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Past experimental studies have indicated that the Rayleigh fission of a charged drop
occurs via the formation of a jet followed by emission of progeny droplets. In order
to understand this process, we model the evolution of a drop using an axisymmetric
boundary element method in the viscous limit. In this work, the electrostatic model
of a charged viscous liquid drop is modified by including surface charge dynamics.
This model accounts for the finite charge relaxation time scales over which the drop
surface is charged as well as the convection of charges by the interfacial flow. It
is observed that, as the drop deforms with time, the generally applied assumption
of an equipotential surface becomes invalid near the conical ends that experience
singularly fast dynamics and the associated surface charge dynamics gives rise to
tangential electric stresses. These tangential electric stresses exert an axial momentum
on the fluid and are responsible for the formation of a jet and progeny droplets.
Further, the progeny droplets are found to follow an inverse power-law scaling with
the conductivity of the liquid and the smaller sized progenies carry a charge close to
its Rayleigh limit.
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1. Introduction
A charged drop of radius a suspended in a medium with electrical permittivity εe

undergoes an instability when the total charge on the drop exceeds a critical value
of Qc = 8π

√
γ a3εe, where γ is the surface tension of the drop (Rayleigh 1882).

This is termed the Rayleigh instability, which is believed to be responsible for the
breakup of raindrops in thunderstorms, the formation of sub-nanometre droplets in
electrosprays and the generation of ions in ion-mass spectrometry (Fenn et al. 1989;
Rosell-Llompart & De La Mora 1994). This instability occurs when the repulsive
Coulombic force overcomes the restoring surface tension force. An infinitesimal
quadrupolar shape perturbation (the second Legendre mode) on a spherical drop
charged beyond Qc is known to be the most unstable mode (Tsamopoulos, Akylas
& Brown 1985; Basaran & Scriven 1989; Thaokar & Deshmukh 2010). Although
the Rayleigh limit predicts the point of onset of instability, it leaves the details of
the break up pathway completely unspecified. To predict the Rayleigh fission process
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various theoretical models using the energy minimization method were proposed in
the literature (Ryce & Patriarche 1965; Pfeifer & Hendricks 1967; Bailey 1974; Roth
& Kelly 1983; Elghazaly & Castle 1987). However, these simplistic models were
based on several assumptions, such as a charged drop undergoing binary division
or disrupting into n identical progeny droplets, the energy of the system being
conserved before and after the breakup event, the charge on the mother drop being
distributed uniformly to the n progeny droplets. The models compare the initial and
final states of the system and ignore the fluid dynamics, whereby the pathway cannot
be explained in this formalism. Thus, these models could not correctly capture the
complex breakup pathway of a critically charged drop.

The inherent complexity present in the breakup mechanisms was demonstrated only
recently through systematic experiments on a levitated charged drop in a quadrupolar
trap (Duft et al. 2003; Giglio et al. 2008). These experiments indicated that, above its
Rayleigh limit, a charged drop gradually deforms into the shape of a prolate spheroid,
elongating further to form sharp conical tips, wherefrom a jet emerges within a
very short time. These jets further disintegrate into a cloud of smaller daughter
droplets which eventually take away a significant fraction (20 %–50 %) of the original
charge, although the associated mass loss is small (0.1 %–1 %) (Doyle, Moffett &
Vonnegut 1964; Abbas & Latham 1967; Roulleau & Desbois 1972; Richardson, Pigg
& Hightower 1989; Taflin, Ward & Davis 1989; Duft et al. 2003). The size and
charge on the daughter droplets thus formed are important since they determine
whether the progenies can undergo further breakup or not. In this paper, we focus
on providing a model to explain the observed breakup pathway and estimate the size
and charge on the daughter droplets.

The Rayleigh fission process of an isolated charged drop is generally modelled
under the assumption of a perfectly conducting (PC) liquid drop in which the charges
are distributed uniformly on its equipotential surface. The flow equations are solved
numerically using the boundary element method (BEM) either in the viscous flow
limit (Betelú et al. 2006) or in the potential flow limit (Burton & Taborek 2011). Both
these studies show that the charged drop deforms initially into the shape of a spheroid,
progressively deforming into an elongated object with sharp conical tips, whereafter
it undergoes a numerical singularity. The results in the viscous flow limit indicate
that the capillary stresses at the sharp tips become subdominant and a balance of the
viscous and the electric stresses leads to the formation of a dynamic cone angle of
approximately 25◦. In contrast, the simulations for the potential flow limit yield a cone
angle of approximately 49.3◦, coincidentally close to the classical equilibrium angle
of the Taylor cone derived from static considerations. Actual experimental images
show a cone angle of 30◦, indicating significant viscous effects (Giglio et al. 2008).
Furthermore, the PC model was also used for predicting fractional charge loss of
approximately 39 % (Gawande, Mayya & Thaokar 2017) assuming negligible mass
loss.

