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We consider periodic homogenization problems for Lévy operators with asymmetric
Lévy densities. The formal asymptotic expansion used for the α-stable (symmetric)
Lévy operators (α ∈ (0, 2)) is not directly applicable to such asymmetric cases. We
rescale the asymmetric densities and extract the most singular parts of the measures,
which average out the microscopic dependencies in the homogenization procedures.
We give two conditions, (A) and (B), that characterize such a class of asymmetric
densities under which the above ‘rescaled’ homogenization is available.

1. Introduction

We are interested in the following homogenization problems involving the Lévy
operator

uε(x) − a

(
x

ε

) ∫
RM

[uε(x + β(z)) − uε(x)

−1|z|�1〈∇uε(x), β(z)〉] dq(z) − f

(
x

ε

)
= 0 in Ω, (1.1)

u = φ(x) in Ωc, (1.2)

and

uε(x) − a

(
x

ε

) ∫
RM

[uε(x + β(z)) − uε(x)] dq(z) − f

(
x

ε

)
= 0 in Ω, (1.3)

with (1.2). Here, Ω is an open bounded domain in R
N , M � N , β is a positively

homogeneous, continuous function from R
M to R

N such that

β(cz) = cβ(z), ∀c > 0, |β(z)| � B1|z|, ∀z ∈ R
M , (1.4)

where B1 > 0 is a constant, dq(z) = q(z) dz is a positive Radon measure on R
M

which satisfies ∫
|z|<1

|z|γ dq(z) +
∫

|z|�1
|z|γ−1 dq(z) < ∞, (1.5)
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with γ = 2 in the case of (1.1), and with γ = 1 in the case of (1.3), where a and f
are real-valued continuous functions defined in R

N , periodic in T N = [0, 1]N , such
that there exist constants θ1, θ2 ∈ (0, 1], L > 0, a0 > 0 with which the following
hold:

a(·) � ∃a0 > 0, |a(y) − a(y′)| � L|y − y′|θ1 , y, y′ ∈ R
N , (1.6)

|f(y) − f(y′)| � L|y − y′|θ2 , y, y′ ∈ R
N , (1.7)

and φ is a real-valued bounded continuous function defined in Ωc.
For any ε > 0, there exists a unique solution uε of (1.1) and (1.2), and of (1.3)

and (1.2), respectively, in the framework of the viscosity solution (see Appendix A
for the definition, see Arisawa [2,3,8] and Barles and Imbert [10] for existence and
uniqueness results, and see Crandall et al . [13] for the general theory of viscosity
solutions). As ε goes to zero, the sequence of functions {uε} converges locally uni-
formly to a limit ū, and we are interested in finding an effective non-local equation
which characterizes ū.

Such a homogenization problem was solved in the case where the Lévy measure
is α-stable (see Arisawa [6, 7]):

dq(z) =
1

|z|N+α
dz, z ∈ R

M , α ∈ (0, 2) a fixed number,

by using the formal asymptotic expansion

uε(x) = ū(x) + εαv

(
x

ε

)
+ o(εα), x ∈ R

N , (1.8)

where ū = limε→0 uε and v is a periodic function defined in R
N called a corrector.

The above expansion leads to the so-called ergodic cell problem, which gives the
effective equation for ū. We refer the interested reader to Bensoussan et al . [12]
for a detailed discussion of this method. In the framework of the viscosity solution,
the formal argument can be justified rigorously using the perturbed test function
method established by Evans [14,15] (see also Lions et al . [18]). However, as we shall
see in examples 1.2–1.5, the above formal expansion cannot be employed directly if
the measure dq(z) is asymmetric. Here, we assume that the Lévy measure satisfies
condition (A) below.

(A) Let S = supp(dq(z)) ⊂ R
M . There exists a constant α ∈ (0, 2) such that

εM+αq(εz) � C1|z|−(M+α), ∀ε ∈ (0, 1), ∀z ∈ R
M , (1.9)

where C1 > 0 is a constant independent on ε, a subset S0 ⊂ S and a positive
function q0(z) (z ∈ R

M ) such that

lim
ε↓0

εM+αq(εz) = q0(z), ∀z ∈ S0, lim
ε↓0

εM+αq(εz) = 0, ∀z ∈ R
M \ S0.

(1.10)

We define a new measure

dq0(z) = q0(z) dz, ∀z ∈ S0, dq0(z) = 0 dz, ∀z ∈ R
M \ S0. (1.11)

The following property holds for this rescaled measure dq0(z).
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Lemma 1.1. Assume the Radon measure dq(z) satisfies (1.5) and condition (A).
Then, S0 is a positive cone, i.e.

sS0 ⊂ S0, ∀s > 0.

Moreover, sM+αq0(sz) = q0(z), ∀s > 0, ∀z ∈ S0, and

q0(z) = |z|M+αq̄0(arg z), ∀z ∈ R
M , (1.12)

where q̄0(θ), θ ∈ [0, 2π) is a bounded real-valued function.

Proof. Let z ∈ S0. For any s ∈ (0, 1), from condition (A) and (1.10),

lim
ε→0

εM+αq(εsz) = s−(M+α) lim
ε→0

(εs)M+αq(εsz)

= s−(M+α) lim
ε′→0

ε′M+αq(ε′z)

= s−(M+α)q0(z)
> 0.

Thus, sz ∈ S0, and

q0(sz) = s−(M+α)q0(z), ∀s ∈ (0, 1), ∀z ∈ S0.

Therefore, q0(z) = |z|M+αq0(z/|z|), and from condition (A), (1.12) is proved.

The following examples satisfy condition (A).

Example 1.2. Let M = N , β(z) = z and, for α ∈ (1, 2) and α ∈ (0, 1), respectively,

dq(z) = |z|−(M+α) dz, z ∈ R
M
+ , dq(z) = 0, z ∈ (RM

+ )c,

where R
M
+ = {z = (z1, . . . , zM ) | zi > 0, 1 � ∀i � M}. In this case, for S = S0 =

R
M
+ , we have

q(εz)εM+α = |z|−(M+α) = q0(z), ∀z ∈ S0, q(εz)εM+α = 0, ∀z ∈ Sc
0, ∀ε > 0,

and condition (A) is satisfied for

dq0(z) = |z|−(M+α) dz, z ∈ R
M
+ , dq0(z) = 0 dz, z ∈ (RM

+ )c.

Both dq(z) and dq0(z) satisfy (1.5) with γ = 2 (respectively, γ = 1).

Example 1.3. Let M = N = 1, β(z) = z and, for 1 < α1 < α2 < 2,

dq(z) = |z|−(1+α1) dz, z � −1, z > 0, dq(z) = |z|−(1+α2) dz, − 1 < z < 0.

In this case, for α = α2, S = R, S0 = {z ∈ R | z < 0}, we have

lim
ε→0

q(εz)ε1+α = |z|−(1+α2) = q0(z), ∀z ∈ S0, lim
ε→0

q(εz)ε1+α = 0, ∀z ∈ Sc
0,

and condition (A) is satisfied for

dq0(z) = 0 dz, z > 0, dq0(z) = |z|−(1+α) dz, z < 0.

Both dq(z) and dq0(z) satisfy (1.5) with γ = 2.
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Example 1.4. Let M = 1, N = 2, β(z) = (z, ξz), where ξ > 0 is an irrational
number and, for α ∈ (1, 2) (respectively, α ∈ (0, 1)),

dq(z) = |z|−(1+α) dz, z ∈ R.

In this case, for S = S0 = R, we have

q(εz)ε1+α = |z|−(1+α) = q0(z), ∀z ∈ S = S0, ∀ε > 0,

and condition (A) is satisfied for

dq0(z) = |z|−(1+α) dz, z ∈ R.

Both dq(z) and dq0(z) satisfy (1.5) with γ = 2 (respectively, γ = 1).

Example 1.5. Let M = N , β(z) = z and, for γ > 0, 1 < α < 2,

dq(z) = exp(−γ|z|)|z|−(M+α) dz, z ∈ R
M .

In this case, for g(s) = sα, S = S0 = R
M , we have

lim
ε→0

q(εz)εM+α = lim
ε→0

exp(−εγ|z|)|z|−(M+α) = |z|−(M+α), ∀z ∈ S = S0,

and condition (A) is satisfied for

dq0(z) = |z|−(M+α) dz, z ∈ R
M .

