) or with
a smaller spatial resolution (b,d, f, · · · · · · in 7e): (a,b) reference dimensionless vorticity
field at tur/dr = 10 along with the observation domain, either delineated in (a) white
lines or represented with (b) white dots; (c,d) spatial mean ω of the vorticity field in the
observation domain and (e, f ) dimensionless rotational speed α of the cylinder for reference
(E), first-guess (– – – –) and assimilated (——) runs.

However, taking the frequency of the oscillations of the cylinder as the reference
frequency for this flow realization and imposing at least one observation per period,
one may expect difficulties in correctly solving the DA inverse problem if the time
interval between two observations is greater than 5dr/ur (results not shown here for
the sake of brevity).

Finally, the sensitivity of the results with respect to the first guess for the
optimization process is investigated with the DA experiment illustrated in figure 7(b,d).
For this experiment, the dimensionless amplitude and frequency of the oscillations of
the cylinder for the first-guess flow are A = 1.5 and F = 0.25, respectively, instead
of A= 2 and F = 0.165 for run 1A. The reference flow corresponds to A= 1.8 and
F = 0.2 in both cases, which amounts to discrepancies of ≈± 20 % with respect to
the reference rotation parameters for the present experiment, instead of ≈± 10 % for
run 1A. The results of figure 7(b,d,e) along with those of figure 4(c) do not suggest a
significant influence of the choice of the first guess on the quality of the assimilated
flow and on the convergence of the optimization process for the investigated range
of initial discrepancies in the rotation parameters. Due to the nonlinearity of the
Navier–Stokes equations (3.2), the cost function J in (2.15) is probably not convex,
and the convergence of the iterative optimization procedure described in § 2.5 to the
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FIGURE 7. Results for DA experiments with a set-up similar to that of experiment 1A
(—— in (e)) but with a smaller frequency of observation (a,c, – – – – in (e)) or employing
another first-guess flow (b,d, —— in (e)): (a,b) spatial mean ω of the vorticity field in
the observation domain and (c,d) dimensionless rotational speed α of the cylinder for
reference (E), first-guess (– – – –) and assimilated (——) runs; (e) cost function J in (2.15)
versus the iteration of the optimization process. See figure 6 for the definition of the other
lines in (e). The frequency of the black symbols in (a) coincides with that of observation,
while that of the grey symbols coincides with the frequency of observation for run 1A.

solution of the DA problem when starting from an arbitrary far first guess cannot be
guaranteed, while a rigorous determination of the conditions ensuring convergence
is outside the scope of this study. However, given the results of figure 7(b,d), and
as confirmed by the results of the following DA experiments, the choice of the first
guess for the DA problem does not seem here to be determinant in the convergence
of the optimization process, at least for flows that correspond to errors of ±20 %
or less on the rotation parameters, which may correspond to reasonably high and
realistic uncertainties.

In the end, the results of the present section suggest that, as long as the
measurements are reasonably adapted to the physics of the flow, and in particular
that the corresponding characteristics (size and spatial resolution of the measurement
domain, frequency of observation) are of the same order of magnitude (or with higher
resolution) as the typical length and time scales of the considered flow, here ∼dr
and ∼1/f (see (3.1)) for the wake flow and the generated vortices, satisfactory and
robust results can be obtained with the present DA procedure. Similarly, putting aside
the distinction between the lock-on and non-lock-on regimes (see § 4.1.1), the good
convergence of the optimization procedure may be expected for any reasonably far
first-guess flow solution, as confirmed in the following.

4.1.3. Control on the initial condition and the rotational speed of the cylinder at all
times (type 2)

We now consider the type 2 of numerical experiments where no particular form is
prescribed to the rotary movement of the cylinder, and the control vector in the DA
procedure is formed by the initial flow field and the rotational speed of the cylinder
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FIGURE 8. (Colour online) Results for DA experiments of type 2: (a,b) dimensionless
vorticity field at tur/dr = 10 for assimilated flows, the observation domain is delineated
in white lines; (c,d) spatial mean ω of the vorticity field in the observation domain and
(e, f ) dimensionless rotational speed α of the cylinder for reference (E), first-guess (– – – –)
and assimilated (——) runs. (a,c,e) Refer to run 2A (lock-on), while (b,d, f ) refer to
run 2B (non-lock-on).

at all times (see table 6). The velocity field of the reference flow is observed in
a continuous region located downstream of the cylinder, as in the experiments of
type 1. Results for the configurations A and B of table 5 are reported in figures 8
and 9(e). After 300 iterations of the optimization process, while experiments of
type 1 were performed with 100 iterations, the assimilated flows correctly fit the
observations of the velocity field, as confirmed by figure 8(c,d). Slight remaining
discrepancies can nevertheless be noticed at the end of the assimilation window
for run 2A, but it seems unlikely from figure 9(e) that significant improvement
may be obtained with more iterations of the optimization procedure. Concerning the
reconstructed rotational speeds, in the non-lock-on case (run 2B, see figure 8f ), the
optimization procedure has altered only slightly the amplitude of the signal without
shifting its temporal evolution in order to correct its frequency. This confirms the
difficulty of correctly identifying the rotational speed of the cylinder in this regime
from observations of the wake, as discussed in § 4.1.1. The reconstructed rotational
speed obtained in the lock-on case (run 2A, see figure 8e) is more satisfactory, even
if it is still relatively far from the reference one. It appears that increasing the size
of the control vector and allowing more flexibility in the form of the rotational speed
of the cylinder significantly slows down the convergence rate of the DA procedure,
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FIGURE 9. (Colour online) Results for a DA experiment with a set-up similar to that of
experiment 2A but relying on an observation domain closer to the cylinder: (a) assimilated
dimensionless vorticity field at tur/dr = 10 along with the observation domain (delineated
in white lines); (b) spatial mean ω of the vorticity field in the observation domain and
(c) dimensionless rotational speed α of the cylinder for reference (E), first-guess (– – – –)
and assimilated (——) runs, the assimilated α for run 2A (– · – · –) is also reported in (c);
(d) absolute difference between the first-guess and assimilated rotational speeds α(e)(t) and
α(a)(t), respectively, for the present run (——) and run 2A (– · – · –); (e) cost function J in
(2.15) versus the iteration of the optimization process for the present run (——), run 2A
(– · – · –) and run 2B (– – – –).

as confirmed by the comparison between figures 4(e) and 9(e). The lack of precision
in the assimilated rotational speed is here balanced by a significant alteration of
the first-guess initial field, and thus of the upstream conditions for the cylinder,
as illustrated by figure 8(a), with the generation of upstream vortices by the DA
procedure. Moreover, the DA procedure has left unchanged the first-guess rotational
speed at the end of the assimilation window, which is due to the distance between
the cylinder and the region where observations are performed. In order to confirm the
latter statement, a first complementary DA experiment is performed and discussed in
the following. A second complementary DA experiment is also discussed in the rest
of this section to investigate the possibility of preventing the generation of upstream
vortices by the DA procedure, thus possibly allowing us to speed up the convergence
of the optimization process towards the reference rotational speed.

