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1. Introduction

In this article we investigate existence, uniqueness, time-semi-uniform compactness
as well as asymptotically autonomous robustness of pullback random attractors
of the following non-autonomous stochastic dispersive-dissipative wave equations
perturbed by operate-type noise define on R

n:

{
utt + αut − Δut − βΔutt + λu − Δu + f(x, u) = g(t, x) + εSu ◦ dW

dt ,
u(τ, x) = uτ (x), ut(τ, x) = uτ,1(x), x ∈ R

n, t > τ, τ ∈ R,
(1.1)

where n ∈ N is arbitrary, α, β and λ are positive constants, ε > 0 is the den-
sity of noise, S = I − βΔ, W is a two-sided real-valued Wiener process defined
on the probability space (Ω,F , P), g ∈ L2

loc(R, L2(Rn)), and the nonlinear function
f : R

n × R → R has a subcritical growth rate in its second argument. The symbol
◦ means that the stochastic equation is interpreted in the sense of Stratonovich
integration. The two terms (−Δ)sutt and (−Δ)sut are referred to as the dispersive
and viscosity dissipative terms respectively due to their own physical background.

For deterministic version of (1.1) defined on bounded domains, the well-posedness
and existence of global attractors have been investigated by Carvalho and Cholewa
[11] as well as Sun et al. [38].

For additive white noise driven version of (1.1) defined on unbounded domain
R

n for n = 1, 2, 3, the existence of random attractors was recently examined by
Jones and Wang [22] when the force g is time-independent, and the stochastic
term εSu ◦ (dW/dt) is replaced by h(dW/dt) with h ∈ L2(Rn) being a known
function.

As far as the authors are concerned, up to now, the existence of random attrac-
tors remains open for the non-autonomous stochastic version of problem (1.1) even
for n = 1, 2, 3 and the bounded domain case. The main reason here is that we can
only transform the additive noise driven version of (1.1) into a pathwise random
equation, but cannot transform the multiplicative noise driven version of (1.1) with
S = I into a pathwise random one due to the dispersive and dissipative (−Δ)sutt

and (−Δ)sut. This essentially distinguishes from the damped (or strong damped)
wave equations as considered by many authors, see e.g., [21,37,40,42,48,49,
54,56–58]. Nevertheless, in this paper we are able to convert problem (1.1) with
S = I − βΔ into a pathwise deterministic one, and hence study the random
attractors of stochastic (1.1) with S = I − βΔ.

As is well known, the concept of attractors investigated by many authors, see e.g.,
Robinson et al. [5,6,12,13,27,28,34–36], plays an important role in the study
of asymptotic behaviour of solutions to differential equations. Autonomous random
attractors proposed by Brzeźniak et al. [2], Crauel and Flandoli [14], Crauel et al.
[15], Flandoli and Schmalfuß [18] and Caraballo and Langa [8] can be viewed as
a generation of global attractors form deterministic to random. Non-autonomous
random attractors developed by Caraballo et al. [7], Caraballo and Langa [3] and
Wang [41,42] can be regarded as an extension of autonomous random attractors
form autonomous to non-autonomous. In light of those theoretical frameworks,
random attractors have reached a flourishing development in recent years, see
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e.g., [1,4,9,10,19,23,29,40,49,58] and [16,20,33,46,48,50,52,53,57,58] for
autonomous and non-autonomous PDEs, respectively.

In general, a non-autonomous random attractor typically takes the form Aα =
{Aα(τ, ω) : τ ∈ R, ω ∈ Ω}, where α is an external parameter that comes from
various perturbations. Notice that, in the literature aforementioned, many prop-
erties of Aα such as compactness, attraction, regularity as well as finite fractal
dimension were usually discussed for each fixed time-section Aα(τ, ω), and the
robustness of Aα(τ, ω) was only investigated with respect to the external parame-
ter α but not the internal parameter τ . This kind of researches are just analogous
to the autonomous case, and thereby the time-dependence character related to
non-autonomous random attractors are not well-understood.

In the present paper we will not only establish the existence and uniqueness
but also the time-semi-uniform compactness as well as asymptotically autonomous
robustness of non-autonomous random attractors of problem (1.1). Our first
aim is to prove that problem (1.1) admits a unique pullback random attractor
A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} in H1(Rn) × H1(Rn) under the theoretical framework
established in [41]. In order to achieve the goal, as usual, we must prove the usual
pullback asymptotic compactness of solutions to (1.1) in H1(Rn) × H1(Rn). There
are three difficulties we need to surmount.

1. The compact Sobolev embeddings on unbounded domain R
n are not available.

2. Equation (1.1) is a weakly dissipative one due to the dispersive and dissipative
terms (−Δ)sutt and (−Δ)sut, which is essentially different from the damped
wave equations as widely considered in the literature aforementioned.

3. The uniform estimates of solutions to (1.1) cannot be derived by differenti-
ating the equation with respect to time since the Wiener process is almost
surely nowhere differentiable with respect to time variable.

We combine the ideal of uniform tail-estimates developed by Wang [39] and a spec-
tral decomposition approach to overcome the three difficulties, and hence establish
the desired pullback asymptotic compactness in H1(Rn) × H1(Rn) for our purpose.

Another significant goal of this article is to prove the following time-semi-uniform
compactness of A:

⋃
s�τ

A(s, ω) is precompact in H1(Rn) × H1(Rn) (1.2)

for each (τ, ω) ∈ R × Ω as well as the following asymptotically autonomous
robustness of the time-section A(τ, ω) of A as time τ goes to negative infinity:

lim
τ→−∞ distH1(Rn)×H1(Rn)(A(τ, ω),A∞(ω)) = 0, P-a.s. ω ∈ Ω, (1.3)

where A∞ = {A∞(ω) : ω ∈ Ω} is a random attractor of the autonomous version of
problem (1.1). Furthermore, we prove that such a robustness is basically uniform
in the probability space Ω for discrete time sequence, and we also prove that for
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any discrete time sequence τn → −∞, there exist {τnk
}∞k=1 of {τn}∞n=1 such that

lim
k→∞

distH1(Rn)×H1(Rn)(A(τnk
, θτnk

ω),A∞(θτnk
ω)) = 0, P-a.s. ω ∈ Ω.

Notice that the usual pullback asymptotic compactness of solutions to (1.1) is
no longer useful (or say not enough) to establish (1.2) and (1.3). To solve this
problem, at present, we first introduce a time-semi-uniform attracting universe (see
(2.20)) that is indeed small than the usual attracting universe (see (2.19)), and then
derive the time-semi-uniform pullback asymptotic compactness of solutions to (1.1)
in H1(Rn) × H1(Rn). Based upon this we are able to prove (1.2) and (1.3). It is
worth mentioning that the radii sups�τ R(s, ω) of the absorbing set in the case is
taken the supremum over an uncountable set (−∞, τ ]. This introduces difficulties
to prove the measurability of attractors. Our idea to solve this issue is to prove
that the two attractors with respect to the two different universes are equal, see
theorem 4.3.

We remark that the time-semi-uniform compactness of non-autonomous attrac-
tors and kernel sections has been recently investigated in [30,32,55,56] and
[43,44] for deterministic and stochastic PDEs, respectively. The asymptotically
autonomous robustness of non-autonomous attractors was studied for deterministic
equations [24–26,31,45]. In this paper we study both time-semi-uniform com-
pactness and asymptotically autonomous robustness of non-autonomous random
attractors of stochastic equation (1.1).

The structure of the paper is as follows. In the next section we define a non-
autonomous cocycle for (1.1). In § 3 we derive two types of long time uniform
estimates. In § 4 we establish the existence, uniqueness and time-semi-uniform com-
pactness of random attractors. In the last section we discuss the asymptotically
autonomous robustness of random attractors. In Appendix we provide the proof of
measurability of the solution operators.

2. Non-autonomous cocycle generated by stochastic wave equations

In this section we consider the following wave equation perturbed by operate-type
noise on unbounded domain R

n:

{
utt + αut − Δut − βΔutt + λu − Δu + f(x, u) = g(t, x) + εSu ◦ dW

dt
,

u(τ, x) = uτ (x), ut(τ, x) = uτ,1(x), x ∈ R
n, t > τ, τ ∈ R,

(2.1)

where α, β, λ, ε > 0, S = I − βΔ, g ∈ L2
loc(R, L2(Rn)), the nonlinearity f will be

specified later, and the two-sided real-valued Wiener process W is defined on
the probability space (Ω,F , P), where Ω = {ω ∈ C(R, R) : ω(0) = 0} equipped with
the compact-open topology, F = B(Ω) is the Borel sigma-algebra of Ω, and P is the
Wiener measure. Define a family of shift operators {θt}t∈R acting on Ω defined by
θtω(·) = ω(· + t) − ω(t) for (ω, t) ∈ Ω × R. Then (Ω,F , P, {θt}t∈R) forms a metric
dynamical system.
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2.1. First-order random wave equations

Denote by z := ut + δu with δ > 0 to be determined latter, then we have the
following equivalent system:

⎧⎪⎨
⎪⎩

ut = −δu + z,

zt − βΔzt + δ1z − δ2Δz + δ3u − δ4Δu + f(x, u) = g(t, x) + εSu ◦ dW

dt
,

u(τ, x) = uτ (x), z(τ, x) = uτ,1(x) + δuτ (x),

(2.2)

where δ1 := α − δ, δ2 := 1 − βδ, δ3 := λ − αδ + δ2 and δ4 := 1 − δ + βδ2. Let

v(t, τ, ω, vτ ) := z(t, τ, ω, zτ ) − εy(θtω)u(t, τ, ω, uτ ), (2.3)

where vτ = zτ − εy(θτω)uτ and y(θtω) = −δ
∫ 0

−∞ eδτ (θtω)(τ) dτ is the stationary
solution of the one-dimensional Ornstein–Uhlenbeck equation dy + δydt = dW (t).
By Fan [17], Caraballo and Langa [8], and Wang and Zhou [47], there exists
{θt}t∈R-invariant subset which we still denoted by Ω of full measure such that

lim
t→±∞

y(θtω)
t

= lim
t→±∞

1
t

∫ 0

−t

y(θsω) ds = 0, for every ω ∈ Ω, (2.4)

lim
t→±∞

1
t

∫ 0

−t

|y(θsω)|m ds =
Γ( 1+m

2 )√
πδm

, for every ω ∈ Ω and m > 0. (2.5)

Then one can find that ϕ = (u, v) solves the following random system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = (εy(θtω) − δ)u + v,
vt − βΔvt + δ1v − δ2Δv + δ3u − δ4Δu + f(x, u)

= g(t, x) − εy(θtω)v + εβy(θtω)Δv − (εδ5y(θtω) + ε2y2(θtω)
)
u

+
(
εδ6y(θtω) + ε2βy2(θtω)

)
Δu,

u(τ, x) = uτ (x), v(τ, x) = vτ (x) = uτ,1(x) + δuτ (x) − εy(θτω)uτ (x),

(2.6)

where δ5 := α − 3δ, δ6 := 1 − 3βδ.

2.2. Assumptions

Next, we list the hypotheses on the nonlinearity, on the density of noise and on
the time-dependent force.

Hypothesis F. The smooth function f : R
n × R → R has a subcritical growth

range such that

|f(x, s)| � γ1|s|p + φ1(x), φ1 ∈ L2(Rn), γ1 > 0, (2.7a)

f(x, s)s � γ2F (x, s) + φ2(x), φ2 ∈ L1(Rn), γ2 > 0, (2.7b)

F (x, s) � γ3|s|p+1 − φ3(x), φ3 ∈ L1(Rn), γ3 > 0, (2.7c)∣∣∣∣∂f

∂s
(x, s)

∣∣∣∣ � γ4|s|p−1 + φ4(x), φ4 ∈ L2(Rn), γ4 > 0, (2.7d)
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where F (x, s) =
∫ s

0
f(x, σ) dσ, and

1 � p < ∞ for n = 1, 2; 1 � p <
n + 2
n − 2

for n � 3. (2.8)

By (2.7a)–(2.7d), for all (x, s) ∈ R
n × R, there is a constant c, independent of x

and s, such that

F (x, s) � c(1 + |s|p+1 + |φ1(x)|2 + |φ2(x)|). (2.9)

Let δ > 0 be small enough such that the constants δi > 0 (i = 1, 2, 3, 4, 5, 6), and
denote by

κ1 := min

{
δ1,

δ2

β
, δ, δγ2

}
, (2.10a)

κ2 := max

{
2(δ5 + 1),

2(δ5 + 1)
δ3

,
2(δ6 + β)

β
,
2(δ6 + β)

δ4
,
γ1

γ3
, 4

}
. (2.10b)

Hypothesis S. The size of the noise is suitably controllable:

ε ∈ (0, ε0] with ε0 := min

{
1,

κ1

2(p + 1)2( 2√
πδ

+ 1
δ )κ2

}
. (2.11)

The following lemma is useful when establishing the existence of pullback random
attractors.

Lemma 2.1. Let (2.11) hold. Then for each ω ∈ Ω, there are T0(ω) > 0 and C0(ω) >
0 such that

|y(θ−tω)| + sup
ε∈(0,ε0]

εκ2

∫ 0

−t

Y (θσω) dσ � κ1t

(p + 1)2
, ∀t � T0(ω), (2.12a)

|y(θ−tω)| + sup
ε∈(0,ε0]

εκ2

∫ 0

−t

Y (θσω)dσ � κ1t

(p + 1)2
+ C0(ω), ∀t � 0, (2.12b)

where Y (θσω) = |y(θσω)| + |y(θσω)|2 for σ ∈ R.

Proof. By (2.11) and (2.4) and (2.5) with m = 1, 2, there exists T0(ω) > 0 such that
for all t � T0,

|y(θ−tω)| + sup
ε∈(0,ε0]

εκ2

∫ 0

−t

Y (θσω) dσ � 1
2(p + 1)2

κ1t + ε0κ2

(
2Γ(1)√

πδ
+

2Γ(3/2)√
πδ

)
t

� 1
2(p + 1)2

κ1t +
κ1κ2

2(p + 1)2( 2√
πδ

+ 1
δ )κ2

(
2√
πδ

+
1
δ

)
t =

1
(p + 1)2

κ1t, (2.13)

which implies (2.12a). Take C0(ω) = supt∈[0,T0] |y(θ−tω)| + ε0κ2

∫ 0

−T0
Y (θσω) dσ.

Then we have (2.12b). �
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Throughout this paper, the inner product and norm of L2(Rn) are written as
(·, ·) and ‖ · ‖ respectively. The norm of Lp(Rn) for p � 1 is written as ‖ · ‖p. The
letter c > 0 denotes a generic constant which may change its values from line to
line or even in the same line.

Hypothesis G. The time-dependent function g ∈ L2
loc(R, L2(Rn)) converges to

a time-independent function g∞ ∈ L2(Rn) in the sense that

lim
τ→−∞

∫ τ

−∞
‖g(r) − g∞‖2 dr = 0. (2.14)

A typical and simple example for the functions g and g∞ which satisfy condition
(2.14), and illustrates that the new condition used here is reasonable is the following.
Choose a function g0 ∈ L2(Rn), we set g(t, x) = (et + 1)g0(x) and g∞(x) = g0(x)
for (t, x) ∈ R × R

n. Then we have

lim
τ→−∞

∫ τ

−∞
‖g(r) − g∞‖2 dr = ‖g0‖2 lim

τ→−∞

∫ τ

−∞
e2r dr = 0.

We remark that, under hypothesis G only, we can not only show the convergence
of solutions to (2.2) from nonautonomous to autonomous, but also can show the
following properties on the time-dependent force, which are important to discuss
the existence and time-semi-uniform compactness of the random attractors.

Proposition 2.2. Let hypothesis G hold. Then we have the following assertions.

(i) g is κ-integrable:∫ τ

−∞
eκ(r−τ)‖g(r)‖2 dr < +∞, for all κ > 0 and τ ∈ R. (2.15)

(ii) g is κ-tail-small:

lim
k→∞

∫ τ

−∞
eκ(r−τ)

∫
|x|�k

|g(r, x)|2dxdr < +∞, for all κ > 0 and τ ∈ R.

(2.16)

(iii) g is time-semi-uniformly κ-integrable:

sup
s�τ

∫ s

−∞
eκ(r−s)‖g(r)‖2 dr < +∞, for all κ > 0 and τ ∈ R. (2.17)

(iv) g is time-semi-uniformly κ-tail-small:

lim
k→∞

sup
s�τ

∫ s

−∞
eκ(r−s)

∫
|x|�k

|g(r, x)|2dxdr < +∞, for all κ > 0 and τ ∈ R.

(2.18)

Proof. The proof is similar to that as considered in [45], we do not repeat it again.
�
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Remark 2.3. Conditions (2.15) and (2.16) are used to ensure the existence of pull-
back attractors of PDEs defined on unbounded domains, see e.g.,[41,42]. Condition
(2.17) is used to ensure the existence of time-semi-uniformly compact pullback
attractors of PDEs defined on bounded domains, see [32,55]. Both (2.17) and
(2.18) are used in [30,56] to ensure the existence of time-semi-uniformly compact
pullback attractors of PDEs defined on unbounded domains.

2.3. Non-autonomous cocycle

In this article we consider the energy space E = H1(Rn) × H1(Rn) equipped with
the equivalent norm:

‖ϕ‖E = (‖v‖2 + β‖∇v‖2 + δ3‖u‖2 + δ4‖∇u‖2)1/2, ∀ϕ = (u, v) ∈ E.

By Carvalho and Cholewa [11], we are able to show that for each (τ, ω) ∈
R × Ω and ϕτ = (uτ , vτ ) ∈ E, problem (2.6) has a unique solution ϕ(·, τ, ω, ϕτ ) =
(u(·, τ, ω, uτ ), v(·, τ, ω, vτ )) ∈ C([τ,∞), E) such that the solution continuously
depends on ϕτ ∈ E. In addition, we can also prove the (F ,B(Hs(Rn)))-
measurability of the solutions. Then we find that Φ : R

+ × R × Ω × E → E given
by

Φ(t, τ, ω, (uτ , zτ )) = (u(t + τ, τ, θ−τω, uτ ), z(t + τ, τ, θ−τω, zτ ))

is a continuous cocycle over R and (Ω,F , P, {θt}t∈R) in the sense of [41, Def.
1.1]. Let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets in
H1(Rn) × H1(Rn) satisfying

lim
t→+∞ e−κ1t/(p+1)2‖D(τ − t, θ−tω)‖H1(Rn)×H1(Rn) = 0. (2.19)

Let D = {D = {∅ �= D(τ, ω) ⊆ E : τ ∈ R, ω ∈ Ω} : D satisfies (2.19)}. We also intro-
duce B = {B(τ, ω) : τ ∈ R, ω ∈ Ω}, which is a family of bounded nonempty subsets
of H1(Rn) × H1(Rn) satisfying

lim
t→+∞ e−κ1t/(p+1)2 sup

s�τ
‖B(s − t, θ−tω)‖H1(Rn)×H1(Rn) = 0. (2.20)

Denote by B = {B = {∅ �= B(τ, ω) ⊆ E : τ ∈ R, ω ∈ Ω} : B satisfies (2.20)}.

