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Three-dimensional shock wave reflection comprises flow physics that is significantly
different from the well-documented two-dimensional cases in a number of aspects. The
most important differentiating factor is the sweep of the shock system. In particular,
this work examines the nature of flow fields in which there is a transition of shock
reflection configuration in three-dimensional space. The flow fields investigated have
been made to exist in the absence of edge effects influencing the shock interaction
and transition, as found previously to exist in conventional double-wedge studies. In
general, the shock configurations are those with central regular and peripheral Mach
reflection portions. It is shown that the sweep angle of the portions on either side of
the transition point is subject to a cusp, as per an analytical model that is developed.
This is confirmed with the use of numerical models with additional evidence provided
by experimental results using oblique shadow photography. Further application of the
principles of three-dimensional shock analysis and those pertaining to the sweep
cusp model yield important insights regarding the overall shock geometry and that at
transition.
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1. Introduction
Flow fields exhibiting shock reflection transition as discussed in this paper are

placed in the context of the three-dimensional flow fields obtained when two wedges
are placed symmetrically opposite each other in a wind tunnel test section, as shown
in figure 1(a). This has become the conventional configuration for studying shock
reflection and transition, with the horizontal symmetry plane acting as an idealised
reflecting surface. Hornung (1986) highlights the important effects on reflection
transitions of boundary layers resulting from using a flat plate instead of a symmetry
plane as well as reflecting surface roughness and porosity for two-dimensional cases.
In general, the three-dimensional incident shock surface is swept backwards and
downstream of the test pieces. The central regions of interaction may be regular
(RR) with the sweep of the incident shock surface eventually transitioning to Mach
reflection (MR) towards the peripheral regions of the flow field, as depicted in
figure 1(b). This shock configuration is similar to that obtained with a body of
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FIGURE 1. (a) Overview of double-wedge configuration used in previous works with
both symmetry planes indicated. (b) Overview of typical three-dimensional flow field with
translucent surfaces marked I for incident wave, R for reflected wave, M for Mach surface,
T for the transition point and S for shear surface. The intersection line is traced along the
incident wave and Mach surface intersections with the horizontal symmetry plane.

revolution (Sears–Haack) in a supersonic free stream in close proximity to a ground
plane as in figure 2. In comparison with figure 1(b), the central part of the intersection
line is swept backwards to a greater extent. It is now known that the finite aspect ratio
of the wedges gives rise to edge Mach cones which comprise edge expansion signals,
and which in turn influence both the surface flow (figure 3a) and shock interactions
at the horizontal symmetry plane (Skews 1997, 2000) as in figure 3(b). An important
result of edge effects is the swept portion of the incident wave, coloured yellow in
figure 1(b), which is a consequence of the outward flow towards the wedge edges.

Previous works (Skews 1997; Ivanov 2000) have found such effects to be a
contributing factor in the discrepancy between theoretical predictions and experimental
results regarding two-dimensional shock transition. In such cases where wedge
aspect ratios are lower than a certain limit, as specified by Skews (1997), the
shock configuration at the vertical symmetry plane is fundamentally altered by
these three-dimensional effects. This was confirmed by additional experimental
work done by Sudani et al. (2002). The realisation of the impact of edge effects
enabled further advancements in resolving the aforementioned discrepancies noted for
two-dimensional reflection transition studies. Perhaps the most important of these was
the hysteresis phenomenon associated with the length-scale transition mechanism
suggested by Hornung, Oertel & Sandeman (1979), which was experimentally
demonstrated by Ivanov et al. (2001). Having understood the nature of influences
of a three-dimensional flow field on investigations of two-dimensional reflection
phenomena, further study by Kudryavtsev et al. (2002) systematically explored
the effects of disturbances on the transitional behaviour of the shock system for
two-dimensional computational cases. In recent times, the three-dimensional nature of
an interacting shock system has been studied by Huang et al. (2011) in the context
of a scramjet isolator. In this case, the nature of transition between Mach reflection
and a normal shock regime as a result of back-pressure disturbances and geometrical
variations was explored. It is important to note that the flow field depicted in figure 2
is not subjected to three-dimensional perturbations due to there being no edge on
the body at which a Mach cone can exist to influence the reflection and transition
phenomena.

For wedge bodies, the transition points further outwards at the peripheral regions
(marked T in figure 1b) are subjected to edge effects. The current work presents
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FIGURE 2. Typical three-dimensional supersonic flow field obtained with a body in close
proximity with a ground plane resulting in a highly swept intersection line (figure provided
by B. W. Skews).
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FIGURE 3. Mach cone and its effect on the flow in its vicinity. (a) Intersection of the
Mach cone with the half-span wedge surface shown with a dotted line OP along the wedge
surface with edge vortices indicated. (b) Intersection with incident shock surface shown
with dotted line OQ.

