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A variety of models on the interaction between glucose and insulin have been suggested over

the last 50 years. One, developed by Sturis et al. [19], and consisting of six nonlinear ordinary

differential equations, has been widely accepted. However, the model has the disadvantage of

containing auxiliary variables which have no clinical interpretation. In this paper we study an

alternative model which incorporates a time delay explicitly, negating the need for the auxiliary

equations. A simplifying assumption of having just one insulin compartment reduces the

number of equations still further. We then study the resulting system of two differential delay

equations, establishing results on positivity, boundedness, persistence and global asymptotic

stability. For the latter, two quite different approaches are employed: comparison principles

and Lyapunov functionals. The two approaches provide different sets of sufficient conditions

for global stability, so that we investigate different regions of parameter space.

1 Introduction

Over the last 50 years the interaction between glucose and insulin, its regulatory hormone,

has been studied by both theoretical and mathematical biologists [1, 5, 8]. Through

biological experiments it has been well-established [6, 9, 17, 18] that insulin secretion in

the pancreas oscillates on a number of different time scales, ranging from tens of seconds

to more than 100 minutes. The oscillations with larger period (80–150 mins) are known

as ultradian oscillations and a model developed by Sturis et al. [19] (see also Keener

& Sneyd [7]) provides a possible mechanism for their origin. This model consists of six

nonlinear ordinary differential equations and is detailed in Appendix I (system (4.1)).

Whilst Sturis’ model (recently modified by Tolic et al. [20] to contain a more sophistic-

ated receptor down-regulation model and receptor modification model) is consistent with

observable features of ultradian insulin oscillations, it has the disadvantage of artificially

introducing auxiliary variables which have no clinical interpretation. In this article we

introduce time delay into the model explicitly, thereby negating the need for the three

auxiliary linear chain equations and their associated artificial parameters. In addition, we

make the further simplifying assumption that plasma and intercellular insulin are indis-

tinguishable. The original model is thus reduced from six ODEs without delay, to two

equations with delay. Li et al. [10] proposed a delay model which has certain similarities

to the model we propose in this paper, but their model has the delay in the insulin

equation.
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The model of the present paper was also considered by Engelborghs et al. [3]. In fact,

they modified it to represent an external system interacting with an internal system in the

case of a diabetic patient. They studied the linearised stability of the equilibria and carried

out some numerical bifurcation analysis. They extensively investigated several branches

of periodic solutions and their stability.

In the present paper, we study the simplified system analytically to determine some of

its fundamental properties and, especially, to obtain theorems on the global stability of

the equilibria. Also, we have aimed to keep the functions fi (in system (2.1) below) as

general as possible, rather than restricting to the particular fi mentioned in Appendix A.

We make only general qualitative assumptions on the fi; those that are dictated by the

need for biological realism. The paper is organised as follows: in § 2 we present our model

and some of its basic properties, § 3 addresses global stability, Appendix A summarises

the model of Sturis et al. [19] and Appendix B lists the properties of the functions fi used

in our model.

2 The model equations and preliminary results

We first modify Sturis’ model by explicitly incorporating a discrete delay term into the

glucose equation. In this way the three auxiliary variables of Sturis’s model representing

the delay between plasma insulin and its effect on hepatic glucose production can be

dispensed with. To reduce the number of equations still further, we assume there is only

one insulin compartment rather than two (i.e. no distinction between plasma insulin and

intracellular insulin). Therefore, tp and ti in system (4.1) are taken to be equal and we

introduce I = Ip+Ii. These modifications yield the following model to be solved for t > 0:

dI/dt = f1(G) − 1
τ0
I,

dG/dt = Gin − f2(G) − qGf4(I) + f5(I(t − τ)),

I(s) = I0(s) � 0, s ∈ [−τ, 0] with I0(0) > 0,

G(0) = G0 > 0,

(2.1)

where the functions f1, f2, f4 and f5 satisfy the assumptions in Appendix B, and q > 0

is a constant. Note that there is no function labelled f3. In fact, f3(G) is the linear term

qG in the second equation. Since Sturis et al. [19] took their function f3(G) to be linear

(see the third equation of system (4.1) in Appendix A, and the expression (4.5) for their

f3(G)), it seemed more convenient for us to take f3(G) as qG at the outset, while keeping

the other fi general. We decided to retain the original subscripts on the functions f4 and

f5 to allow direct comparison with the original paper.