3. Long time (B, D)-uniform estimates

This section is devoted to several kinds of long time (B,D)-uniform estimates of
solutions to problem (2.6).

3.1. (B, D)-uniform estimates in the entire space

Let us start with the following long time (B,D)-uniform estimates of solutions of
problem (2.6) in H1(Rn) × H1(Rn).
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Lemma 3.1. Let hypotheses F, S and G be satisfied. Then for each (τ, ω,B,D) ∈
R × Ω × B × D, there are TB = T (τ, ω) > 0 and TD = T (τ, ω) > 0 such that for all
t � TB and t � TD,

sup
s�τ

‖(u(s, s − t, θ−sω, us−t), z(s, s − t, θ−sω, zs−t))‖2
H1(Rn)×H1(Rn)

� Me|y(ω)|(1 + sup
s�τ

R(s, ω)), (3.1)

and

‖(u(τ, τ − t, θ−τω, uτ−t), z(τ, τ − t, θ−τω, zτ−t))‖2
H1(Rn)×H1(Rn)

� Me|y(ω)|(1 + R(τ, ω)), (3.2)

where (us−t, zs−t) ∈ B(s − t, θ−tω) for s � τ , (uτ−t, zτ−t) ∈ D(τ − t, θ−tω), M > 0
is a constant independent of τ , ω, B and D, and R(s, ω) is given by

R(s, ω) :=
∫ 0

−∞
eκ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ(1 + ‖g(r + s)‖2)dr. (3.3)

Proof. Taking the inner product of the second equation of (2.6) with v in L2(Rn),
we have

d
dt

(‖v‖2 + β‖∇v‖2) + 2δ1‖v‖2 + 2δ2‖∇v‖2 + 2δ3(u, v) − 2δ4(Δu, v) + 2(f(x, u), v)

= 2(g(t), v) − 2εy‖v‖2 − 2εβ‖∇v‖2 − 2(εδ5y + ε2y2)(u, v)

+ 2(εδ6y + ε2βy2)(Δu, v), (3.4)

where y := y(θtω). Thanks to (2.10a) we see from (3.4) that

d
dt

(
‖ϕ‖2

E + 2
∫

Rn

F (x, u)dx

)
+ 2κ1‖ϕ‖2

E + 2δ(f(x, u), u)

� 2εy(f(x, u), u) + 2(g(t), v) − 2εy‖v‖2 − 2εβy‖∇v‖2 + 2εδ3y‖u‖2

+ 2εδ4y‖∇u‖2 − 2(εδ5y + ε2y2)(u, v) + 2(εδ6y + ε2βy2)(Δu, v). (3.5)

By Young’s inequality, we see

2(g(t), v) � 2‖v‖‖g(t)‖ � c‖ϕ‖E‖g(t)‖ � 1
2
κ1‖ϕ‖2

E + c‖g(t)‖2. (3.6)

By (2.11) and (2.10b), we have

− 2(εδ5y + ε2y2)(u, v) + 2(εδ6y + ε2βy2)(Δu, v)

� ε(δ5 + 1)(|y| + |y|2)(‖v‖2 + ‖u‖2) + ε(δ6 + β)(|y| + |y|2)(‖∇v‖2 + ‖∇u‖2)

� 1
2
εκ2(|y| + |y|2)(‖v‖2 + δ3‖u‖2 + β‖∇v‖2 + δ4‖∇u‖2) =

1
2
εκ2Y (θtω)‖ϕ‖2

E .

(3.7)
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where Y (θtω) = |y(θtω)| + |y(θtω)|2. By the same argument,

− 2εy‖v‖2 − 2εβ|y|‖∇v‖2 + 2εδ3|y|‖u‖2 + 2εδ4|y|‖∇u‖2 � 1
2
εκ2Y (θtω)‖ϕ‖2

E .

(3.8)

By (2.10a) and (2.7c), we know δγ2 � κ1 and F + φ3 � 0. Then we find from (2.7b)
that

2δ(f(x, u), u) �2κ1

∫
Rn

F (x, u) dx + 2(κ1 − δγ2)
∫

Rn

φ3(x) dx + 2δ

∫
Rn

φ2(x) dx.

(3.9)

By (2.10b), we have γ1/γ3 � κ2. Then we see from (2.7a) and (2.7c) that

2εy(f(x, u), u) � 2εγ1|y|
∫

Rn

|u|p+1dx + 2ε|y|‖φ1‖‖u‖

� 2εκ2Y (θtω)
∫

Rn

γ3|u|p+1dx + 2ε|y|‖φ1‖‖u‖

� 2εκ2Y (θtω)
∫

Rn

F (x, u) dx

+
1
2
κ1‖ϕ‖2

E + εc(|y| + |y|2). (3.10)

Substituting (3.6)–(3.10) into (3.5) we find

d
dt

(
‖ϕ‖2

E + 2
∫

Rn

F (x, u) dx

)
+
(
κ1 − εκ2Y (θtω)

)(‖ϕ‖2
E + 2

∫
Rn

F (x, u) dx

)

� ce|y(θtω)|(1 + ‖g(t)‖2).

Given τ ∈ R and ω ∈ Ω, we obtain from
∫

Rn F (x, u) dx � − ∫
Rn φ3 dx that for ς �

s − t, s � τ and t � 0,

‖ϕ(ς, s − t, θ−sω, ϕs−t)‖2
E � e−κ1(ς−s+t)+εκ2

∫ ς−s
−t

Y (θσω)dσ

×
(
‖ϕs−t‖2

E + 2
∫

Rn

F (x, us−t) dx

)

+ c

∫ ς−s

−t

eκ1(r+s−ς)+|y(θrω)|+εκ2
∫ ς−s

r
Y (θσω) dσ

× (1 + ‖g(r + s)‖2)dr + c. (3.11)

In particular, we let ς = s and then take the supremum over s ∈ (−∞, τ ] in (3.11)
to obtain

sup
s�τ

‖ϕ(s, s − t, θ−sω, ϕs−t)‖2
E � e−κ1t+εκ2

∫ 0
−t

Y (θσω) dσ

× sup
s�τ

(
‖ϕs−t‖2

E + 2
∫

Rn

F (x, us−t) dx

)
+ c sup

s�τ
R(s, ω) + c, (3.12)
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where the function sups�τ R(s, ω) is well-defined due to (2.12a) and (iii) of
proposition 2.2. By (2.3), we have, for all s � τ ,

v(s, s − t, θ−sω, vs−t) = z(s, s − t, θ−sω, zs−t) − εy(ω)u(s, s − t, θ−sω, us−t)),
(3.13)

where vs−t = zs−t − εy(θ−tω)us−t. Then we see from (3.12) and (3.13) that

sup
s�τ

‖(u(s, s − t, θ−sω, us−t), z(s, s − t, θ−sω, us−t))‖2
H1(Rn)×H1(Rn)

� ce|y(ω)|e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ

× sup
s�τ

(
1 + ‖us−t‖2

H1(Rn) + ‖zs−t‖2
H1(Rn) +

∫
Rn

(F (x, us−t) + φ3) dx

)

+ ce|y(ω)| sup
s�τ

R(s, ω) + ce|y(ω)|. (3.14)

Note that (us−t, zs−t) ∈ B(s − t, θ−tω) for s � τ and B ∈ B. Then by (2.12a) and
(2.9), as t → +∞,

e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ

× sup
s�τ

(
1 + ‖us−t‖2

H1(Rn)‖zs−t‖2
H1(Rn) +

∫
Rn

(F (x, us−t) + φ3) dx

)

� ce−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ

(
sup
s�τ

‖(us−t, zs−t)‖p+1
H1(Rn)×H1(Rn) + 1

)

� c

(
e

−κ1t

(p+1)2 sup
s�τ

‖B(s − t, θ−tω)‖H1(Rn)×H1(Rn)

)p+1

+ ce
− p2+2p

(p+1)2
κ1t → 0,

(3.15)

which along with (3.14) implies (3.1). Notice that (3.2) can be proved in the same
way. �

3.2. (B, D)-uniform estimates outsider a large ball

In this subsection we derive (B,D)-uniform tail-estimates of solutions to (2.2)
outsider a large ball. To that end, we need the following auxiliary estimates.

Lemma 3.2. Let hypothesis F be satisfied. Then for every τ ∈ R, ω ∈ Ω and
(uτ , vτ ) ∈ H1(Rn) × H1(Rn), the derivative of the solution ϕ = (u, v) of (2.6)
satisfies

‖ϕt(t, τ, ω, ϕτ )‖2
H1(Rn)×H1(Rn) � ce|y(θtω)|(1 + ‖ϕ(t, τ, ω, ϕτ )‖2p

E + ‖g(t)‖2
)
.

Proof. The proof is similar to the autonomous case as in [51, lemma 3] and so
omitted here. �
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Let ρ : R 
→ [0, 1] be a smooth function satisfying

ρ(s) =

{
0, if 0 � s � 1,

1, if s � 2.
(3.16)

For k ∈ N and x ∈ R
n, we denote by ρk(x) := ρ(|x|2/k2), Ok = {x ∈ R

n : |x| � k}
and Oc

k = R
n\Ok. Then we derive the following (B,D)-uniform tail-estimates.