a study of flow fields with these transition points; however, the influence of edge
effects has been intentionally eliminated. This was as a result of the test pieces
used of the type as shown in figure 4(a,b). Figure 4(a) shows the original narrow
low-transverse-spread model concept and figure 4(b) shows the formulation of wider
models from later design iterations. The models are curved along their transverse
length to eliminate the existence of edge Mach cones, with a backward sweep
to provide a known geometrical boundary condition with which the sweep of the
incident shock surface could be controlled. This resulted in considerable sweep along
the entire length of the intersection line as seen in figure 2. The back and lower
faces (the latter shown in figure 4 with plan elevations) were each formed using a
non-uniform rational B-spline (NURBS) geometrical construction. A blending function
was then used to loft and join the back and lower faces. The vertices of the NURBS
formed a triangle ABC for the lower faces of all models. For the original concept,
three vertices were used (triangle BCD). This was extended to polygons for later
models (BCDEFG as in figure 4b) to provide greater control over localised regions
of the back face transverse spread. The blending function between the back and
lower faces was implemented in a MATLAB script in order to formulate the codes
for numerical control machining. Three models in addition to the original concept
were used and designated 8, 10 and 11 in order of increasing transverse spread (see
figure 5a). The model numbers correspond to the design iteration as evolved from the
original narrow low-spread concept. The types of flow fields discussed here are as
shown in figure 5(b) and, although similar to figure 1, contain no edge perturbations
influencing the shock reflections.
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FIGURE 4. (a) Blending surface formation of original model concept. (b) Typical blending
surface formation of models from later iterations (model 10 shown here). Dimensions in
millimetres and angles in degrees.
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FIGURE 5. (a) Typical test piece geometry for original concept and models 8, 10 and 11
in order of increasing spread. The models are oriented so that their back faces can be
seen to give an idea of the geometrical spreads. (b) Typical flow field obtained with test
models sketched up until the incident wave intersects the horizontal symmetry plane.

In this work, some fundamentals related to the intersection of planar shock surfaces
in three-dimensional space will be considered initially. Next, these considerations are
extended to the development of an analytical model describing the flow conditions on
either side of the transition point. This is based on compatibility relations required
to be satisfied across the transition point for physically tenable flow solutions. Some
experimental and numerical results confirming the findings of the analytical model
will be discussed. Finally, a discussion on the topology of the flow fields studied will
be presented, in specific relation to model geometry and free-stream Mach-number
dependences.

2. Regular three-dimensional planar shock interaction
2.1. Fundamentals

The theory of three-dimensional shock interaction is considered here, based primarily
on the works of Migotsky & Morkovin (1951), Keldysh (1966) and Emanuel (2000).
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Intersection line

Reflected wave

Incident wave

ı

FIGURE 6. Standard configuration of planar shock wave interaction in
three-dimensional space.

We consider a portion of a swept shock system the width of which is sufficiently small
to approximate the waves as being planar, as shown in figure 6. The planar wave
configuration of figure 6 may be realised for an infinitesimal segment of the swept
wave surfaces of figure 5(b). The sweep angle β is thus defined as the angle between
the shock intersection line and the free-stream flow vector at Mach number M1. It is
emphasised that the definition of sweep used here is complementary to that defined
in an aeronautical sense, for example, in relation to the sweep of a wing.

Upon reaching the incident shock plane, the free stream is deflected in three
directional components, the most relevant of which is that projected onto plane PA.
This is perpendicular to plane PB, shown in red and green, respectively, in figure 6.
Plane PA is normal to the intersection line of the shock planes. Plane PB contains
the free-stream vector M1 and is parallel to the horizontal symmetry plane at which
the incident and reflected shock surfaces meet. Plane PA is of importance, and
will be termed the analysis plane. This is because the two-dimensional oblique
relations for shock waves and their interaction apply in plane PA, as long as
all relevant quantities are projected onto this plane. Thus, an ostensibly complex
three-dimensional interaction can be suitably reduced to an effective two-dimensional
one, as per figure 7. The corresponding Mach-number component in this same plane
is M′1=M1 sin β. It is important to note that the analysis-plane shock angle (effective
shock angle) is defined as

θ ′1 = sin−1

(
sin θ1

sin β

)
, (2.1)

where θ1 is the incident shock angle obtained as seen in a vertical slice of the flow
field. The primes refer to effective quantities in the analysis plane. Calculations carried
out in the analysis plane are analogous to that for two-dimensional oblique shocks in
which vector components normal to the shock are considered to effect changes across
the shock wave (Anderson 2001).

A detailed study on the analysis of a single three-dimensional swept wave surface
was carried out by Domel (2016), which is applicable here to the incident wave
surface and may be extended to apply to the reflected wave surface. Some interesting
observations were made by Domel regarding the effect of sweep on the incident wave
and post-shock flow deflections with the associated complexities consolidated into a
new relation for shock geometry and post-shock parameters as a function of sweep,
deflection angle and shock angle. This is analogous to the theta–beta–Mach number
relation for a single oblique two-dimensional shock wave. In this study, the incident
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Symmetry line

FIGURE 7. Reduction to analysis plane for regular reflection configuration.

wave surface was intentionally made to vary in sweep across the entire span of the
wave system. Therefore, planar relations for a single shock or system of interacting
shocks is valid for an infinitesimal segment of the shock system in this work. The
assumption of uniform regions in the analysis plane before and after the incident and
reflected waves, usually applied to standard two-dimensional analyses, is considered
reasonable for a localised region, especially very close to the symmetry plane and to
the reflection point of the shock waves. Attention is now turned to the conditions of
existence and transition in the analysis plane following a brief outline of transition
phenomena in two-dimensional cases.

2.2. Existence and transition criteria
The three-dimensional shock interaction detailed in this work bears close similarity
with Domel’s approach inasmuch as the minimum criteria for the existence of
a three-dimensional shock surface and analysis-plane computations are concerned.
Two-dimensional reflection transition criteria suggest both the detachment and von
Neumann conditions for transition between regular and Mach reflection. The former
is reached when the reflected wave cannot turn the flow parallel to the reflecting
surface and the shock intersection detaches from the symmetry plane, bridged by a
Mach stem. The latter results from the post-reflection pressure for regular reflection
reaching the upper limit permissible for a normal shock with the same free-stream
flow conditions, after which further increases in angle for the incident shock results
in a pressure increase that can only be sustained by the transition to Mach reflection
(Ben-Dor 2007).

