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We consider a Keller–Segel model that describes the cellular chemotactic movement away from
repulsive chemical subject to logarithmic sensitivity function over a confined region in R

n, n ≤ 2.
This sensitivity function describes the empirically tested Weber–Fecher’s law of living organism’s
perception of a physical stimulus. We prove that, regardless of chemotaxis strength and initial data,
this repulsive system is globally well-posed and the constant solution is the global and exponential in
time attractor. Our results confirm the ‘folklore’ that chemorepulsion inhibits the formation of non-
trivial steady states within the logarithmic chemotaxis model, hence preventing cellular aggregation
therein.

Key words: Global existence, chemorepulsion, Keller–Segel, logarithmic sensitivity, exponential
decay
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1 Introduction

Chemotaxis is the mechanism by which unicellular or multicellular organisms direct their move-
ments in response to a chemical stimulus gradient in the environment. Bacterial chemotaxis was
first documented by T. Engelmann [14] and W. Pfeffer [39] in the 1880s, and thorough quanti-
tative and biochemical studies were started by J. Adler on Escherichia coli [1, 2] in the 1960s.
Over one century’s research has illustrated the importance of chemotaxis in many physiological
processes, such as the recruitment of inflammatory cells to sites of injury or infection, cell–cell
interactions in the immune system, the development and organisation of tissues and organs dur-
ing embryogenesis, progression and metastasis in many diseases and operation in each crucial
step of tumour cell dissemination. See the reviews in Refs. [20, 42].

Chemotactic bacteria, such as E. coli, typically have 4–10 flagella per cell, and they can help
the bacterium to swim in a straight line or tumble in place. In an environment absence of or
with a uniform chemical stimulus, E. coli ‘runs’ in a straight line for several seconds and then it
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‘tumbles’ or ‘twiddles’ (abruptly changes its direction) for a fraction of a second; then it again
swims in a straight line, but in a new and randomly chosen direction [1]. This movement looks
like a random walk with relatively straight swims interrupted by random tumbles that reorient
the bacterium.

In the presence of an increasing concentration of a chemical attractant, the bacterium will
direct its overall motion based on the attractant gradient by tumbling less frequently and running
longer compared with the unstimulated state. If the bacterium senses the environment’s improve-
ment, it will keep swimming in a directed and straight line for a longer time before tumbling,
while it will tumble sooner and try a new direction at random when the chemical concentration
decreases.

1.1 Keller–Segel model

To model bacterial movement due to random noise and chemical stimulus in the environment,
E. Keller and L. Segel proposed in the 1970s [24, 25, 26] continuum models to describe the
spatial-temporal change of the cell population distribution and chemical concentration. The
general form of Keller–Segel model consists of two strongly coupled parabolic equations of
(u, v) = (u(x, t), v(x, t)) in the following system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut = ∇ · (

random (flux)︷︸︸︷
μ∇u −

chemotactic (flux)︷ ︸︸ ︷
χuφ(v)∇v ), x ∈ �, t > 0,

vt =
chemical diffusion︷︸︸︷

d�v +
chemical creation/consumption︷ ︸︸ ︷

−αv + βu , x ∈ �, t > 0,

(1.1)

given non-negative initial data u(x, 0), v(x, 0) ≥, �≡ 0 over a spatial region �, which is usually
taken to be the whole space R

n, n ≥ 1, or a bounded domain with additional non-flux boundary
conditions imposed on u and v in an enclosed environment. Here, (u, v) denotes the cellular
population density and chemical concentration at space–time location (x, t). Cell motility (μ > 0),
chemotaxis rate (χ > 0) and chemical diffusion (d > 0) are assumed to be constants. Function φ

measures the change of chemotactic sensitivity due to the variation of chemical concentration.
Although bacteria may behave independently, their populations exhibit collective behaviours.

One of the most impressive experimental findings in bacterial chemotaxis is the self-organised
cellular aggregation that during starvation, initially evenly distributed cells release a diffusing
chemical to attract each other and then group into one or several small regions of space. The
Keller–Segel model, premised on the simplest possible assumptions in 1D, admits solutions
such that cells aggregate in several ‘collecting points’ or centres. At each centre, a slug forms,
migrates and eventually forms a multicellular fruiting body [26]. Moreover, this intuitively sim-
ple model can be used to model the pulsing cellular movement or traveling bands of the bacteria
when placed in one end of a capillary tube containing oxygen and an energy source. Therefore,
system (1.1) has quickly achieved an enormous academic success after the proposal, and it now
serves as one of the foundation stones to model chemotactic movement.

The choice of sensitivity function φ(v) depends on the biological significance that one tries
to model, and one limitation on bacterial ability to follow chemical gradients is imposed by
saturation of the sensory system at high ligand concentrations, in light of which φ(v) = ln v is a
natural candidate. This is the case, for example, in the sensory system of human beings according
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to the empirically tested Weber–Fechner law1 which states that people feel the logarithmic value
of the magnitude of a physical stimulus. Experiments studying the density distribution of the
swimming bacteria subject to the different spatial ligand profiles [5, 11, 23] suggest that bacteria
also obey this law and the bacterial chemotactic sensitivity is proportional to the change of the
logarithmic ligand concentration. We would like to mention that the singularity of ln v at v = 0
brings challenges and complexity to the theoretical analysis of (1.1); however, Refs. [26, 53]
analytically argued that this is indispensable for the formation of its traveling waves.

There are two well-accepted methodologies to model the aforementioned cellular aggregation
phenomenon. The first one is to show that the time-dependent system ‘blows up’ within finite
or infinite time, with cellular population density u collapsing into a single or a combination
of several δ functions, plus a regular part to tune the v-equation [34, 9, 19, 21]. Needless to
say, the concentrating structure of δ(x) can serve as a natural candidate to describe the cellular
aggregation; however, the blow-up profile suggests that a population density approaches infinity
at single points, which is unrealistic from the viewpoint of mathematical modelling. It also brings
challenges to the theoretical and numerical analysis of the aggregation close to the collapsing
time and the model itself loses the rationale after the blow-up time.

An alternative method is to show that the time-dependent model prohibits blow-up and
converges to a stationary system in a long time. Then, the stationary solutions with spatial het-
erogeneity, in particular, accumulating or concentrating structures, can be used to model the
cellular aggregation. This approach was originally adopted by Keller and Segel [24] in 1D with
homogeneous Neumann boundary conditions, which established a necessary condition, as the
constant solution turns unstable, for the formation of stable spatially heterogeneous solutions.
Schaaf [41] analysed the stationary solutions of system (1.1) over higher dimensions via the
Crandall–Rabinowitz bifurcation techniques [10, 40]. In particular, she considered the model
with generally non-linear diffusion and sensitivity functions and provided a criterion for the
emergence of stable nonhomogeneous aggregation patterns as small perturbations from the con-
stant solution. There had been no analytical results on the stationary solution to system (1.1) with
large amplitude (i.e., away from the constant solution) until those of Lin, Ni, and Takagi around
the 1990s [30, 36, 37].