In (2.1), I and G represent the quantities of insulin (mU) and glucose (mg), respectively.

Pancreatic insulin production controlled by glucose concentration is represented by the

function f1(G). I/τ0 is the degradation rate of insulin by the body and Gin > 0 represents

the input of glucose from outside the system. Glucose uptake by the brain and nerve

cells is described by the function f2(G). Glucose utilization by muscle and fat cells which

is dependent on both glucose and insulin concentration is represented by the third term

in the second equation of (2.1). The last term in the second equation of (2.1) represents

hepatic glucose production which is influenced by insulin.
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2.1 Positivity and boundedness

Proposition 2.1 Let the fi satisfy the assumptions listed in Appendix B. Then all solutions

of the model (2.1) exist for all t > 0 and are strictly positive.

Proof Let (G(t), I(t)) be a solution of (2.1). If G(t0) = 0 for some t0 > 0, and if t0 is the

first such time, then Ġ(t0) � 0. However, at t0, the glucose equation becomes

Ġ(t0) = Gin︸︷︷︸
> 0

− f2(G(t0))︸ ︷︷ ︸
= 0

− qG(t0)︸ ︷︷ ︸
= 0

f4(I(t0)) + f5(I(t0 − τ))︸ ︷︷ ︸
> 0

> 0.

This is a contradiction. Therefore, G(t) > 0 for all t > 0. By similar reasoning, I(t) > 0

for all t. �

Proposition 2.2 Let the fi satisfy the assumptions listed in Appendix B. Then all solutions

of the model (2.1) are bounded.

Proof First we establish the boundedness of I(t). Solving the first equation of (2.1) for

I(t) we have

I(t) = e
−t
τ0 I(0) + e

−t
τ0

∫ t

0

e
s
τ0 f1(G(s))︸ ︷︷ ︸

�f1(∞)

ds � e
−t
τ0 I(0) + f1(∞)τ0

(
1 − e

−t
τ0

)

and thus I(t) is bounded for all t.

From the second equation of (2.1) we have

Ġ(t) = Gin − f2(G) − qGf4(I) + f5(I(t − τ)) � Gin − qGf4(I)︸︷︷︸
�f4(0)

+f5(I(t − τ))

� Gin − qGf4(0) + f5(I(t − τ))︸ ︷︷ ︸
�f5(0)

� Gin − qGf4(0) + f5(0).

Therefore,

lim sup
t→∞

G(t) �
Gin + f5(0)

qf4(0)

and also

G(t) � MG := max

{
G(0),

1

qf4(0)
(Gin + f5(0))

}
for all t. The proof is complete. �

Let (G(t), I(t)) be a solution of (2.1). Throughout this paper, we define

G = lim sup
t→∞

G(t), G = lim inf
t→∞

G(t), I = lim sup
t→∞

I(t), I = lim inf
t→∞

I(t).

By Propositions 2.1 and 2.2, these quantities are all finite. The following well known

fluctuation lemma is stated below without proof:
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Lemma 2.3 Let f : R → R be a differentiable function. If

l = lim inf
t→∞

f(t) < lim sup
t→∞

f(t) = L,

then there are sequences {tk} ↑ ∞, {sk} ↑ ∞ such that, for all k,

f′(tk) = f′(sk) = 0, lim
k→∞

f(tk) = L and lim
k→∞

f(sk) = l.

Proposition 2.4 Model (2.1) is uniformly persistent, i.e. solutions are eventually uniformly

bounded from above and below.

Proof If I < I then, by Lemma 2.3, there exist sequences {tk} ↑ ∞, {sk} ↑ ∞, such that

İ(tk) = İ(sk) = 0, lim
k→∞

I(tk) = I and lim
k→∞

I(sk) = I.

Thus, from the first equation of (2.1), we have

0 = İ(tk) = f1(G(tk)) − 1

τ0
I(tk)

and

0 = İ(sk) = f1(G(sk)) − 1

τ0
I(sk)

for all k.

Let ε > 0 be arbitrary. Then there exists T0 > 0 such that, for all t � T0,

G(t) � G + ε.

Also, there exists an integer k0 such that k � k0 ⇒ tk � T0 and, therefore,

G(tk) � G + ε.