Lemma 3.3. Let hypotheses F, S and G be satisfied. Then for each (τ, ω,B,D) ∈
R × Ω × B × D, we have

lim
t,k→+∞

sup
s�τ

‖(u(s, s − t, θ−sω, us−t), z(s, s − t, θ−sω, zs−t)‖H1(Oc
k)×H1(Oc

k) = 0,

(3.17)

for all (us−t, zs−t) ∈ B(s − t, θ−tω), and

lim
t,k→+∞

‖(u(τ, τ − t, θ−τω, uτ−t), z(τ, τ − t, θ−τω, zτ−t)‖H1(Oc
k)×H1(Oc

k) = 0,

(3.18)

for all (uτ−t, zτ−t) ∈ D(τ − t, θ−tω).

Proof. Taking the inner product of the second equation of (2.6) with ρkv in L2(Rn)
we find∫

Rn

ρkvvt dx − β

∫
Rn

ρkvΔvt dx + δ1

∫
Rn

ρk|v|2 dx − δ2

∫
Rn

ρkvΔv dx

+ δ3

∫
Rn

ρkvu dx − δ4

∫
Rn

ρkvΔu dx +
∫

Rn

ρkf(x, u)v dx

=
∫

Rn

ρkvg(t) dx − εy

∫
Rn

ρk|v|2 + εβy

∫
Rn

ρkvΔv dx

− (εδ5y + ε2y2)
∫

Rn

ρkvu dx + (εδ6y + ε2βy2)
∫

Rn

ρkvΔu dx, (3.19)

where y := y(θtω). Denote by |ϕ| := (|v|2 + β|∇v|2 + δ1|u|2 + δ2|∇u|2)1/2. As in the
autonomous case, see [51], by (2.10a) and (3.19), we see

d
dt

∫
Rn

ρk(|ϕ|2 + 2F (x, u)) dx + 2κ1

∫
Rn

ρk|ϕ|2 dx + 2(δ − εy)
∫

Rn

ρkf(x, u)u dx

� −2εy

∫
R3

ρk|v|2 − 2εβy

∫
Rn

ρk|∇v|dx + 2εδ3y

∫
Rn

ρk|u|2 dx

+ 2εδ4y

∫
Rn

ρk|∇u|2 dx − 2(εδ5y + ε2y2)
∫

Rn

ρkvu dx

+ 2(εδ6y + ε2βy2)
∫

Rn

ρkvΔu dx + 2
∫

Rn

ρkvg(t) dx
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− 2δ4

∫
Rn

ut(∇u · ∇ρk) dx − 2δ4(δ − εy)
∫

Rn

u(∇u · ∇ρk) dx

− 2β

∫
Rn

v(∇vt · ∇ρk) dx − 2(δ2 + εβy)
∫

Rn

v(∇v · ∇ρk) dx. (3.20)

As in lemma 3.1, we have

− 2εy

∫
Rn

ρk|v|2 − 2εβy

∫
Rn

ρk|∇v|2 dx

+ 2εδ3y

∫
Rn

ρk|u|2 dx + 2εδ4y

∫
Rn

ρk|∇u|2 dx

� 2ε|y|
∫

Rn

ρk|ϕ|2 dx � 1
2
εκ2Y (θtω)

∫
Rn

ρk|ϕ|2 dx, (3.21)

where Y (θtω) = |y(θtω)| + |y(θtω)|2. As in lemma 3.1, we get

− 2(εδ5y + ε2y2)
∫

Rn

ρkvu dx + 2(εδ6y + ε2βy2)
∫

Rn

ρkvΔu dx

� 1
2
εκ2Y (θtω)

∫
Rn

ρk|ϕ|2 dx. (3.22)

Note that

2
∫

Rn

ρkvg(t) dx � 1
2
κ1

∫
Rn

ρk|ϕ|2 dx + c

∫
Rn

ρk|g(t)|2 dx. (3.23)

By (3.16) we know ‖∇ρk‖∞ � c/k. Then we see from lemma 3.2 that

− 2δ4

∫
Rn

ut(∇u · ∇ρk) dx − 2δ4(δ − εy)
∫

Rn

u(∇u · ∇ρk) dx

− 2β

∫
Rn

v(∇vt · ∇ρk) dx − 2(δ2 + εβy)
∫

Rn

v(∇v · ∇ρk) dx

� c

k
e|y|(1 + ‖ϕ‖2p

E + ‖g(t)‖2). (3.24)

For the nonlinear term in (3.20), we see from (2.10a) and (2.7b) and (2.7c) that

2δ

∫
Rn

ρkf(x, u)u dx � 2κ1

∫
Rn

ρkF (x, u) dx + 2(κ1 − δγ2)
∫

R3
ρkφ3(x) dx

+ 2δ

∫
Rn

ρkφ2(x) dx. (3.25)

As in lemma 3.1, it yields from (2.7a) and (2.7c) and (2.10b) that

2εy

∫
Rn

ρkf(x, u)u dx � 2εκ2Y (θtω)
∫

Rn

ρkF (x, u) dx +
1
2
κ1

∫
Rn

ρk|ϕ|2 dx

+ ce|y|
∫

Rn

ρk(|φ3| + |φ1|2) dx. (3.26)
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Given τ ∈ R and ω ∈ Ω, we substitute (3.21)–(3.26) into (3.20) to find that
ϕ(ς) := ϕ(ς, s − t, θ−sω, ϕs−t) with ς � s − t, s � τ and t � 0 satisfies

d
dς

∫
Rn

ρk(|ϕ|2 + 2F (x, u)) dx + (κ1 − εκ2Y (θς−sω))
∫

Rn

ρk(|ϕ|2 + 2F (x, u)) dx

� crke|y(θς−sω)|(1 + ‖g(ς)‖2 + ‖ϕ‖2p
E ) + c

∫
Oc

k

|g(ς)|2 dx. (3.27)

where rk := (1/k) +
∫
Oc

k
(|φ2| + |φ3| + |φ1|2) dx → 0 as k → ∞. Multiplying (3.27)

by e
∫ ς

s−t
(κ1−εκ2Y (θσ−sω)) dσ and integrating over (s − t, s) with s � τ , we obtain from

(2.7c) and (3.13) that∫
Rn

ρk

(|u(s, s − t, θ−sω, us−t)|2 + |∇u(s, s − t, θ−sω, us−t)|2
)
dx

+
∫

Rn

ρk

(|z(s, s − t, θ−sω, zs−t)|2 + |∇z(s, s − t, θ−sω, zs−t)|2
)
dx

� ce|y(ω)|e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ

∫
Rn

ρk(|us−t|2

+ |∇us−t|2 + |zs−t|2 + |∇zs−t|2 + F (x, us−t) + φ3 + |φ3|) dx

+ crke|y(ω)|
∫ 0

−∞
eκ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ(1 + ‖g(r + s)‖2) dr

+ ce|y(ω)|
∫ 0

−∞
eκ1r+εκ2

∫ 0
r

Y (θσω) dσ

∫
Oc

k

|g(r + s, x)|2 dx dr

+ crke|y(ω)|
∫ s

s−t

eκ1(r−s)+|y(θr−sω)|+εκ2
∫ 0

r−s
Y (θσω) dσ

× ‖ϕ(r, s − t, θ−sω, ϕs−t‖2p
E dr + ce|y(ω)|

∫
Oc

k

|φ3|dx. (3.28)

Note that ‖ρk‖∞ � c and (us−t, zs−t) ∈ B(s − t, θ−tω) for s � τ and B ∈ B. Then
by the argument of (3.15), we have, as t → +∞,

e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ sup
s�τ

∫
Rn

ρk(|us−t|2

+ |∇us−t|2 + |zs−t|2 + |∇zs−t|2 + F (x, us−t) + φ3 + |φ3|) dx

� c
(
e

−κ1t

(p+1)2 sup
s�τ

‖B(s − t, θ−tω)‖H1(Rn)×H1(Rn)

)p+1

+ ce
− p2+2p

(p+1)2
κ1t → 0.

(3.29)

By (2.12b) and (iii) of proposition 2.2, we know

sup
s�τ

∫ 0

−∞
eκ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ(1 + ‖g(r + s)‖2) dr < ∞. (3.30)
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By (2.12b) and (iv) of proposition 2.2, we know

sup
s�τ

∫ 0

−∞
eκ1r+εκ2

∫ 0
r

Y (θσω) dσ

∫
Oc

k

|g(r + s, x)|2 dx dr → 0 as k → ∞. (3.31)

In order to consider the remaining term on the right-hand side of (3.28), we infer
from (3.11) that for all ς ∈ [s − t, s] with s � τ and t � 0,

‖ϕ(ς, s − t, θ−sω, ϕs−t)‖2
E � ce−(((κ1(ς−s+t))/(p+(1/(p+3))))+εκ2

∫ ς−s
−t

Y (θσω) dσ

×
(

1 + ‖ϕs−t‖2
E +

∫
Rn

(F (x, us−t) + φ3(x)) dx

)

+ ce−(1/(p+(1/(p+1)))κ(ς−s)(1 + R̂(s, ω)), (3.32)

where

R̂(s, ω) :=
∫ 0

−∞
e

1
p+ 1

p+3
κ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ
(1 + ‖g(r + s)‖2) dr.

By (2.12b) and proposition 2.2 we find sups�τ R̂(s, ω) < ∞. Taking the p-th power

of (3.32), multiplying by eκ1(ς−s)+|y(θς−sω)|+εκ2
∫ 0

ς−s
Y (θσω) dσ and integrating over

(s − t, s) with t � 0, we obtain

∫ s

s−t

eκ1(ς−s)+|y(θς−sω)|+εκ2
∫ 0

ς−s
Y (θσω) dσ‖ϕ(ς, s − t, θ−sω, ϕs−t)‖2p

E dς

� c

∫ s

s−t

e
κ1(ς−s)+|y(θς−sω)|+εκ2

∫ 0
ς−s

Y (θσω) dσ− p

p+ 1
p+3

κ1(ς−s+t)+pεκ2
∫ ς−s
−t

Y (θσω) dσ

×
(

1 + ‖ϕs−t‖2
E +

∫
Rn

(F (x, us−t) + φ3(x)) dx

)p

dς

+ c(1 + R̂(s, ω))p

∫ s

s−t

eκ1(ς−s)+|y(θς−sω)|+εκ2
∫ 0

ς−s
Y (θσω) dσe

− p

p+ 1
p+1

κ(ς−s)
dς.