It is important to note that, because of sweep, the analysis-plane component of the
free-stream Mach number (i.e. the effective normal Mach number M′1 sin θ ′1) is required
to be high enough for the shocks in the analysis plane to exist. This puts limits on the
extent of the sweep angle, or on the minimum free-stream Mach number M1, which
reduce to

1
M1 sin β

6 sin θ ′1 6 sin θ ′1 max, (2.2)

where θ ′1 max is to be defined as that wave angle beyond which Mach reflection
is formed in the analysis plane, and is analogous to the detachment criterion for
two-dimensional reflection transition. From the preceding inequality, two things
are important: First, the normal Mach number component in the analysis plane is
what governs the reflection transition and determines whether or not the shocks
in the analysis plane exist or are so weak as to reduce to Mach waves. Secondly,
theoretically the same transition criteria (i.e. von Neumann and detachment) apply
to the analysis plane as with a purely two-dimensional interaction. The important
difference here is that θ ′1 max is additionally dependent on β and thus varies all along
the intersection line for the flows considered here.
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FIGURE 8. Minimum existence criteria and transition criteria (detachment, θ ′max;
von Neumann, θ ′vN) for three-dimensional shocks, M1 = 3.0.

The criteria for existence and transition between regular and Mach reflection in
the analysis plane are shown in figure 8 for a free-stream Mach number M1 = 3.0.
Higher Mach-number flows are given to a broader range of effective incident shock
angles in which the shock waves both exist and are configured in a regular reflection
pattern. The incident wave angles of the von Neumann and detachment criteria are
denoted by θ ′1vN and θ ′1 max, respectively. It is apparent that these criteria in the analysis
plane are not clearly distinguishable for most of the range of sweep angles from
approximately 50◦ to 90◦ at M1 = 3.0. The largest difference in effective shock angle
is approximately 2◦, occurring near a sweep of β = 90◦. This represents a situation in
which the free stream is perpendicular to the intersection line of the shock planes.

In order to complete the analysis of spatial phenomena by virtue of three-
dimensional shock intersections, attention is given to flow deflections as viewed
from a plan elevation view of the top of the intersection as shown in figure 9.
Although the intersection is viewed from the top, the vectors on this diagram are not
the components in the plane of the intersection line and still possess their out-of-plane
components where applicable. Again, all quantities with a prime denote the vector
component in the analysis plane. The velocity vector emerging from the reflected
wave is not parallel to the free-stream vector when viewed in the plan view as in
figure 9; however, both vectors are parallel to the symmetry plane (containing the
line of intersection) when viewed in the analysis plane or in a vertical plane slice of
the flow field. The angular difference between the two vectors is given by

τ = β − γ , (2.3)

where γ is the angle between the emergent velocity vector and the line of intersection
in the horizontal symmetry plane. From figure 7, the velocity ratio across the entire
system of shocks in the analysis plane can be derived as

V ′3
V ′1
=

cos θ ′1
cos(θ ′1 − δ1)

cos θ ′2
cos(θ ′2 − δ1)

. (2.4)

Noting that all tangential velocity components are equal across the shock system, it
can be seen that

tan γ
tan β

=
M′3
M′1
=

M3 sin γ
M1 sin β

=
V ′3
V ′1
, (2.5)
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Projection onto
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Projection onto
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Reflected wave

Incident wave

Intersection line

FIGURE 9. Top view of the intersection of the shock planes.

which also demonstrates equivalence of the ratios of effective Mach numbers and
velocity components in the analysis plane, as deduced from the work of Keldysh
(1966). In addition, the second equality relates the effective Mach ratio to the actual
Mach ratio, which underpins the analysis discussed later. Of importance is the fact that
the foregoing analysis can be used to relate the flow conditions and flow geometry in
the analysis plane to those found in the top view of figure 9. As such we have

tan β =
cos(θ ′1 − δ1)

cos θ ′1

cos(θ ′2 − δ1)

cos θ ′2
tan γ , (2.6)

which is of clear significance to the understanding of regular reflection in three-
dimensional space, and not being limited to any one plane. Thus, the fundamentals
of regular reflection have been introduced. This requires extension to consider the
flow phenomena in the presence of a transition point.

3. Model of flow in the vicinity of three-dimensional shock interaction transition
points
Here, the regions in the immediate vicinity of three-dimensional transition points

are considered. Observing the shock system from above, the shock intersection in the
horizontal symmetry plane is as shown in figure 10. This depicts transition at the
point from which a shear layer emanates, shown as the dotted line in figure 10. To
one side of the shear layer there is regular reflection and on the other there is Mach
reflection. In the immediate surrounds of the shear layer there should theoretically be
compatibility between pressure and flow deflections such that

γRR = γMR, (3.1)
τRR = τMR, (3.2)

p3RR = p4MR. (3.3)

Subscripts RR and MR denote quantities specific to the respective reflection type along
the intersection bow wave. It is important to note that (3.1) is obtained due to the fact
that the sweep angle β for the RR and MR portions on the intersection bow wave
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FIGURE 10. Top view of three-dimensional transition at the symmetry plane.

Symmetry plane
Symmetry plane

(a) (b)

FIGURE 11. Schematic of analysis-plane slice of flow field on (a) RR side and (b) MR
side of the transition point.

are initially assumed identical, and in general γ = β − τ . This assumption is now
examined further in light of the fact that the compatibility relations (deflections and
pressures) should hold for the flows behind both the Mach reflection and the regular
reflection portions. This is the main thrust of this work which, as will be discussed
later, has important consequences for the shock geometry and physical conditions in
the surrounds of the transition points.

The flow fields in the analysis planes for the MR and RR configurations need to
be considered in the immediate vicinity of their respective interaction points, and the
situations considered are shown in figure 11. On the regular reflection side of the
transition point T , the analysis is constrained to a small vertical distance 1z away
from the symmetry plane in the limit 1z→ 0.