The first supplementary experiment is illustrated in figure 9, and relies on a
set-up similar to that of run 2A, except that the observation domain is located at
a distance of 0.5dr from the boundary of the cylinder, instead of 2dr for run 2A.
Figure 9(c) indicates that the assimilation process has further altered the rotational
speed of the first-guess flow, in particular at the end of the assimilation window,
compared to run 2A. This is confirmed by figure 9(d), where is reported the absolute
difference between the first-guess and assimilated rotational speeds of the cylinder
for both run 2A and the experiment of figure 9, thus allowing us to quantify how the
optimization process has modified the first-guess rotational speed depending on the
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FIGURE 10. (Colour online) Results for a DA experiment with the same set-up as
experiment 2A but using the cost function K in (2.18) for the DA problem: (a) assimilated
dimensionless vorticity field at tur/dr = 10 along with the observation domain (delineated
in white lines); (b) spatial mean ω of the vorticity field in the observation domain and
(c) dimensionless rotational speed α of the cylinder for reference (E), first-guess (– – –)
and assimilated (——) runs, the assimilated ω and α for run 2A (– · – · –) are also reported;
(d) cost function K versus the iteration of the optimization process for the present run
(——), the evolution of the contribution J in (2.15) for the present run (– – – –) and run 2A
(– · – · –) is also reported.

position of the observation domain. A characteristic speed of transport of information,
or of the generated vortices, from the cylinder to the observation domain may be
simply given by the velocity magnitude of the incoming flow, namely ur. Accordingly,
from time ≈T − dc−o/ur, where T is the size of the assimilation window and dc−o

the distance between the cylinder and the observation domain, the oscillations of
the cylinder should not affect the observations, which should thus be insensitive to
changes in the rotational speed after this time. The assimilation procedure should
therefore not modify the first-guess rotational speed after t= 14dr/ur for run 2A and
after t= 15.5dr/ur for the experiment of figure 9. This is confirmed by figure 9(d).

As for experiment 2A, it appears in figure 9(a) that the DA procedure has
significantly modified the first-guess initial field. In order to prevent such alterations,
we consider the DA experiment whose results are illustrated in figure 10. The
corresponding set-up is identical to that of run 2A, but the DA problem employs
the cost function K defined in (2.18) instead of J in (2.15) as in all the other DA
experiments performed in this study. As confirmed by figure 10(a), the addition of
a penalization term in the cost function for the DA problem allows us to prevent
drastic changes in the initial flow during the optimization process. The value of
the weight ϑ in (2.18) is adjusted in order to obtain the best identification of
the reference rotational speed. This way, with a similar weight associated to the
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observation term (J) and the penalization term (ϑ = 1 after non-dimensionalization
of the different terms in K based on the reference quantities introduced in § 3.1),
the error εωc/ε

ωc
0 defined in (3.4) is 0.62 at the end of the DA procedure for the

experiment of figure 10, while this error is 0.72 for run 2A. The better reconstruction
of the rotational speed compared to run 2A is illustrated by figure 10(c). Except at
the beginning of the assimilation window, where the initial field has more influence
on the flow and whose adjustment is here penalized, the reconstructed rotational
speed appears globally closer to the reference one compared to run 2A. The same
applies to the mean vorticity in the observation domain, as illustrated in figure 10(b),
with a worse reconstruction at the beginning of the assimilation window but a better
one at the end, even if figure 10(d) indicates that the discrepancies with respect to
the reference flow in the observation domain are higher on the whole at the end
of the DA procedure compared to run 2A. This DA experiment thus confirms that
the addition of penalization terms in the cost function may allow us to improve the
reconstruction of quantities of interest such as the rotational speed of the cylinder
in this higher-dimensional DA problem (compared to the experiments of type 1,
see § 4.1.1). However, the weight associated to the penalization term has to be tuned
on a case-by-case basis. Besides, the results obtained in experiments of type 1 did
not suggest the need to consider such contribution in the cost function for the DA
problem. For all these reasons, and as already mentioned in § 2.4, the cost function
J in (2.15) remains the most natural choice for all the following DA experiments.
The use of the cost function K has been also considered for the non-lock-on case
(results not shown here for the sake of brevity), but no significant improvement in
the reconstructed rotational speed has been obtained, since in this case the difficulties
in correctly solving the DA problem lie above all in the physics of the flow rather
than in the dimension of the control vector.

4.2. Observation of the aerodynamic coefficients (type 3)
DA experiments of type 3 investigate the possibility of reconstructing flows past a
rotationally oscillating cylinder from the observation of integrated quantities such
as the aerodynamic coefficients CL and CD. As in § 4.1.1, the control vector in the
DA procedures is formed by the initial flow field and the three parameters in (3.1).
The temporal Fourier transform of the lift coefficient CL is reported in figure 5(e,b)
for the lock-on and non-lock-on regimes, respectively. Similarly as for the wake
flow, in the lock-on regime, the temporal evolution of the lift coefficient is entirely
determined by the oscillations of the cylinder, while for the non-lock-on case the
dominant frequency is almost identical to the natural one, even if the frequency of
the oscillations of the cylinder seems to have more importance here than in the vortex
shedding (see figure 5a). If we now consider the results of the DA procedures in
figure 11, it appears that, except at the very beginning of the assimilation window,
the assimilated temporal evolution of the coefficients CL and CD almost perfectly
matches the reference ones for both runs 3A and 3B. The spurious oscillations at the
beginning of the assimilation window are due to the finite frequency of observation
(Mons et al. 2016), and we can notice that the assimilated solution always passes
through the reference values at observation times. However, for both runs, even in
the case where both the reference and first-guess runs are in the lock-on region (run
3A), the optimization procedure fails to recover the rotational speed of the reference
flow. Similarly to the results of § 4.1.3, the optimization procedure has modified the
initial condition of the first-guess flow in order to match the observations of the
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FIGURE 11. Results for DA experiments of type 3: temporal evolution of the lift
coefficient (a,d), drag coefficient (b,e) and dimensionless rotational speed α of the cylinder
(c, f ) for reference (E), first-guess (– – – –) and assimilated (——) runs; (g) cost function
J in (2.15) versus the iteration of the optimization process for runs 3A (——) and 3B
(– – – –). (a–c) Refer to run 3A (lock-on), while (d–f ) refer to run 3B (non-lock-on).