(3.33)

Now, we let the first and second terms on the right-hand side of (3.33) as I1 and
I2, respectively. In addition, we set

r1(ω) :=
∫ 0

−∞
e(1−(p/(p+(1/(p+3))))κ1r+|y(θrω)| dr < ∞.

Note that

− p

p + 1
p+3

+
p

(p + 1)2
� − p

p + 1
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for all p � 1. Then by (us−t, zs−t) ∈ B(s − t, θ−tω) for s � τ and B ∈ B we see from
(2.9), (3.13) and (2.12a) that as t → +∞,

I1 � cr1(ω)e
− p

p+ 1
p+3

κ1t+pεκ2
∫ 0
−t

Y (θσω) dσ

×
(

1 + ‖ϕs−t‖2
E +

∫
Rn

(F (x, us−t) + φ3(x)) dx

)p

� cr1(ω)e
− p

p+ 1
p+3

κ1t+pεκ2
∫ 0
−t

Y (θσω) dσ
(
‖us−t‖p(p+1)

H1(Rn) + ‖vs−t‖p(p+1)
H1(Rn) + 1

)

� cr1(ω)e
− p

p+ 1
p+3

κ1t+p|y(θ−tω)|+pεκ2
∫ 0
−t

Y (θσω) dσ

×
(
‖(us−t, zs−t)‖p(p+1)

H1(Rn)×H1(Rn) + 1
)

� cr1(ω)e
− p

p+ 1
p+3

κ1t+ p

(p+1)2
κ1t
(
‖ sup

s�τ
‖B(s − t, θ−tω)‖p(p+1)

H1(Rn)×H1(Rn) + 1
)

� cr1(ω)
(

e
− 1

(p+1)2
κ1t sup

s�τ
‖B(s − t, θ−tω)‖H1(Rn)×H1(Rn)

)p(p+1)

+ ce−
p

p+1 κ1t → 0. (3.34)

Note that

1 − p

p + 1
p+1

− 1
(p + 1)2

> 0

for all p � 1. Then by (2.12b) we see

I2 � c

(
1 + sup

s�τ
R̂p(s, ω)

)∫ 0

−∞
e

(
1− p

p+ 1
p+1

)
κ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ
dr < ∞.

(3.35)

By (3.33)–(3.35), the remaining term on the right-hand side satisfies, as t, k → +∞,

rk sup
s�τ

∫ s

s−t

eκ1(r−s)+|y(θr−sω)|+εκ2
∫ 0

r−s
Y (θσω) dσ‖ϕ(r, s − t, θ−sω, ϕs−t‖2p

E dr → 0.

(3.36)

Finally, we take the supremum over s ∈ (−∞, τ ] in (3.28), then the desired result
(3.17) follows from (3.29)–(3.31) and (3.36). By the same argument, we can show
(3.18), the details are omitted. �

3.3. (B, D)-uniform estimates inside a large ball

In this subsection we derive (B,D)-uniform estimates of solutions to problem
(2.2) on bounded domains. Denote by ξk(x) := 1 − ρk(x) for k ∈ N with ρ given
in (3.16). Let ϕ̄ = (ū, v̄) := ξkϕ = (ξku, ξkv), where ϕ = (u, v) is the solution of
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problem (2.6). Multiplying (2.6) by ξk we find⎧⎨
⎩

ūt = (εy − δ)ū + v̄,
v̄t − βΔv̄t + δ1v̄ − δ2Δv̄ + δ3ū − δ4Δū + ξkf(x, u)
= −εyv̄ + εβyΔv̄ − (εδ5y + ε2y2)ū + (εδ6y + ε2βy2)Δū + J,

(3.37)

where y = y(θtω) and the remaining terms are given by

J := ξkg(t) − βvtΔξk − 2β∇ξk · ∇vt − δ2vΔξk − 2δ2∇ξk · ∇v

− δ2uΔξk − 2δ2∇ξk · ∇u − εβyvΔξk − 2εβy∇ξk · ∇v

− (εδ4y + ε2βy2)uΔξk − 2(εδ4y + ε2βy2)∇ξk · ∇u. (3.38)

Note that the eigenvalue problem: −Δu = λu in O2k with u|∂O2k
= 0 has a family

of eigenvalues {λi}∞i=1 such that 0 < λ1 � λ2 � · · ·λi → ∞ as i → ∞ and the corre-
sponding eigenfunctions {ei}∞i=1 in H1(O2k) form an orthonormal basis of L2(O2k).
Let Pi : L2(O2k) → span{e1, e2 . . . , ei} be the canonical projection.

Lemma 3.4. Let hypotheses F, S and G be satisfied. Then for each (k, τ, ω,B,D) ∈
N × R × Ω × B × D,

lim
t,i→+∞

sup
s�τ

sup
(us−t,zs−t)∈B(s−t,θ−tω)

‖((I − Pi)ξku(s, s − t, θ−sω, us−t),

(I − Pi)ξkz(s, s − t, θ−sω, zs−t)
)‖H1(Rn)×H1(Rn) = 0, (3.39)

and

lim
t,i→+∞

sup
(uτ−t,zτ−t)∈D(τ−t,θ−tω)

‖((I − Pi)ξku(τ, τ − t, θ−τω, uτ−t),

(I − Pi)ξkz(τ, τ − t, θ−τω, zτ−t)
)‖H1(Rn)×H1(Rn) = 0. (3.40)

Proof. Let ūi = (I − Pi)ξku, z̄i = (I − Pi)ξkz and v̄i = (I − Pi)ξkv. Applying I −
Pi to the second equation of (3.37) and taking the inner product of the resulting
equation with v̄i in L2(O2k), we find

d
dt

(‖v̄i‖2 + β‖∇v̄i‖2) + 2δ1‖v̄i‖2 + 2δ2‖∇v̄i‖2 + 2δ3(ūi, v̄i)

− 2δ4(Δūi, v̄i) + 2(ξkf(x, u), v̄i) = −2εy‖v̄i‖2 − 2εβy‖∇v̄i‖2

− 2(εδ5y + ε2y2)(ū, v̄i) + 2(εδ6y + ε2βy2)(Δū, v̄i) + 2
(
J, v̄i

)
.

Let ϕ̄i = (ūi, v̄i), and then we find that

d
dt

‖ϕ̄i‖2
E + 2κ1‖ϕ̄i‖2

E � −2(ξkf(x, u), v̄i) − 2εy‖v̄i‖2

− 2εβy‖∇v̄i‖2 + 2εδ3y‖ūi‖2 + 2εδ4y‖∇ūi‖2

− 2(εδ5y + ε2y2)(ū, v̄i) + 2(εδ6y + ε2βy2)(Δū, v̄i) + 2(J, v̄i). (3.41)
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Note that μ := ((np − n)/(2p + 2)) ∈ [0, 1) for all n � 1 due to (2.8). Then we see
from (2.7a) and the Gagliardo–Nirenberg inequality that

−2(ξkf(x, u), v̄i) � c‖u‖p
p+1‖v̄i‖p+1 + c‖φ1‖‖v̄i‖

� c‖u‖p
p+1‖∇v̄i‖μ‖v̄i‖1−μ + c‖v̄i‖

� cλ
μ−1

2
i+1 ‖u‖p

H1(Rn)‖∇v̄i‖ + cλ
− 1

2
i+1|‖∇v̄i‖

� cλ
μ−1

2
i+1 ‖ϕ‖p

E‖ϕ̄i‖E + cλ
− 1

2
i+1‖ϕ̄i‖E

� 1
2
κ1‖ϕ̄i‖2

E + cλμ−1
i+1 ‖ϕ‖2p

E + cλ−1
i+1. (3.42)

Note that

− 2εy‖v̄i‖2 − 2εβy‖∇v̄i‖2 + 2εδ3y‖ūi‖2 + 2εδ4y‖∇ūi‖2

� 2ε|y|‖ϕ̄i‖2
E � 1

2
εκ2Y (θtω)‖ϕ̄i‖2

E . (3.43)

By Young’s inequality, (2.11) and (2.10b), we have

− 2(εδ5y + ε2y2)(ū, v̄i) + 2(εδ6y + ε2βy2)(Δū, v̄i)

� ε(δ5|y| + |y|2)(‖ūi‖2 + ‖v̄i‖2) + ε(δ6|y| + β|y|2)(‖∇ūi‖2 + ‖∇v̄i‖2)

� 1
2
εκ2Y (θtω)‖ϕ̄i‖2

E . (3.44)

Finally, by lemma 3.2, we see

(J, v̄i) � ‖J‖‖v̄i‖ � cλ
− 1

2
i+1‖J‖‖ϕ̄i‖E � 1

4
κ1‖ϕ̄i‖2

E + cλ−1
i+1e

|y|(1 + ‖g(t)‖2 + ‖ϕ‖2p
E ).

(3.45)

Given τ ∈ R and ω ∈ Ω, we substitute (3.42)–(3.45) into (3.41) to find that
ϕi(ς) := ϕi(ς, s − t, θ−sω) with ς � s − t, s � τ and t � 0 satisfies the following
energy inequality:

d
dς

‖ϕi‖2
E + (κ1 − εκ2Y (θς−sω))‖ϕi‖2

E � cθie
|y(θς−sω)|(1 + ‖g(ς)‖2 + ‖ϕ‖2p

E ).