Along the entire Mach reflection portion, we consider the finite Mach stem height
to be of arclength 1s. Note that it is accepted that the Mach stem will have some
variation of curvature from where it protrudes at the triple point until where it reaches
the symmetry plane at its foot. At this point it is perpendicular to the symmetry plane.
Specifically, at the point immediately next to the transition point T, the Mach stem
height is taken to be infinitesimally small, and so the situation considered at transition
is that in the limit 1s→ 0.

Since the boundary condition of the Mach stem foot being perpendicular to the
symmetry plane is still required to hold, it is reasonable to assume that the Mach
stem is a normal shock in the analysis plane on the MR side of transition point T.
The Mach surface just after transition is therefore modelled as a plane oblique shock
relative to the oncoming flow when viewed in three-dimensional space.

The analytical procedures for resolving the flow field in figure 11 and the transition
between them are now discussed. For the RR section near transition, two-shock theory
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is applied in the analysis plane with the boundary condition that the flow deflection
across each of the shocks (incident and reflected) is identical but in an opposite sense
in order to satisfy symmetry. The net flow deflection τRR across the RR side of the
transition point is obtained by manipulation of (2.3) and (2.6). The overall pressure
ratio relating free-stream pressure to that just after the reflection point is given by(

p3

p1

)
RR

=
p3

p2
×

p2

p1
, (3.4)

where the pressure ratio terms on the right-hand side can be generally obtained using

pi+1

pi
= 1+

2χ
χ + 1

(M′2i sin2 θ ′i − 1) (3.5)

for i= 1, 2, where χ is the ratio of specific heats for the fluid used (air in this case).
For the MR portion near T, only the region at the Mach stem foot is considered.

This deflects the free-stream flow by

tan τMR = 2 cot β
(

M2
1 sin2 β − 1

M2
1(χ + cos(2β))+ 2

)
. (3.6)

The model used here thus specifies the flow deflection through the Mach surface near
the transition point as being a function of only the free-stream Mach number and the
sweep angle.

The pressure ratio relating free-stream pressure with post-Mach surface pressure is
obtained as (

p4

p1

)
MR

= 1+
2χ
χ + 1

(M′21 − 1). (3.7)

In order for the compatibility relations about the transition point to hold for the RR
and MR portions at the same sweep angle, the following conditions must be satisfied:
for the flow deflection condition of (3.2),

β− tan−1

(
cos θ ′1

cos(θ ′1 − δ1)

cos θ ′2
cos(θ ′2 − δ1)

tan β
)
= tan−1

(
2 cot β

(
M2

1 sin2 β − 1
M2

1(χ + cos(2β))+ 2

))
;

(3.8)
and for the pressure condition of (3.3),[

1+
2χ
χ + 1

(M2′
2 sin2 θ ′2 − 1)

][
1+

2χ
χ + 1

(M2′
1 sin2 θ ′1 − 1)

]
= 1+

2χ
χ + 1

(M2
1 sin2 β− 1),

(3.9)
with the pressure ratio on the regular reflection side being determined as the left-hand
side of (3.9).

The results of computations for this formulation, as well as those obtained from
numerical models and experiments, are discussed in the next section.

4. Results from analytical, numerical and experimental models
4.1. Results from the analytical and numerical models

It is well known that the sweepback of the three-dimensional shock system
accompanies an increase in the angle of the incident shock surface relative to the
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FIGURE 12. (a) Net flow deflection and (b) pressure ratio at various sweep angles for RR
and MR portions on either side of transition point, M1 = 3.0. Regular reflection solutions
(dotted lines); Mach reflection solutions (solid lines).

oncoming flow. The effective incident shock angle θ ′1 at the detachment criterion in
the analysis plane was used for sweep angles ranging from the Mach angle to 90◦ as
β ∈ [sin−1(1/M1); 90◦].

The associated analysis-plane Mach numbers and shock angles obtained from
two-shock theory at detachment are used to compute the net flow deflection τ and
the ratio of post-interaction and free-stream pressure for each of the regular and
Mach reflection portions close to the transition point. This was plotted across the
range of sweep angles, as shown in figure 12. It is worth noting that near the Mach
angle (which is 19.47◦ for M1 = 3.0) the flow deflections tend to zero, as is the
case in figure 12(a), as the flow in the symmetry plane effectively passes through
a Mach wave – the lower limiting case of strength of an oblique shock. Also, the
pressure ratio is unity at a sweep angle equal to the Mach angle as in figure 12(b).
At the opposite end of the sweep domain at β = 90◦ the net flow deflections are also
zero for both RR and MR portions. In this case the situation is that of a reflection
pattern which is fully equivalent to its effective analysis-plane configuration. The
corresponding pressure ratios are not equal for β = 90◦, but rather the two values
for the RR and MR solutions are those for two-dimensional regular reflection and
one-dimensional normal shock configurations, respectively.

Both plots in figure 12 depict the important result that, for the same sweep on
the RR and MR portions, the net flow deflections and pressure ratios are both
not equivalent on either side of the transition point, and that this is generally the
case for all transition sweep angles and all shock configurations conforming to the
detachment criterion. This important result means that there must be some other
physical mechanism present by which the compatibility equations can be satisfied.
This is fundamental to the existence of the transition point along the intersection
line. The resolution of this is based on reviewing the fundamental assumption that
the sweep angle β is common to both the RR and MR portions on either side of
the transition point. If the sweep of one portion could be different from the other,
there would be some leeway for the compatibility equations to be satisfied across the
transition point.