Hence, for k sufficiently large,

0 = f1(G(tk)) − 1

τ0
I(tk) � f1(G + ε) − 1

τ0
I(tk)

since f1 is increasing. Letting k → ∞ and then ε → 0,

I � τ0f1(G). (2.2)

In a similar way, we can show using the sequence sk that

I � τ0f1(G). (2.3)

Combining (2.2) and (2.3),

τ0f1(G) � I < I � τ0f1(G). (2.4)
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Recall from the proof of Proposition 2.2 that

G �
1

qf4(0)
(Gin + f5(0)). (2.5)

so that G is bounded above. Note that (2.4) recovers the result that I is bounded above

also. We now need to prove that G > 0 and I > 0.

If G < G then there exist sequences {t′k} ↑ ∞, {s′
k} ↑ ∞, such that

Ġ(t′k) = Ġ(s′
k) = 0, lim

k→∞
G(t′k) = G and lim

k→∞
G(s′

k) = G.

The second equation of (2.1) then gives, for all k,

0 = Ġ(s′
k) = Gin − f2(G(s′

k)) − qG(s′
k)f4(I(s

′
k)) + f5(I(s

′
k − τ)).

Let ε > 0. Then there exists T2 > 0 such that, for all t � T2, I(t) � I + ε. For all k

sufficiently large, s′
k − τ � T2 and therefore I(s′

k − τ) � I + ε. Hence, for k sufficiently large,

0 = Gin − f2(G(s′
k)) − qG(s′

k)f4(I(s
′
k)) + f5(I(s

′
k − τ))

� Gin − f2(G(s′
k)) − qG(s′

k)f4(I + ε) + f5(I + ε)

since f4 is increasing and f5 decreasing. Letting k → ∞ and then ε → 0,

0 � Gin − f2(G) − qGf4(I) + f5(I). (2.6)

Now suppose, for contradiction, that G = 0. Substituting this into (2.6) gives

0 � Gin + f5(I) > 0,

a contradiction. Therefore G > 0. From (2.4) we now have I > 0 also. The proof is

complete. �

2.2 Equilibria

Let us investigate the equilibria (I∗, G∗) of our system. The first equation of (2.1) gives

I∗ = τ0f1(G
∗). (2.7)

From this, we obtain a single equation for G∗:

0 = Gin − f2(G
∗) − qG∗f4(τ0f1(G

∗)) + f5(τ0f1(G
∗)). (2.8)

Define

h(G) = Gin − f2(G) − qGf4(τ0f1(G)) + f5(τ0f1(G)).

Then h(0) = Gin + f5(τ0f1(0)) > 0. Also, by the various properties of f2, f4 and f5 listed

in Appendix B, it is clear that h(G) < 0 for G sufficiently large. It is also straightforward

to show that h′(G) < 0 for all G > 0. Hence there exists precisely one root G∗ > 0 of (2.8),

and therefore there is one equilibrium (I∗, G∗) of (2.1).
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3 Global convergence to equilibrium

In this section we shall provide some conditions under which global convergence of

solutions to the equilibrium (I∗, G∗) is assured. Our first approach is to use a comparison

principle. This approach furnishes a set of conditions which involve the parameter τ0, but

not the delay τ. Our second approach, by use of Lyapunov functionals, yields another

set of sufficient conditions which do involve the delay τ, yielding further insight into the

behaviour of the system.

3.1 Comparison principle approach

Solving the first equation of (2.1) for I(t), gives

I(t) = e
−t
τ0 I(0) + e

−t
τ0

∫ t

0

e
s
τ0 f1(G(s)) ds.

Since we are interested in the asymptotic behaviour of the solutions, we shall neglect the

first term in the above. Substituting the remaining expression into the second equation

of (2.1), we can recast the original model into the form of a single equation

dG

dt
= Gin − f2(G) − qGf4

(∫ t

0

e
−(t−s)
τ0 f1(G(s)) ds

)

+ f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1(G(s)) ds

)
, t > 0, (3.1)

which now requires as initial data:

G(s) = G0(s), s ∈ [−τ, 0] (3.2)

where G0(s) is a prescribed, continuous, non-negative, initial function with G0(0) > 0.

Although we have reduced the original system (2.1) to a single equation, this has been

done at the expense of now having to deal with distributed delay terms. We shall now

introduce a definition of sub- and supersolutions appropriate to our problem, and then

state a comparison principle which shall be used to prove a theorem on global convergence.