To proceed beyond singularity within the framework of the PC model and predict
ejection, Garzon, Gray & Sethian (2014) performed BEM simulations coupled with a
level set technique for inviscid drops. Although the model could predict the formation
of daughter droplets, the ejection occurred from protrusions, whose lengths were far
smaller (1/5th of the droplet diameter), in contrast to the experimental observation of
long (3 times the drop diameter) jets (Duft et al. 2003; Giglio et al. 2008). Besides,
in view of the absence of viscosity, the protrusions observed in these numerical
studies were likely to be artefacts of inertial excursions rather than due to sustained
axial momentum exerted by tangential stresses necessarily required for jet formation.
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Rayleigh breakup 884 A31-3

Considering these, the PC model fails to predict the jet formation and one needs to
look for alternative mechanisms to explain the complex pathway of break up seen in
the experiments. This indicates that it is necessary to consider a high but finite value
of conductivity of the drop while solving the Rayleigh breakup problem.

Taylor (1966) suggested the leaky dielectric model for systems where the charged
double layer thickness is much smaller than the other length scales in the system.
When the droplet and the surrounding fluid both are weakly conducting, the difference
in the electric current inside and outside the droplet gives rise to a surface charge
distribution. Thus, the drop surface is acted upon by tangential electric stresses
along with normal stresses. These tangential stresses are balanced by viscous stresses
which result in the flow inside the droplet. The direction of the flow depends on
the electrical properties, such as permittivities and conductivities of the drop and the
surrounding medium, which decide whether the droplet will deform into a prolate
or oblate shape (Melcher & Taylor 1969; Saville 1997). This model is widely used
in the literature for the numerical prediction of steady state deformations as well as
breakup modes of low conducting droplets under an applied electric field assuming
the Stokes flow limit (Sherwood 1988; Basaran et al. 1995; Dubash & Mestel 2007;
Lac & Homsy 2007; Supeene, Koch & Bhattacharjee 2008; Deshmukh & Thaokar
2013; Karyappa, Deshmukh & Thaokar 2014). Although these studies have shown
the effect of tangential stresses on the drop deformation and breakup, the effect of
charge convection is neglected, assuming instantaneous surface charge relaxation as
compared to the deformation (hydrodynamic) time.

The surface charge convection, however, cannot be always ignored when the
electrohydrodynamic time scale is of the same order as the charge relaxation time.
For the case of viscous droplets deforming under an applied electric field, in the
leaky dielectric framework, Feng (1999) accounted for the charge convection effect
to predict the steady prolate and oblate deformations and reported that the oblate
deformations are suppressed while prolate deformations are enhanced when the
charge convection is considered. This observation is further confirmed by Lanauze,
Walker & Khair (2015) and Das & Saintillan (2017) considering an unsteady state
charge dynamics equation that accounts for the effects of convection of charges
and dilatation of the drop interface on the temporal evolution of surface charge
density. These studies also indicated that when surface charge convection effects are
considered, not only the steady state deformations but also the temporal evolution
of the drops are altered. The analysis is further extended to predict the breakup
of prolate drops where the electric Reynolds number (a measure of the relative
importance of the charge relaxation and hydrodynamic time scales) is observed to
significantly affect the modes of breakup of the prolate drops (Sengupta, Walker &
Khair 2017). A similar model with an outside medium that is a perfect dielectric is
used by Collins et al. (2008, 2013), who demonstrated that the charge dynamics and
the viscous stresses are necessary for the jet formation in the study of the breakup
of uncharged oil drops under strong applied electric fields.

Recently, Gañán-Calvo et al. (2016) and Pillai et al. (2016) studied the electrokinetic
effects on the ejection of jet and progeny from the drops under electric fields using
the volume of fluid approach by respectively ignoring and considering the thermal
energy of the ions. Both these analyses are carried out for low to moderate Ohnesorge
number (Oh=µi/

√
ρiaγ 6 10) values. These studies indicated that, near the cone–jet

transition, the charge transport to the surface of the drop from the bulk is limited
by ion mobility and thus the electrokinetic effects significantly modify the transient
drop dynamics. However, it is observed that the importance of the electrokinetic
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effects reduces for higher Oh values and can become redundant in the large Oh limit
(i.e. for highly viscous drops) (Pillai et al. 2016). A detailed physical discussion on
electrokinetic effects and the applicability of the leaky dielectric model in the context
of a cone–jet electrospray system was recently reviewed in Ganán-Calvo et al. (2018).