reference flow, which compensates for the lack of reconstruction of the reference
rotational speed. The good fit to the observations is confirmed in figure 11(g), and it
appears from the comparison between figures 4(e) and 11(g) that, for the present case,
the low dimension of the observations allows us to obtain a greater error reduction
than in the experiments of type 1 with the same computational cost. The present
results suggest that there is no unicity of the solution of the DA problem in the case
where both the initial condition (encompassing upstream conditions) and the rotational
speed of the cylinder (even parameterized) of the reference flow are unknown and the
aerodynamic coefficients are observed. This may be due to the very low dimension
of the observations compared to that of the control vector in this case.

5. Data assimilation experiments enhanced by optimal sensor placement
In this section, the observation optimization procedure introduced in § 2.3 is

employed to optimize locations of velocity sensors in order to improve the DA
process applied to the reconstruction of flows past a rotationally oscillating cylinder.
The principle of the numerical experiments of type 4–6 (see table 6) is the following.
For all these experiments, the observations of the flow are performed using a finite
number of velocity sensors. The corresponding observation operator h in (2.6) is
parameterized by the locations of these velocity sensors, which form the control
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vector λ in the observation optimization problem (2.11). Firstly, an optimal observation
network is determined, starting from a first guess for the locations of the sensors
and using the observation optimization procedure summarized in table 2. In a second
step, two DA experiments are carried out. The first one relies on the first-guess
configuration of sensors, while the second one uses the optimized configuration.
Comparisons between the results obtained with these two DA experiments allow us
to assess the improvement in the sensitivity of the sensors with respect to a change in
the initial flow and/or in the rotational speed of the cylinder. The same reference and
first-guess flows are used for the two DA experiments. Besides, the first-guess flow
corresponds to the same flow solution as that used in the observation optimization
procedure, i.e. the solutions used in step 1 of table 2 and in step 2 of table 3 are
the same. Concerning the control vector in the DA experiments, two situations are
considered. In § 5.1, the control vector is formed by the rotational speed ωc(t) of the
cylinder at all times, and, based on the results of § 4.1.3, the initial field is assumed
to be known in order to avoid a too slow convergence of the DA procedure. In § 5.2,
the control vector is formed by the initial condition of the flow and by the three
parameters characterizing the rotational speed of the cylinder according to (3.1).

5.1. Control on the rotational speed at all times
5.1.1. Experiments with four sensors (type 4)

We first examine the results of the numerical experiments of type 4 where
the control vector in the DA procedure is formed by the rotational speed of the
cylinder at all times, and the initial condition of the reference flow is assumed to be
known. Accordingly, the observation optimization procedure is used to increase the
sensitivity of the observations, here four velocity sensors, with respect to changes
in the rotational speed of the cylinder. Results for the configuration A (A = 2 and
F = 0.165 for the first-guess flow) of table 5 (run 4A) are reported in figure 12. The
first step of this experiment, i.e. the observation optimization procedure, is illustrated
in figure 12(a,b). The initial configuration of sensors, which is reported in white
dots in figure 12(a), is chosen symmetric and close to the centreline of the wake.
Figure 12(b) illustrates the evolution of the cost function G defined in (2.11) during
the corresponding optimization process, and its value is increased by a factor of
almost five in three iterations. The corresponding optimized configuration of sensors
is reported in black dots in figure 12(a). The sensors which were the closest to
the cylinder have been placed further upstream by the optimization procedure, which
allows us to increase the sensitivity of the sensors with respect to the rotational speed
of the cylinder at the end of the assimilation window, as discussed below. On the
whole, it seems that the four sensors have been brought closer to the shedded vortices.
It is noticeable that the optimized configuration of sensors is asymmetric, contrary to
the initial one. This may be explained by the finite size of the assimilation window,
and it is expected that the optimized configuration tends to be symmetric for longer
assimilation windows. This statement is confirmed in § 5.1.2.

We now consider the second step of this experiment. Two different DA experiments
are performed, using either the first-guess or optimized measurement network, in order
to assess the efficiency of the observation optimization procedure, the results of which
are illustrated in figure 12(c,d). The DA experiment using the optimized configuration
of sensors achieves a better reconstruction of the reference solution than the one
using the first-guess observation network, which is confirmed in table 7, where is
reported the reduction in the error on the reference rotational speed achieved by
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FIGURE 12. (Colour online) Results for experiment 4A (A= 2 and F = 0.165 for the first-
guess flow, lock-on). Results of the observation optimization procedure: (a) initial (white
dots) and optimized (black dots) positions of velocity sensors in the vorticity field of the
first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus the iteration of the
optimization process. Results of DA procedures: (c) dimensionless rotational speed α of
the cylinder for reference (E), first-guess (· · · · · ·) and assimilated runs obtained with the
initial (– – – –) and optimized (——) configurations of velocity sensors; (d) cost function
J in (2.15) versus the iteration of the optimization process with the initial (– – – –) and
optimized (——) configurations of velocity sensors.