(3.46)

where θi := λμ−1
i+1 + λ−1

i+1 → 0 as i → +∞. Multiplying (3.46) by
e
∫ ς

s−t
(κ1−εκ2Y (θσ−sω)) dσ and integrating over (s − t, s), then we take the supremum
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over s ∈ (−∞, τ ], finally, we obtain (3.13) from that

sup
s�τ

‖(ui(s − t, θ−sω, (I − Pi)(ξkus−t)),

× zi(s − t, θ−sω, (I − Pi)(ξkzs−t))
)‖2

H1(Rn)×H1(Rn)

� ce|y(ω)|e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ

× sup
s�τ

‖((I − Pi)ξkus−t, (I − Pi)ξkzs−t)‖2
H1(Rn)×H1(Rn)

+ cθie
|y(ω)| sup

s�τ

∫ 0

−∞
eκ1r+|y(θrω)|+εκ2

∫ 0
r

Y (θσω) dσ(1 + ‖g(r + s)‖2)dr

+ cθie
|y(ω)| sup

s�τ

∫ s

s−t

eκ1(r−s)+|y(θr−sω)|+εκ2
∫ 0

r−s
Y (θσω) dσ

× ‖ϕ(r, s − t, θ−sω, ϕs−t‖2p
E dr. (3.47)

By ‖I − Pi‖ � 1, ‖ξk‖∞ � 1 and (us−t, zs−t) ∈ B(s − t, θ−tω) for all s � τ , we find
from (2.12a) that as t → +∞,

e−κ1t+|y(θ−tω)|+εκ2
∫ 0
−t

Y (θσω) dσ sup
s�τ

‖(I − Pi)(ξkus−t, ξkzs−t)‖2
H1(Rn)×H1(Rn)

� c
(
e
− 1

(p+1)2
κ1t sup

s�τ
‖B(s − t, θ−tω)‖H1(Rn)×H1(Rn)

)2

→ 0.

By (3.30) and (3.36) we find that the remaining terms on the right-hand side of
(3.47) go to zero as i, t → +∞, and hence we have (3.39). By the same argument,
we can show (3.40), the details are omitted here. �

4. Existence, uniqueness and semi-uniform compactness of pullback
random attractors

In this section we establish the semi-uniform compactness of pullback random
attractors of the cocycle Φ generated by the stochastic wave equation (2.2).

4.1. Existence of (B, D)-pullback absorbing set

First, we establish the existence of (B,D)-pullback absorbing set in H1(Rn) ×
H1(Rn).

Lemma 4.1. Assume hypotheses F, S and G hold. Then we have the following two
conclusions for the cocycle Φ generated by problem (2.2):

(i) Φ has a B-pullback absorbing set KB = {KB(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B,
which is given by, for (τ, ω) ∈ R × Ω,

KB(τ, ω) =
{

(u, z) ∈ H1(Rn) × H1(Rn) : ‖(u, z)‖2
H1(Rn)×H1(Rn)

�Me|y(ω)|
(

1 + sup
s�τ

R(s, ω)
)}

. (4.1)
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(ii) Φ has a D-pullback random absorbing set KD = {KD(τ, ω) : τ ∈ R, ω ∈ Ω} ∈
D, which is given by, for every (τ, ω) ∈ R × Ω,

KD(τ, ω) =
{

(u, z) ∈ H1(Rn) × H1(Rn) : ‖(u, z)‖2
H1(Rn)×H1(Rn)

� Me|y(ω)|(1 + R(τ, ω))
}

, (4.2)

where M and R(s, ω) are the same as given in lemma 3.1.

Proof. (i) By (i) lemma 3.1, for each (τ, ω,B) ∈ R × Ω × B, there exists
TB := TB(τ, ω) > 0 such that

⋃
t�TB

⋃
s�τ Φ(t, s − t, θ−tω)B(s − t, θ−tω) ⊂

KB(τ, ω). Next, we show KB ∈ B. For every (τ, ω) ∈ R × Ω, we deduce from
(2.12b) as well as (iii) of proposition 2.2 that as t → +∞,

e
− 2

(p+1)2
κ1t sup

s�τ
R(s, θ−tω)

= e
− 2

(p+1)2
κ1t sup

s�τ

∫ −t

−∞
eκ1(r+t)+|y(θrω)|+εκ2

∫ −t
r

Y (θσω) dσ(1+ ‖g(r + s)‖2) dr

� e
−κ1t

2(p+1)2 sup
s�τ

∫ 0

−∞
e

κ1r

2(p+1)2 (1 + ‖g(r + s)‖2) dr → 0.

Therefore, we have, as t → +∞,

e
− 1

(p+1)2
κ1t sup

s�τ
‖KB(s − t, θ−tω)‖H1(Rn)×H1(Rn)

� c

(
e|y(θ−tω)|e−

2
(p+1)2

κ1t
(

1 + sup
s�τ

R(s, ω)
))1/2

→ 0,

which shows that B is a B-pullback absorbing set of Φ.

(ii) Since the mapping ω → R(τ, ω) is F-measurable and KD ⊆ KB ∈ B ⊆ D.
Then by (ii) of lemma 3.1, we find that KD is a D-pullback random absorbing
set for Φ.

�

4.2. (B, D)-pullback asymptotic compactness

Then, we establish the (B,D)-pullback asymptotic compactness of Φ in
H1(Rn) × H1(Rn).

Lemma 4.2. Assume hypotheses F, S and G hold. Then we have the following two
conclusions for the cocycle Φ generated by (2.2):

(i) Φ is B-pullback time-semi-uniformly asymptotically compact in H1(Rn) ×
H1(Rn), that is, for every τ ∈ R, ω ∈ Ω and B = {B(τ, ω) : τ ∈ R, ω ∈ Ω)} ∈
B, the sequence {Φ(tn, sn − tn, θ−tn

ω, (u0,n, z0,n)}∞n=1 is pre-compact in
H1(Rn) × H1(Rn) whenever tn → +∞, (u0,n, z0,n) ∈ B(sn − tn, θ−tn

ω) and
sn � τ .
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(ii) Φ is D-pullback asymptotically compact in H1(Rn) × H1(Rn), that is, for
every τ ∈ R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω)} ∈ D, the sequence
{Φ(tn, τ − tn, θ−tn

ω, (u0,n, z0,n))}∞n=1 is pre-compact in H1(Rn) × H1(Rn)
whenever tn → +∞ and (u0,n, z0,n) ∈ D(τ − tn, θ−tn

ω).

Proof. (i) Let ε > 0 be an arbitrary number, we want to show that the sequence

{(Un, Zn)}∞n=1 := {Φ(tn, sn − tn, θ−tn
ω, (u0,n, z0,n))}∞n=1

has a finite open cover with radiis less then ε in H1(Rn) × H1(Rn) provided
tn → +∞, (u0,n, z0,n) ∈ B(sn − tn, θ−tn

ω) and sn � τ . By (3.1), there are
N1 = N1(τ, ω,B) � 1 and c1 = c1(τ, ω) > 0 such that for all n � N1,

‖(Un, Zn)‖H1(Rn)×H1(Rn) � c1. (4.3)

By (3.17), there are N2 = N2(τ, ω,B, ε) � N1 and k = k(τ, ω,B, ε) � 1 such
that for all n � N2,

‖(Un, Zn)‖H1(Rn\Ok)×H1(Rn\Ok) <
ε

2
. (4.4)

Recall that ξk(x) = 1 − ρ(|x|/k) with the function ρ as given in (3.16). By
(3.39), there are N3 = N3(τ, ω,B, ε) � N2 and i = i(τ, ω,B, ε) � 1 such that
for all n � N3,

‖((I − Pi)ξkUn, (I − Pi)ξkZn)‖H1(Rn)×H1(Rn) <
ε

4
, (4.5)

Then by (4.3), ‖ξk‖∞ � 1 and the finite-dimensional range of Pi, we know
that {(PiξkUn,PiξkZn)}∞n=1 is pre-compact in Pm0(H

1(O2k) × H1(O2k)),
which along with (4.5) implies that {(ξkUn, ξkZn)}∞n=1 has a finite open
cover with radiis less then 1

2ε in H1(O2k) × H1(O2k). This along with the
fact that (Un(x), Zn(x)) = (ξk(x)Un(x), ξk(x)Zn(x)) for all x ∈ Ok0 implies
that the sequence {(Un, Zn)}∞n=1 has a finite open cover with radiis less then
1
2ε in H1(Ok0) × H1(Ok0). This together with (4.4) further implies that the
sequence {(Un, Zn)}∞n=1 has a finite open cover with radiis less then ε in
H1(Rn) × H1(Rn).

(ii) By (3.2), (3.18) and (3.40), we can similarly prove (ii), the details are omitted
here.

�

4.3. Existence and time-semi-uniform compactness of pullback random
attractors

We are in the position to establish the existence, uniqueness and time-semi-
uniform compactness of pullback random attractors of Φ in H1(Rn) × H1(Rn).
This will be used to discuss the asymptotically autonomous robustness of the
pullback random attractors in the next section.

Theorem 4.3. Let hypotheses F, S and G be satisfied. Then the following two
conclusions hold for the cocycle Φ generated by problem (2.2):
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(i) Φ has a B-pullback attractor AB = {AB(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B, which is
given by

AB(τ, ω) =
⋂

t0>0

⋃
t�t0

Φ(t, τ − t, θ−tω)KB(τ − t, θ−tω)
H1(Rn)×H1(Rn)

. (4.6)

(ii) AB is time-semi-uniformly compact in H1(Rn) × H1(Rn) in the sense
that the union

⋃
s�τ

AB(s, ω) is pre-compact in H1(Rn) × H1(Rn) for every

(τ, ω) ∈ R × Ω.