In the Rayleigh breakup of a charged drop, the perfect conductor model fairly
predicts the drop deformation until the formation of the cone (Betelú et al. 2006;
Giglio et al. 2008; Gawande et al. 2017; Singh et al. 2019b). Up to this stage, the
bulk charges are indeed zero. At the time of onset of jet ejection at the tip of the
cones, the bulk charge conductivity effect could manifest as a charge depletion layer
at the interface. In the present work, the charge near the interface, which is spread
into the bulk as volume charge density, is volume averaged and expressed as a
surface charge. The surface charge density variations are then considered accurately
through the surface charge dynamics model. Thus, the model is accurate when the
bulk charge depletion layer is smaller than other length scales in the problem such
that volume averaging remains meaningful.

In this work, for Oh→∞, we therefore ignore the dynamics in bulk conduction
and apply the leaky dielectric model to the case of Rayleigh break up of a charged
drop (in the absence of any external electric field). We consider the drop has high
but finite conductivity which involves faster dynamics and high electrical stresses due
to high permittivity ratios as compared to oil drops. We call this a finite conductivity
(FC) model as the drop needs to support high charge to undergo Rayleigh breakup
and the outer medium considered is perfectly dielectric. Thus, the total charge on the
drop is conserved throughout the breakup process. The main objective of this work
is to explore the mechanism involved in the formation of jet and progeny during the
Rayleigh breakup of a charged drop. It should be noted that, in the presence of an
external electric field, the drop deformation consistently increases with the applied
field, while in the Rayleigh breakup of a charged droplet considered in this work, the
droplet is rendered unstable only when the charge increases beyond a critical limit
and spherical symmetry is perturbed by a small dipolar perturbation.

2. Problem formulation
The problem is solved numerically by considering an electrically charged drop of

a conducting liquid of viscosity µi, permittivity, εi and conductivity σi suspended in
a perfectly dielectric Newtonian fluid medium of viscosity µe with a permittivity, εe.
We consider the hydrodynamics in the Stokes flow limit, where Oh is large and the
electrokinetic effects are neglected such that a > αD, where αD is the Debye layer
thickness (Gañán-Calvo et al. 2016; Pillai et al. 2016). Thus, this limit could be
considered for the breakup of droplets of sizes of the order of their viscous length
scales (µ2

i /(ργ )) or smaller, but greater than αD. The governing equations for the
flow field are then given by

∇̃ · ṽi,e = 0, (2.1)

−∇̃p̃i,e +µi∇̃
2ṽi,e = 0. (2.2)

Here, the subscripts i and e represent the parameters corresponding to the drop and
the external medium respectively and the external medium is considered to be air. The
electric potential on the surface of the drop due to the presence of surface charge is
denoted by (φ̃) and is assumed to follow

∇̃
2
φ̃i,e = 0. (2.3)

The electric field is thus expressed as Ẽi,e =−∇̃(φ̃i,e).
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Rayleigh breakup 884 A31-5

The dimensional quantities are indicated by a tilde and non-dimensional quantities
are without a tilde. The non-dimensional parameters used in this problem are as
follows: length scales are of the order of the initial radius a of the spherical drop.
The time is non-dimensionalized by the hydrodynamic time scale, th = µia/γ , the
velocity by γ /µi, the surface charge density q̃ by

√
γ εe/a and the electric field

by
√
γ /aεe. The total surface charge is non-dimensionalized by

√
γ a3εe such that

the non-dimensional Rayleigh charge is 8π. The electrostatic and Stokes equations
are solved using the axisymmetric boundary integral method, using well-established
methodologies (Deshmukh & Thaokar 2012; Lanauze et al. 2015; Gawande et al.
2017).

For a finitely conducting charged drop, the electric boundary conditions at the
interface in the scaled variables can be written as Ene − SEni = q, Ete = Eti . Thus the
boundary integral equation for the electric field calculation is given by

(S+ 1)
2S

Ene(rs)+
1

4π

(S− 1)
S

∫
n · ∇Ge(r, rs)Ene(r) dA(r)

=
1

2S
q(r)−

1
4πS

∫
n · ∇Ge(r, rs)q(r) dA(r) (2.4)

and for the electrostatic potential φ(rs),

φ(rs)=
1

4π

∫
Ge(r, rs)(Ene(r)− Eni(r)) dA(r), (2.5)

where Ge(r, rs) = 1/(|r− rs|) while r and rs are the position vectors on the surface
of the drop with area A and Ene = Ee · n where n is the outward unit normal. The
conservation of the total surface charge is ensured through the charge dynamics
equation which on non-dimensionalization reduces to