the two DA procedures. However, in both cases, the optimization process does not
recover the reference temporal evolution of the oscillations of the cylinder at the
end of the assimilation window. This is due to the distance between the cylinder
and the sensor networks, similarly as in § 4.1.3. For the first-guess configuration of
sensors, the closest sensors to the cylinder are located at a distance of 2dr from
the latter. Accordingly, as in § 4.1.3, if we assume that the characteristic speed of
transport of information from the cylinder to the observations is given by ur, the
observations should be insensitive to changes in the rotational speed of the cylinder
after t = 14dr/ur, and the DA procedure should not modify the first-guess solution
after this time, which is confirmed by figure 12(c). Concerning the optimized sensor
network, the closest sensor to the cylinder is located at a distance of '1dr, which
implies that in this case the optimization process should not alter the first-guess
rotational speed after t= 15dr/ur. The fact that sensors are placed further upstream in
the optimized configuration therefore allows us a better reconstruction of the reference
flow at the end of the assimilation window, as illustrated in figure 12(c). Furthermore,
for the same final error reduction in the cost function J in (2.15) (J/J0 = 10−2), the
DA procedure using the optimized configuration converges in fewer iterations than
the one using the first-guess configuration. As indicated in table 7, even when taking
into account the computational cost of the observation optimization procedure, the
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DA experiment Reference sensors Optimized sensors
NDA J/J0 εωc/ε

ωc
0 NDA J/J0 εωc/ε

ωc
0 NOO G/G0 Ntot

4A 153 10−3 0.68 132 10−3 0.45 3 4.8 135
4C 300 0.34 1.32 300 1.35× 10−3 0.53 3 104.8 303
5A 54 10−2 0.14 16 10−2 0.11 11 16.0 27
5B 109 10−2 0.05 53 10−2 0.06 4 2.1 57
5C 163 10−2 0.54 29 10−2 0.11 3 260.4 32
5D 27 10−2 0.17 20 10−2 0.04 3 1.9 23
6A 74 10−2 0.23 50 10−2 0.09 5 1.2 55
6C 70 10−2 0.05 11 10−2 0.04 8 1.4 19

TABLE 7. Number of iterations of the DA procedure NDA, reduction in the value of
the cost function in (2.15) J/J0, and reduction in the error on the reference rotational
speed εωc/ε

ωc
0 , as defined in (3.4), achieved by DA experiments performed with the

first-guess configuration of sensors and with the configuration obtained by the observation
optimization procedure in experiments of type 4–6. For the DA experiments using
the optimized configurations of sensors, the number of iterations of the observation
optimization procedure NOO and the increase in the cost function in (2.11) G/G0 are also
reported, along with the total number of calls to the adjoint code Ntot =NDA +NOO.

complete process of observation optimization followed by a DA procedure requires
fewer calls to the adjoint code than directly performing a DA experiment with the
initial configuration of sensors. Accordingly, the observation optimization procedure
is efficient in terms of both computational cost and reconstruction of the reference
flow in this case.

Now, the observation optimization procedure is further tested with experiment 4C,
where reference and first-guess flows different from those in run 4A are used (A= 2
and F = 0.375 for the first-guess flow). The observation optimization procedure
whose results are illustrated in figure 13(a,b) is initialized with the same first-guess
configuration of sensors as for run 4A. In this case, the observation optimization
procedure has increased by two orders of magnitude the value of the cost function G
in (2.11) in three iterations of the optimization process (figure 13b). The corresponding
optimized configuration of sensors is reported in figure 13(a). It could be expected
that such an increase in the value of G implies significant differences between the
results of the DA procedures performed with the initial and optimized configurations
of sensors, which is confirmed in figure 13(c,d). The DA procedure using the
first-guess configuration has great difficulties in retrieving the reference solution, and
the time evolution of the assimilated rotational speed of the cylinder is very spiky. In
fact, the error on the reference rotational speed has increased during the optimization
procedure, and the value of the cost function J in (2.15) has decreased by less than
an order of magnitude in 300 iterations, as indicated in table 7. In contrast, the DA
procedure performed with the optimized configuration of sensors achieves a reduction
in the value of the cost function J by three orders of magnitude in the same number
of iterations. Moreover, even if the assimilated rotational speed still does not perfectly
match the reference one, the reduction in the error εωc in (3.4) is significant. As for
run 4A, the lack of reconstruction at the end of the assimilation window is due to
the distance between the cylinder and the sensors. In the present case, the observation
optimization procedure is thus particularly useful, since the optimized configuration
of sensors allows us to correctly solve the DA problem, whereas the DA experiment
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FIGURE 13. (Colour online) Results for experiment 4C (A= 2 and F = 0.375 for the first-
guess flow, lock-on). Results of the observation optimization procedure: (a) initial (white
dots) and optimized (black dots) positions of velocity sensors in the vorticity field of the
first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus the iteration of the
optimization process. Results of DA procedures: (c) dimensionless rotational speed α of
the cylinder for reference (E), first-guess (· · · · · ·) and assimilated runs obtained with the
initial (– – – –) and optimized (——) configurations of velocity sensors; (d) cost function
J in (2.15) versus the iteration of the optimization process with the initial (– – – –) and
optimized (——) configurations of velocity sensors.

performed with the first-guess configuration failed to retrieve the reference flow
realization.

5.1.2. Sensitivity to the data assimilation set-up
Two complementary observation optimization procedures are performed to investigate

the influence of the choice of the first-guess configuration of sensors and that of the
size of the assimilation window on the optimized configuration. The set-up of these
computations is similar to that of experiment 4A, and the corresponding results are
reported in figure 14. For the case illustrated in figure 14(a,b), a different first-guess
configuration of sensors is employed, and the sensors are initially placed outside
of the wake of the cylinder. Similarly to figure 12(a), the observation optimization
procedure tends to place the sensors closer to the shedded vortices. However, the
optimized configurations in figures 12(a) and 14(a) are not identical, while all the
parameters of the corresponding experiments are the same. This suggests that the cost
function G has multiple local maxima and that the solution of (2.11) is not unique.
In figure 14(c,d), the initial configuration of sensors is the same as in figure 12(a),
but the size of the assimilation window has been doubled, and the simulations are
performed until t = T = 32dr/ur instead of 16dr/ur. As anticipated, the optimized
configuration of sensors appears less asymmetric in this case than in figure 12(a).
More generally, more symmetric optimized sensor configurations are expected when
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FIGURE 14. (Colour online) Results for complementary observation optimization
procedures performed with a similar set-up to that of experiment 4A: procedures (a,b)
with a different initial configuration of sensors or (c,d) where the size of the assimilation
window has been doubled. (a,c) The initial (white dots) and optimized (black dots)
positions of the velocity sensors are reported in the vorticity field of the first-guess flow
at tur/dr = 10; (b,d) cost function G in (2.11) versus the iteration of the optimization
procedure.

the size of the assimilation window is large compared to the characteristic period of
the oscillations. This statement is confirmed in § 5.2.1.