Further insights regarding the nature of the flow in the region of the transition points
were obtained from examining the numerical analyses. A commercial computational
fluid dynamics (CFD) package, ANSYS Fluent 17.2, was used to compute the
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Transition point and sweep cusp
Transition point and sweep cusp
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FIGURE 13. Intersection lines superimposed on density contours for (a) model 8 at M1=

3.0 and (b) model 10 at M1= 3.0. (c) Model 11 Mach contours showing subsonic patches
in the vicinity of transition for M1 = 3.4.

three-dimensional flow field. The Euler equations were solved using a density-based
solver and the grid was adapted during the solution to gradients of pressure, density,
velocity magnitude and temperature to capture the shock structures. A review of the
numerical analysis results, shown in figure 13, shows the intersection line to develop a
sweep cusp at the transition point. This means that the sweep angle does not decrease
monotonically along the intersection bow wave – at transition, the cusp momentarily
increases the sweep, after which the sweep resumes its monotonic decrease again.
Numerical results for all model geometries and for all free-stream Mach numbers
(M1 = [2.8, 3.0, 3.2, 3.4]) show the existence of this cusp. Further inspection of the
horizontal symmetry plane streamlines demonstrates the flow deflection compatibility
across the transition point, as shown in figure 14. Another important point is the
sudden change in streamline deflection before and after the transition point, resulting
in a compression of the streamlines along the Mach reflection portion. The divergence
of the streamlines just after transition within the Mach reflection portion is due to
the increase in sweep angle of the intersection line, owing to there being a cusp
at transition. The oblique shock solution to the Mach reflection portion necessitates
highly deflected flow downstream of the cusp and gives rise to divergence as seen in
figure 14. The deflection then reduces as does the sweep angle towards the domain
periphery and this results in compression of the flow behind the Mach surface. Work
is currently being done to understand the physical aspects of this, in conjunction with
the trajectory of the shear layer edge which emanates from the transition point in the
horizontal symmetry plane.

The ability of the three-dimensional transition model to realise the existence of
the sweep cusp is now demonstrated by solving the inverse problem, this being to
obtain the sweep angle for discrete segments along the intersection line given that
the net flow deflection τ and Mach numbers M1 and M3 could be measured from the
numerical results. The analysis is carried out for a case in which the sweep cusp is
not immediately evident from examining the numerical model images, i.e. figure 13(a)
with similar results obtained from the data of figure 13(b) and for all other test cases
not shown in this paper. This was done in order to verify the capability of the
analytical three-dimensional transition model to resolve gentle sweep cusps.

To arrive at a solution of the aforementioned inverse problem, the system of
equations (2.3) and (2.5) was thus solved iteratively, with initial guess values of β
ranging from 30◦ to 90◦ as it was clear that the sweep angle did not exceed this
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FIGURE 14. Streamlines along the symmetry plane showing considerable divergence after
the intersection bow wave at transition.

range for any of the cases in this work. Equivalently, one may solve for the explicit
solution of the sweep angle, obtainable from (2.3) and (2.5) as

β = tan−1


M1

M3
− cos τ

sin τ

 . (4.1)

The solutions for the sweep angle at various span stations on the intersection line
for model 8 are shown in figure 15, which clearly shows the existence of the
sweep cusp. The sweep angle is plotted against the y-coordinate that has been
non-dimensionalised with the half-span of the intersection bow wave. This exercise
gives important evidence of the intersection line cusp for which the sweep difference
is as small as approximately 1.5◦. More exaggerated sweep cusps are visually evident
for other cases, especially so for higher free-stream Mach numbers. One such case
is shown in figure 13(c), which was obtained with the highest geometry spread
and highest free-stream Mach number of M1 = 3.4. Here, the transition cusp was
exaggerated enough to cause subsonic flow in the vicinity of the transition point. The
reason for this is the large required sweep difference across the cusp, which results
in the Mach reflection portion just after transition to be a strong oblique shock on
the horizontal symmetry plane. The strong shock solution persists for a short distance
before switching back to a weak shock solution with supersonic post-shock flow.

4.2. Some experimental results
A blow-down supersonic wind tunnel was used for experimental tests with a
100 mm × 100 mm test section. Tests were done for free-stream Mach numbers
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FIGURE 15. Sweep at non-dimensionalised locations along the half-span of the
intersection bow wave, as measured from figure 14.

ranging from 2.8 to 3.4, with Mach-number changes being effected by a sliding
nozzle block. Oblique shadow photography techniques employed to visualise the
above flow fields were found to show important information regarding the swept
shock configurations. This was implemented by a rotating optics gantry that enables
yawed and rolled views of the flow field. A xenon flashlamp and short-exposure
system was used, with a duration of approximately 1.5 µs to prevent image smearing
due to tunnel vibrations. The angular orientation of the gantry was set at the start
of each test using an inertial measurement unit (IMU) with three-axis gyroscopes
and accelerometers the outputs of which were combined with a complementary filter.
Yaw (denoted by λ) and roll (denoted by φ) of the optics system oriented the optical
path relative to the shock system in the manner depicted in figure 16. This is useful
for interpreting the images discussed subsequently in this section. In specific relation
to the sweep cusps, evidence of a slight perturbation along the intersection line
was noted. This is seen in figure 17 for optical orientations in both yaw and roll.
Figure 17(a) shows a highly yawed point of view and the optical path passes through
the Mach reflection portion on the near side of the tunnel so that it seems that there
is Mach reflection in the middle. In fact, the Mach surface is viewed almost head-on
along its trajectory around the intersection line. As the Mach surface is swept around
the near-side portion of the flow field towards the apex of the intersection line, it
decreases in height towards the downward-pointing arrow seen in the image. It is
important to note that the image is foreshortened and this height decrease takes
place over a much larger distance than this image depicts. The Mach surface then
transitions to a regular reflection line towards the right, and this line continues further
backwards along its sweep until it too transitions once more to the Mach reflection
portion on the far side (right arrow). A better view of the near- and far-side transition
points is shown in the zoomed and enhanced images of figure 18, which correspond
to the optical orientation of figure 17(a).