Definition A pair of sub- and supersolutions for (3.1,3.2) is a pair of suitably smooth

functions v and w such that:

(i) v � w for all t;

(ii) v and w satisfy

dv

dt
� Gin − f2(v) − qvf4

(∫ t

0

e
−(t−s)
τ0 f1(φ(s))ds

)
+ f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1(φ(s))ds

)

dw

dt
� Gin − f2(w) − qwf4

(∫ t

0

e
−(t−s)
τ0 f1(φ(s))ds

)
+ f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1(φ(s))ds

)

for all functions φ such that v(s) � φ(s) � w(s), s � t;

(iii) v(s) � G0(s) � w(s) for all s ∈ [−τ, 0].
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We shall employ the following comparison principle, which is a consequence of

Theorem 3.4 in Redlinger [14]:

Lemma 3.1 If there are sub- and supersolutions v and w for (3.1), (3.2), then there exists

a unique solution G(t) of (3.1), (3.2) such that v(t) � G(t) � w(t) for all t.

Trivially, we have that 0 is a subsolution of (3.1), (3.2). Let us seek a supersolution.

Define Ĝ to be the solution of

dĜ

dt
= Gin − f2(Ĝ) − qĜf4(0) + f5(0), t > 0.

Although this is not a delay equation, we do need to define Ĝ on the interval [−τ, 0]

because of condition (iii) in the above Definition. For s ∈ [−τ, 0), we shall take Ĝ(s) :=

Ĝ(0) := max{G0(̃s), s̃ ∈ [−τ, 0]}. Conditions (i) and (iii) of the Definition are then trivially

satisfied. Condition (ii) will be satisfied if

qĜf4(0) − f5(0) � qĜ f4

(∫ t

0

e
−(t−s)
τ0 f1(φ(s)) ds

)
︸ ︷︷ ︸

�f4(0)

− f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1(φ(s)) ds

)
︸ ︷︷ ︸

�f5(0)

(3.3)

for all functions φ with 0 � φ(s) � Ĝ(s), s � t, and (3.3) holds because of the monotonicity

properties of f4 and f5. Therefore, (0, Ĝ) is a sub- supersolution pair and thus there exists

a unique solution G(t) to (3.1,3.2) such that 0 � G(t) � Ĝ(t) for all t.

Our main theorem of this subsection is the following.

Theorem 3.2 Let the fi satisfy the assumptions listed in Appendix B, and suppose that the

simultaneous equations

Gin − f2(x) − qxf4(τ0f1(y)) + f5(τ0f1(y)) = 0 (3.4)

Gin − f2(y) − qyf4(τ0f1(x)) + f5(τ0f1(x)) = 0 (3.5)

have no solution in the first quadrant other than x = y = G∗. Then the solution G(t) of (3.1),

(3.2) satisfies

lim
t→∞

G(t) = G∗.

Remark Later, we shall discuss under what circumstances the hypothesis of this theorem

is likely to be satisfied.

Proof Let

I =

[
lim inf
t→∞

G(t), lim sup
t→∞

G(t)

]
.

To prove the theorem, it suffices to show that I = {G∗}. Now

lim sup
t→∞

G(t) � lim
t→∞

Ĝ(t) =: ν0. (3.6)
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Therefore, I ⊂ [0, ν0]. Furthermore, ν0 satisfies

Gin − f2(ν0) − qν0f4(0) + f5(0) = 0. (3.7)

We now improve the subsolution. Let ε > 0. By (3.6), there exists t1 > 1 such that

G(t) � ν0 + ε for all t � t1 − 1

and there exists t2 > t1 + τ such that∫ t

t−t1

e−s/τ0 ds < ε for all t � t2 − τ.

Since G(t) is majorized by Ĝ(t), and the latter is a monotone function (it satisfies a

one-dimensional autonomous ODE), we can say that, for all t � −τ,

G(t) � M̃G := max(ν0, max{G0(̃s), s̃ ∈ [−τ, 0]}).

Introduce the function

z(1)(t) =




M̃G, −τ � t � t1 − 1

ν0 + ε + (M̃G − ν0 − ε)(t1 − t), t1 − 1 < t < t1
ν0 + ε, t � t1

and also the ‘cut-off’ operator

(A(1)G)(t) = max(0,min(G(t), z(1)(t))).