5.2. Control on the initial condition and the parameterized rotational speed of
the cylinder

5.2.1. Experiments with four sensors (type 5)
For the experiments of type 5–6 (see table 6) the control vector in the DA

procedure is formed by the initial flow field and the three parameters characterizing
the rotational speed of the cylinder according to (3.1). In these experiments, the
optimization observation procedure of table 2 is thus used to increase the sensitivity
of velocity sensors with respect to both the initial flow field and the rotational speed
of the cylinder. The experiments of type 5 are first examined. Four velocity sensors
are used to observe the flow, and various reference and first-guess solutions are
considered. Results for configuration D (A= 1 and F = 0.1 for the first-guess flow)
of table 5 (run 5D) are illustrated in figure 15. The initial configuration of sensors
for the observation optimization procedure (see figure 15a,b) seems to be a relatively
good first guess since the cost function G has been increased by a factor of two
by the optimization process, which is relatively low compared with the experiments
of type 4. It is noticeable that the observation optimization procedure has clustered
the sensors of the optimized configuration in a single location. In order to assess
the previous results, three DA experiments are performed: the first experiment uses
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FIGURE 15. (Colour online) Results for experiment 5D (A = 1 and F = 0.1 for the
first-guess flow, lock-on). Results of the observation optimization procedure: (a) initial
(white dots) and optimized (black dots) positions of velocity sensors in the vorticity
field of the first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus
the iteration of the optimization process. Results of DA procedures: (c) dimensionless
rotational speed α of the cylinder for reference (E), first-guess (· · · · · ·) and assimilated
runs obtained with the initial configuration of velocity sensors (– – – –) and optimized
configuration with merged sensors (——); (d) cost function J in (2.15) versus the iteration
of the optimization process with the initial configuration of sensors (– – –), optimized
configuration (– · – · –) and optimized configuration with merged sensors (——).

the first-guess configuration of sensors, the second experiment directly uses the
optimized configuration with four sensors, and the third experiment employs the
optimized configuration where the four sensors are merged into one single sensor.
Even with a merged single sensor, the DA experiments performed with the optimized
configuration achieve a better reconstruction of the reference rotational speed of the
cylinder than the DA experiment using the first-guess configuration (see figure 15c
and table 7). Besides, the DA experiments performed with the optimized configuration
reach the same error reduction J/J0 in slightly fewer iterations than with the initial
configuration.

Results for experiment 5A are illustrated in figure 16. This experiment uses the
same first-guess flow and first-guess configuration of sensors as experiment 4A, and
it is interesting to note the differences between the obtained optimized configurations
of sensors when the observation optimization procedure is used to increase the
sensitivity of the sensors with respect to only the rotational speed of the cylinder (see
figure 12a,b) or with respect to both the initial flow field and the rotational speed
of the cylinder (see figure 16a,b). Compared to the former case, the observation
optimization procedure has placed the velocity sensors further upstream in the latter
case. This may be explained by the fact that the region of the initial flow in front of
the cylinder form the upstream conditions for the wake flow during the considered
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FIGURE 16. (Colour online) Results for experiment 5A (A = 2 and F = 0.165 for the
first-guess flow, lock-on). Results of the observation optimization procedure: (a) initial
(white dots) and optimized (black dots) positions of velocity sensors in the vorticity
field of the first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus
the iteration of the optimization process. Results of DA procedures: (c) dimensionless
rotational speed α of the cylinder for reference (E), first-guess (· · · · · ·) and assimilated
runs obtained with the initial configuration of velocity sensors (– – – –) and optimized
configuration with merged sensors (——); (d) cost function J in (2.15) versus the iteration
of the optimization process with the initial configuration of sensors (– – – – ), optimized
configuration (– · – · –) and optimized configuration with merged sensors (——).

time interval, as detailed in § 3.3. In addition, it may be worth keeping in mind
that the considered flow configuration is convection-dominated. Upstream conditions
may significantly affect the vortex shedding, as illustrated in § 4.1.3 and figure 8,
where it appears that the DA procedure may fit the available observations of the
velocity field by only adjusting the initial field, in particular for the non-lock-on case.
Accordingly, as bringing the sensors closer to the cylinder increases the sensitivity
of the observations with respect to its rotational speed at the end of the assimilation
window, see §§ 4.1.3 and 5.1, performing measurements further upstream may improve
their sensitivity with respect to the characteristics of the incoming flow at latter times.
Two pairs of close sensors can be identified above and below the cylinder in the
optimized configuration, and, similarly to experiment 5D, the optimized configuration
is used in the DA experiments either directly or with two merged sensors. As
indicated in table 7 and illustrated in figure 16(c,d), the DA experiments using the
optimized configuration of sensors achieve almost the same reduction in the error
on the reference rotational speed as with the first-guess configuration, but three
times fewer iterations of the optimization process are required in the former case.
As for experiment 5D, merging the close sensors does not significantly degrade the
optimality of the observation network.
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FIGURE 17. (Colour online) Results for experiment 5C (A= 2 and F = 0.375 for the first-
guess flow, lock-on). Results of the observation optimization procedure: (a) initial (white
dots) and optimized (black dots) positions of velocity sensors in the vorticity field of the
first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus the iteration of the
optimization process. Results of DA procedures: (c) dimensionless rotational speed α of
the cylinder for reference (E), first-guess (· · · · · ·) and assimilated runs obtained with the
initial (– – – –) and optimized (——) configurations of velocity sensors; (d) cost function
J in (2.15) versus the iteration of the optimization process with the initial (– – – –) and
optimized (——) configurations of velocity sensors.