It is in the vicinity of the near-side transition from Mach reflection to regular
reflection (left-hand side of the image) that a small bulge is seen as also shown in
figure 18(a). This indicates some sort of disturbance in that region, and is attributed
to the sweep cusp. Further evidence is seen in figure 17(b), which is at a lower yaw
angle but with the optics system rolled by 5◦ in order to slightly elevate the point of
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Intersection line

Horizontal symmetry

FIGURE 16. Orientation of optical path trajectories across density isosurfaces for model 8
at M1= 3.0 for yaw (λ) and roll (φ) orientations. Optical paths shown in red dotted lines
for yaw, and in orange for roll.

Test piece back face

Test piece back face

Shear surface (edge)
Mach surface

RR line

RR line
Near-side Mach stem on wall

Reflected wave

Incident wave

Incident wave

(a) (b)

FIGURE 17. Evidence of sweep cusp from oblique shadowgraphs with yaw (λ) and roll
(φ) for M1 = 3.4: (a) λ= 40◦, φ = 0◦; (b) λ= 25◦, φ = 5◦.

view. Here, the regular reflection portion of the intersection line is seen as the white
line just above the reflected wave. As it is swept round towards the transition point
on the near side (indicated by the arrow) there appears to be a slight disturbance
resembling the cusp. The fact that such a feature is located at the point from which
the shear surface edge emanates is further justification of experimental evidence of
the sweep cusp.

It should be noted that the cusp feature was not clear to see in the orthogonal
shadowgraphs of double-wedge experiments taken by Skews (2000), for which edge
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(a) (b)

FIGURE 18. Zoomed view of figure 17(a) transition points.

FIGURE 19. Oblique shadowgraph (with M1= 3.1 and optical yaw λ≈ 45◦ inferred from
the work of Skews (2000), roll φ= 0◦) for a finite-aspect-ratio double-wedge configuration.
Transition points are enveloped by edge Mach cones depicting the bulge (indicated with
an arrow) at transition more dramatically than for the current results (image provided by
B. W. Skews).

effects were intentionally allowed to envelope the three-dimensional transition points
as well as the central core regions of the flow field. However, the bulge at the near-
side transition point was very clearly depicted, as shown in figure 19, which provides
tentative evidence of a cusp as well.

5. Further aspects of three-dimensional transition

A better understanding of three-dimensional transition phenomena in the absence
of edge effects is attained through the examination of the intersection line profiles
and analysis-plane shock geometries. The spatial sweep variation is derived from the
former, while the manner of effective shock angle variation, which governs transition
in the analysis plane, is derived from the latter. Three different model geometries
were tested, as shown in figure 5(a) for increasing geometrical spreads, which altered
the intersection line profile and varied the shock geometry in a controlled manner to
produce geometry-dependent transition conditions. Furthermore, the free-stream Mach
number was varied from M1 = 2.8 to M1 = 3.4 in 0.2 increments to provide Mach-
number-dependent results.

There are two main reasons for paying special attention to the intersection line.
Firstly, the point at which the reflection configuration undergoes transition is located
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FIGURE 20. Effect of Mach number on extracted intersection line profiles and transition
points (TP) for model 8 at M1 = 3.0. (a) Intersection line profiles plotted in space.
(b) Zoomed-in view.

on this line at the horizontal symmetry plane. It is therefore instructive to obtain
the flow properties and investigate the flow physics surrounding this region on the
horizontal symmetry plane before and after shock interaction. This idea was used as
the basis for demonstrating the existence of the sweep cusp in the previous section,
and can be further used to understand other physical aspects of transition based on the
fact that it is an idealised reflecting surface. Secondly, the intersection line provides
an indication as to the geometrical nature of the incident shock configurations as a
whole as the intersection line sweep and overall form are similar to the rest of the
incident bow wave. Having established the usefulness of considering the intersection
line, its overall shape and the points of transition along it are next investigated.

5.1. Transition point locations and intersection line profiles
5.1.1. Effect of free-stream Mach number

Figure 20 shows the extracted intersection lines at the horizontal symmetry planes
for model 8 at various free-stream Mach numbers. A zoomed view is also given
which shows the spatial differences for each case more clearly. Also indicated are
the transition points (circled) on each intersection line. It can be seen from figure 20
that higher Mach numbers weaken the incident bow wave at all locations due to the
intersection lines being swept backwards and downstream to a greater extent than
for the lower-Mach-number cases. This is relevant in that it is not exclusively the
shock angles in the vertical planes (termed ‘actual’ shock angles here) that reduce,
as was observed from the numerical data, but so do the sweep angles β for cases
with higher Mach numbers. It was found that the weaker nature of the shock surfaces
(incident and reflected) for higher Mach numbers gives rise to higher compression of
the flow evidenced by higher post-reflection densities for increasing free-stream Mach
numbers. A similar phenomenon is noted for two-dimensional curved shocks where
the free-stream flow is turned into itself by means of a curved wedge.

The main point here is that the effect of varying the free-stream Mach number
served to highlight the two modes of weakening of the shock system: by the reduction
of the sweep angle β and by the reduction of the actual shock angle θ1 with an
increase in the free-stream Mach number. These modes of weakening occur in the
streamwise (for the former) and transverse (for the latter) directions and is unlike
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FIGURE 21. Interdependences of actual shock angle, effective shock angle and sweep:
(a) effect of sweep angle on shock angles (actual and effective); (b) effect of actual shock
angle sweep and effective angles.

two-dimensional flows where only a single mode of weakening is available, this being
the reduction of shock angle for higher free-stream Mach numbers.