Both dq(z) and dq0(z) satisfy (1.5) with γ = 2.

In examples 1.2–1.4, the Lévy measures are either asymmetric or degenerate
(in the sense that S or S0 does not contain an open ball centred at the origin in
R

M ). Example 1.4 corresponds to the jump process satisfying the non-resonance
condition [9]. At first sight, the formal asymptotic expansion (1.8) used for the
α-stable Lévy operator seems to be unapplicable for the measures in examples 1.2–
1.5. However, by using the constant α in condition (A), we can still use the expansion
(1.8):

uε(x) = ū(x) + εαv

(
x

ε

)
+ o(εα), x ∈ R

N .

We introduce the formal derivatives of uε into (1.1) (respectively, (1.3)). From
condition (A) ((1.9) and (1.10)), we note that

lim
ε→0

∫
|z|�1

|z|γεM+αq(εz) dz =
∫

|z|�1
|z|γ dq0(z), (1.13)

lim
ε→0

∫
|z|>1

|z|γ−1εM+αq(εz) dz =
∫

|z|>1
|z|γ−1 dq0(z), (1.14)

for α ∈ (1, 2) with γ = 2 (respectively, α ∈ (0, 1) with γ = 1). We formally obtain
the following ergodic cell problem. For any fixed x ∈ Ω, and for the given

I1 =
∫

RM

[ū(x + β(z)) − ū(x) − 1|z|�1〈∇ū(x), β(z)〉] dq(z),
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and, respectively,

I2 =
∫

RM

[ū(x + β(z)) − ū(x)] dq(z),

find a unique number dI1 (and respectively, dI2) such that the following problem
has at least one periodic viscosity solution v(y):

dI1 − a(y)
∫

RM

[v(y + β(z)) − v(y) − 〈∇v(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) = 0 in T N , (1.15)

and, respectively,

dI2 − a(y)
∫

RM

[v(y + β(z)) − v(y)] dq0(z) − a(y)I2 − f(y) = 0 in T N , (1.16)

provided that dq0(z) (the rescaled measure defined in (1.11)) satisfies (1.5) with
γ = 2 (respectively γ = 1). In some cases, we can only find the unique number
dI1 (respectively, dI2) that satisfies the following weaker property. For the case of
(1.15), dI1 is the unique number such that, for any δ > 0, there exist a subsolution
vδ and a supersolution vδ of

dI1 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � δ in T N

and

dI1 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � −δ in T N .

The weaker version of (1.16) will be stated in § 4. As noted in [9] for the case of
partial differential equations, the existence of the unique number dI1 (respectively,
dI2) is shown by the strong maximum principle (SMP) for the Lévy operator. Since
the Lévy density dq0(z) in (1.15) (respectively, (1.16)) is possibly degenerate, we
must establish a new SMP for our present purposes. We shall give a general sufficient
condition for the SMP in § 2 (condition (B)), in terms of the controllability of the
jump process: x → x + β(z), z ∈ S0.

Although we have stated our problem in linear cases, for reasons of simplicity,
the present method is also applicable to nonlinear homogenization problems.

Example 1.6. Let Ω ⊂ R
3 be an open domain, and let β1 : R → R

3, β2 : R
2 → R

3

be such that

β1(z′) = (0, 0, z′), ∀z′ ∈ R, β2(z′′) = (z′′
1 , z′′

2 , 0), ∀z′′ = (z′′
1 , z′′

2 ) ∈ R
2.

https://doi.org/10.1017/S0308210510001897 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001897


922 M. Arisawa

Consider

uε(x) + max
{

−a

(
x

ε

) ∫
R

[uε(x + β1(z′)) − uε(x) − 1|z′|�1〈∇uε(x), β1(z′)〉] dq1(z′)

− a

(
x

ε

) ∫
R2

[uε(x + β2(z′′)) − uε(x)

− 1|z′′|�1〈∇uε(x), β2(z′′)〉] dq2(z′′)
}

− f

(
x

ε

)
= 0 in Ω,

(1.17)

with the Dirichlet condition (1.2). Here, dq1(z′), dq2(z′′) are, respectively, a one-
dimensional Lévy measure and a two-dimensional Lévy measure. More detailed
assumptions will be given later. We shall give the effective equation for this homog-
enization problem in § 5.

This paper is organized as follows. In § 2 we state the SMP for Lévy operators
with degenerate densities satisfying a fairly general condition (B) given below. In
§ 3, under condition (B), we solve the ergodic cell problems (1.15) and (1.16). In § 4
the homogenization problem (1.1), (1.3) is solved rigorously. In § 5 a generalization
to nonlinear problems, such as example 1.6, is given. In Appendix A the defini-
tions of viscosity solutions for integro-differential equations with Lévy operators
are reviewed for the reader’s benefit. Throughout the paper, by subsolution and
supersolution we take to mean the viscosity subsolution and the viscosity superso-
lution, respectively. We denote by USC(RN ) and by LSC(RN ) the set of all upper
semicontinuous functions on R

N , and the set of all lower semicontinuous functions
on R

N , respectively. For x ∈ R
N we denote by Br(x) a ball centred at x with radius

r > 0.

2. Strong maximum principle in T N

In this section we establish the SMP for Lévy operators with asymmetric, degen-
erate densities. We use this result to solve the ergodic cell problem in § 3. Our
presentation is slightly more general than necessary. Let H(y, p) be a continuous
real-valued function defined in R

N × R
N , periodic in y with the period T N , satis-

fying
H(y, 0) � 0, ∀y ∈ T N . (2.1)

We consider

H(y, ∇u) − a(y)
∫

RM

[u(y + β(z)) − u(y) − 〈∇u(y), β(z)〉] dq0(z) = 0 in T N

(2.2)

and

H(y, ∇u) − a(y)
∫

RM

[u(y + β(z)) − u(y)] dq0(z) = 0 in T N ,

(2.3)
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where β(z) satisfies (1.4), a(y) satisfies (1.6), and dq0(z) satisfies (1.5) with γ = 2 in
the case of (2.2), and γ = 1 in the case of (2.3). We assume the following condition.

(B) For any two points y, y′ ∈ T N , there exist a finite number of points y1, . . . , ym

∈ T N such that y1 = y, ym = y′, and, for any m positive numbers εi > 0.
1 � i � m, we can take subsets Ji ⊂ S0 = supp(dq0(z)), 1 � ∀i � m − 1,
satisfying

yi + β(z) ∈ Bεi
(yi+1), ∀z ∈ Ji,

∫
Ji

1dq0(z) > 0, 1 � ∀i � m. (2.4)

Condition (B) describes the controllability of the jump process y → y+β(z), z ∈ S0.

Theorem 2.1. Let u ∈ USC(RN ) be a viscosity subsolution of (2.2) (respectively,
(2.3)). Assume that (1.4), (1.6) and (2.1) hold, and that dq0(z) satisfies condi-
tion (B) and (1.5) with γ = 2 (respectively, γ = 1). If u attains a maximum at ȳ
in T N , then u is constant in T N .

Proof. Let u(ȳ) = M , and set Ω0 = {y ∈ T N | u ≡ M}. Assume that Ωc
0 �= ∅, which

should lead to a contradiction. Take a point y′ ∈ Ωc
0, and note that u(y′) < M .

From condition (B), we can take a finite number of points, y1, . . . , ym ∈ T N such
that y1 = ȳ, ym = y′, m positive numbers εi, 1 � i � m, and m−1 subsets Ji ⊂ S0
that satisfy (2.4). There exists a number k such that 1 � k < m, with which yk ∈ Ω0
and yk+1 ∈ Ωc

0. Since Ωc
0 is open, we can take sufficiently small εk > 0 such that

Bεk
(yk+1) ⊂ Ωc

0. From condition (B), there exists Jk ⊂ S0 = supp(dq0(z)) such
that

∫
Jk

1 dq0(z) > 0, and

yk + β(z) ∈ Uεk
(yk+1), ∀z ∈ Jk.

Thus, we can take δk > 0 such that

u(yk + β(z)) < M − δk, ∀z ∈ Jk. (2.5)

For the constant function φ(y) ≡ M , y ∈ T N , since u − φ takes a maximum at
yk, from the definition of the viscosity subsolution (see definition A.3), by using
∇φ(yk) = 0, we have

H(yk, 0) − a(yk)
∫

RM

[u(yk + β(z)) − u(yk) − 〈0, β(z)〉] dq0(z) � 0

and, respectively,

H(yk, 0) − a(yk)
∫

RM

[u(yk + β(z)) − u(yk)] dq0(z) � 0.