The use of the configuration C of table 5 (run 5C) is examined in figure 17.
Similarly to experiment 4C where the same first-guess flow is considered, the
observation optimization procedure has increased the value of the cost function
G by two orders of magnitude. The optimized configuration of sensors of figure 17(a)
appears more symmetric than in figure 13(a). As illustrated in figure 17(d), the DA
procedure performed with the optimized configuration of sensors converges at a much
faster rate towards the reference flow than the one using the first-guess observation
network. Indeed, 29 and 163 iterations of the optimization process are required in
the former and latter cases, respectively, to achieve the error reduction J/J0 = 10−2.
Besides, the error reduction on the reference rotational speed at the end of the
optimization procedure is five times greater in the case where the optimized sensors
are used than in the case where the first-guess observation network is employed.
As summarized in table 7, the use of the observation optimization procedure is
largely cost efficient in terms of both total number of calls to the adjoint code and
reconstruction of the reference flow in this case.

While the previous experiments in the present section were dedicated to the
reconstruction of flows in the lock-on regime, we now investigate the possibility
of employing the proposed observation optimization procedure in the non-lock-on
one. To this end, we consider the configuration B (A = 0.5 and F = 0.5 for the
first-guess flow) of table 5 (run 5B) and the results of figure 18. It appeared from
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FIGURE 18. (Colour online) Results for experiment 5B (A = 0.5 and F = 0.5 for the
first-guess flow, non-lock-on). Results of the observation optimization procedure: (a) initial
(white dots) and optimized (black dots) positions of velocity sensors in the vorticity field
of the first-guess flow at tur/dr = 10; (b) cost function G in (2.11) versus the iteration
of the optimization process. Results of DA procedures: (c) dimensionless rotational speed
α of the cylinder for reference (E), first-guess (· · · · · ·) and assimilated runs obtained
with the initial (– – – –) and optimized (——) configurations of velocity sensors (the two
latter curves overlap each other); (d) cost function J in (2.15) versus the iteration of
the optimization process with the initial (– – – –) and optimized (——) configurations of
velocity sensors.

the results of § 4.1.1 that in this case the reference rotational speed of the cylinder
cannot be satisfactorily recovered from observations of the velocity field in the
cylinder wake due to the fact that the oscillations of the cylinder do not directly
determine the vortex shedding, the latter being dominated by a frequency almost
identical to the natural one. However, figure 5(c) indicates that, close enough to the
cylinder, the frequency of its oscillations is predominant in the temporal evolution of
the flow, even if the latter remains multi-frequency. Accordingly, instead of placing
velocity sensors in the cylinder wake as in the previous experiments, measurements
are initially performed in the vicinity of the cylinder for run 5B, as illustrated in
figure 18(a). The sensor network obtained by the observation optimization procedure
is also reported in figure 18(a), and it appears that the optimization process has
maintained the symmetry of the measurement network. A symmetric optimized
configuration of sensors is expected in the case where Tf � 1, where T is the size
of the assimilation window and f the frequency of the oscillations of the cylinder
in (3.1), which is coherent with the present results. The most asymmetric sensor
configuration is obtained with run 5D (see figure 15a), which is associated to
the lowest investigated frequencies; more symmetric configurations are obtained in
runs 5A and 5C (see figures 16a and 17a, respectively), while run 5B corresponds
to both the highest investigated frequencies and the most symmetric optimized sensor
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network. As illustrated in figure 18(c), the DA experiments relying on either the
initial or optimized sensor configurations have both satisfactorily reconstructed the
reference rotational speed of the cylinder and have achieved a similar reduction in
the error on the reference flow. These results confirm the possibility of correctly
reconstructing flows in the non-lock-on regime when measurements are performed
in a region where the oscillations of the cylinder have a more important influence
on the flow compared to locations, such as in the cylinder wake, where the flow is
fully desynchronized with the oscillations of the cylinder. Furthermore, figure 18(d)
indicates that the use of the optimized sensor network allows us to speed up the
convergence of the DA process, and two time fewer iterations of the optimization
procedure are required to reach the same error reduction J/J0 as with the initial
configuration of sensors.

5.2.2. Experiments with 20 sensors, sensor selection (type 6)
Finally, we consider experiments of type 6, whose set-up is similar to that of

the experiments of type 5, but now 20 velocity sensors are used to perform the
observations of the flow. Generally speaking, when increasing the number of sensors
to observe a given system, one could expect discrepancies in the sensitivity with
respect to changes in the system between the different sensors. In this respect, it
may be interesting to quantify the importance of each sensor and to identify the
most sensitive ones. The sensor selection procedure described in § 2.6 is here used to
select the most important sensors in the optimized observation networks. Results for
experiment 6A are reported in figure 19. Starting from the first-guess configuration of
sensors illustrated in figure 19(a), the configuration of figure 19(b) is obtained with
the observation optimization procedure. The increase in the value of the cost function
G achieved by the optimization procedure is moderate (by a factor 1.2) compared
with the previous experiments using four sensors. Performing the observations with
20 sensors actually provides much more information about the flow than with four
sensors, and it is expected that the gain in sensitivity obtained with observation
optimization strategies becomes less drastic as the number of sensors increases. The
most important sensors of the optimized configuration in the sense of (2.20)–(2.21)
are selected with δ = 0.997 in figure 19(c). With this value, only 11 sensors remain,
and we can notice that the removed sensors coincide with the ones of the first-guess
configuration that have not been moved by the optimization process and were located
the furthest from the shedded vortices. Three DA experiments are performed to
assess the results of the observation optimization procedure, each using a sensor
configuration among the three ones illustrated in figure 19(a–c). The corresponding
results are reported in figure 19(e, f ). The DA experiment performed with only the
most important sensors of the optimized configuration achieves a better reconstruction
of the reference rotational speed of the cylinder than the DA experiment using the
first-guess configuration, and in fewer iterations, as summarized in table 7. Only
retaining the most sensitive sensors does not appear to have significantly degraded
the optimality of the observation network.