The dual nature of weakening of the shock system is relevant to the different
locations of the transition points as seen in figure 20. The physical processes
producing the effect of locating the transition points further downstream for higher
Mach numbers is illustrated by figure 21, which shows the interdependences of sweep
angle of the intersection line, and actual and effective shock angles. Each mode of
weakening of the shock system is considered separately and in succession. As seen
in figure 21, the effect of a lower shock angle for a given constant sweep angle
is to obtain a reduction in the effective shock angle. If there is next a decrease in
the sweep angle, this counters the previous shock angle effect and acts to increase
the effective angle. It is the increase in effective angle that brings about transition.
This shows the dominance of the sweep angle parameter over the shock angle in
creating physical conditions that favour transition, and the variation in free-stream
Mach number readily shows this. The requisite processes for increasing the shock
angle are more exacerbated for lower Mach numbers and hasten the transition points
to be located closer to the apex of the intersection lines as in figure 20.

It is relevant to investigate the way in which the sweep profile along the intersection
line may be altered and the way in which it affects the flow field. This was achieved
to a limited extent by varying the free-stream Mach number. Larger variations were
obtained by testing different models each with a successively wider geometrical spread,
as discussed next.

5.1.2. Effect of model geometry
The increase in spread of the model geometry resulted in a wider lower-face

boundary condition, as well as a flatter surface for the flow between the incident
shock surface and the test piece. Investigation of shock configurations at different
spreads is analogous to studying the shock surfaces obtained by an aircraft fuselage,
of a similar shape to the test pieces used here, at varying altitudes. The models tested
were designated as 8, 10 and 11 in order of increasing spread. Thus, a means for the
controlled variation of the geometrical boundary condition, and hence intersection line
sweep profile, was developed. A comparison of the various intersection line profiles
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FIGURE 22. Comparison of intersection line profiles and transition points (TP) for various
model geometrical spreads for (a) M1 = 3.0 and (b) M1 = 3.4.

and transition point locations for M1 = 3.0 and M1 = 3.4 is shown in figure 22. It is
clear that the effect of a greater spread is to widen the intersection line, this effect
being independent of the Mach numbers shown here. This means that the effect of
increasing the spread of the lower face of the test pieces increases the spread of the
incident bow wave to the extent that the spread of the intersection line is affected
in the same way, thus illustrating the effect of the change in geometrical boundary
condition for the flow field at the lower face of the model. Of particular interest here
is the spatial location of the transition points (circled in figure 22), which are located
closer to the respective intersection line apexes for increased geometrical spread.
Further insight into this matter is provided by the fact that there is quite a large net
deflection increase of the streamlines behind the shock interaction in the horizontal
symmetry plane as the transition points are approached from the centre. This was
more accentuated for model 10 (higher spread) than for model 8 (lower spread). The
effect of an increase in net flow deflection through the regular intersection of shock
surfaces is a decrease in the velocity ratio R = V ′3/V

′

1. This results in the decrease
of the analysis-plane Mach-number ratio M′3/M

′

1 and, since an effective two-shock
theory analysis is valid within the analysis plane, this would mean an increase in the
effective shock angle θ ′1. This happens at an accelerated rate along the intersection line
for high-spread cases compared to lower-spread ones for the same span coordinate.
Since the effective angle governs transition, this is thus hastened for the high-spread
cases as seen in figure 22. This explains the fact that the transition points for each
case of increasing spread are located closer towards the intersection line apex.

It is thus seen how the free-stream Mach number and model geometry influence
and aid in the control of three-dimensional transition. Next, the analysis of
three-dimensional transition is furthered regarding its correspondence to that of
two-dimensional flows.

5.2. Correspondence of transition to two-dimensional criteria
Figure 23 shows the three-dimensional transition points, as classified by sweep angle
and effective shock angle, in relation to the two-dimensional transition criteria (von
Neumann and detachment). All test cases carried out for this work are shown in
figure 23 with results based on solutions to the numerical models. It is clear that,
for low-spread model geometry, the free-stream Mach-number variation does little to
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FIGURE 23. Comparison of transition points within an (M′1, θ
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1) map with two-dimensional
transition criteria shown.

significantly alter the effective Mach number at transition. This is due to the sweep
profile of the intersection lines not varying much with an increase in Mach number
(see figure 20a).

It is the effective shock angle at transition that undergoes a larger change with Mach
number that is more pronounced for high-spread cases. This is associated with the
downstream spatial shift in transition point locations when comparing between the
cases of increasing free-stream Mach number. The parameter relations examined in
figure 21 in the previous section showed that it required a relatively small change in
actual shock angle to effect a significant change in the effective angle for a given
sweep orientation, or when comparing cases with very similar sweep profiles. Sweep
angle changes could be considered not to play a major role in shifting the transition
points for Mach-number variation tests, and therefore transition conditions are brought
about by the rate at which the actual shock angle increases along the incident bow
wave. The rate of increase of the shock angle with distance from the central regions
of the flow field is a lot slower for the higher-Mach-number cases. This is due to
the weakening of the incident bow wave and the location of its surface closer to
the test models themselves, in the same way as a two-dimensional oblique shock is
weakened in the presence of a high-Mach-number free stream. Therefore, the incident
actual shock angle has to increase over a larger span distance in order for there to be
conditions conducive to transition to be realised, whilst the sweep angle is reduced in
such instances. This is the reason for the higher effective shock angle at transition for
the cases of increased Mach number in figure 23.