We see that G(t) � z(1)(t) for all t since 0 � G(t) � ν0 + ε for t � t1 −1 and 0 � G(t) � M̃G

for all t (in particular for t < t1 −1). Hence, A(1)G = G and therefore replacing G by A(1)G

in the delay terms of equation (3.1) leaves the solution unaltered. Of course, we shall also

carry out this replacement in the definition of sub- and supersolutions, with the effect

that the functions φ in that definition are ‘cut off’ by the operator A(1). This leads to an

improved subsolution.

It is straightforward to see that the solution of (3.1), (3.2) satisfies G(t) > 0 for all t > 0.

Therefore, if

δ1 = 1
2
min

{
G(t): 1

2
t2 � t � t2

}
then δ1 > 0. Define the function v1 by

v1(t) =

{
0, −τ � t � 1

2
t2

δ1

t2
(2t − t2),

1
2
t2 < t � t2

v̇1 = Gin − f2(v1) − qv1f4(εf1(M̃G) + τ0f1(ν0 + ε))

+ f5(εf1(M̃G) + τ0f1(ν0 + ε)), v1(t2) = δ1.

We claim that v1 and w1 ≡ M̃G are sub- and supersolutions for (3.1), (3.2). On [0, t2] we

have v1(t) < G(t), so the first inequality of (ii) in the definition of a subsolution need only
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hold for t > t2. Therefore, we need to show that v1 < M̃G for all t � 0 and that, for t > t2,

qv1f4

( ∫ t

0

e
−(t−s)
τ0 f1

((
A(1)φ

)
(s)

)
ds

)
− f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1

((
A(1)φ

)
(s)

)
ds

)
� qv1f4(εf1(M̃G) + τ0f1(ν0 + ε)) − f5(εf1(M̃G) + τ0f1(ν0 + ε)) (3.8)

for all functions φ with v1 � φ � M̃G. Note that A(1)φ � z(1) and consequently

s ∈ [0, t1] ⇒
(
A(1)φ

)
(s) � M̃G,

s ∈ [t1, t] ⇒
(
A(1)φ

)
(s) � ν0 + ε.

Thus, for t > t2,

qv1f4

(∫ t

0

e
−(t−s)
τ0 f1

((
A(1)φ

)
(s)

)
ds

)

= qv1f4

( ∫ t1

0

e
−(t−s)
τ0 f1

((
A(1)φ)(s)

)
ds +

∫ t

t1

e
−(t−s)
τ0 f1

((
A(1)φ

)
(s)

)
ds

)

� qv1f4

(
f1(M̃G)

∫ t1

0

e
−(t−s)
τ0 ds + f1(ν0 + ε)

∫ t

t1

e
−(t−s)
τ0 ds

)

= qv1f4

(
f1(M̃G)

∫ t

t−t1

e
−s
τ0 ds + f1(ν0 + ε)

∫ t−t1

0

e
−s
τ0 ds

)
< qv1f4(εf1(M̃G) + τ0f1(ν0 + ε))

and, similarly,

f5

(∫ t−τ

0

e
−(t−τ−s)

τ0 f1

((
A(1)φ

)
(s)

)
ds

)
> f5(εf1(M̃G) + τ0f1(ν0 + ε)).

Hence inequality (3.8) is satisfied.

As t → ∞, v1 tends to a limit µ = µ1(ε) satisfying the equation

p(µ; ε) = Gin − f2(µ) − qµf4(εf1(M̃G) + τ0f1(ν0 + ε))

+ f5(εf1(M̃G) + τ0f1(ν0 + ε)) = 0. (3.9)

Now p′(µ; ε) < 0 for all µ � 0. Also, p(0; ε) > 0 and p(µ; ε) < 0 for sufficiently large

µ. Therefore, p(µ; ε) = 0 has one strictly positive root µ = µ1(ε) which is a continuous

function of ε, and p(µ; ε) > 0 when µ ∈ (0, µ1(ε)) and p(µ; ε) < 0 when µ > µ1(ε). It follows

that

lim
t→∞

v1(t; ε) = µ1(ε).