∂q
∂t
=

S
Sa

Eni −

(
1
r

[
∂

∂s
(qrvt)

]
+ q(∇s · n)(v · n)

)
, (2.6)

where S= εi/εe is the ratio between permittivities of the drop and the external medium
while Sa= te/th is the non-dimensional number known as the Saville number, where
te = εi/σi is the charge relaxation time and th is the hydrodynamic time scale. Here,
∇s = (I − nn) · ∇ represents the surface gradient. The charge dynamics equation
is analogous to the conservation equation governing the distribution of surfactant
concentration on the drop used to study the deformation of surfactant laden viscous
drops (Stone 1990; Pawar & Stebe 1996; Teigen & Munkejord 2010; Nganguia et al.
2013). The first term on the right-hand side of (2.6) accounts for charges brought to
the surface by conduction while the second and third terms are the convection terms.
The second term represents the meridional advection of charges while the third term
is a source-like term which accounts for local change in the charge density due to
dilatation of the drop surface. Here, the outside electric field does not appear as the
conductivity of the external fluid medium, σe, is considered to be zero. The force
density responsible for drop deformation is then given by 1f = n[∇ · n− [τ e

]], where
[τ e
] is the non-dimensional jump in the electrical traction across the interface and is

given by
[τ e
] =

1
2 [(E

2
ne
− SE2

ni
)+ (S− 1)E2

te]n+ qEte t. (2.7)
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The integral equation for the interfacial velocity is given by

v(rs)=−
λ

4π(1+ λ)

∫
1f (r) ·G(r, rs) dA(r)+

(1− λ)
4π(1+ λ)

∫
n(r) · T(r, rs) · v(r) dA(r),

(2.8)
where λ = µi/µe while G(r, rs) = 1/|x| + xx/|x|3 and T(r, rs) = −6(xxx/|x|5) are
the kernel functions with x = (r − rs) and are extensively discussed in the literature
(Sherwood 1988; Pozrikidis 1992).

To initiate the evolution process the drop is deformed into the shape of a prolate
spheroid given by r(θ) = 1 + δP2(cos θ), where P2(cos θ) is the second Legendre
polynomial. For the Rayleigh breakup process it has been shown that the P2 mode is
the most unstable mode (Rayleigh 1882; Thaokar & Deshmukh 2010). The practical
relevance of the initial perturbation in Rayleigh breakup of a charged droplet is
discussed in detail in our recent paper (Singh et al. 2019a). An initial perturbation
amplitude, δ = 0.1, is used and a total charge of 8.1π (which is slightly above the
Rayleigh limit) is then distributed uniformly on the deformed drop. In the present
simulations it is ensured that the total surface charge is conserved to an accuracy
of 1 % (details are given in the Appendix). As the drop deforms with time an
adaptive meshing is used to ensure that the local grid size 1smin is sufficient to
capture the minimum neck radius. The time steps are also adapted using the criterion,
1t = C1smin/vnmax , where C denotes the CFL (Courant–Friedrichs–Lewy condtion)
number which is kept constant at 0.01 and vnmax is the maximum velocity with which
the grid points move in the given time step. The details and convergence test of the
numerical scheme can be found in the Appendix.

3. Results and discussion
3.1. Mechanism of jet and progeny formation

To understand the Rayleigh fission of a charged drop, a drop is generally modelled as
a perfectly conducting liquid drop (Betelú et al. 2006; Giglio et al. 2008; Gawande
et al. 2017). This is a limiting case of Sa = 0 in the present model. Thus for the
PC drop, equation (2.6) implies that the inside electric field is zero and the charge
distribution is instantaneous, rendering the surface of the drop as an equipotential
surface. In this case, the external electric field Ene can be calculated using (2.5)
by putting Eni = 0, where the constant surface potential φ(rs) is determined by the
condition of conservation of charge,

∫
Ene(r) dA(r)=Q, with Q as the constant total

charge on the drop surface. The non-dimensional jump in the electrical stresses thus
reduces to [τ e

] =
1
2 E2

nen. Typically, for example, a methanol drop of radius 50 µm
with conductivity (σi = 4 × 10−4 S m−1) taken at room temperature has Sa = 0.55.
This indicates that, when the length scales are of the order of the droplet radius a,
the charge relaxation is twice faster than the characteristics time scales used in the
simulations. Thus, at these length scales, the charges are distributed faster to induce
sufficient normal electric stresses to balance the capillary forces as the drop deforms
with time. This suggests that, initially, the drop behaves as a PC drop and it appears
that the PC drop model may suffice to predict the Rayleigh fission process.