The effect of an increase in geometrical spread (and thereby sweep angle) is a
reduction in the effective transition angle, as seen in figure 23, such that higher-spread
cases seem to have their effective transition points tend towards the two-dimensional
detachment line shown. An important aspect of shock reflection is thus demonstrated
through the controlled spread increase methodology used in this work. It is thus
suggested that, in the absence of edge effects influencing the reflection plane, and
with the opening up of the incident bow wave surface to tend towards planarity with
increased geometrical spread, the shock system analysed permits transition to occur
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in the immediate vicinity of detachment. Following this reasoning, if the incident
bow wave is spread to the extent that the spatial rate of incident wave sweep change
is low enough along the transverse direction, then transition can be made to occur
in the vertical mid-plane at the centre of the flow field such that Mach reflection is
obtained for all portions along the horizontal symmetry plane.

Attention must be given to the physics behind the fact that the effective transition
angles for the three-dimensional cases significantly exceed those governed by two-
dimensional analyses (i.e. the von Neumann and detachment criteria). This was also
noted for the three-dimensional studies by Skews (2000) in which the wedge angle
(and thus effective shock angle at the vertical mid-plane) was required to be increased
to 5◦ above the detachment condition in order to effect transition to Mach reflection in
the central region. The situation encountered here is slightly different in that transition
is coupled with the sweep of the incident wave surface, which itself terminates at
the reflection plane with an increasing actual shock angle as transition is approached
from the regular reflection portion. This requires a closer look at the ways in which
the effective angle could be increased and yet permit the incident shock to remain
physically attached to the reflection plane beyond those angles predicted by effective
two-dimensional theories.

This is accounted for by the three-dimensional relieving effect occurring within the
regular reflection portion of the interaction. This means that, at transverse stations of
the incident wave surface, greater transverse deflections are noted. This is attributed to
the continually reducing sweep angle of the incident wave surface within the regular
reflection portion of the interaction. These effects occur within horizontal planes
further away from the horizontal symmetry plane and account for the curvature of
the incident wave surface in a sense that reduces its shock angle at the intersection
so that it remains attached at the reflecting surface beyond what is predicted by
two-dimensional criteria. Along the intersection line prior to transition there is a
continual reduction in sweep angle and a relatively small increase in the actual shock
angle at stations further along the intersection line towards the periphery. As per (2.1)
these result in an increase in the effective angle, and, as seen here, to the point of
exceeding two-dimensional criteria. The discrepancy with two-dimensional theories
is even more pronounced for bow wave surfaces that are further closed, as opposed
to being flatter and open for high-spread and low-Mach-number cases. This is what
accounts for the transition conditions for model 11 at M1= 3.0 to tend towards being
in agreement with the two-dimensional transition criteria.

Perhaps a clearer indication of the trends discussed and the extent to which
discrepancies between three- and two-dimensional transitions are observed can be
obtained from figure 24. This shows the same cases discussed in this work plotted
in a non-dimensionalised axis system. The x-axis parameter η is a measure of
spread of the test piece, defined as the ratio of the back-face NURBS polygon to a
rectangle of the same span and height, that is, the equivalent wedge geometry which
corresponds to η = 1. The spread factor is multiplied by the Mach ratio M′1/M1,
which is proportional to the sweep angle at which transition occurs and is also unity
for two-dimensional transition. Importantly, the transition correspondence parameter
η(M′1/M1) is transformed to be unity for the two-dimensional transition criteria. This
means that any departure from unity of the transition correspondence parameter
indicates three-dimensional flow. For such cases, the extent to which the transition
correspondence parameter approaches unity is associated with the extent to which
three-dimensional transition corresponds to that of two-dimensional flows. The y-axis
was chosen to contain the ratio of the effective shock angle at transition to the sweep
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FIGURE 24. Non-dimensionalisation of figure 23. Two-dimensional transition has a
correspondence parameter of unity.

angle at transition (βtr). It is expected that sweep angle at which transition occurs
would increase for cases approaching conditions of two-dimensional transition, and
the effective flow parameter θ ′1/βtr reflects this. Figure 24 clearly shows the effect of
Mach-number and geometry variation on the extents to which the three-dimensional
transition cases studied here differ from two-dimensional criteria.

6. Conclusions

An investigation on shock reflection transition has been conducted on three-
dimensional supersonic flow fields in the absence of edge effects influencing transition.
The analytical model of the shock configuration on both sides of the transition point
indicated the presence of a sweep cusp in order that the compatibility conditions
across transition be satisfied. The numerical models provide evidence of such cusps
on the line of intersection of the incident shock surface with the horizontal symmetry
plane. This has been verified by solving the inverse problem with the suggested model
to compute the intersection line sweep. Further evidence is provided by experimental
oblique shadowgraphs, which indicate a bulge at the transition points indicative of the
sweep cusp. It was found that this corresponds to images from double-wedge flows
in which the transition points are enveloped by edge Mach cones, which provides
tentative evidence of the cusp in such cases.

Further investigation involved elucidating the effect of geometry and free-stream
Mach-number variation on the shock topology and transition point location. It was
found that considerable variations occur for geometry variation tests, whilst the
changes in Mach number served to highlight the physical processes and dual nature
of weakening of the three-dimensional shock system.

Finally, consideration was given to the correspondence of the three-dimensional
effective transition angles to those suggested by two-dimensional criteria. The
three-dimensional transition points considerably exceed those of two-dimensional
criteria and this is attributed to the relieving effect which reduces the shock incidence
yet keeps it attached to the reflecting surface. Wider spreads and lower free-stream
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Mach numbers return three-dimensional transition points that tend towards agreement
with two-dimensional theories.
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