Lin, Ni and Takagi [30] considered the stationary system of problem (1.1) with logarithmic
sensitivity over a multi-dimensional bounded domain � ⊂R

n, n ≥ 1⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (μ∇u − χu∇ ln v) = 0, x ∈ �,

d�v − v + u = 0, x ∈ �,

∂νu = ∂νv = 0, x ∈ ∂�,∫
�

u = ∫
�

v = ū|�|,

(1.2)

where ν is the unit outer normal on ∂�, and ū is the fixed average population density out of
the conserved total population

∫
�

u(x, t)dx = ∫
�

u0(x)dx = ū|�| in the time-dependent system.
By the maximum principles, one can easily show that any non-negative solution (u, v) of (1.2)

1This law was named after Ernst Heinrich Weber (1795—1878) who first quantitatively studied the
human response to a physical stimulus published in 1860 in Elemente der Psychophysik, and Gustav
Theodor Fechner (1801—1887) who later offered an elaborate theoretical interpretation of Weber’s
findings.
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must be strictly positive in �̄. Multiplying the u-equation by μ ln u − χ ln v and then integrating
it over � by parts, one has ∫

�

u|∇(μ ln u − χ ln v)|2dx = 0,

which readily implies that μ ln u − χ ln v equals some constant in �, or u = Cvp, p := χ

μ
,

C ∈R
+. Therefore, one converts solving system (1.2) into finding solutions of the following

Neumann boundary value problem:{
d�w − w + wp = 0, x ∈ �,

∂νw = 0, x ∈ ∂�,
(1.3)

because if w is a positive solution of (1.3), the pair (u, v) given by

u :=
(

1

ū|�|
∫

�

w(x)pdx

)−1

wp, v :=
(

1

ū|�|
∫

�

w(x)dx

)−1

w (1.4)

is a solution of system (1.2).
Assuming that p ∈ (1, ∞) for n = 1, 2 and p ∈ (1, (n + 2)/(n − 2)) for n ≥ 3, they proved in

Ref. [30] that, equation (1.3) has only constant solution if d is large, and it admits non-trivial
solutions if d is small, which are critical points of the energy functional

Jd(w) := 1

2

∫
�

(
d|∇w|2 + w2

)
dx − 1

p + 1

∫
�

wp+1
+ dx,

in certain Sobolev space. Moreover, they proceeded to prove in Refs. [36, 37] that, if d is suf-
ficiently small, then the least energy solution wd must achieve its unique local (hence global)
maximum at a single boundary point xd ∈ ∂�; furthermore, as d → 0+, xd → x0 ∈ ∂�, where
the mean curvature of the boundary achieves its maximum. Since then equation (1.3) has been
extensively studied by various authors, and we refer the reader to Refs. [35, 13, 12, 18, 31, 46]
and references therein for its recent development. We want to mention that this approach heavily
depends on the smallness of the chemical diffusion rate d and hence requires a primitive under-
standing of the ‘ground-state’ of the counterpart of equation (1.3) in the whole space. Moreover,
this method is not applicable in general when cellular growth is considered since system (1.2)
plus a cell growth cannot be converted into a single equation anymore.

Wang [51] initiated a completely different approach to directly tackle this model in 1D without
converting it into a single equation. With the aid of the global bifurcation theories [40, 38, 43],
this technique is further developed and successfully applied to a wide class of Keller–Segel
models in Refs. [8, 51, 52]. They take χ as a bifurcation parameter and show that the first
bifurcation branch must extend to right infinity without intersecting with the χ–axis, which
implies the existence of non-constant steady states whenever χ surpasses a critical threshold
value, given explicitly in terms of system parameters. Moreover, by Helly’s compactness theo-
rem, they obtained the spiky transition layer structures of the steady states when the chemotaxis
rate is large (compared to the cell motility rate). The stability and dynamics of these spiky solu-
tions are investigated in Refs. [7, 55]. We would like to mention that Li adopted this approach in
Ref. [29] to investigate the steady states of (1.2) in 1D and obtained a refined asymptotic profile
of this spiky structure for u(x) as χ → ∞. In contrast to Ref. [30], this bifurcation method can
tackle (1.1) and a wide class of its variants with cellular growth [17, 48, 49, 50].
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1.2 Motivations and main result

Motile bacteria are attracted by certain chemicals, and they are repelled by others and can move
away from unfavourable environments. This process is called negative chemotaxis or chemore-
pulsion, and it was discovered along with positive chemotaxis. For example, E. coli cells swim
towards amino acids, sugars and oxygen, but away from potentially noxious chemicals, such
as alcohols and fatty acids. For repellents, bacteria encounter an increasing concentration tum-
ble more often, while a decreasing concentration suppresses tumbling. In 1974, Tso and Adler
[45] proposed several methods to detect or measure and study negative chemotaxis in E. coli
and its mechanism. Their experiments showed that although most of the repellents are harmful
compounds, they demonstrated that harmfulness is neither necessary nor sufficient to make a
compound a repellent. Repellents at very low concentrations are not repellents, and attractants at
very high concentrations are not attractants. Moreover importantly, in vivo experiments suggest
no aggregation in chemorepulsion systems.

In this paper, we perform theoretical studies to confirm the experimental findings of chemore-
pulsion model with logarithmic sensitivity function by considering the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · (μ∇u + χu∇ ln v), x ∈ �, t > 0,

vt = d�v − v + u, x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, v(x, 0) = v0(x) > 0, x ∈ �.

(1.5)

We are concerned with the effect of chemorepulsion on the pattern formation and spatial-
temporal dynamics of this model. Before presenting our main result, let us illustrate the
motivations of this piece of work by first studying its steady states, that is, non-negative solutions
(u, v) of the following problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = ∇ · (μ∇u + χu∇ ln v), x ∈ �,

0 = d�v − v + u, x ∈ �,

∂νu = ∂νv = 0, x ∈ ∂�,∫
�

u = ∫
�

v = ū|�|,

(1.6)

where ū = v̄ := 1
|�|
∫
�

u. Similarly as in Ref. [30], we see that (1.6) leads us to the single equation{
d�ŵ − ŵ + ŵ−p = 0, x ∈ �,

∂νŵ = 0, x ∈ ∂�,
(1.7)

and the pair (u, v) given by ŵ as in equation (1.4) is a solution of system (1.6). We claim that
equation (1.7) has only the constant solution (ū, v̄). To see this, we find that

d

∫
�

|∇ŵ|2dx =
∫

�

(
ŵ − 1

)(−ŵ + ŵ−p
)
dx

=
∫

{�|ŵ(x)≥1}

(
ŵ − 1

)(−ŵ + ŵ−p
)
dx +

∫
{�|0<ŵ(x)<1}

(
ŵ − 1

)(−ŵ + ŵ−p
)
dx ≤ 0,

hence ŵ ≡ 1 in � and (ū, v̄) is the only solution to (1.6).
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Now that (1.6) has only the constant solution (ū, v̄), a natural question arises as if this trivial
solution is the global attractor of the time-dependent chemorepulsive system (1.5) with logarith-
mic sensitivity. To this end, we need to rule out the possibility of time-periodic dynamics or
blow-ups within (1.5). Therefore, in this paper, we study its global dynamics, and in particular,
we shall show that (ū, v̄) is its global attractor. Our main result can be stated as follows.