We finally consider the results of experiment 6C, which are illustrated in figure 20.
The configuration of sensors obtained with the observation optimization procedure
is illustrated in figure 20(b), starting from the same first-guess configuration as in
experiment 6A. Quite surprisingly, some of the sensors have been placed relatively
far from the cylinder and upstream or outside of the wake flow. When considering
these results, it may be worth keeping in mind that the observation optimization
procedure is used here to increase the sensitivity of the sensors with respect to both
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FIGURE 19. (Colour online) Results for experiment 6A (A = 2 and F = 0.165 for the
first-guess flow, lock-on). Results of the observation optimization procedure: (a) initial
configuration of velocity sensors (white dots), (b) optimized velocity sensors (black dots),
and (c) optimized configuration with only the most important sensors; (d) cost function
G in (2.11) versus the iteration of the optimization process. Results of DA procedures:
(e) dimensionless rotational speed α of the cylinder for reference (E), first-guess (· · · · · ·)
and assimilated runs obtained with the initial configuration of velocity sensors (– – –) and
optimized configuration with only the most important sensors (——); ( f ) cost function J
in (2.15) versus the iteration of the optimization process with the initial configuration of
sensors (– – – –), optimized configuration (– · – · –) and optimized configuration with only
the most important sensors (——).

the rotational speed of the cylinder and the initial flow field. As discussed in § 5.2.1,
as placing sensors closer to the cylinder may increase their sensitivity with respect
to changes in the rotational speed of the cylinder, performing measurements further
from the vortex shedding or upstream from the cylinder may enhance the sensitivity
of the observations with respect to the initial condition and upstream conditions.
Equations (2.20)–(2.21) with δ = 0.95 are considered to select the most important
sensors in the optimized configuration. The value of δ is adjusted in order to remove
nearly half of the sensors, as in run 6A. The resulting configuration is illustrated in
figure 20(c), where 10 sensors remain. Results for DA procedures performed with
the three configurations of sensors of figure 20(a–c) are reported in figure 20(e, f )
and table 7. The DA experiments performed with the first-guess configuration and
the optimized configurations of sensors have achieved a similar reduction in the error
on the reference rotational speed of the cylinder, which is satisfactorily identified in
both cases. However, the DA experiment with only the most important sensors of
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FIGURE 20. (Colour online) Results for experiment 6C (A = 2 and F = 0.375 for the
first-guess flow, lock-on). Results of the observation optimization procedure: (a) initial
configuration of velocity sensors (white dots), (b) optimized velocity sensors (black dots),
and (c) optimized configuration with only the most important sensors; (d) cost function
G in (2.11) versus the iteration of the optimization process. Results of DA procedures:
(e) dimensionless rotational speed α of the cylinder for reference (E), first-guess (· · · · · ·)
and assimilated runs obtained with the initial configuration of velocity sensors (– – – –) and
optimized configuration with only the most important sensors (——) (the two latter curves
overlap each other); ( f ) cost function J in (2.15) versus the iteration of the optimization
process with the initial configuration of sensors (– – –), optimized configuration (– · – · –)
and optimized configuration with only the most important sensors (——).

the optimized configuration has reached this error reduction in almost seven times
fewer iterations than the DA experiment performed with the first-guess configuration.
Even with two times fewer sensors than the first-guess configuration of sensors, the
optimized configuration proves to be superior for DA purposes.

6. Conclusion

In the present study, an optimal sensor placement procedure for variational data
assimilation (DA) of unsteady flows has been proposed. This approach is dedicated
to the a priori design of an observation network. It is based on the maximization
of the norm of the gradient with respect to initial condition, boundary conditions
or model parameters of a response function of the flow system. This response
function is defined as the norm of observations of the flow. In other words, this
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procedure is aimed at identifying the regions of the flow that have the greatest
sensitivity with respect to a change in control variables such as the initial condition,
boundary conditions or model parameters in observation space. This methodology
relies on the use of a first-order adjoint technique, and can be naturally coupled
with variational DA. However, since observation optimization is performed before
assimilating measurements, it is hoped that the proposed procedure will be of interest
for a broader range of estimation problems, such as those encountered in flow control.

This method has been applied to the reconstruction of unsteady bidimensional
flows past a rotationally oscillating cylinder at Re = 100. First, preliminary DA
experiments have been conducted in order to delineate the possibilities of solving
inverse problems in the context of unsteady forced wake flows. The present results
suggest that, in the case where the flow lies in the non-lock-on regime, it is difficult
to retrieve the rotational speed of the cylinder and the initial flow field, which
encompasses here upstream conditions, from observations of the velocity field
downstream of the cylinder. More precisely, the DA procedure satisfactorily fits
the available measurements, but does not correctly identify the associated initial
condition and rotational speed. This result may be explained by the fact that the
frequency of the wake flow is not directly related to the forcing one in this case, and
actually tends to the natural frequency as the flow deviates from the lock-on region,
possibly inducing a lack of unicity of the solution to the inverse problem. However, if
observations are performed in the vicinity of the cylinder, where its rotational speed
has a greater influence on the temporal evolution of the flow, the reference flow may
be satisfactorily recovered through DA. On the other hand, when the flow lies in the
lock-on regime, the frequency of the wake flow is imposed by the forcing one, and
the DA procedure is able to correctly retrieve both the rotation parameters and the
initial field from observations in the wake. The present study also suggests that the
observation of global quantities such as the aerodynamic coefficients does not provide
enough information to correctly solve the DA inverse problem.

In a second step, the proposed observation optimization procedure has been
used for the design of optimal networks of velocity sensors downstream of the
cylinder, allowing us to improve the performances of the DA process. It has
also been employed to identify and select the most important sensors in a given
network. The robustness of the proposed procedure has been assessed with various
reference and first-guess flows and in different reconstruction scenarios. Compared
to the corresponding first-guess configuration of sensors, in all the DA experiments
considered, the use of the optimized network allowed a significant decrease (up to five
times fewer) in the number of calls to the adjoint code (even when taking into account
the supplementary cost associated to the observation optimization procedure) that are
necessary to reach a given error reduction for the DA problem. Besides, the DA
experiments performed with the optimal observation networks also achieved a greater
accuracy in the reconstructed flow. A case was identified where the reconstructed
rotational speed of the cylinder obtained with the first-guess network of sensors was
worse than the first guess for the DA procedure, while the optimized sensors allowed
us to significantly improve the estimation of the rotational speed. Accordingly, the
results obtained with the proposed methodology are here satisfactory, both in terms
of quality of the reconstructed flow and computational cost-efficiency.