This can be also observed from figure 1, which depicts the typical drop deformation
sequences with time for the two cases of Sa = 0 (PC model) and Sa = 0.55 (FC
model). The figure shows that, until t= 15, the droplets deform similarly in both the
models. However, at t= 23.8, the PC drop model exhibits a shape singularity owing to
its limitation of instantaneous charge transport and the absence of tangential electric
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Rayleigh breakup 884 A31-7

t = 10 t = 15 t = 20 t = 23 t = 23.3 t = 23.8 t = 25.3

FIGURE 1. Comparison of the temporal evolution of the drop shapes for the two cases
of PC (dotted line) (Sa = 0 and λ = 30) and FC (solid line) drop models (for S = 30,
Sa= 0.55 and λ= 30). The inset at the right bottom corner is the experimental image of
drop breakup presented by Duft et al. (2003) (reprinted with permission).

stresses. This limitation is overcome by the FC model in which the finite time taken
by the flow of charge to the regions of high curvature delimits the build up of charge
at the tip of the drop to a finite value since, by then, the capillary stresses relax the tip
curvature (κtip) and the simulations can be continued further. A dynamic cone angle
is observed to vary from 25◦ at the onset of jet formation (at t= 23) to 28◦ near the
point of end pinch off of the progeny from the jet (at t= 25.3). This closely agrees
with the experimental observation of cone angle of approximately 30◦ (Giglio et al.
2008).

As the charge density and the curvature are inter-dependent quantities in the
Rayleigh breakup problem, the poles of the drop are closely analysed to understand
the cause and the effect for the formation of the relaxed tip. The temporal analysis
shown in figure 2 indicates that the charge density at the poles seems to reduce
earlier in time (at t= 22.5) than the curvature (maximum at t= 23.2), suggesting that
the reduction in curvature at the poles is a consequence of the reduction in charge
density. At this stage, the electric potential near the tip of the FC drop reduces and
the equipotential assumption is no longer valid (as shown in figure 3). The spatial
variation of charge density and curvature, as shown in figures 4 and 5 respectively,
indicate that it is now extremized at a location below the poles, unlike the PC drop,
where both the charge density and curvature remain maximum at the tip of the drop.

A similar observation of divergence of the tip curvature and charge density is
reported by Sengupta et al. (2017) for unsteady deformations of leaky dielectric
drops breaking via formation of sharp conical ends. This behaviour is observed for
the drops with higher electric Reynolds number. The physics of these two problems,
however, is different. In the case of the leaky dielectric drops deforming under an
applied electric field, a high electric Reynolds number corresponds to significant
charge convection effects which cause accumulation of more charges at the poles
of the drop. This is suggested to be the main reason for increase in the steady
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FIGURE 2. Comparison of the temporal evolution of curvature and charge density at the
tip of the drop for the two cases of PC (filled symbols) and FC (open symbols) drop
models (for S= 30, Sa= 0.55 and λ= 30).
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FIGURE 3. Distribution of electric potential inside and outside the drop various times
(a) t= 23, (b) t= 23.5 and (c) t= 23.8 in the case of the finite conductor drop model.

prolate deformations when the charge convection is considered as compared to the
case without charge convection effects (Feng 1999). However, in the present problem,
the charge convection restricts the transport of charge towards the conical ends of
the drop, which results in a reduction in tip charge density. Thus, in the Rayleigh
breakup process, for Sa > 0, the divergence of charge density and thereby normal
electric stresses are prevented, thereby avoiding numerical singularities.

At the time of formation of conical tips the normal electric stresses are maximum
at the poles in the PC model (figure 6a). On the other hand, in the FC model, the
normal electric stress increases with time up to the formation of the conical ends, but
subsequently shows a dramatic reduction at the poles. However, the tangential stress,
which is nearly negligible up to the cone formation, builds up with time and modifies
the overall electric stress distribution on the drop surface (figure 6b). In case of a PC
drop, due to the dominance of the normal electric stresses over the capillary stresses,
the pressure, P= (γ κ − 1

2 E2
n), inside the drop reduces with time and a low pressure

region is created near the tip. This causes continuous acceleration of the fluid towards
the tip with the maximum velocity at the axis of symmetry and the minimum at the
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FIGURE 4. The distribution of charge density (q) on the drop surface as a function of
normalized arclength (s) at various times and drop shapes indicating point of maximum
charge density (red dot) for the corresponding times in case of (a) PC and (b) FC drop
models (for S= 30, Sa= 0.55 and λ= 30). The figures are magnified near the north pole
for better clarity. Note that the abscissa is transformed using a relation s′= 2(s− 1), where
s is the normalized arclength of the drop and the data are shown for a half-drop due to
perfect up–down symmetry across the equatorial plane.

drop surface, leading to a parabolic axial velocity profile, as shown in figure 6(c).
Thus resulting in the formation of a sharp conical tip.