Theorem 1.1 Let � be a bounded convex domain in R
n, n = 1, 2, and the constants

μ, χ , d > 0 be arbitrary. Then for any initial data (u0, v0) ∈ W 1,∞(�) × W 2,∞(�), u0 ≥ 0, �≡ 0
and infx∈� v0 > 0, (1.5) is globally well-posed and its unique solution (u, v) is classical and
uniformly bounded in time; moreover, there exist positive constants C and δ > 0 such that

‖u(·, t) − ū‖L∞(�) + ‖v(·, t) − v̄‖W1,∞(�) ≤ Ce−δt, ∀t > 0. (1.8)

This result shows that (ū, v̄) stabilises system (1.5) and chemorepulsion inhibits the formation
of any non-trivial patterns to the Keller–Segel model (1.5).

Remark 1.1 We would like to mention that global well-posedness of the chemoattraction model
has been investigated by various authors in Refs. [16, 27, 28, 47]. In summary, these attraction
models are globally well-posedness if χ is not too large. No blow-up in models with logarithmic
sensitivity is known to the best of our knowledge.

Since we are concerned with the qualitative large-time dynamics in (1.5), throughout this
paper, we denote C as a generic time-independent constant that may vary from line to line with
confusing the reader.

2 Local existence and preliminary results

To study the spatial-temporal dynamics of (1.5), we first establish its global well-posedness,
while its local well-posedness and extension criterion are more or less standard in the literature
thanks to the well-established theories of Amann [3]: Let � ⊂R

n, n ≥ 1, be a bounded domain
with smooth boundary ∂�. Then for any initial data (u0, v0) ∈ C0(�̄) × W 1,p(�), p > n, system
(1.5) has a unique solution (u(x, t), v(x, t)) defined on �̄ × [0, Tmax) with 0 < Tmax ≤ ∞ such
that (u(·, t), v(·, t)) ∈ C0(�̄ × [0, Tmax)) × C0(�̄ × [0, Tmax)) and (u, v) ∈ C2,1(�̄ × (0, Tmax)) ×
C2,1(�̄ × (0, Tmax)). If sups∈(0,t) ‖(u, v)(·, s)‖L∞ is bounded for t ∈ (0, Tmax), then Tmax = ∞, that
is, (u, v) is a global solution to (1.5). Furthermore, (u, v) is a classical solution such that,
(u, v) ∈ Cα((0, ∞), C2(1−β)(�̄) × C2(1−β)(�̄)) for any 0 ≤ α ≤ β ≤ 1.

As we mentioned earlier, the singularity of ln v at v = 0 in (1.5) brings a challenge to its
theoretical analysis; however, one can apply the maximum principle to show that v(x, t) has a
positive lower bound for any t > 0 as follows.

Lemma 2.1 (Lemma 2.2 in Refs. [15, 27]) Let � ⊂R
n, n ≥ 1, be a bounded domain with smooth

boundary ∂�. Suppose that u0(x) ≥, �≡ 0 and infx∈� v0 > 0, then there exists η > 0 such that

v(x, t) ≥ η > 0 for all (x, t) ∈ �̄ × [0, Tmax).
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We next estimate ‖∇v‖Lq by ‖u‖Lp for p > 1 through the v-equation. To this end, we shall
employ the well-known smoothing properties of the operator −� + 1 and embeddings between
the semi-groups generated by {et�}t≥0. Applying ∇ to the v-equation in (1.5), we have the
following result.

Lemma 2.2 Let (u, v) be the solution of (1.5) over (0, Tmax), Tmax ≤ ∞. There exists a positive
constant C depending on ‖∇v0‖Lq(�) and |�| such that

‖v(·, t)‖W1,q ≤ C
(

1 + sup
s∈(0,t)

‖u(·, s)‖Lp

)
, ∀t ∈ (0, Tmax), (2.1)

where q ∈ [1, np
n−p ) if p ∈ [1, n), q ∈ [1, ∞) if p = n and q = ∞ if p > n.

Proof Write v-equation into the following abstract form:

v(·, t) = ed(�−1)tv0 +
∫ t

0
ed(�−1)(t−s)u(·, s)ds. (2.2)

Applying Lemma 1.3 of Ref. [54] on (2.2) for 1 ≤ p, q ≤ ∞, we find that there exists a positive
constant C such that

‖v(·, t)‖W1,q ≤ C

(
1 +

∫ t

0
e−dν1(t−s)(t − s)−

1
2 − n

2 ( 1
p − 1

q )‖u(·, s)‖Lpds

)
, (2.3)

where ν1 is the first Neumann eigenvalue of −�. On the other hand, we see that

sup
t∈(0,∞)

∫ t

0
e−dν1(t−s)(t − s)−

1
2 − n

2 ( 1
p − 1

q )ds < ∞,

with q ∈ [1, np
n−p ) if p ∈ [1, n), q ∈ [1, ∞) if p = n and q = ∞ if p > n, then (2.1) follows

from (2.3).

Let us conclude this section by recording the well-known Gagliardo–Nirenberg inequality and
its fractional variant in the following two lemmas for future reference.

Lemma 2.3 (e.g., Lemma 2.5 in Ref. [27]) Let � ⊂R
n, n ≥ 1, be a bounded smooth domain.

Let j ≥ 0, k ≥ 0 be integers and p, q, r, s > 1. There is a constant C > 0 such that for any function
w ∈ Lq(�) ∩ Ls(�) with Dkw ∈ Lr(�),

‖Djw‖Lp(�) ≤ C‖Dkw‖α
Lr(�)‖w‖1−α

Lq(�) + C‖w‖Ls(�),

whenever 1
p = j

n + ( 1
r − k

n )α + 1−α
q and j

k ≤ α < 1.

Lemma 2.4 (e.g., Lemma 2.5 in Ref. [22]) Let � ⊂R
n, n ≥ 1, be a bounded smooth domain. Let

q, s ≥ 1, p > 0 and α ∈ (0, 1). There is a constant C > 0 such that for any function w ∈ W p,2(�) ∩
L

s
q (�)

‖w‖Wp,2(�) ≤ C‖∇w‖α

L2(�)
‖w‖1−α

L
s
q (�)

+ C‖w‖
L

s
q (�)

,

whenever 1
2 − p

n = ( 1
2 − 1

n )α + (1 − α) q
s and p ≤ α < 1.
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3 Lyapunov functional and global well-posedness

The main vehicle in the proof of our main results is the following energy functional

F(u, v) :=
∫

�

u ln
(u

ū

)
dx + 2χ

∫
�

|∇√
v|2dx, t ∈ (0, Tmax), (3.1)

which is non-increasing along the solution trajectories of (1.5). To verify this for (3.1), we give
the following important result to begin with.