From (1.6) and (2.1), and from the fact that u(yk) = M > u(yk + β(z)) for any
z ∈ supp(dq0(z)), the above leads to

−
∫

Jk

[u(yk + β(z)) − u(yk)] dq0(z) � 0.

However, from condition (B), this contradicts (2.5), since

−
∫

Jk

[u(yk + β(z)) − u(yk)] dq0(z) � δk

∫
Jk

1 dq0(z) > 0.

Therefore, Ωc
0 = ∅ must hold.
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Remark 2.2.

1. Consider the jump process y → y + β(z), z ∈ S0 = supp(dq0(z)), in T N ,
where dq0(z) is any of the measures defined in examples 1.2–1.5. Then, it is
easy to see that condition (B) is satisfied by each of the measures dq0(z).
(Note that, in example 1.4, for fixed y ∈ T 2, the set {y+(z, ξz) | z ∈ R = S0}
is dense in T 2 for ξ > 0 is irrational.)

2. Let M = N and β(z) = z. If, for some r > 0, Br(0) ⊂ dq0(z), then condi-
tion (B) is satisfied.

3. The SMP in theorem 2.1 can be stated in parallel for a supersolution u ∈
LSC(RN ) of (2.2) (respectively, (2.3)), i.e. if u attains a minimum at ȳ ∈ T N ,
then u is a constant function.

4. Let us replace the Lévy operator in (2.2) to the following:
∫

RM

[u(y + β(z)) − u(y) − 1|z|�1〈∇u(y), β(z)〉] dq0(z),

where dq0(z) satisfies (1.5) with γ = 2. Then the SMP also holds for the above
operator under condition (B).

3. Ergodic problem

In this section we study the ergodic problem of the jump process x → x + β(z),
z ∈ supp(dq0(z)). For λ > 0, we consider

λvλ(y) − a(y)
∫

RM

[vλ(y + β(z)) − vλ(y) − 〈∇vλ(y), β(z)〉] dq0(z)

−f0(y) = 0 in T N (3.1)

and, respectively,

λvλ(y) − a(y)
∫

RM

[vλ(y + β(z)) − vλ(y)] dq0(z) − f0(y) = 0 in T N .

(3.2)

In (3.1), 〈∇vλ(y), β(z)〉 is used instead of the usual term 1|z|�1〈∇vλ(y), β(z)〉 in
the Lévy operator studied in [2, 3, 10]. However, condition (1.5) compensates it in
the integral, and the comparison of solutions for (3.1) (respectively, (3.2)) holds
similarly to [2, 3, 10]. Thus, there exists a unique periodic viscosity solution vλ of
(3.1) (respectively, (3.2)).

Theorem 3.1. Let vλ be a viscosity solution of (3.1) (respectively, (3.2)). Assume
that (1.4) and (1.6) hold, that f0 satisfies (1.7), that dq0(z) satisfies condition (B)
and (1.5) with γ = 2 (respectively, γ = 1). Then there exists a unique real number
d such that

lim
λ→0

λvλ(y) = d uniformly in T N . (3.3)

https://doi.org/10.1017/S0308210510001897 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001897


Homogenizations of asymmetric Lévy operators 925

The number d is characterized by the property that, for any δ > 0, there exists a
subsolution vδ and a supersolution vδ of

d − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z) − f0(y) � δ, (3.4)

d − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z) − f0(y) � −δ, (3.5)

and, respectively,

d − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y)] dq0(z) − f0(y) � δ, (3.6)

d − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y)] dq0(z) − f0(y) � −δ, (3.7)

in T N .

Proof. We prove (3.3) for the problem (3.1). The proof of (3.2) is similar and we
do not write it here. We multiply (3.1) by λ > 0, and set mλ = λvλ. We have

λmλ(y) − a(y)
∫

RM

[mλ(y + β(z)) − mλ(y) − 〈∇mλ(y), β(z)〉] dq0(z)

− λf0(y) = 0 in T N . (3.8)

We claim that the following holds.

Lemma 3.2. Let the assumptions in theorem 3.1 hold.

(i) There exists a constant M > 0 such that the following hold:

|mλ|L∞ � M, ∀λ ∈ (0, 1). (3.9)

(ii) For any θ ∈ (0, min{θ1, θ2}), there exists a constant Cθ > 0 such that

|mλ(y) − mλ(y′)| � Cθ|y − y′|θ, ∀y, y′ ∈ T N , ∀λ ∈ (0, 1). (3.10)

The constants M , Cθ > 0 are independent on λ ∈ (0, 1).

We admit the above estimates for a while, which we shall prove later. Following
lemma 3.2 (mλ = λvλ), from the Ascoli–Arzelá lemma we can take a sequence
λ′ → 0 such that

λ′vλ′(y) → ∃d(y) as λ′ → 0 uniformly in T N ,

where d(y) is a Hölder continuous, periodic function satisfying (3.10). To see that
d(y) is constant, we multiply (3.1) by λ′ > 0, and tend λ′ to zero. By using (3.9),
from the stability of viscosity solutions we obtain

−
∫

RM

[d(y + β(z)) − d(y) − 〈∇d(y), β(z)〉] dq0(z) � 0 in T N .
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Hence, from the SMP in theorem 2.1, d(y) is constant, i.e. d(y) ≡ d for some real
number d. Next, assume that there exists another sequence λ′′ → 0 and another
number d′ such that

λ′′vλ′′(y) → d′ as λ′′ → 0 uniformly in T N .

Without loss of generality, we may assume that d′ < d. For arbitrary small µ > 0, by
taking λ′ > 0 and sufficiently small λ′′ > 0, we have the following two inequalities:

d − a(y)
∫

RM

[vλ′(y + β(z)) − vλ′(y) − 〈∇vλ′(y), β(z)〉] dq0(z) − f0(y) � 1
2µ,

d′ − a(y)
∫

RM

[vλ′′(y + β(z)) − vλ′′(y) − 〈∇vλ′′(y), β(z)〉] dq0(z) − f0(y) � − 1
2µ.

We shall write w
¯

= vλ′ , w̄ = vλ′′ . By adding a constant if necessary, we may assume
that

w
¯
(y) > w̄(y), ∀y ∈ T N . (3.11)

We take sufficiently small λ > 0 such that |λw
¯
|L∞ , |λw̄|L∞ < 1

2µ. Then w
¯

and w̄
respectively satisfy

λw
¯
(y) − a(y)

∫
RM

[w
¯
(y + β(z)) − w

¯
(y) − 〈∇w

¯
(y), β(z)〉] dq0(z) + d − f0(y) � µ,

λw̄(y) − a(y)
∫

RM

[w̄(y + β(z)) − w̄(y) − 〈∇w̄(y), β(z)〉] dq0(z) + d′ − f0(y) � −µ.

From the comparison principle [2, 3, 10] we obtain

λ(w
¯
(y) − w̄(y)) � d′ − d + 2µ, ∀y ∈ T N ,

which contradicts (3.11) for sufficiently small µ > 0. Therefore, d = d′ should hold,
and the claim is proved.

Proof of lemma 3.2. (i) The uniform bound for |mλ|L∞ , ∀λ ∈ (0, 1), is clear from
the comparison principle for (3.8), i.e. |λmλ|L∞ � |λf0|L∞ .

(ii) We prove the inequality using a contradiction argument. Let r > 0 be a fixed
number to be determined later. Set

Cθ =
2M

rθ
. (3.12)

Assume that there exist ȳ, ȳ′ ∈ T N such that

|mλ(ȳ) − mλ(ȳ′)| > Cθ|ȳ − ȳ′|θ, (3.13)

which leads to a contradiction. Note that |ȳ − ȳ′| < r must hold. Set

Φ(y, y′) = mλ(y) − mλ(y′) − Cθ|y − y′|θ, y, y′ ∈ T N .

Let (ŷ, ŷ′) be a maximum point of Φ in T N . We may assume that Φ(ŷ, ŷ′) is the
strict maximum. Set φ(y, y′) = Cθ|y − y′|θ, p = ∇yφ(ŷ, ŷ′), Q = ∇2

yφ(ŷ, ŷ′). From
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the definition of the viscosity solution, we obtain

λmλ(ŷ) − a(ŷ)
∫

RM

[mλ(ŷ + β(z)) − mλ(ŷ) − 〈p, β(z)〉] dq0(z) � λf0(ŷ),

λmλ(ŷ′) − a(ŷ′)
∫

RM

[mλ(ŷ′ + β(z)) − mλ(ŷ′) − 〈p, β(z)〉] dq0(z) � λf0(ŷ′).