(iii) Φ has a D-pullback random attractor AD = {AD(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,
which is given by

AD(τ, ω) =
⋂

t0>0

⋃
t�t0

Φ(t, τ − t, θ−tω)KD(τ − t, θ−tω)
H1(Rn)×H1(Rn)

. (4.7)

(iv) AB = AD, and thus Φ has a unique pullback random attractor which is time-
semi-uniformly compact in H1(Rn) × H1(Rn).

Proof. (i) By (i) of lemma 4.1 we find that KB = {KB(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B
is a B-pullback absorbing set for Φ. By (i) of lemma 4.2 we know that Φ
is B-pullback asymptotically compact in H1(Rn) × H1(Rn). Hence by the
abstract result as given by Wang [41, proposition 3.8] we know that Φ has a
unique B-pullback attractor AB = {AB(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B given by
(4.6) in the sense of [41, definition 2.15]. However, we remark that only the F-
measurability of AB is unknown, that is why we here say AB is a B-pullback
attractor but not a B-pullback random attractor.

(ii) It suffices to show that ∪s�τAB(s, ω) is pre-compact in H1(Rn) × H1(Rn)
for each τ ∈ R and ω ∈ Ω. Let {(Un, Zn)}∞n=1 be an arbitrary sequence
taken from ∪s�τAB(s, ω). Then there exists sn � τ such that (Un, Zn) ∈
AB(sn, ω) for each n ∈ N. Now, we let tn → ∞, and by the invari-
ance of AB we have (Un, Zn) = Φ(tn, sn − tn, θ−tn

ω)AB(sn − tn, θ−tn
ω),

which implies that there exists (u0,n, z0,n) ∈ AB(sn − tn, θ−tn
ω) such

that (Un, Zn) = Φ(tn, sn − tn, θ−tn
ω, (u0,n, z0,n)). Note that (u0,n, z0,n) ∈

AB(sn − tn, θ−tn
ω) ⊆ KB(sn − tn, θ−tn

ω) with sn � τ and KB ∈ B, then by
the B-pullback time-semi-uniform asymptotic compactness of Φ as proved
in lemma 4.2 we know that the sequence {(Un, Zn)}∞n=1 is pre-compact
in H1(Rn) × H1(Rn), which means that ∪s�τAB(s, ω) is pre-compact in
H1(Rn) × H1(Rn).

(iii) By (i) of lemma 4.1 we know that KD = {KD(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is a
D-pullback random absorbing set for Φ. By (ii) of lemma 4.2 we find that Φ is
D-pullback asymptotically compact in H1(Rn) × H1(Rn). And therefore, by
the abstract result established by Wang [41, definition 2.15] and [42], we know
that Φ has a D-pullback random attractor AD ∈ D in H1(Rn) × H1(Rn),
which is given by (4.7).
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(iv) Given (τ, ω) ∈ R × Ω. Note that by the construction of KB and KD we
find KB(τ, ω) ⊇ KD(τ, ω). Hence, by (4.6) and (4.7), we have AB(τ, ω) ⊆
AD(τ, ω). On the other hand, since AB ∈ B ⊆ D, then by the invariance of
AB as well as the attraction of AD we have, as t → +∞,

distE(AB(τ, ω),AD(τ, ω))

= distE(Φ(t, τ − t, θ−tω)AB(τ − t, θ−tω),AD(τ, ω)) → 0,

which implies AB(τ, ω) ⊂ AD(τ, ω)
E

= AD(τ, ω). Hence we have AB = AD,
which along with the F-measurability of AD implies the F-measurability
of AB.

�

5. Asymptotically autonomous robustness of pullback random
attractors

In this section we discuss the asymptotically autonomous robustness of the time-
section AB(τ, ω) of pullback random attractor AB = {AB(τ, ω) : τ ∈ R, ω ∈ Ω} as
time τ goes to negative infinity.

5.1. Random attractors of autonomous stochastic wave equations

To be more specific, we also consider an autonomous version of problem (2.1):

{
ûtt + αût − Δût − βΔûtt + λû − Δû + f(x, û) = g∞(x) + εSû ◦ dW

dt
,

û(0, x) = û0(x), ût(0, x) = û1(x), x ∈ R
n, t > 0,

(5.1)

where g∞ ∈ L2(Rn) is the same function as in (2.14).
Denote by ẑ := ût + δû with same δ > 0 as given in above sections. Then we have

the following equivalent system:

⎧⎪⎨
⎪⎩

ût = −δû + ẑ,

ẑt − βΔẑt + δ1ẑ − δ2Δẑ + δ3û − δ4Δû + f(x, û) = g∞(x) + εSû ◦ dW

dt
,

û(0, x) = û0(x), ẑ(0, x) = û1(x) + δû0(x).

(5.2)

Let v̂ := ẑ − εy(θtω)û to find that ϕ̂ = (û, v̂) satisfies the following random system

⎧⎪⎪⎨
⎪⎪⎩

ût = (εy(θtω) − δ)û + v̂,
v̂t − βΔv̂t + δ1v̂ − δ2Δv̂ + δ3û − δ4Δû + f(x, û) = g∞(x) − εy(θtω)v̂

+ εβy(θtω)Δv̂ − (εδ5y(θtω) + ε2y2(θtω)
)
û +

(
εδ6y(θtω) + ε2βy2(θtω)

)
Δû,

û(0, x) = û0(x), v̂(0, x) = v̂0(x) = û1(x) + δû0(x) − εy(θτω)û0(x).
(5.3)

In fact, the well-posedness of problem (5.3) permits us to define an autonomous
cocycle Φ∞ : R

+ × Ω × H1(Rn) × H1(Rn) → H1(Rn) × H1(Rn) given by, for every
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t � 0 and ω ∈ Ω,

Φ∞(t, ω, (ẑ0, v̂0)) =
(
û(t, ω, û0), ẑ(t, ω, ẑ0)

)
=
(
û(t, ω, û0), εy(θtω)û(t, ω, û0) + v̂(t, ω, v̂0)

)
. (5.4)

Denote by D∞ = {D∞(ω) : ω ∈ Ω} a family of bounded nonempty subsets of
H1(Rn) × H1(Rn) satisfying

lim
t→+∞ e(−κ1t)/((p+1)2)‖D∞(θ−tω)‖H1(Rn)×H1(Rn) = 0. (5.5)

Let D∞ be the universe of all families of bounded nonempty random subsets
of H1(Rn) × H1(Rn) satisfying (5.5). By the standard method as in [51], it
is not difficult to prove that Φ∞ has a unique D∞-pullback random attractor
A∞ = {A∞(ω) : ω ∈ Ω} ∈ D∞. The main goal of this section is to prove that the
time-section AB(τ, ω) of AB is upper semi-continuous to A∞(ω) as τ → −∞ in the
sense of the Hausdorff semi-distance of H1(Rn) × H1(Rn).

5.2. Asymptotically autonomous convergence of stochastic wave
equations

In this subsection we establish the asymptotically autonomous convergence of
solutions to problem (2.6) in H1(Rn) × H1(Rn).

Lemma 5.1. Let hypotheses F and G be satisfied. Then the solutions to the non-
autonomous equations of (2.6) converge to the solutions of autonomous equations
(5.3) in the sense that for every (t, ω) ∈ R

+ × Ω,

lim
τ→−∞ ‖Φ(t, τ, ω, (uτ , zτ )) − Φ∞(t, ω, (û0, ẑ0))‖H1(Rn)×H1(Rn) = 0,

whenever ‖(uτ − û0, zτ − ẑ0)‖H1(Rn)×H1(Rn) → 0 as τ → −∞.

Proof. Given T > 0, for t ∈ (0, T ), we let u(t) := u(t + τ, τ, θ−τω, uτ ) − û(t, ω, û0),
z(t) := z(t + τ, τ, θ−τω, zτ ) − ẑ(t, ω, ẑ0) and v(t) := v(t + τ, τ, θ−τω, vτ ) −
v̂(t, ω, v̂0) By (2.6)–(2.10a) and (2.7a) and (2.7b) we have ut = v − δu + εyu and

vt − βΔvt + δ1v − δ2Δv + δ3u − δ4Δu = f(x, û(t)) − f(x, u(t + τ))

+ g(t + τ) − g∞ − εyv + εβyΔv − (εδ5y + ε2y2)u + (εδ6y + ε2βy2)Δu, (5.6)

where y := y(θtω). Taking the inner product of (5.6) with v in L2(Rn) we get

1
2

d
dt

(‖v‖2 + β‖∇v‖2) + δ1‖v‖2 + δ2‖∇v‖2 + δ3(u,v) − δ4(Δu,v)

= (f(x, û(t)) − f(x, u(t + τ)),v) + (g(t + τ) − g∞,v) − εy‖v‖2 − εβy‖∇v‖2

− (εδ5y + ε2y2)(u,v) + (εδ6y + ε2βy2)(Δu,v). (5.7)
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Let Ψ(t) = (u(t),v(t)), then we find from (5.7) that

1
2

d
dt

‖Ψ‖2
E � (f(x, û(t)) − f(x, u(t + τ)),v) + (g(t + τ) − g∞,v)

+ εδ3y‖u‖2 + εδ4y‖∇u‖2 − εy‖v‖2 − εβy‖∇v‖2

− (εδ5y + ε2y2)(u,v) + (εδ6y + ε2βy2)(Δu,v). (5.8)

Let f̂(x, s) = (∂/∂s)f(x, s), then by hypothesis F, H1(Rn) ↪→ Lp+1(Rn) and the
Hölder inequality, we have

(f(x, û(t)) − f(x, u(t + τ)),v) � c
(
1 + ‖u(t + τ)‖p−1

H1(Rn) + ‖û(t)‖p−1
H1(Rn)

)‖Ψ‖2
E .