In the case of a FC drop (figure 7) a dramatic reduction in the normal electric
stresses at the tip enables the capillary stresses to dominate from t= 23.1 onwards and
the pressure in the tip region starts to increase. Thus the pressure at the poles and in
the neck region is positive and high, as shown in figure 7. This results in the reversal
of the flow. However, due to tangential momentum exerted by the tangential electric
stresses in the direction opposite to the direction of the flow, the velocity of the fluid
is maximum near the drop surface and minimum at the axis of symmetry. Thus the
drop surface continues to stretch and a jet emerges from the conical ends of the drop.
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FIGURE 5. Curvature of the drop as a function of normalized arclength for various times
for (a) PC drop and (b) FC drop (for S = 30, Sa = 0.55 and λ = 30). The abscissa is
transformed similar to figure 4.

The flow reversals due to the presence of tangential stresses are also observed in
the simulations of the droplets under an electric field (Lac & Homsy 2007) and in
cone–jet mode electrospray systems (Herrada et al. 2012). However, this flow reversal
behaviour is observed at steady state in both of these problems. The observation of
flow reversal inside the droplet for the case of an unsteady problem such as Rayleigh
breakup is counterintuitive as the jet continuously grows at the poles of the drop. Thus
it can be attributed to modification of the normal electric stress distribution due to the
presence of tangential stresses which lead to the emergence and subsequent fattening
of a jet from the conical ends of the droplet. The role of tangential stresses is affirmed
by switching them off in the force balance and the jet formation is then not observed.

As the jet develops, the charge density in the region around the tip of the jet
decreases, causing a decrease in curvature at the tip, unlike the case of PC drop
where the tip curvature diverges with time (figure 5a). This decrease in capillary
stresses at the tip leads to a reduction in pressure (as shown in figure 7d) which
restricts the flow to the tip and results in a bulbous end. At the location where the
capillary stresses dominate over the electric stresses due to low charge density and
high curvature (shown in figure 5b), a neck is formed.

In view of the numerical results presented here, the mechanism of jet and progeny
formation in the Rayleigh fission process is suggested as follows. As the dynamics
accelerates after the formation of the conical ends, the length scale independent
charge dynamics becomes comparable to the size (l) dependent hydrodynamic time
scale (thl = µil/γ ). While in a slightly deformed drop (up to the formation of the
conical ends), the length scale can be assumed to be of the order of the size of the
drop, subsequently, the curvature at the poles becomes the more relevant length scale.
The slow charge dynamics relative to the hydrodynamics now means that the charges
cannot reach instantaneously to the new surface created, resulting in violation of the
equipotential assumption. The variation of charge density and potential along the
surface of the drop leads to a tangential field and thereby tangential electric stresses.
Unlike the normal electric stresses which can be balanced by the capillary forces,
the tangential electric stresses lead to tangential fluid flow in the system. Thus, a
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FIGURE 6. Electric stress distribution (a,c) and velocity profiles (b,d) in the case of PC
and FC drop model, respectively at time t = 23.8. The electric stress is purely normal
in the case of the PC drop model with maximum stress acting on the tip of the drop
while the stress distribution is modified due to the presence of weak tangential stresses
in the case of the FC drop model. The velocity profiles show the flow reversal due to
modification of the stress distribution in the FC drop model (for S = 30, Sa = 0.55 and
λ= 30).

hyperboloidal tip is formed in the FC drop from where the jet emerges (figure 1).
This jet continues to elongate until the point of neck formation, where the charge
density reduces and the curvature diverges indicating pinch off.

3.2. Effect of conductivity
Figure 8(a) shows the effect of conductivity in terms of Sa on the size of the
progeny formed during the Rayleigh breakup. It is observed that a liquid drop
of higher conductivity will form smaller progenies. This is in agreement with the
previous numerical studies (Burton & Taborek 2011; Collins et al. 2013) as well as
with the recent experimental observations, which indicate that the charged drops with
higher conductivities eject thinner jets and subsequently smaller progeny droplets
(Singh et al. 2019b). A naive scaling of a balance of the electric time scale te and
the hydrodynamic time scale thl leads to l/a∼ Sa. On the other hand, if we consider
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charge carried by the progeny droplet to its Rayleigh limit and (d) deformed drop shapes
as a function of Sa at the onset of progeny detachment.