By dividing the above two inequalities by a(ŷ) and a(ŷ′), respectively, then taking
the difference, we have

λmλ(ŷ)
a(ŷ)

− λmλ(ŷ′)
a(ŷ′)

−
∫

RM

[mλ(ŷ + β(z)) − mλ(ŷ)

− mλ(ŷ′ + β(z)) + mλ(ŷ′)] dq0(z) � λf0(ŷ)
a(ŷ)

− λf0(ŷ′)
a(ŷ′)

.

Since, for any z ∈ R
M ,

mλ(ŷ) − mλ(ŷ′) − Cθ|ŷ − ŷ′|θ � mλ(ŷ + β(z)) − mλ(ŷ′ + β(z)) − Cθ|ŷ − ŷ′|θ,

the preceding inequality leads to

λa(ŷ′)mλ(ŷ) − λa(ŷ)mλ(ŷ′) � λa(ŷ′)f0(ŷ) − λa(ŷ)f0(ŷ′),

which leads to

a(ŷ′)(mλ(ŷ) − mλ(ŷ′))
� (a(ŷ) − a(ŷ′))mλ(ŷ′) + a(ŷ′)(f0(ŷ) − f0(ŷ′)) + (a(ŷ′) − a(ŷ))f0(ŷ′).

Thus, from (1.6), (1.7) and (3.13), since (ŷ, ŷ′) is the maximum point of Φ, the
above leads to

Cθ|ŷ − ŷ′|θ � L′(|ŷ − ŷ′|θ1 + |ŷ − ŷ′|θ2),

where L′ = a−1
0 L(M + ‖a‖L∞(T N ) + ‖f0‖L∞(T N )). Therefore, from (3.12), since θ ∈

(0, min{θ1, θ2}) and |x̂ − x̂′| < r,

2M � L′(|ŷ − ŷ′|θ1−θrθ + |ŷ − ŷ′|θ2−θrθ) � L′(rθ1 + rθ2).

By taking r > 0 sufficiently small such that rθ1 + rθ2 < 2ML′−1, we obtain the
desired contradiction. This shows the existence of Cθ > 0 such that (ii) holds.
Moreover, the constant Cθ does not depend on λ ∈ (0, 1).

Corollary 3.3.

(i) Let vλ be the solution of (3.1) with dq0(z) and β(z) given in either example 1.2
with α ∈ (1, 2), examples 1.3 and 1.4 with α ∈ (1, 2), or example 1.5 with
α ∈ (1, 2). Then there exists a unique constant d such that (3.3) holds.

(ii) Let vλ be the solution of (3.2) with dq0(z) and β(z) given in either example 1.2
with α ∈ (0, 1), example 1.4 with α ∈ (0, 1), or example 1.5 with α ∈ (0, 1).
Then there exists a unique constant d such that (3.3) holds.

Proof. As we have seen in remark 2.2 each of the measures dq0(z) in examples 1.2–
1.5 satisfies condition (B). Hence, the claim follows from theorem 3.1.
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Remark 3.4.

1. The SMP (theorem 2.1) is essential to prove the existence of the ergodic
number d in theorem 3.1.

2. We can generalize theorem 3.1 by adding a fully nonlinear degenerate elliptic
second-order operator F (x,∇u, ∇2u) to (3.1) (respectively, (3.2)) (see [4] for
an outline of the proof).

4. Homogenizations

In this section we give our main results of the homogenization problems (1.1) and
(1.2), and (1.3) and (1.2) in theorems 4.7 and 4.9, respectively. Throughout this
section we assume that condition (A) holds. Let uε be the solution of (1.1) and (1.2)
(respectively, (1.3) and (1.2)). By introducing the formal asymptotic expansion
(1.8),

uε(x) = ū(x) + εαv

(
x

ε

)
+ o(εα), x ∈ R

N ,

into (1.1) (respectively, (1.3)), by using the homogeneity of β in (1.4) and by noting
that (1.13) and (1.14) hold, we obtain the following cell problem (1.15):

dI1 −a(y)
∫

RM

[v(y+β(z))−v(y)−〈∇v(y), β(z)〉] dq0(z)−a(y)I1−f(y) = 0 in T N ,

where

I1 = I1[ū](x) =
∫

RM

[ū(x + β(z)) − ū(x) − 1|z|�1〈∇ū(x), β(z)〉] dq(z),

respectively, we obtain (1.16):

dI2 − a(y)
∫

RM

[v(y + β(z)) − v(y)] dq0(z) − a(y)I2 − f(y) = 0 in T N ,

where
I2 = I2[ū](x) =

∫
RM

[ū(x + β(z)) − ū(x)] dq(z),

provided that dq0(z) satisfies (1.5) with γ = 2 (respectively, γ = 1). Note that,
according to condition (A), the Lévy measure dq(z) in (1.1) (respectively, (1.3))
is transformed to dq0(z) in the cell problem (1.15) (respectively, (1.16)). For any
I1 ∈ R (respectively, I2 ∈ R), from theorem 3.1 (with f0(y) = a(y)Ii + f(y),
i = 1, 2), there exists a unique number dI1 (respectively, dI2) such that, for any
δ > 0, there exist vδ a periodic subsolution and vδ a periodic supersolution of

dI1 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � 1
2δ in T N ,

dI1 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y) − 〈∇vδ(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � − 1
2δ in T N ,
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and, respectively,

dI2 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y)] dq0(z) − a(y)I2 − f(y) � 1
2δ in T N ,

dI2 − a(y)
∫

RM

[vδ(y + β(z)) − vδ(y)] dq0(z) − a(y)I2 − f(y) � − 1
2δ in T N .

For reasons that will be explained later, let us regularize vδ and vδ. For ν > 0,
define

(sup convolution) vν
δ (x) = sup

|y−x|�ν

{
vδ(y) − 1

ν2 |y − x|2
}

,

(inf convolution) vδ
ν(x) = inf

|y−x|�ν

{
vδ(y) +

1
ν2 |y − x|2

}
.

Set v
¯

= vν
δ , v̄ = vδ

ν . It is known that v
¯

is semiconvex, v̄ is semiconcave, and both
are Lipschitz continuous [13,16]. Moreover, since

lim
ν→0

vν
δ = vδ, lim

ν→0
vδ

ν = vδ

uniformly in T N , for any δ > 0, we can take ν > 0 such that v
¯

and v̄ are, respectively,
a subsolution and a supersolution of the following:

dI1 − a(y)
∫

RM

[v
¯
(y + β(z)) − v

¯
(y) − 〈∇v

¯
(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � δ in T N , (4.1)

dI1 − a(y)
∫

RM

[v̄(y + β(z)) − v̄(y) − 〈∇v̄(y), β(z)〉] dq0(z)

−a(y)I1 − f(y) � −δ in T N (4.2)

and, respectively,

dI2 − a(y)
∫

RM

[v
¯
(y + β(z)) − v

¯
(y)] dq0(z) − a(y)I2 − f(y) � δ in T N , (4.3)

dI2 − a(y)
∫

RM

[v̄(y + β(z)) − v̄(y)] dq0(z) − a(y)I2 − f(y) � −δ in T N (4.4)

(see, for example, [3, 16]). We use the above approximated cell problem in place of
(1.15) in the following argument. Define

Ī1(I1) = −dI1 , ∀I1 ∈ R and, respectively, Ī2(I2) = −dI2 , ∀I2 ∈ R, (4.5)

where the right-hand side is a unique number such that, for any δ > 0, (4.1)
and (4.2) (respectively, (4.3) and (4.4)) have a subsolution and a supersolution,
respectively. We now prepare some lemmas which we will use later in the paper.