Lemma 3.1 (Lemma 3.4 in Ref. [27]) For any positive w ∈ C2(�̄) satisfying ∂νw = 0 on ∂�,∫
�

( |�w|2
w

− 1

2

|∇w|2
w2

�w
)

dx =
∫

�

w|D2 ln w|2dx − 1

2

∫
∂�

∂ν |∇w|2
w

dS; (3.2)

moreover, if the bounded domain � is convex, then∫
�

( |�w|2
w

− 1

2

|∇w|2
w2

�w
)

dx ≥ 0. (3.3)

Proof This Lemma follows from Lemma 3.4 in Ref. [27] with slight modifications made for
our later reference and we represent its verification here. We shall only prove (3.2), and (3.3)
follows from the fact that ∂ν |∇w|2 ≤ 0 on ∂� if � is convex [35]. To this end, we calculate the
pointwise identity

w|D2 ln w|2 =w
∣∣∣D(∇w

w

)∣∣∣2
=w

∣∣∣− 1

w2
∇w(∇w)T + 1

w
D2w

∣∣∣2
=|∇w|4

w3
+ |D2w|2

w
− 2(D2w∇w) · ∇w

w2

=|∇w|4
w3

+ |D2w|2
w

− ∇|∇w|2 · ∇w

w2
, (3.4)

as in the proof of Lemma 3.2 in Ref. [27]. Integrating (3.4) over � by parts with ‘dx’ skipped,
we have

∫
�

w|D2 ln w|2 =
∫

�

|∇w|4
w3

+
∫

�

|D2w|2
w

I︷ ︸︸ ︷
−
∫

�

∇|∇w|2 · ∇w

w2

=
∫

�

|∇w|4
w3

+
∫

�

|D2w|2
w

integration by parts from I using ∂νw=0 on ∂�︷ ︸︸ ︷
+
∫

�

|∇w|2
w2

�w − 2
∫

�

|∇w|4
w3

. (3.5)

One can obtain by straightforward calculations that

−
∫

�

|�w|2
w

= −
∫

�

|D2w|2
w

− 3

2

∫
�

|∇w|2�w

w2
+
∫

�

|∇w|4
w3

+ 1

2

∫
∂�

∂ν |∇w|2
w

, (3.6)

as is in [27]. Combining (3.5) and (3.6) gives us (3.2).
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3.1 Lyapunov functional

We shall show that the Lyapunov functional in (3.1) is a free energy functional. To this end, we
need the following.

Lemma 3.2 Suppose � is a bounded convex domain in R
n, n = 1, 2, and let (u, v) be the solution

of (1.5) obtained above, then its energy functional F given by (3.1) is non-increasing along the
solution trajectory and its dissipation rate satisfies

d

dt
F(u, v)(t) ≤ −μ

∫
�

|∇u|2
u

dx − χd

n

∫
�

v|� ln v|2dx − χ

2

∫
�

|∇v|2
v

dx ≤ 0, ∀t ∈ (0, Tmax).

(3.7)

Proof Through direct calculations and integration by parts, we find by using the u-equation

dF
dt

=
∫

�

(
ln

(
u

ū

)
+ 1

)
ut + 4χ

∫
�

∇√
v · (∇√

v)t

= −
∫

�

∇u

u
·
(
μ∇u + χ

u

v
∇v
)

+ 4χ

∫
�

∇√
v · ∇

( vt

2
√

v

)

= −
∫

�

∇u

u
·
(
μ∇u + χ

u

v
∇v
)

+ 4χ

∫
�

∇v

2
√

v
·
( ∇vt

2
√

v
− vt∇v

4v
3
2

)

= − μ

∫
�

|∇u|2
u

− χ

∫
�

∇u · ∇v

v
+

I1︷ ︸︸ ︷
χ

∫
�

∇v · ∇vt

v

I2︷ ︸︸ ︷
−χ

2

∫
�

|∇v|2vt

v2
,

which, after we apply the v-equation, leads to

dF
dt

= −μ

∫
�

|∇u|2
u

− χ

∫
�

∇u · ∇v

v
+

substituting v-equation into I1︷ ︸︸ ︷
χd

∫
�

∇v · ∇�v

v
− χ

∫
�

|∇v|2
v

+ χ

∫
�

∇u · ∇v

v

substituting v-equation into I2︷ ︸︸ ︷
−χd

2

∫
�

|∇v|2
v2

�v + χ

2

∫
�

|∇v|2
v

− χ

2

∫
�

|∇v|2
v2

u

= −μ

∫
�

|∇u|2
u

+
I3︷ ︸︸ ︷

χd

∫
�

∇v · ∇�v

v
−χ

2

∫
�

|∇v|2
v

− χd

2

∫
�

|∇v|2
v2

�v − χ

2

∫
�

|∇v|2
v2

u

= −μ

∫
�

|∇u|2
u

integration by parts from I3︷ ︸︸ ︷
−χd

∫
�

(�v)2

v
+ χd

∫
�

|∇v|2
v2

�v −χ

2

∫
�

|∇v|2
v

− χd

2

∫
�

|∇v|2
v2

�v

− χ

2

∫
�

|∇v|2
v2

u

= −μ

∫
�

|∇u|2
u

− χd

∫
�

(
(�v)2

v
− 1

2

|∇v|2
v2

�v

)
− χ

2

∫
�

|∇v|2
v

− χ

2

∫
�

|∇v|2
v2

u,
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which, after we use Lemma 3.1, becomes

dF
dt

= −μ

∫
�

|∇u|2
u

− χd

∫
�

v|D2 ln v|2 + χd

2

≤0 thanks to convex domain︷ ︸︸ ︷∫
∂�

∂ν |∇v|2
v

dS

− χ

2

∫
�

|∇v|2
v

− χ

2

≥0︷ ︸︸ ︷∫
�

|∇v|2
v2

u

≤ −μ

∫
�

|∇u|2
u

−

thanks to 1
n |� ln v|2≤|D2 ln v|2︷ ︸︸ ︷

χd

n

∫
�

v|� ln v|2 −χ

2

∫
�

|∇v|2
v

,

from which (3.7) readily follows.

Corollary 1 There exist a positive constant C such that the classical solution of (1.5) satisfies∫ t

0

∫
�

{ |∇u|2
u

+ v(� ln v)2
}

dxds +
∫

�

(
u ln u + |∇v|2

)
dx ≤ C, for all t ∈ (0, Tmax). (3.8)

Proof First of all, the boundedness of
∫
�

u ln u readily follows from the fact that F(u, v) ≤
F(u0, v0). To prove for the rest, we integrate (3.7) over (0, t) for any t ∈ (0, Tmax) and have

2χ

∫
�

|∇√
v|2 + μ

∫ t

0

∫
�

|∇u|2
u

+ χd

n

∫ t

0

∫
�

v(� ln v)2 ≤F(u0, v0) −
∫

�

u ln
(u

ū

)
.

Since
∫
�

u ln ū is a constant and −ξ ln ξ ≤ 1
e for all ξ > 0, there exists a constant C > 0 such that

∫ t

0

∫
�

{ |∇u|2
u

+ v(� ln v)2
}

dxds ≤ C, ∀t ∈ (0, Tmax).

Therefore, we are left to show the boundedness of
∫
�

|∇v|2dx to finish this proof. We test the
v-equation against −�v over � and by using the Cauchy’s inequality to obtain

1

2

d

dt

∫
�

|∇v|2 ≤ −d

2

∫
�

(�v)2 −
∫

�

|∇v|2 + 1

2d

∫
�

u2, ∀t ∈ (0, Tmax).