that the jet is issued after the conical tips approach the singularity, we find that the
radius of the jet (rj) is equivalent to the reciprocal of the curvature (1/κ) at the tip
of the drop that scales as (to − t)1/2 (refer to Gawande et al. 2017). In dimensional
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terms, this suggests that the jet radius rj/a∼ [(t̃o − t̃)/(µia/γ )]1/2. Realizing that the
charge loss occurs over the electric time scale (t̃o − t̃) ∼ te, leads to rj/a ∼ Sa1/2.
Thus over the length scale l, the jet has a lower charge and thereby the surface
tension forces become dominant in the jet region. This leads to jet breakup by the
Rayleigh Plateau instability and forms the progeny droplets of size equivalent to
the radius of the jet. This qualitatively explains the progeny droplet size rd ∼ Sa1/2

as observed in the simulations. Interestingly, similar scaling for the jet diameter is
reported in a steady cone–jet electrospray system for the case where viscous forces
and polarization forces dominate over inertia (Ganan-Calvo 2004). The jet diameter
is reported to scale as rj ∼ [µiQf /(S − 1)γ ]1/2, where Qf is the volumetric flow
rate in the electrospray system. The natural flow rate in the present problem can be
written as Qf ∼ a3/(t̃o− t̃), which reduces to the similar scaling as obtained from our
simulations. This indicates that, in the absence of inertia as considered in this work,
when the hydrodynamic time scale becomes comparable to the charge relaxation
time scales and the progeny is about to pinch off, the effect of tangential electric
stress becomes significant, which results in the observed scaling. It should be noted,
however, that the normal stresses continue to be higher than the tangential stresses
throughout the process.

The asymptotic results of high Sa are in agreement with the perfect dielectric
calculations (not discussed here) which are independent of the conductivity of the
droplet. Thus, the weak scaling of rd (∼Sa0.1) at higher Sa can be attributed to strong
dielectric effects. Similarly, the scalings for the dimensional charge carried by the
progeny can be explained by the singular scaling of charge density at the incipience
of a jet, which is given by qd ∼ [(to − t)/(µia/γ )]−1/2 (Gawande et al. 2017). Thus,
the total charge on the progeny droplet, Qd ∼ qdrd

2 implies that Qd ∼ Sa1/2 over
the electric time scale te. This, when dimensionalized and presented in terms of
the fraction of the Rayleigh charge (Qc), results in Q̃d ∼ QcSa−1/4 (figure 8b). This
indicates that the Rayleigh fission of a charged droplet with high conductivity will
produce marginally stable progeny droplets. This result is in agreement with the
results predicted by potential flow analysis (Burton & Taborek 2011). It is also
observed that the jet length increases with the decrease in conductivity and reaches a
maximum value for Sa= 1.1 but reduces for higher Sa values (figure 8c).

The jet length is governed by a balance of tangential electric stress and the viscous
stresses, µ(vt/rj) = qEt, where vt is the jet velocity. Since the radius of the jet and
the charge scale as Sa1/2 and Sa−1/2 respectively, as shown earlier, and using the
numerically obtained scaling of tangential electric field Et scaling as Sa−1/3, and the jet
elongation time scaling of Sa1/2, the jet velocity is seen to scale as Sa−1/3, which leads
to the jet length scaling of Sa1/6. The 1/6 scaling is seen in the simulations as well.
The drop shapes at the onset of breakup for various Sa (figure 8d) show that the drops
with higher conductivity form a distinct jet before a progeny detaches from the tip of
the drop. However, at lower conductivities, the dominance of capillary stresses occurs
much earlier than the formation of a sustained jet and the droplet breakup occurs via
end-lobe pinching from the tip of the drop.

3.3. Effect of viscosity contrast
Further, to demonstrate the effect of viscosity contrast between a finitely conducting
charged drop and the surrounding medium, the simulations were carried out for
various λ values. Figure 9(a) shows the deformed drop at the onset of pinch off for
various values of the viscosity ratio at S = 30 and Sa = 0.55. It is observed that,
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FIGURE 9. (a) Drop shapes at the onset of end pinch off for various values of viscosity
ratio (λ) (inset shows the blown up tips of the drop) and (b) scaling of progeny size and
jet length with respect to viscosity ratio. Parameters used are S= 30, Sa= 0.55.