Lemma 4.1 (Arisawa [6]). Assume that (1.4), (1.6) and (1.7) hold, and that dq0(z)
satisfies condition (B) and (1.5) with γ = 2 (respectively, γ = 1). Then the func-
tion Ī1 (respectively, Ī2) defined in (4.5) is continuous and satisfies the following
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property. There exists Θ > 0 such that

Ī1(I + I ′) − Ī1(I) � −ΘI ′, ∀I ∈ R, ∀I ′ � 0, (4.6)

and, respectively,

Ī2(I + I ′) − Ī2(I) � −ΘI ′, ∀I ∈ R, ∀I ′ � 0. (4.7)

The above result was presented in [6], which was originally given in [14] for the
partial differential equation case. The proof does not differ much from [6,14], so we
omit it here.

Remark 4.2. Let u ∈ C2(RN ). Then, by putting

I1 = I1[u](x) =
∫

RM

[u(x + β(z)) − u(x) − 1|z|�1〈∇u(x), β(z)〉] dq(z),

I2 = I2[u](x) =
∫

RM

[u(x + β(z)) − u(x)] dq(z)

into Ī1 (respectively, Ī2), the map u → Ī1(I1[u](x)) (respectively, u → Ī2(I2[u](x)))
can be regarded as an integro-differential operator. The property (4.7) implies that
Ī1(I1[u](x)) (respectively, Ī2(I2[u](x))) is subelliptic [6].

Lemma 4.3. Let Ī1 (respectively, Ī2) be the functions defined in (4.5). Consider

u + Ī1(I1[u](x)) = 0 and, respectively, u + Ī2(I2[u](x)) = 0 in Ω, (4.8)

with (1.2). Let u, v be a subsolution and a supersolution, respectively, of (4.8) and
(1.2). Then, u � v in Ω. Moreover, there exists a unique viscosity solution u of
(4.8) and (1.2).

Proof. The comparison principle can be shown by the usual contradiction argu-
ment, from the subellipticities (4.6) and (4.7). The existence of the solution can be
obtained using Perron’s method. This argument was used in [2, 3, 6, 10] and we do
not repeat it here.

We give the following result in the convex analysis, which we cite without proof
(see [13,16] for details). For an upper or a lower semicontinuous function Φ defined
in an open subset O in R

n, for ρ > 0, put

Mρ = {x̄ ∈ O | ∃p ∈ R
n such that |p| � ρ, Φ(x) � Φ(x̄) + 〈p, x − x̄〉, ∀x ∈ O}.

Lemma 4.4 (Crandall et al . [13], Fleming and Soner [16]). Let Φ be a semiconvex
function in an open domain O, and let x′ be a maximizer of Φ in O such that

µ = sup
O

Φ(x) − sup
∂O

Φ(x) = Φ(x′) − sup
∂O

Φ(x) > 0.

Then the following hold.

(i) Φ is differentiable at x′ and ∇Φ(x′) = 0.
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(ii) For any m ∈ N , there exists xm ∈ M1/m such that Φ is twice differentiable at
xm, limm→∞ xm = x′, ∇2Φ(xm) � O, |∇Φ(xm)| � 1/m. For pm = ∇Φ(xm),
the function

Φm(x) = Φ(x) − 〈pm, x〉
takes a maximum at x = xm.

Lemma 4.5. Let v̄(y) be a periodic semiconcave function defined in T N . Assume
that, for a function Ψ(x) ∈ C2(RN ), Ψ(x) + εαv̄(x/ε) takes a global minimum at
x̄. Then, the following hold for any z ∈ R

M , with a constant C > 0 independent on
ε > 0 and x̄:

(i)

−Cε2−α|z|2 � v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
−

〈
∇y v̄

(
x̄

ε

)
, β(z)

〉
� C|z|2; (4.9)

(ii)

−Cε1−α|z| � v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
� C|z|. (4.10)

Proof of lemma 4.5. (i) The second inequality comes from the semiconcavity of
v̄ and (1.4). The first inequality is derived from the fact that Ψ(x) + εαv̄(x/ε)
takes a global minimum at x̄. In fact, since Ψ(x) + εαv̄(x/ε) is semiconcave, it is
differentiable at x̄ and ∇Ψ(x̄) + ε−1+α∇y v̄(x̄/ε) = 0,

Ψ(x̄) + εαv̄

(
x̄

ε

)
� Ψ(x̄ + εβ(z)) + εαv̄

(
x̄

ε
+ β(z)

)
, ∀z ∈ R

M ,

for any ε > 0. Thus, we obtain

εα

(
v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
−

〈
ε−1∇y v̄

(
x̄

ε

)
, εβ(z)

〉)

� −(Ψ(x̄ + εβ(z)) − Ψ(x̄) − 〈∇Ψ(x̄), εβ(z)〉)
� −ε2|β(z)|2|∇2Ψ(x̄ + µεβ(z))|,

where µ ∈ (0, 1). From (1.4), the first inequality holds with a constant C > 0
independent on ε > 0 and x̄.

(ii) The second inequality comes from the Lipschitz continuity of v̄ and (1.4). The
first inequality is proved in a similar way to (i).

Lemma 4.6. Let v̄(y) be a periodic semiconcave function defined in T N . Assume
that, for a function Ψ(x) ∈ C2(RN ), Ψ(x) + g(ε)v̄(x/ε) takes a minimum at x̄.
Then the following hold.

(i) If dq0(z) satisfies (1.5) with γ = 2,

εα

∫
RM

[
v̄

(
x̄ + β(z)

ε

)
− v̄

(
x̄

ε

)
− 1|z|�1

〈
ε−1∇y v̄

(
x̄

ε

)
, β(z)

〉]
dq(z)

=
∫

RM

[
v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
−

〈
∇y v̄

(
x̄

ε

)
, β(z)

〉]
dq0(z) + O(ε).

(4.11)
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(ii) If dq0(z) satisfies (1.5) with γ = 1,

εα

∫
RM

[
v̄

(
x̄ + β(z)

ε

)
− v̄

(
x̄

ε

)]
dq(z)

=
∫

RM

[
v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)]
dq0(z) + O(ε). (4.12)

Proof. (i) From (1.4) (i.e. ε−1β(z) = β(z/ε)), we have

εα

∫
RM

[
v̄

(
x̄ + β(z)

ε

)
− v̄

(
x̄

ε

)
− 1|z|�1

〈
ε−1∇y v̄

(
x̄

ε

)
, β(z)

〉]
dq(z)

= εα

∫
RM

[
v̄

(
x̄

ε
+ β

(
z

ε

))
− v̄

(
x̄

ε

)
− 1|z|�1

〈
∇y v̄

(
x̄

ε

)
, β

(
z

ε

)〉]
dq(z)

=
∫

RM

[
v̄

(
x̄

ε
+ β(z′)

)
− v̄

(
x̄

ε

)
− 1|εz′|�1

〈
∇y v̄

(
x̄

ε

)
, β(z′)

〉]
εM+αq(εz′) dz′.

Then, by condition (A), and (1.5) with γ = 2,
∣∣∣∣
∫

RM

[
v̄

(
x̄

ε
+ β(z′)

)
− v̄

(
x̄

ε

)
− 1|εz′|�1

〈
∇y v̄

(
x̄

ε

)
, β(z′)

〉]
εM+αq(εz′) dz′

−
∫

RM

[
v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
−

〈
∇y v̄

(
x̄

ε

)
, β(z)

〉]
dq0(z)

∣∣∣∣
� C

∫
|z|�1

[
v̄

(
x̄

ε
+ β(z)

)
− v̄

(
x̄

ε

)
−

〈
∇y v̄

(
x̄

ε

)
, β(z)

〉]
|εM+αq(εz) − q0(z)| dz

+ C

∫
|z|>1

|z| |εM+αq(εz) − q0(z)| dz

� C ′
( ∫

|z|�1
|z|2|εM+αq(εz) − q0(z)| dz +

∫
|z|>1

|z| |εM+αq(εz) − q0(z)| dz

)

= O(ε),

where we used part (i) of lemma 4.5 to obtain the last estimate.

(ii) The proof is similar to that of (i), while we use (1.5) with γ = 1 and part (ii)
of lemma 4.5.

We now state the main result of the paper.

Theorem 4.7. Let uε be the solution of (1.1) and (1.2). Assume that (1.4), (1.5)
(with γ = 2), (1.6), (1.7), and conditions (A) and (B) hold. Assume also that dq0(z)
defined in (1.11) satisfies (1.5) with γ = 2. Then there exists a unique function

ū(x) = lim
ε→0

uε(x), ∀x ∈ R
N ,

which is a unique viscosity solution of

ū(x) + Ī1[I1[ū](x)] = 0 in Ω, (4.13)
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and (1.2), where Ī1 is given by (4.5) with

I1[ū](x) =
∫

RM

[ū(x + β(z)) − ū(x) − 1|z|�1〈∇ū(x), β(z)〉] dq(z).