(5.9)

Note that the remaining terms on the right-hand side of (5.8) are bounded by

(g(t + τ) − g∞,v) + εδ3y‖u‖2 + εδ4y‖∇u‖2 − εy‖v‖2

− εβy‖∇v‖2 − (εδ5y + ε2y2)(u,v) + (εδ6y + ε2βy2)(Δu,v)

� c(1 + |y| + |y|2)‖Ψ‖2
E + c‖g(t + τ) − g∞‖2. (5.10)

Substituting (5.9) and (5.10) into (5.8), we obtain

d
dt

‖Ψ‖2
E � c

(
e|y(θtω)| + ‖u(t + τ)‖p−1

H1(Rn)

+ ‖û(t)‖p−1
H1(Rn)

)‖Ψ‖2
E + c‖g(t + τ) − g∞‖2. (5.11)

Applying the Gronwall inequality to (5.11) over (0, t), we have

‖Ψ(t)‖2
E � ceJ(τ,ω)

(
‖Ψ(0)‖2

E +
∫ T

0

‖g(r + τ) − g∞‖2 dr

)
,

where J(τ, ω) := c
∫ T

0
ec|y(θrω)| + ‖û(r)‖H1(Rn) + ‖u(r + τ)‖H1(Rn) dr. Then we

have

‖u(t)‖H1(Rn) + ‖z(t)‖H1(Rn) � ce|y(θtω)|+J(τ,ω)(‖(uτ − û0, zτ − ẑ0)‖H1×H1

+
∫ T

0

‖g(r + τ) − g∞‖2 dr).

By hypothesis G, we find∫ T

0

‖g(r + τ) − g∞‖2 dr �
∫ τ+T

−∞
‖g(r) − g∞‖2 dr → 0 as τ → −∞. (5.12)

Note that ‖uτ − û0‖H1(Rn) + ‖zτ − ẑ0‖H1(Rn) → 0 as τ → −∞. Then it suffices to
show that J(τ, ω) is bounded as τ → −∞. Note that ϕ = (u, v) satisfies

d
dt

(
‖ϕ(t + τ)‖2

E + 2
∫

Rn

F (x, u(t + τ)) dx

)

� c1

(
‖ϕ‖2

E + 2
∫

Rn

F (x, u) dx

)
+ c2‖g(t + τ)‖2 + c2.
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where c1 and c2 are positive constants independent of τ . Then by (2.7a) and (2.7b)
and (2.7c), we find, for all t ∈ (0, T ),

‖u(t + τ, τ, θ−τω, uτ )‖2
H1(Rn) � c

(
1 + ‖uτ‖p+1

H1(Rn) + ‖vτ‖p+1
H1(Rn)

+ ‖g∞‖2 +
∫ T

0

‖g(r + τ) − g∞‖2 dr

)
,

which is bounded as τ → −∞ due to (5.12). By the same argument we can show
that ‖û(t, ω, û0)‖2

H1(Rn) is also bounded for all t ∈ (0, T ). Hence, the function J(τ, ω)
is bounded as τ → −∞. The proof is completed. �

5.3. Asymptotically autonomous convergence of random attractors

In this subsection we establish the asymptotically autonomous robustness of the
time-section of the pullback random attractor AB = {AB(τ, ω) : τ ∈ R, ω ∈ Ω} in
H1(Rn) × H1(Rn) as time τ → −∞. Furthermore, two different versions of such
robustness are also discussed for discrete time sequence τn → −∞ as n → ∞.

Theorem 5.2. Let hypotheses F, S and G be satisfied. Then the non-autonomous
random attractor AB = {AB(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B of Φ is asymptotically
autonomous to the autonomous random attractor A∞ = {A∞(ω) : ω ∈ Ω} of Φ∞
in the following sense:

lim
τ→−∞ distH1(Rn)×H1(Rn)(AB(τ, ω),A∞(ω)) = 0, P-a.s.ω ∈ Ω. (5.13)

Furthermore, for any sequence τn → −∞, there exists {τnk
}∞k=1 such that

lim
k→∞

distH1(Rn)×H1(Rn)(AB(τnk
, θτnk

ω),A∞(θτnk
ω)) = 0, P-a.s. ω ∈ Ω. (5.14)

In addition, for any ε > 0 and sequence τn → −∞, there exists {τnk
}∞k=1, Ωε ∈ F

with P(Ωε) > 1 − ε such that

lim
n→∞ sup

ω∈Ωε

distH1(Rn)×H1(Rn)(AB(τn, ω),A∞(ω)) = 0. (5.15)

Proof. We first show (5.13). Denote by

Ω1 =
{

ω ∈ Ω : lim
τ→−∞distE(AB(τ, ω),A∞(ω)) = 0

}
.

where E = H1(Rn) × H1(Rn). Then it suffices to prove P(Ω1) = 1. Let Ω2 = Ω\Ω1.
If P(Ω1) < 1, then Ω2 �= ∅, and hence there exists ω ∈ Ω2. This implies ω �∈ Ω1.
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Based upon this fact we find that there exist ε0 > 0 and −∞ � τn ↓< 0 such that

distE(AB(τ, ω),A∞(ω)) � 3ε0, ∀n ∈ N.

By the compactness of AB(τn, ω) we can take a sequence {xn}∞n=1 from A(τn, ω)
such that

distE(xn,A∞(ω)) = distE(AB(τn, ω),A∞(ω)) � 3ε0. (5.16)

By (4.1) we find that the KB(τ, ω) is increasing in τ ∈ R, and hence

AB,0(ω) :=
⋃
s�0

AB(s, ω) ⊂
⋃
s�0

KB(s, ω) = KB(0, ω).

By the same argument of (i) of lemma 4.1, it is not difficult to show AB,0 ∈ D∞.
Therefore, the set AB,0 = {AB,0 : ω ∈ Ω} can be attracted by the attractor A∞.
This means that there exists n0 ∈ N such that

distE(Φ∞(|τn0 |, θτn0
ω)AB,0(θτn0

ω), A∞(ω)) � ε0,

which along with the continuity of Φ∞ : E → E implies

distE(Φ∞(|τn0 |, θτn0
ω)AB,0(θτn0

ω)
E

, A∞(ω)) � ε0. (5.17)

On the other hand, we see from the invariance of AB that

AB(τn, ω) = Φ(|τn0 |, τn − |τn0 |, θτn0
ω)AB(τn − |τn0 |, θτn0

ω).

This permits us to rewrite xn ∈ AB(τn, ω) as

xn = Φ(|τn0 |, τn − |τn0 |, θτn0
ω)yn for some yn ∈ AB(τn − |τn0 |, θτn0

ω).

Note that τn − |τn0 | � τn � τn0 � 0 for all n � n0, then we have

{yn : n � n0} ⊂
⋃
s�0

AB(s, θτn0
ω) = AB,0(θτn0

ω).

This together with (ii) of theorem 4.3 implies that the set AB,0(θτn0
ω) is pre-

compact in E. Then the sequence {yn}∞n=1 has a convergent subsequence {ynk
}∞k=1

in E such that

ynk
→ y0 as k → ∞ for some y0 ∈ AB,0(θτn0

ω)
E

.

Note that θτn0
ω ∈ θτn0

Ω ⊆ Ω due to the {θt}t∈R-invariance of Ω. This fact per-
mits us to apply the asymptotically autonomous convergence for Φ as proved in
lemma 5.1 for the sample θτn0

ω, t = |τn0 | as well as τ = τnk
− |τn0 | → −∞ as
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k → ∞ to find, there exists a large enough k ∈ N such that

‖xnk
− Φ∞(|τn0 |, θτn0

ω)y0‖E = ‖Φ(|τn0 |, τnk
− |τn0 |, θτn0

ω)ynk

− Φ∞(|τn0 |, θτn0
ω)y0‖E � ε0.

This along with (5.17) implies

distE(xnk
,A∞(ω)) � ‖xnk

− Φ∞(|τn0 |, θτn0
ω)y0‖E

+ distE(Φ∞(|τn0 |, θτn0
ω)y0,A∞(ω))

� ε0 + distE(Φ∞(|τn0 |, θτn0
ω)AB,0(θτn0

ω)
E

,A∞(ω)) � 2ε0,

which indeed is a contradiction to (5.16), and thus (5.13) is proved.
We then prove (5.19). For any sequence τn → −∞ as n → ∞, by (5.13) we have

lim
n→∞ distE(AB(τn, ω),A∞(ω)) = 0, (5.18)

which implies, for any ε > 0,

lim
n→∞ P{ω ∈ Ω : distE(AB(τn, ω),A∞(ω)) � ε} = 0. (5.19)

Since {θt}t∈R is measure preserving, then we have

P{ω ∈ Ω : distE(AB(τn, θτn
ω,A∞(θτn

ω)) � ε}
= Pθτn

{ω ∈ Ω : distE(AB(τn, θτn
ω,A∞(θτn

ω)) � ε}
= P{ω ∈ Ω : distE(AB(τn, ω,A∞(ω)) � ε}.

This along with (5.19) as well as Riesz theorem implies (5.19).
The proof of (5.15) is similar to that of [52, theorem 4.8], we omit the details

here. �
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