when the viscosity of the drop is equal to the viscosity of the surrounding medium
(λ= 1), which is a hypothetical case, the droplet deforms and forms a small progeny
at the tip of the drop with small protrusion. However, a long sustained cylindrical jet
is not observed in this case. This establishes that the sufficient viscous stresses are
essential to balance the tangential electric stresses for the formation of a jet. This
also therefore confirms the previous results (Burton & Taborek 2011), which shows
that the inviscid formalism for Rayleigh breakup of a charged drop cannot predict the
jet formation, although the progeny formation is observed due to charge convection
effects. From figure 9 it can be observed that the length of the jet as well as the
size of the progeny follow a 1/6 scaling with λ. It is observed that, for a higher
value of the viscosity ratio (λ > 150), the thickness of the jet formed is less at the
cone–jet transition region, which goes on increasing towards a thin thread connecting
the progeny with the jet (as shown in the figure 9a inset). Thus, we propose that,
for higher viscosity contrast between the drop and the surrounding medium, the drop
will undergo breakup by ejecting one progeny (from each pole of the drop) followed
by jet detachment.

4. Concluding remarks

This work investigates the formation of jet and progeny droplets due to a highly
nonlinear breakup of a viscous drop charged to its Rayleigh limit. It is observed that
the tangential electric stresses are important for the prediction of jet formation and the
conductivity of the liquid drop determines the size and charge on the progeny droplets
at the onset of their formation. It is also observed that the viscosity contrast between
the drop and the surrounding medium is essential for the formation of long sustained
jets and the drops with higher viscosity ratio can undergo breakup by jet detachment.
The analysis presented in this work is valid when Oh� 1. For example, the results
presented in this work will hold for the case of 4 µm droplets for 1-octanol, 6 µm
droplet for n-decanol or 32 µm droplet for 3-ethylene glycol. It is proposed that, since
the droplets in processes such as electrospray or ionization in ion-mass spectroscopy
eventually undergo Rayleigh fission at the smallest length scales, the viscous analysis
does become relevant in these processes at late stages, and could actually explain the
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FIGURE 10. (a) Effect of nodes on the total surface charge without renormalization. The
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(Q = 8.1π). (b) Effect of nodes on the shape of the drop near breakup to check the
convergence of the results with mesh refinement. (Parameters used are S = 30, Sa = 15,
λ= 30.)

nanometre sized progeny droplets formed in the experiments on electrospray (Chen,
Pui & Kaufman 1995; Singh et al. 2016). Thus, while the analysis reported by Collins
et al. (2008) and Gañán-Calvo et al. (2016) will hold good for prediction of the size
of the first ejected droplet from the Taylor cone under an applied electric field, the
final size distribution could be governed by the viscous scaling suggested in this work.
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Appendix
Conservation of total surface charge is critical in numerical analysis of the Rayleigh

breakup of a charged drop problem. We therefore performed simulations with the same
physical parameters but with different space discretizations to ascertain numerical
convergence. The total charge on the drop is calculated after every iteration by
integrating local surface charge density over the drop surface area. The total charge
on the drop surface as a function of time during a typical Rayleigh breakup process is
presented in figure 10(a). It is observed that, when the surface charge was allowed to
change with time, the change in the total charge was less than 1 %. This result
confirms that the implementation of an upwind scheme for solving the charge
dynamics equation is correct and accurate to a precision of O(10−1)%. To avoid
any charge loss due to numerical diffusion, we renormalized the charge by the initial
charge on the drop. The renormalization is carried out particularly if the total charge
value changes by 1 % of the initial charge.

Since the progeny droplets formed in the process are orders of magnitude smaller
than the mother drop, the length scales change drastically. To capture the smallest
length scales it is required to have higher resolution in the region where progenies
are formed. Thus we used a non-uniform distribution of elements, where internode
spacing increases in geometric progression from the north pole to the equator and
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decreases from the equator to the south pole. This ensures a higher number of
elements (smaller grid size) near the poles as compared to the equatorial region. As
the drop is assumed to be axisymmetric the grid size (1smin) is always kept smaller
than the minimum neck radius (rmin). The drop surface is populated with a higher
number of node points when rmin 61smin. The charge density and the r–z coordinates
of these nodes are obtained by cubic spline interpolation with respect to arclength.
For convergence, tests of the simulations were carried out for four cases where the
initial number of elements used were N = 50, 100, 150, 200 and the drop shapes
obtained are plotted in figure 10(b).

The numerical results are obtained for the entire drop and the perfect up–down
symmetry obtained in our calculations was considered as the signature of correct
implementation of the numerical scheme. Since the drop exhibits a perfect up–down
symmetry across the equatorial plane, the upper half of the drop is presented here.
The results showed that the size of the progeny converges for N = 200 and N = 250
(as shown in figure 10b). Thus we used N = 200 in all our further simulations.
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