Proof of theorem 4.7. We use the perturbed test function method introduced in
[14] (see also [18]), which is now standard, to solve homogenization problems in
the framework of viscosity solutions. Here, we must take extra care to treat the
difference between the original Lévy measure dq(z) and the rescaled measure dq0(z)
in the cell problem (1.15) (and (4.1) and (4.2)). Let

u∗(x) = lim sup
ε→0,y→x

uε(y), u∗(x) = lim inf
ε→0,y→x

uε(y), ∀x ∈ R
N .

In the following, we divide our argument into two steps.

1. We show that u∗ is a subsolution of (4.13). By assuming that u∗ is not the
subsolution of (4.13), we obtain a contradiction. So, assume that, for a function
φ(x) ∈ C2(RN ), u∗ − φ takes a global strict maximum at x̄, u∗(x̄) = φ(x̄), and for
some γ > 0, the following holds:

φ(x̄) + Ī1

[ ∫
RM

[φ(x̄ + β(z)) − φ(x̄) − 1|z|�1〈∇φ(x̄), β(z)〉] dq(z)
]

= 3γ > 0.

Then, from the continuities of Ī1 (lemma 4.1) and φ, for sufficiently small r > 0,

φ(x) + Ī1[I1[φ](x)] > 2γ in Br(x̄), (4.14)

where

I1[φ](x) =
∫

RM

[φ(x + β(z)) − φ(x) − 1|z|�1〈∇φ(x), β(z)〉] dq(z).

From (4.2), for δ > 0 and I1 = I1[φ](x̄), we know that there exists a periodic,
semiconcave, Lipschitz continuous function v̄ which satisfies

dI1[φ](x̄) − a(y)
∫

RM

[v̄(y + β(z)) − v̄(y) − 〈∇v̄(y), β(z)〉] dq0(z)

− a(y)I1[φ](x̄) − f(y) � − 1
2δ in T N . (4.15)

To continue the proof of theorem 4.7 we need the following lemma.

Lemma 4.8. Let φε(x) = φ(x) + εαv̄(x/ε). The function φε is a viscosity super-
solution of

φε(x) − a

(
x

ε

) ∫
RM

[φε(x + β(z)) − φε(x) − 1|z|�1〈∇φε(x), β(z)〉] dq(z)

− f

(
x

ε

)
� γ in Br(x̄), (4.16)

where the Lévy density dq(z) is the one in (1.1).
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Proof of lemma 4.8. To confirm (4.16) in the sense of viscosity solutions, assume
that, for some ψ ∈ C2(RN ), φε − ψ takes a strict minimum at x = x′ and φε(x′) =
ψ(x′). From definition A.2 we must show that

φε(x′) − a

(
x′

ε

) ∫
RM

[ψ(x′ + β(z)) − ψ(x′) − 1|z|�1〈∇ψ(x′), β(z)〉] dq(z)

− f

(
x′

ε

)
� γ.

(4.17)

Since −(φε−ψ) is semiconvex, from lemma 4.4, we can take a sequence x′
m ∈ Ω such

that x′
m → x′ as m → ∞, φε −ψ is twice differentiable at x′

m, ∇2(φε −ψ)(x′
m) � O,

|∇(φε − ψ)(x′
m)| � 1/m. Furthermore, by setting

pm = ∇(φε − ψ)(x′
m),

(φε − ψ)(x) − 〈pm, x〉 takes a minimum at x′
m. Put ψm(x) = ψ(x) + 〈pm, x〉. To see

(4.17), we first prove

φε(x′
m) − a

(
x′

m

ε

) ∫
RM

[ψm(x′
m + β(z)) − ψm(x′

m) − 1|z|�1〈∇ψm(x′
m), β(z)〉] dq(z)

− f

(
x′

m

ε

)
� γ

(4.18)

for any sufficiently large m ∈ N . By noting that φε − ψm is twice differentiable at
x′

m and that ψm ∈ C2, we know that φε is twice differentiable at x′
m. Since φε is

semiconcave and Lipschitz, from (1.5) we obtain

φε(x′
m + β(z)) − φε(x′

m) − 1|z|�1〈∇φε(x′
m), β(z)〉 ∈ L1(RM , dq(z)).

We can show that

φε(x′
m) − a

(
x′

m

ε

) ∫
RM

[φε(x′
m + β(z)) − φε(x′

m) − 1|z|�1〈∇φε(x′
m), β(z)〉] dq(z)

− f

(
x′

m

ε

)
� γ,

(4.19)

in the classical sense, for any sufficiently large m ∈ N . To see (4.19), we use part (i)
of lemma 4.6 (4.11) for Ψ = φ − ψm, x̄ = x′

m to obtain

εα

∫
RM

[
v̄

(
x′

m + β(z)
ε

)
− v̄

(
x′

m

ε

)
− 1|z|�1

〈
ε−1∇y v̄

(
x′

m

ε

)
, β(z)

〉]
dq(z)

=
∫

RM

[
v̄

(
x′

m

ε
+ β(z)

)
− v̄

(
x′

m

ε

)
−

〈
∇y v̄

(
x′

m

ε

)
, β(z)

〉]
dq0(z) + O(ε).

(4.20)

https://doi.org/10.1017/S0308210510001897 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001897


Homogenizations of asymmetric Lévy operators 935

Thus, from (4.15), with y = x′
m/ε, for sufficiently small ε > 0,

dI1[φ](x̄) − a

(
x′

m

ε

)
εα

∫
RM

[
v̄

(
x′

m + β(z)
ε

)
− v̄

(
x′

m

ε

)

− 1|z|�1

〈
ε−1∇y v̄

(
x′

m

ε

)
, β(z)

〉]
dq(z)

− a

(
x′

m

ε

)
I1[φ](x̄) − f

(
x′

m

ε

)
� −δ.

We introduce this into (4.14) (for x = x′
m ∈ Br(x̄)):

φ(x′
m) + Ī1

[ ∫
RM

[φ(x′
m + β(z)) − φ(x′

m) − 1|z|�1〈∇φ(x′
m), β(z)〉] dq(z)

]
> 2γ.

By taking sufficiently small ε > 0, δ > 0 such that

δ +
∣∣∣∣εαv̄

(
x′

m

ε

)∣∣∣∣ � 1
4γ,

by noting that dI1[φ](x̄) = −Ī1(I1[φ](x̄)), and from the continuities of Ī1, φ, for
sufficiently small r > 0 we obtain

φ(x′
m) + εαv̄

(
x′

m

ε

)

− a

(
x′

m

ε

) ∫
RM

[(
φ(x′

m + β(z)) + εαv̄

(
x′

m + β(z)
ε

))
−

(
φ(x′

m) + εαv̄

(
x′

m

ε

))

− 1|z|�1〈∇φ(x′
m) + εα−1∇y v̄

(
x′

m

ε

)
, β(z)〉

]
dq(z)

− f

(
x′

m

ε

)
� γ.

Thus, (4.19) is proved. From ∇φε(x′
m) = ∇ψm(x′

m) and

(φε − ψm)(x′
m) � (φε − ψm)(x′

m + β(z)), ∀z ∈ R
M ,

(4.19) leads to (4.18):

φε(x′
m) − a

(
x′

m

ε

) ∫
RM

[ψm(x′
m + β(z)) − ψm(x′

m) − 1|z|�1〈∇ψm(x′
m), β(z)〉] dq(z)

− f

(
x′

m

ε

)
� γ.

From (4.18), since |pm| � 1/m, and since

ψm(x′
m + β(z)) − ψm(x′

m) − 1|z|�1〈∇ψm(x′
m), β(z)〉

→ ψ(x′ + β(z)) − ψ(x′) − 1|z|�1〈∇ψ(x′), β(z)〉 ∈ L1(RM , dq(z))

as m → ∞, we have shown (4.17), and thus lemma 4.8 is proved.
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We continue the proof of theorem 4.7. Now, the comparison principle for (1.1)
and (4.16) leads to

sup
x∈Ur(x̄)

{uε(x) − φε(x)} � sup
x∈Ur(x̄)c

{uε(x) − φε(x)} + γ.