If we denote y := ∫
�

|∇v|2 and f := 1
d

∫
�

u2, then the inequality above can be rewritten as

y′ + 2y ≤ f , ∀t ∈ (0, Tmax),

and solving this inequality gives us

y(t) ≤ y0e−2t +
∫ t

0
e−2(t−s)f (s)ds.

Hence, it is sufficient to prove that f is integrable in (0, t), or equivalently
∫ t

0

∫
�

u2dxds < ∞ for
all t ∈ (0, Tmax).
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To prove this, we apply Lemma 2.3 with j = 0, k = 1, q = r = 2, α = 1
2 and find that there

exists a constant C > 0 such that for any t ∈ (0, Tmax)

∫ t
0

∫
�

u2 = ∫ t
0 ‖√u‖4

L4(�)
≤ ∫ t

0

(
C‖∇√

u‖α

L2(�)
‖√u‖1−α

L2(�)
+ C‖√u‖L2(�)

)4

= ∫ t
0

(
C

( ∫
�

|∇u|2
4u

) 1
4
( ∫

�
u

) 1
4 + C

( ∫
�

u

) 1
2
)4

.

We already know from above that both
∫
�

udx and
∫ t

0

∫
�

|∇u|2
u dxds are bounded, therefore∫ t

0

∫
�

u2dxds ≤ C, ∀t ∈ (0, Tmax),

as expected. We finish the proof of (3.8).

3.2 Global existence and uniform boundedness

To show the global convergence of (1.5) to (ū, v̄), it is necessary to prove the global in time
existence and uniform boundedness of its solutions as we shall do in this section. The proof in
1D is very simple and that in 2D is also standard thanks to (3.8) or more precisely∫

�

(
u ln u + |∇v|2

)
dx ≤ C, ∀t ∈ (0, Tmax).

The existence and uniform boundedness of the global solution can be summarised as follows.

Proposition 3.1 Assume that all the conditions in Theorem 1.1 hold. Then, system (1.5) has a
unique global solution (u, v) for all t ∈ (0, ∞); moreover, this solution is uniformly bounded such
that there exists a constant C > 0

‖u(·, t)‖L∞ + ‖v(·, t)‖W1,∞ ≤ C, ∀t ≤ ∞.

Proof The proof of the boundedness of u in L∞ in 2D by the fact that
∫
�

u ln u < C for Keller–
Segel chemoattraction model is rather standard and has been developed to be a user-friendly
Lemma by a few authors (e.g., [4, 33, 32]). The argument and conclusion therein apparently apply
to the chemorepulsion model (1.5), and we present the proof here for the sake of completeness.

Step 1: We estimate the L2 of u by

1

2

d

dt

∫
�

u2 = −μ

∫
�

|∇u|2 − χ

∫
�

u∇u · ∇ ln v

= −μ

∫
�

|∇u|2 − χ

∫
�

u∇u · ∇v

v

≤ −μ

∫
�

|∇u|2 + χ

η

∫
�

u|∇u| · |∇v|, (3.9)

where the last inequality follows from the fact that v(x, t) ≥ η for all time t > 0.
To further estimate in (3.9), we have from Young’s inequality that

χ

η

∫
�

u|∇u| · |∇v| ≤ μ

2

∫
�

|∇u|2 + χ2

2μη2

∫
�

u2|∇v|2.
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Therefore, we have derived the inequality

d

dt

∫
�

u2 + μ

∫
�

|∇u|2 ≤ χ2

μη2

∫
�

u2|∇v|2. (3.10)

Moreover, thanks to Gagliardo–Nirenberg inequality, one finds that for any ε > 0, there exists a
constant Cε > 0 such that ∫

�

u2 ≤ ε

∫
�

|∇u|2 + Cε . (3.11)

Using (3.11), we infer from (3.10) that

d

dt

∫
�

u2 +
∫

�

u2 + μ

2

∫
�

|∇u|2 ≤ χ2

μη2

∫
�

u2|∇v|2 + C, (3.12)

where C > 0 is a constant. On the other hand, we have from the v-equation that

1

4

d

dt

∫
�

|∇v|4 =
∫

�

|∇v|2∇v · ∇(d�v − v + u)

= d

∫
�

|∇v|2∇v · ∇�v −
∫

�

|∇v|4 +
∫

�

|∇v|2∇v · ∇u.

Note that the identity ∇v · ∇�v = 1
2�|∇v|2 − |D2v|2 holds. Then, one finds

1

4

d

dt

∫
�

|∇v|4 = − d

2

∫
�

|∇|∇v|2|2 + d

2

∫
∂�

|∇v|2 ∂|∇v|2
∂ν

− d

∫
�

|∇v|2|D2v|2

−
∫

�

|∇v|4 −
∫

�

u|∇v|2�v −
∫

�

u∇v · ∇|∇v|2.

Furthermore, thanks to Young’s inequality, we obtain

−
∫

�

u|∇v|2�v −
∫

�

u∇v · ∇|∇v|2 ≤ d

3

∫
�

|∇v|2|�v|2 + d

4

∫
�

|∇|∇v|2|2 + 7

4d

∫
�

u2|∇v|2

≤ d

∫
�

|∇v|2|D2v|2 + d

4

∫
�

|∇|∇v|2|2 + 7

4d

∫
�

u2|∇v|2,

where |�v|2 ≤ 3|D2v|2 from the Cauchy–Schwarz inequality is applied to the second inequality.
Then, we continue to find that

d

dt

∫
�

|∇v|4 +
∫

�

|∇v|4 + d

∫
�

|∇|∇v|2|2 ≤ 2d

∫
∂�

|∇v|2 ∂|∇v|2
∂ν

+ 7

d

∫
�

u2|∇v|2. (3.13)

To estimate
∫
∂�

|∇v|2 ∂|∇v|2
∂ν

in (3.13), we apply inequality (2.4) in [22] that ∂|∇v|2
∂ν

≤ C|∇v|2
with some constant C > 0 to obtain∫

∂�

|∇v|2 ∂|∇v|2
∂ν

≤ C

∫
∂�

|∇v|4 = C‖|∇v|2‖2
L2(∂�); (3.14)

moreover, by applying the Sobolev trace embedding (1.9) in Ref. [22] (or Lemma 2.3 and Lemma
2.4 there), one has that there exists a constant C > 0 such that for arbitrary r ∈ (0, 1

2 )

‖|∇v|2‖L2(∂�) ≤ C‖|∇v|2‖
W

r+ 1
2 ,2(�)

. (3.15)
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Choosing p = r + 1
2 , s = q = 2 and α = 3

4 + r
2 ∈ (r + 1

2 , 1) in Lemma 2.4, we obtain

‖|∇v|2‖
W

r+ 1
2 ,2(�)

≤ C‖∇|∇v|2‖α

L2(�)
‖|∇v|2‖1−α

L1(�)
+ C‖|∇v|2‖L1(�)

≤ C‖|∇|∇v|2‖α

L2(�)
+ C,

(3.16)

where the second inequality holds thanks to the boundedness of
∫
�

|∇v|2. In view of (3.14),
(3.15), (3.16) and the fact that α < 1, we use Young’s inequality to find that for any ε > 0, there
exists a constant Cε > 0 such that

∫
∂�

|∇v|2
∣∣∣ ∂|∇v|2

∂ν

∣∣∣ ≤ C

(( ∫
�

|∇|∇v|2|2
)α

+ 1

)
≤ ε

∫
�

|∇|∇v|2|2 + Cε .