This may encourage the application of the present observation optimization
procedure to more complex flows at higher Reynolds numbers, which could
thus be turbulent and three-dimensional. It is expected that, thanks to the use
of an adjoint technique, the proposed methodology is robust with respect to the
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dimension of the investigated problem, which may significantly increase in the
case of three-dimensional configurations. This feature is valuable when considering
realistic turbulent flows. The only real difficulty in applying the present observation
optimization procedure to more complex flows could be the need of the development
of an adjoint code in the case where particularly sophisticated numerical methods are
required to obtain estimations of the flow of interest, even if the burden associated
to the coding of the adjoint model might be partly alleviated through the use of
automatic differentiation tools. Other strategies for efficient sensor placement could
therefore be considered in the framework of non-intrusive DA techniques such as
ensemble Kalman filtering or ensemble-based variational DA.

Acknowledgement
This work has been carried out thanks to the support of the A*MIDEX grant (no.

ANR-11-IDEX-0001-02) funded by the French Government ‘Investissements d’Avenir’
programme.

Appendix A. Discrete formulation of the observation optimization problem
The discrete version of the observation optimization procedure described in § 2.3 is

given in this appendix, along with an alternative formulation for the computation of
the gradient in (2.14c). The fully discretized counterpart of the dynamical model in
(2.1) can be written as

qn+1 =mn(qn, βn), 0 6 n 6 N − 1, (A 1)

where mn is a nonlinear operator that maps the spatially discretized state vector qn
from discrete time n to n+ 1 and is parameterized by the vector βn. The time interval
[0,T] is discretized by N+ 1 time steps. The discrete Lagrangian used to evaluate the
sensitivity of the observations, with associated operator h parameterized by λ, is given
by

L1 =
1
2

N∑
n=0

‖h(qn, λ)‖
2
−

N−1∑
n=0

(qn+1 −mn(qn, βn))
Tq̃n+1, (A 2)

where ‖ · ‖ and ·T denote the Euclidean norm and the transpose operator, respectively.
Similarly to the derivations in § 2.2, the following system of equations can be deduced
to compute the first-order sensitivity of the observations

q̃N =

(
∂h
∂qN

(qN, λ)

)T

h(qN, λ), (A 3a)

q̃n =

(
∂mn

∂qn
(qn, βn)

)T

q̃n+1 +

(
∂h
∂qn

(qn, λ)

)T

h(qn, λ), 0 6 n 6 N − 1, (A 3b)

∂L1

∂q0
= q̃0, (A 3c)

∂L1

∂βn
=

(
∂mn

∂βn
(qn, βn)

)T

q̃n+1, 0 6 n 6 N − 1. (A 3d)

The system (A 3) involves the transpose of gradient matrices associated to the
model and observation operators. The system of adjoint equations for the discrete
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version of the DA problem exposed in § 2.4 is obtained by replacing h(qn, λ) with
(h(qn, λ) − yn) in (A 2) and (A 3), where yn is the observation of a reference state
at time n. As in § 2.3, the observation optimization problem is formulated as the
maximization of the norm of the gradients (A 3c)–(A 3d) with respect to the vector
λ that parameterizes the observation operator h. The expression of the discretized
counterpart of the Lagrangian L2 in (2.12) is given by

L2 =
1
2
‖q̃0‖

2
+

1
2

N−1∑
n=0

∥∥∥∥∥
(
∂mn

∂βn
(qn, βn)

)T

q̃n+1

∥∥∥∥∥
2

−

N−1∑
n=0

(
q̃n −

(
∂mn

∂qn
(qn, βn)

)T

q̃n+1 − h̃n(λ)

)T

rn − (q̃N − h̃N(λ))
Ts, (A 4a)

h̃n(λ)=

(
∂h
∂qn

(qn, λ)

)T

h(qn, λ), 0 6 n 6 N, (A 4b)

while its gradient with respect to the parameters λ is obtained with

r0 = q̃0, (A 5a)

rn+1 =
∂mn

∂qn
(qn, βn)rn +

∂mn

∂βn
(qn, βn)

(
∂mn

∂βn
(qn, βn)

)T

q̃n+1, 0 6 n 6 N − 1, (A 5b)

∂L2

∂λ
=

N∑
n=0

(
∂h̃n

∂λ
(λ)

)T

rn. (A 5c)

The systems of equations (A 3) and (A 5) are the discrete counterparts of (2.9) and
(2.14), respectively. Equation (A 5b) is evaluated forward and involves the tangent
linear operator ∂mn/∂qn, while (A 3b) is evaluated backward and involves the adjoint
of this operator. Accordingly, the computation of the adjoint variables q̃n in (A 3) and
rn in (A 5) needs to be performed in a sequential way, and the vector q̃n at all discrete
times tn has to be stored for the integration of (A 5b), as the direct solution qn at all
discrete times has to be stored for the computation of q̃n in (A 3). However, it appears
from the inspection of (A 3) that the gradient of L2 with respect to λ may also be
obtained through the following system of equations

∂ q̃N

∂λ
=
∂h̃N

∂λ
(λ), (A 6a)

∂ q̃n

∂λ
=

(
∂mn

∂qn
(qn, βn)

)T
∂ q̃n+1

∂λ
+
∂h̃n

∂λ
(λ), 0 6 n 6 N − 1, (A 6b)

∂L2

∂λ
= q̃T

0
∂ q̃0

∂λ
+

N−1∑
n=0

((
∂mn

∂βn
(qn, βn)

)T

q̃n+1

)T (
∂mn

∂βn
(qn, βn)

)T
∂ q̃n+1

∂λ
. (A 6c)

From the computational point of view, solving (A 6b) may require more memory than
solving (A 5b) since a gradient matrix ∂ q̃n/∂λ is propagated in time in the former
case instead of a vector. On the other hand, since (A 6b) is evaluated backward, the
adjoint variable q̃n in (A 3) and the gradient in (A 6c) can be computed simultaneously,
which may save computational time, and avoids having to store q̃n at all times.
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If dim(λ) < N + 1, which is the case in the present study, the formulation (A 6) is
therefore more economical in terms of memory requirements than (A 5) in the end.
The system of equations (A 6) will be used instead of (A 5) in the present work to
solve the observation optimization problem. Accordingly, computing gradients for the
evaluation of the sensitivity of the observations and for the observation optimization
problem amounts to propagating backward in time the variables q̃n and ∂ q̃n/∂λ
simultaneously with the adjoint operator ((∂mn/∂qn)(qn, βn))

T and different forcing
terms.
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