By letting ε → 0, since γ > 0 is arbitrary,

sup
x∈Ur(x̄)

{u∗(x) − φ(x)} � sup
x∈Ur(x̄)c

{u∗(x) − φ(x)}.

However, this contradicts the fact that x̄ is the strict global maximum of u∗ − φ.
Therefore, u∗ must be a viscosity subsolution of (4.13).

2. By the parallel argument, we can prove that u∗ is a viscosity supersolution of
(4.13), which we do not repeat here. Now, from the definition of u∗ and u∗, we have

u∗ � uε � u∗, ∀ε > 0.

From the comparison principle for the viscosity solution of (4.13) and (1.2) in
lemma 4.3, we have

u∗ � u∗ in Ω̄.

Thus, there exists a limit
ū = lim

ε→0
uε = u∗ = u∗

that is the unique viscosity solution of (4.13) and (1.2).

Our second result is the following.

Theorem 4.9. Let uε be the solution of (1.3) and (1.2). Assume that (1.4), (1.5)
(with γ = 1), (1.6) and (1.7) hold, and that conditions (A) and (B) hold. Assume
also that dq0(z) defined in (1.11) satisfies (1.5) with γ = 1. Then there exists a
unique function

ū(x) = lim
ε→0

uε(x), ∀x ∈ R
N ,

which is a unique viscosity solution of

ū(x) + Ī2[I2[ū](x)] = 0 in Ω (4.21)

and (1.2), where Ī2 is given by (4.5) and

I2[ū](x) =
∫

RM

[ū(x + β(z)) − ū(x)] dq(z).

Proof of theorem 4.9. The proof is similar to that of theorem 4.7 (in fact, it is sim-
pler because there is no term 1|z|�1〈∇u(x), β(z)〉 in the integral). We use part (ii)
of lemma 4.6 instead of part (i).

Corollary 4.10.

(i) Let uε be the solution of (1.1) and (1.2). Assume that (1.6) and (1.7) hold,
and that dq(z) and β(z) are given by either example 1.2 with α ∈ (1, 2),
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examples 1.3 and 1.4 with α ∈ (1, 2), or example 1.5 with α ∈ (1, 2). Then
there exists a unique function

ū(x) = lim
ε→0

uε(x), ∀x ∈ R
N ,

which is a unique viscosity solution of (4.13) and (1.2).

(ii) Let uε be the solution of (1.3) and (1.2). Assume that (1.6) and (1.7) hold,
and that dq(z) and β(z) are given by either example 1.2 with α ∈ (0, 1),
example 1.4 with α ∈ (0, 1), or example 1.5 with α ∈ (0, 1). Then there exists
a unique function

ū(x) = lim
ε→0

uε(x), ∀x ∈ R
N ,

which is a unique viscosity solution of (4.21) and (1.2).

The claims follow from corollary 3.3 and theorems 4.7 and 4.9.

Remark 4.11. The present argument can be generalized to the following type of
homogenization problem:

uε(x) + sup
α̃∈A

{
−a

(
x

ε

) ∫
RM

[uε(x + β(z, α̃))

− uε(x) − 1|z|�1〈∇uε(x), β(z, α̃)〉] dq(z)

− f

(
x

ε
, α̃

)}
= 0 in Ω,

with (1.2), where A is a compact metric set (control set), β(z, α) is a continuous
function in R

M × A with values in R
N satisfying (1.4) uniformly in A, and f(y, α)

is a real-valued continuous function in T N × A satisfying (1.7) uniformly in A. We
leave the detail to the reader.

5. A nonlinear problem

In this section we show how the present method can be applied to more general
nonlinear problems. We consider example 1.6. Let uε be the unique viscosity solution
of (1.17).

Assume that there exist two positive numbers αl ∈ (0, 2), l = 1, 2, subsets
Sl

0 ⊂ Sl = supp(dql(z)), l = 1, 2, and positive functions ql
0(z), l = 1, 2, such

that condition (A) is satisfied:

lim
ε→0

ql(εz)εl+αl dz = ql
0(z) dz, ∀z ∈ Sl

0, l = 1, 2,

lim
ε→0

ql(εz)εl+αl dz = 0 dz, ∀z ∈ R
l/Sl

0, l = 1, 2,

⎫⎬
⎭ (5.1)

and
|εl+αlql(εz)| � C|z|−(l+αl), ∀ε ∈ (0, 1), ∀z ∈ R

l, (5.2)

where dql(z) = ql(z) dz, l = 1, 2, and C > 0 is a constant. We define the following
new measures:

dql
0(z) = ql

0(z) dz, ∀z ∈ Sl
0, dql

0(z) = 0 dz, ∀z ∈ R
l/Sl

0, l = 1, 2. (5.3)
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Here, we further assume that α1 = α2 = α (otherwise, a different problem which
is not concerned with the present interest of the non-local problem arises). We use
the formal asymptotic expansion

uε(x) = ū(x) + εαv

(
x1

ε
,
x2

ε
,
x3

ε

)
, x ∈ R

3, (5.4)

and obtain the following ergodic cell problem. For any given I ′, I ′′ ∈ R, find a
unique number dI′,I′′ with which the following problem has a periodic viscosity
solution v:

dI′,I′′ + max
{

−a(y)
∫

R

[v(y + β1(z′)) − v(y) − 〈β1(z′),∇v(y)〉] dq1
0(z′)

− a(y)I ′,−a(y)
∫

R2
[v(y + β2(z′′)) − v(y) − 〈β2(z′′),∇v(y)〉] dq2

0(z′′)

− a(y)I ′′
}

− f(y) = 0 in T 3,

(5.5)

where

I ′ = I ′[ū](x) =
∫

R

[ū(x + β1(z′)) − ū(x) − 1|z′|�1〈β1(z′),∇ū(x)〉] dq1(z′),

I ′′ = I ′′[ū](x) =
∫

R2
[ū(x + β2(z′′)) − ū(x) − 1|z′′|�1〈β2(z′′),∇ū(x)〉] dq2(z′′).

As in § 3, the existence of the unique number dI′,I′′ in (5.5) comes from the SMP
of the integro-differential equation

H(y, ∇v) + max
{

−
∫

R

[v(y + β1(z′)) − v(y) − 〈β1(z′),∇v(y)〉] dq1
0(z′),

−
∫

R2
[v(y + β2(z′′)) − v(y) − 〈β2(z′′),∇v(y)〉] dq2

0(z′′)
}

= 0 in T 3.

(5.6)

In order to establish the SMP for (5.6), we need to generalize condition (B) of
theorem 2.1 to the following.

(B′) For any two points y, y′ ∈ T 3, there exist a finite number of points y1, . . . , ym

∈ T 3 such that y1 = y, ym = y′, and for any m positive numbers εi > 0,
1 � i � m, we can take subsets Ji, 1 � ∀i � m, either Ji ⊂ S1

0 or Ji ⊂ S2
0 ,

such that if Ji ⊂ Sl
0, l = 1, 2,∫

Ji

1 dql
0(z) > 0, yi + βl(z) ∈ Bεi(yi+1), ∀z ∈ Ji,

for any 1 � i � m.

Theorem 5.1. Let u ∈ USC(R3) be a viscosity subsolution of (5.6). Assume that
βl, l = 1, 2, satisfy (1.4), that dql

0, l = 1, 2, satisfy (1.5) and condition (B′), and
that (2.1) holds. If u attains a maximum at ȳ in T 3, then u is constant in T 3.
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The proof of theorem 5.1 is similar to theorem 2.1, which we do not reproduce
here. By using theorem 5.1, the existence of the unique number dI′,I′′ in (5.5) can
be shown by using a similar argument in § 3. In this way, we can define

Ī(I ′, I ′′) = −dI′,I′′ , ∀(I ′, I ′′) ∈ R
2.

Then, the effective integro-differential equation for ū = limε→0 uε is the following:

ū + Ī(I ′[ū](x), I ′′[ū](x)) = 0, x ∈ Ω,

associated with the Dirichlet condition (1.2), where I ′[ū](x) and I ′′[ū](x) are as
given previously. This formal argument can be confirmed by the perturbed test
function method used in § 4. Since the argument is similar, we just give the outline
here.

Appendix A.