(3.17)

To estimate
∫
�

u2|∇v|2 in (3.13), we apply Young’s inequality with sufficiently small ε > 0∫
�

u2|∇v|2 ≤ ε

3

∫
�

|∇v|6 + 2

3
√

ε

∫
�

u3. (3.18)

Then, we have from (22) in Ref. [4] (or Lemma 3.5 in Ref. [33]) and the fact
∫

u ln u < C that
there exists Cε > 0 such that∫

�
u3 = ‖u‖3

L3(�)
≤ ε‖∇u‖2

L2(�)
‖u ln u‖L1(�) + C‖u‖3

L1(�)
+ Cε

≤ ε
∫
�

|∇u|2 + Cε ,
(3.19)

and on the other hand, Lemma 2.3 with j = 0, k = 1, p = 3, r = 2, q = s = 1 and α = 2
3 implies∫

�
|∇v|6 = ‖|∇v|2‖3

L3(�)
≤ (C‖∇|∇v|2‖α

L2(�)
‖|∇v|2‖1−α

L1(�)
+ C‖|∇v|2‖L1(�))

3

≤ C
∫
�

|∇|∇v|2|2 + C,
(3.20)

where the second inequality is due to the boundedness of ‖|∇v|2‖L1(�). Then, we conclude from
(3.18), (3.19) and (3.20) that∫

�

u2|∇v|2 ≤ √
ε

∫
�

|∇u|2 + ε

∫
�

|∇|∇v|2|2 + Cε . (3.21)

Collecting (3.17) and (3.21), we conclude from (3.12) and (3.13) with ε > 0 small that

d

dt

( ∫
�

u2 +
∫

�

|∇v|4
)

+
∫

�

u2 +
∫

�

|∇v|4 ≤ C, ∀t ∈ (0, Tmax).

Solving this differential inequality gives rise to the uniform boundedness of
∫
�

u2 and
∫
�

|∇v|4.
Step 2. We estimate

∫
�

up for any fixed p > 1. One can first have

d

dt

∫
�

up +
∫

�

up + 2(p − 1)μ

p

∫
�

|∇u
p
2 |2 ≤ 2

∫
�

up+1 + Cp

∫
�

|∇v|2(p+1) + Cp. (3.22)

Since
∫
�

u2dx < ∞ (from Step 1), one finds from inequality (2.1) that∫
�

|∇v|2(p+1) ≤ Cp, ∀t ∈ (0, Tmax).
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Then using the following inequality from Galiardo–Nirenberg’s inequality

2
∫

�

up+1 ≤ 2(p − 1)μ

p

∫
�

|∇u
p
2 |2 + Cp, ∀t ∈ (0, Tmax), (3.23)

we obtain from inequalities (3.22) and (3.23) that

d

dt

∫
�

up +
∫

�

up ≤ Cp, ∀t ∈ (0, Tmax).

Step 3. Now that p > 1 is arbitrary, one concludes from (2.1) that ‖∇v‖L∞ is uniformly
bounded, which in turn implies the boundedness of u in L∞ thanks to the standard Moser–Lp

iteration. Then, we have that Tmax = ∞ and the global well-posedness follows.

4 Exponential stabilisation in L∞

We proceed to show that the solution to (1.5) converges to (ū, v̄) in L∞ exponentially as t → ∞,
regardless of the initial data. To this end, we first show that the energy functional (3.1) decays to
zero exponentially.

Lemma 4.1 Let � be a bounded convex domain in R
n, n = 1, 2. Then, the functional F given by

(3.1) is non-negative and decays exponentially as there exists a constant α0 > 0 such that

0 ≤F(u, v) ≤F(u0, v0)e−α0t, ∀t ∈ (0, ∞). (4.1)

Proof First of all, we apply Jensen’s inequality to obtain that∫
�

u ln
(u

ū

)
= ū

∫
�

u

ū
ln
(u

ū

)
≥ ū

( ∫
�

u

ū

)
ln
( ∫

�

u

ū

)
= 0,

which readily shows that F ≥ 0.
To show the exponential decay, we have from inequality (3.7) that

d

dt
F(u, v) ≤ − min{μ, 2χ}E(u, v), (4.2)

where

E(u, v) :=
∫

�

|∇u|2
u

+
∫

�

|∇√
v|2.

Moreover, in light of
∫
�

(u/ū − 1) ≡ 0, we have that∫
�

u ln

(
u

ū

)
= ū

∫
�

(
u

ū
ln

(
u

ū

)
− (

u

ū
− 1)

)
,

then applying the preliminary inequality (Lemma 3.7 in Ref. [44])

r ln r ≤
{

0, 0 ≤ r < 1,

r − 1 + 1
2 (r − 1)2, r ≥ 1,
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with r = u/ū, and using Poincare’s inequality, we find C > 0 such that

ū

∫
�

(
u

ū
ln

(
u

ū

)
−
(

u

ū
− 1

))
≤ ū

∫
�

1

2

(
u

ū
− 1

)2

= 1

2ū

∫
�

(u − ū)2 ≤ C

∫
�

|∇u|2,

and note that ‖u(·, t)‖L∞ is bounded uniformly, we obtain∫
�

u ln
(u

ū

)
≤ C�

∫
�

|∇u|2
u

, ∀t ∈ (0, ∞),

where C� is a positive constant, therefore

F(u, v) ≤ max{C�, 2χ}E(u, v). (4.3)

Denoting α0 := min{μ,2χ}
max{C�,2χ} > 0, we conclude from (4.2) and (4.3) that

d

dt
F(u, v) ≤ −α0F(u, v), ∀t ∈ (0, ∞),

from which inequality (4.1) follows.

The decay of ‖u − ū‖L1 follows from inequality (4.1) and the Csiszár–Kullback–Pinsker
inequality [6] that

‖u − ū‖L1(�) ≤ C

∫
�

u ln
(u

ū

)
.

Corollary 2 Assume that all the conditions in Theorem 1.1 hold. Then, there exist positive
constants C and α such that

‖u − ū‖L1(�) ≤ Ce−αt, ∀t ∈ (0, ∞). (4.4)

Before presenting the exponential convergence of (u, v) to (ū, v̄) in L∞ within (1.5), we
estimate

∫
�

|∇u|4 in the following lemma.