In this section, by following [5], we note three types of equivalent definitions of
the viscosity solutions for a class of integro-differential equations, which includes
(1.1). The comparison and the existence of viscosity solutions in this framework
can be found in [1, 3, 8, 10, 11] and the references therein. The equivalence of these
definitions was shown in [5]. We consider the following problem:

F (x, u(x),∇u(x),∇2u(x))

−
∫

RM

[u(x + β(z)) − u(x) − 1|z|�1〈β(z),∇u(x)〉] dq(z) = 0 in Ω, (A 1)

where F is a real-valued continuous function defined in Ω × R × R
N × SN , which

satisfies the degenerate ellipticity (see [13] for this concept). We say that, for
u ∈ USC(RN ) (respectively, LSC(RN )), (p, X) ∈ R

N × SN is a superdifferen-
tial (respectively, subdifferential) of u at x ∈ Ω if, for any small µ > 0, there exists
ν > 0 such that the following holds:

u(x + z) − u(x) � 〈p, z〉 + 1
2 〈Xz, z〉 + µ|z|2, ∀|z| � ν, z ∈ R

N ,

and, respectively,

u(x + z) − u(x) � 〈p, z〉 + 1
2 〈Xz, z〉 − µ|z|2, ∀|z| � ν, z ∈ R

N ,

We denote the set of all subdifferentials (respectively, superdifferentials) of u ∈
USC(RN ) (respectively, LSC(RN )) at x ∈ Ω by J2,+

Ω u(x) (respectively, J2,−
Ω u(x)).

We say that (p, X) ∈ R
N × SN belongs to J̄2,+

Ω u(x) (respectively, J̄2,−
Ω u(x)), if

there exist a sequence of points xn ∈ Ω and (pn, Xn) ∈ J2,+
Ω u(xn) (respectively,

J2,−
Ω u(xn)) such that

lim
n→∞

xn = x, lim
n→∞

(pn, Xn) = (p, X).
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From (1.4), for u ∈ USC(RN ) (u ∈ LSC(RN )), if (p, X) ∈ J2,+
Ω u(x) ((p, X) ∈

J2,−
Ω u(x)), we can take a pair of positive numbers (ν, µ) such that

u(x + β(z)) − u(x) � 〈p, β(z)〉 + 1
2 〈Xβ(z), β(z)〉 + µ|β(z)|2, ∀|z| � ν, z ∈ R

M ,

(u(x + β(z)) − u(x) � 〈p, β(z)〉 + 1
2 〈Xβ(z), β(z)〉 − µ|β(z)|2, ∀|z| � ν, z ∈ R

M ).
(A 2)

Definition A.1 (Arisawa [2]). Let u ∈ USC(RN ) (u ∈ LSC(RN )). We say that u
is a viscosity subsolution (supersolution) of (A 1) if, for any x̂ ∈ Ω, any (p, X) ∈
J2,+

Ω u(x̂) ((p, X) ∈ J2,−
Ω u(x̂)), and any pair of numbers (ν, µ) satisfying (A 2), the

following holds:

F (x̂, u(x̂), p, X) −
∫

|z|<ν

1
2 〈(X + 2µI)β(z), β(z)〉 dq(z)

−
∫

|z|�ν

[u(x̂ + β(z)) − u(x̂) − 1|z|�1〈β(z), p〉] dq(z) � 0

(
F (x̂, u(x̂), p, X) −

∫
|z|<ν

1
2 〈(X − 2µI)β(z), β(z)〉 dq(z)

−
∫

|z|�ν

[u(x̂ + β(z)) − u(x̂) − 1|z|�1〈β(z), p〉] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

Definition A.2 (Barles [11], Barles and Imbert [10], Jacobsen and Karlsen [17]).
Let u ∈ USC(RN ) (u ∈ LSC(RN )). We say that u is a viscosity subsolution
(supersolution) of (A 1) if, for any x̂ ∈ Ω, and for any φ ∈ C2(RN ) such that
u(x̂) = φ(x̂) and u − φ takes a maximum (minimum) at x̂, the following holds:

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))

−
∫

RM

[φ(x̂ + β(z)) − φ(x̂) − 1|z|�1〈β(z),∇φ(x̂)〉] dq(z) � 0

(
F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))

−
∫

RM

[φ(x̂ + β(z)) − φ(x̂) − 1|z|�1〈β(z),∇φ(x̂)〉] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

Definition A.3 (Arisawa [5]). Let u ∈ USC(RN ) (LSC(RN )). We say that u is a
viscosity subsolution (supersolution) of (A 1) if, for any x̂ ∈ Ω and for any φ ∈
C2(RN ) such that u(x̂) = φ(x̂) and u − φ takes a global maximum (respectively,
minimum) at x̂:

h(z) = u(x̂ + z) − u(x̂) − 1|z|�1〈β(z),∇φ(x̂)〉 ∈ L1(RM , dq(z))
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and

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))

−
∫

z∈RM

[u(x̂ + β(z)) − u(x̂) − 1|z|�1〈β(z),∇φ(x̂)〉] dq(z) � 0,

(
F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))

−
∫

z∈RM

[u(x̂ + β(z)) − u(x̂) − 1|z|�1〈β(z),∇φ(x̂)〉] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

Theorem A.4. Definitions A.1, A.2 and A.3 are equivalent.

The claim was proved for the case M = N and β(z) = z in [5], and for the case
β depending also on x ∈ R

N in [8]. The present case is contained in [8], which is
similar to [5]. Thus, we do not reproduce the proof here.

We next modify the above definitions to treat the following:

F (x, u(x),∇u(x),∇2u(x)) −
∫

z∈RM

[u(x + β(z)) − u(x)] dq(z) = 0 in Ω, (A 3)

which includes (1.3), where dq(z) satisfies (1.5) with γ = 1. Note that, from (1.4),
for u ∈ USC(RN ) (u ∈ LSC(RN )), if (p, X) ∈ J2,+

Ω u(x) ((p, X) ∈ J2,−
Ω u(x)), for

any µ > 0, we can take ν > 0 such that

u(x + β(z)) − u(x) � 〈p, β(z)〉 + µ|β(z)|2, ∀|z| � ν, z ∈ R
M

(u(x + β(z)) − u(x) � 〈p, β(z)〉 − µ|β(z)|2, ∀|z| � ν, z ∈ R
M ). (A 4)

Definition A.5. Let u ∈ USC(RN ) (u ∈ LSC(RN )). We say that u is a viscos-
ity subsolution (supersolution) of (A 3) if, for any x̂ ∈ Ω, any (p, X) ∈ J2,+

Ω u(x̂)
((p, X) ∈ J2,−

Ω v(x̂)), and any pair of positive numbers (ν, µ) satisfying (A 4), the
following holds:

F (x̂, u(x̂), p, X) −
∫

|z|<ν

〈p + µβ(z), β(z)〉 dq(z)

−
∫

|z|�ν

[u(x̂ + β(z)) − u(x̂)] dq(z) � 0

(
F (x̂, u(x̂), p, X) −

∫
|z|<ν

〈p − µβ(z), β(z)〉 dq(z)

−
∫

|z|�ν

[u(x̂ + β(z)) − u(x̂)] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.
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Definition A.6. Let u ∈ USC(RN ) (u ∈ LSC(RN )). We say that u is a viscosity
subsolution (supersolution) of (A 3) if, for any x̂ ∈ Ω and for any φ ∈ C2(RN ) such
that u(x̂) = φ(x̂) and u − φ takes a maximum (minimum) at x̂, and for any ν > 0,

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂)) −
∫

RM

[φ(x̂ + β(z)) − φ(x̂)] dq(z) � 0

(
F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂)) −

∫
RM

[φ(x̂ + β(z)) − φ(x̂)] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

Definition A.7. Let u ∈ USC(RN ) (u ∈ LSC(RN )). We say that u is a viscosity
subsolution (supersolution) of (A 1) if, for any x̂ ∈ Ω and for any φ ∈ C2(RN ) such
that u(x̂) = φ(x̂) and u − φ takes a global maximum (minimum) at x̂,

h(z) = u(x̂ + z) − u(x̂) ∈ L1(RM , dq(z)),

and

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂)) −
∫

z∈RM

[u(x̂ + β(z)) − u(x̂)] dq(z) � 0

(
F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂)) −

∫
z∈RM

[u(x̂ + β(z)) − u(x̂)] dq(z) � 0
)

.

If u is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

Theorem A.8. Definitions A.5, A.6 and A.7 are equivalent.

Proof. Theorem A.8 can be proved in the same way as [5]. We omit it here to avoid
redundancy.
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