Lemma 4.2 Assume that all the conditions in Theorem 1.1 hold. Then, the solution (u, v) to (1.5)
satisfies ∫

�

|∇u|4 ≤ C, ∀t ∈ (0, ∞). (4.5)

Proof First of all, we test the first equation in (1.5) against −�u to obtain

1

2

d

dt

∫
�

|∇u|2 + μ

∫
�

(�u)2 = −χ

∫
�

∇ · (u∇ ln v)�u

≤ μ

2

∫
�

(�u)2 + χ2

2μ

∫
�

(∇u · ∇ ln v + u� ln v)2. (4.6)

In light of the boundedness of u and v in L∞ and the fact that v(x, t) ≥ η > 0 for all (x, t) ∈ �̄ ×
[0, Tmax), we apply Lemma 2.2 to obtain the boundedness of ‖∇ ln v‖L∞(�), therefore∫

�

(∇u · ∇ ln v + u� ln v)2 ≤ C

∫
�

(|∇u|2 + |� ln v|2),
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for some positive constant C, and then inequality (4.6) implies that

1

2

d

dt

∫
�

|∇u|2 + μ

2

∫
�

(�u)2 ≤ C

∫
�

|∇u|2 + C

∫
�

|� ln v|2, ∀t > 0,

one can integrate it over (0, t) to have that

1

2

∫
�

|∇u|2 − 1

2

∫
�

|∇u0|2 ≤ C

∫ t

0

∫
�

|∇u|2 + C

∫ t

0

∫
�

|� ln v|2, ∀t > 0,

from which inequality (3.8) implies

1

2

∫
�

|∇u|2 − 1

2

∫
�

|∇u0|2 ≤ C, ∀t > 0.

Then one readily obtains the boundedness of ‖∇u(·, t)‖L2 since u0 ∈ W 1,∞(�). In light of this
fact, applying the same arguments for Lemma 2.2 on ∇vt = d∇�v − ∇v + ∇u implies the
boundedness of ‖∇v‖W1,p , p = ∞ for n = 1 and p ∈ (1, ∞) for n = 2.

We continue to find by using the abstract form of u-equation that

∇u(·, t) = ∇etμ�u0 + χ

∫ t

0
∇e(t−s)μ�∇ ·

(
u(·, s)

v(·, s)
∇v

)
ds, ∀t > 0. (4.7)

After applying Lemma 1.3 of Ref. [54] on (4.7), we find a constant C > 0 such that

‖∇u‖L4(�) ≤ C

(
1 +

∫ t

0
e−μν1(t−s)(t − s)−

3
4 ‖∇u · ∇ ln v + u� ln v‖L2(�)ds

)

≤ C

(
1 +

∫ t

0
e−μν1(t−s)(t − s)−

3
4 (‖∇u‖L2(�) + ‖� ln v‖L2(�))ds

)
, (4.8)

where ν1 represents the first Neumann eigenvalue of −� and the last inequality follows from the
uniform boundedness of ‖u‖L∞ and ‖∇ ln v‖L∞ .

To further estimate (4.8), we deduce from the boundedness of ‖∇u‖L2 and ‖�v‖L2 that

sup
t∈(0,∞)

∫ t

0
e−μν1(t−s)(t − s)−

3
4 (‖∇u‖L2 + ‖� ln v‖L2 )ds ≤ C,

and then one obtains the boundedness of ‖∇u‖L4 . This concludes the proof.

Now we prove the main result as follows.

Proof of Theorem 1.1 We shall only prove the exponential convergence property in inequal-
ity (1.8), while the global well-posedness and uniform boundedness are already verified in
Proposition 3.1.

In one dimension, choosing j = 0, k = 1, p = ∞, r = 2, q = s = 1 and α = 2
3 in Lemma 2.3

gives us

‖u − ū‖L∞(�) ≤ C‖∇u‖
2
3
L2(�)

‖u − ū‖
1
3
L1(�)

+ C‖u − ū‖L1(�),

from which (1.8) readily follows thanks to (4.4), (4.5) and the standard parabolic comparison
principle.
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In two dimensions, by using Lemma 2.3, we choose j = 0, k = 1, p = r = 2, q = s = 1 and
α = 1

2 to find

‖u − ū‖L2(�) ≤ C‖∇u‖
1
2
L2(�)

‖u − ū‖
1
2
L1(�)

+ C‖u − ū‖L1(�),

which implies the exponential decay of ‖u − ū‖L2(�). Then, we employ Lemma 2.3 again with
j = 0, k = 1, p = ∞, r = 4, α = 2

3 and q = s = 2 to obtain

‖u − ū‖L∞(�) ≤ C‖∇u‖
2
3
L4(�)

‖u − ū‖
1
3
L2(�)

+ C‖u − ū‖L2(�),

which completes the proof of Theorem 1.1 thanks to the exponential decay of ‖u − ū‖L2(�) and
(4.5) as above.

References

[1] ADLER, J. (1966) Chemotaxis in bacteria. Science 153, 708–716.
[2] ADLER, J. & DAHL, M. (1967) A method for measuring the motility of bacteria and for comparing

random and non-random motility. J. Gen. Microbiol. 46, 161–173.
[3] AMANN, H. (1993) Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value

problems. In: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart,
Leipzig, Vol. 133, pp. 9–126.

[4] BILER, P., HEBISCH, W. & NADZIEJA, T. (1994) The Debye system: existence and large time
behavior of solutions. Nonlinear Anal. 23, 1189–1209.

[5] BROWN, D. A. & BERG, H. C. (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc.
Natl. Acad. Sci. 71, 1388–1392.

[6] CARRILLO, J. A., JÜNGEL, A., MARKOWICH, P., TOSCANI, G. & UNTERREITER, A. (2001) Entropy
dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities.
Monatsh. Math. 133, 1–82.

[7] CHEN, X., HAO, J., WANG, X., WU, Y. & ZHANG, Y. (2014) Stability of spiky solution of Keller–
Segel’s minimal chemotaxis model. J. Differ. Equ. 257, 3102–3134.

[8] CHERTOCK, A., KURGANOV, A., WANG X. & WU, Y. (2012) On a chemotaxis model with saturated
chemotactic flux. Kinet. Relat. Models 5, 51–95.

[9] CHILDRESS, S. & PERCUS, J. (1981) Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237.
[10] CRANDALL, M. & RABINOWITZ, P. (1971) Bifurcation from simple eigenvalues, J. Funct. Anal. 8,

321–340.
[11] DAHLQUIST, F. W., LOVELY, P. & KOSHLAND JUN, D. E. (1972) Quantitative analysis of bacterial

migration in chemotaxis. Nat. New Biol. 236, 120–123.
[12] DEL PINO, M., FELMER, P. & WEI, J. (1999) On the role of mean curvature in some singularly

perturbed Neumann problems. SIAM J. Math. Anal. 31, 63–79.
[13] DEL PINO, M., MAHMOUDI, F. & MUSSO, M. (2014) Bubbling on boundary submanifolds for the

Lin-Ni-Takagi problem at higher critical exponents. J. Eur. Math. Soc. 16, 1687–1748.
[14] ENGELMANN, T. (1882) Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot.

Zeit. 40, 419–426.
[15] FUJIE, K. (2015) Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J.

Math. Anal. Appl. 424, 675–684.
[16] FUJIE, K. & SENBA, T. (2018) A sufficient condition of sensitivity functions for boundedness of

solutions to a parabolic-parabolic chemotaxis system. Nonlinearity 31, 1639–1672.
[17] GU, Y., WANG, Q. & YI, G. (2017) Stationary patterns and their selection mechanism of urban crime

models with heterogeneous near-repeat victimization effect. European J. Appl. Math. 28, 141–178.
[18] GUI, C. & WEI, J. (1999) Multiple interior peak solutions for some singularly perturbed Neumann

problems. J. Differ. Equ. 158, 1–27.

https://doi.org/10.1017/S0956792520000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000194


616 L. Chen et al.

[19] HERRERO, M. A. & VELÁZQUEZ, J. J. L. (1996) Chemotactic collapse for the Keller–Segel model.
J. Math. Biol. 35, 177–194.

[20] HILLEN, T. & PAINTER, K. J. (2009) A user’s guide to PDE models for chemotaxis. J. Math. Biol.
58, 183–217.

[21] HORSTMANN, D. & WINKLER, M. (2005) Boundedness vs. blow-up in a chemotaxis system. J. Differ.
Equ. 215, 52–107.

[22] ISHIDA, S., SEKI, K. & YOKOTA, T. (2014) Boundedness in quasilinear Kellel–Segel systems of
parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010.

[23] KALININ, Y. V., JIANG, L., TU, Y. & WU, M. (2009) Logarithmic sensing in Escherichia coli bacterial
chemotaxis. Biophys. J. 96, 2439–2448.

[24] KELLER, E. & SEGEL, L. (1970) Initiation of slime mold aggregation viewed as an instability.
J. Theor. Biol. 26, 399–415.

[25] KELLER, E. & SEGEL, L. (1971) Model for chemotaxis. J. Theor. Biol. 30, 225–234.
[26] KELLER, E. & SEGEL, L. (1971) Traveling bands of chemotactic bacteria: a theoretical analysis.

J. Theor. Biol. 30, 235–248.
[27] LANKEIT, J. (2016) A new approach toward boundedness in a two-dimensional parabolic chemotaxis

system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404.
[28] LANKEIT, J. & WINKLER, M. (2017) A generalized solution concept for the Keller–Segel system

with logarithmic sensitivity: global solvability for large nonradial data. NoDEA Nonlinear Diff.
Equ. Appl. 24, Art. 49, 33 pp.

[29] LI, H. (2018) Spiky steady states of a chemotaxis system with singular sensitivity. J. Dynam. Differ.
Equ. 30, 1775–1795.

[30] LIN, C.-S., NI, W.-M. & TAKAGI, I. (1988) Large amplitude stationary solutions to a chemotaxis
system. J. Differ. Equ. 72, 1–27.

[31] LIN, F., NI, W.-M. & WEI, J. (2007) On the number of interior peak solutions for a singularly
perturbed Neumann problem. Comm. Pure Appl. Math. 60, 252–281.

[32] LIU, D. & TAO, Y. (2015) Global boundedness in a fully parabolic attraction-repulsion chemotaxis
model. Math. Method Appl. Sci. 38, 2537–2546.

[33] NAGAI, T., SENBA, T. & YOSHIDA, K. (1997) Application of the Trudinger–Moser inequality to a
parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433.

[34] NANJUNDIAH, V. (1973) Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol.
42, 63–105.

[35] NI, W.-M. (2011) The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied
Mathematics, Vol. 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
xii+110 pp.

[36] NI, W.-M. & TAKAGI, I. (1991) On the shape of least enery solutions to a semilinear Neumann
problem. Comm. Pure Appl. Math. 44, 819–851.

[37] NI, W.-M. & TAKAGI, I. (1993) Locating peaks of least energy solutions to a semilinear Neumann
problem. Duke Math. J. 70, 247–281.

[38] PEJSACHOWICZ, J. & RABIER, P. J. (1998) Degree theory for C1 Fredholm mappings of index 0.
J. Anal. Math. 76, 289–319.

[39] PFEFFER, W. (1883) Lokomotorische Richtungsbewegungen durch chemische reize. Ber. Deutsche
Botan. Gesellschaft 1, 524–533.

[40] RABINOWITZ, P. (1971) Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7,
487–513.

[41] SCHAAF, R. (1985) Stationary solutions of chemotaxis systems. Trans. Amer. Math. Soc. 292,
531–556.

[42] SCHILLER, R. (1976) Bacterial chemotaxis: a survey. Gen. Relat. Gravit. 7, 127–133.
[43] SHI, J. & WANG, X. (2009) On global bifurcation for quasilinear elliptic systems on bounded domains.

J. Differ. Equ. 246, 2788–2812.
[44] TAO, Y., WANG, L. & WANG, Z.-A. (2013) Large-time behavior of a parabolic-parabolic chemotaxis

model with logarithmic sensitivity in one dimension. Discrete Contin. Dyn. Syst. 18, 821–845.
[45] TSO, W.-W. & ADLER, J. (1974) Negative Chemotaxis in Escherichia coli. J. Bacteriol. 118, 560–576.

https://doi.org/10.1017/S0956792520000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000194


Global and exponential attractor of the repulsive Keller–Segel model 617

[46] WANG, Q. (2015) Boundary spikes of a Keller–Segel chemotaxis system with saturated logarithmic
sensitivity. Discrete Contin. Dyn. Syst. Ser. B 20, 1231–1250.

[47] WANG, Q. (2015) Global solutions of a Keller–Segel system with saturated logarithmic sensitivity
function. Commun. Pure Appl. Anal. 14, 383–396.

[48] WANG, Q., YAN, J. & GAI, C. (2016) Qualitative analysis of stationary Keller–Segel chemotaxis
models with logistic growth. Z. Angew. Math. Phys. 67, Art. 51, 25 pp.

[49] WANG, Q., YANG, J. & ZHANG, L. (2017) Time periodic and stable patterns of a two-competing-
species Keller–Segel chemotaxis model: effect of cellular growth, Discrete Contin. Dyn. Syst. Ser.
B, 22 (2017), 3547–3574.

[50] WANG, Q., ZHANG, L., YANG, J. & HU, J. (2015) Global existence and steady states of a two
competing species Keller–Segel chemotaxis model. Kinet. Relat. Models 8, 777–807.

[51] WANG, X. (2000) Qualitative behavior of solutions of chemotactic diffusion systems: effects of
motility and chemotaxis and dynamics. SIAM J. Math. Anal. 31, 535–560.

[52] WANG, X. & XU, Q. (2013) Spiky and transition layer steady states of chemotaxis systems via global
bifurcation and Helly’s compactness theorem. J. Math. Biol. 66, 1241–1266.

[53] WANG, Z.-A. (2013) Mathematics of traveling waves in chemotaxis–Review paper. Discrete Contin.
Dyn. Syst. Ser. B 18, 601–641.

[54] WINKLER, M. (2010) Aggregation vs. global diffusive behavior in the higher-dimensional Keller–
Sege+l model. J. Differ. Equ. 248, 2889–2905.

[55] ZHANG, Y., CHEN, X., HAO, J., LAI, X. & QIN, C. (2017) Dynamics of spike in a Keller–Segel’s
minimal chemotaxis model. Discrete Contin. Dyn. Syst. 37, 1109–1127.

https://doi.org/10.1017/S0956792520000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000194

	Global and exponential attractor of the repulsive Keller–Segel model with logarithmic sensitivity†
	Introduction
	Keller–Segel model
	Motivations and main result

	Local existence and preliminary results
	Lyapunov functional and global well-posedness
	Lyapunov functional
	Global existence and uniform boundedness

	Exponential stabilisation in Lbold0mu mumu dotted