We still need to check that v1 < M̃G for all t � 0. Now, using (2.8),

p(G∗; ε) = qG∗f4(τ0f1(G
∗)) − qG∗f4(εf1(M̃G) + τ0f1(ν0 + ε))

+ f5(εf1(M̃G) + τ0f1(ν0 + ε)) − f5(τ0f1(G
∗)).
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If we can show G∗ � ν0 then p(G∗; ε) < 0. Assume, for contradiction, that G∗ > ν0. Then

from (3.7) and (2.8) it is necessary that

0 = f2(G
∗) − f2(ν0)︸ ︷︷ ︸

>0

+ qG∗f4(τ0f1(G
∗)) − qν0f4(0)︸ ︷︷ ︸

>0

+ f5(0) − f5(τ0f1(G
∗))︸ ︷︷ ︸

>0

,

a contradiction. Hence G∗ � ν0 and p(G∗; ε) < 0. Therefore µ1(ε) < G∗ � ν0 � M̃G. Since

v1 approaches its limit µ1(ε) monotonically, our observations are sufficient to ensure that

v1 � M̃G for all t � 0. So v1 is a subsolution and, from Lemma 3.1,

v1(t; ε) � G(t) � M̃G.

Letting ε → 0 and writing µ1(0) = µ1 we conclude that I ⊂ [µ1, ν0], where µ1 satisfies

Gin − f2(µ1) − qµ1f4(τ0f1(ν0)) + f5(τ0f1(ν0)) = 0.

One can then improve this to I ⊂ [µ1, ν1] where ν1 is defined in terms of µ0. Carrying

on with this process (the details are similar to those already presented), one finds that

I ⊂ [µn, νn] for each n ∈ �, where (µn) and (νn) are defined by

Gin − f2(µn+1) − qµn+1f4(τ0f1(νn)) + f5(τ0f1(νn)) = 0,
(3.10)

Gin − f2(νn+1) − qνn+1f4(τ0f1(µn)) + f5(τ0f1(µn)) = 0.

We shall show by induction that

0 < µ0 � µ1 � · · · � µn < G∗ < νn � νn−1 � · · · � ν1 � ν0. (3.11)

Assuming (3.11) is true (inductive hypothesis), then we need to show

µn � µn+1 < G∗ (3.12)

and

G∗ < νn+1 � νn. (3.13)

We shall show only the former. Now, µn+1 is the root x of

F(x) = Gin − f2(x) − qxf4(τ0f1(νn)) + f5(τ0f1(νn)) = 0

and therefore (3.12) is satisfied if F(µn) � 0 and F(G∗) < 0. Now

F(µn) = Gin − f2(µn) − qµnf4(τ0f1(νn)) + f5(τ0f1(νn))

= qµnf4(τ0f1(νn−1)) − f5(τ0f1(νn−1) + f5(τ0f1(νn))

− qµnf4(τ0f1(νn)) (using (3.10))

= qµn (f4(τ0f1(νn−1)) − f4(τ0f1(νn)))︸ ︷︷ ︸
�0

+ f5(τ0f1(νn)) − f5(τ0f1(νn−1))︸ ︷︷ ︸
�0

� 0 since νn � νn−1.
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The proof that F(G∗) < 0 is similar. Hence (3.12) is satisfied. Similarly, we can show

that (3.13) holds, proving (3.11). We can deduce that there exist the limits

µ = lim
n→∞

µn and ν = lim
n→∞

νn

and, from (3.10) with n → ∞,

Gin − f2(µ) − qµf4(τ0f1(ν)) + f5(τ0f1(ν)) = 0,

Gin − f2(ν) − qνf4(τ0f1(µ)) + f5(τ0f1(µ)) = 0.

By the hypothesis of the theorem, these equations have only the solution µ = ν = G∗.

Since I ⊂ [µ, ν], it follows that I = {G∗} and the proof of the theorem is complete. �

As promised earlier, we shall now discuss the circumstances under which the simultan-

eous equations (3.4,3.5) are likely to have only the solution x = y = G∗. With only the

general assumptions on the fi listed in Appendix B to work with, it is difficult to ascertain

precisely the circumstances, but by some simple graphical arguments we can make some

very useful comments.

Equation (3.4) defines a curve y = y(x) in the (x, y) plane. Only the first quadrant

is of interest. From the properties of the fi it is easy to see that this curve intersects

the x-axis precisely once, but does not intersect the y-axis. Furthermore, by implicitly

differentiating (3.4) with respect to x, with y = y(x), we find that

y′(x) =
f′

2(x) + qf4(τ0f1(y))

τ0f
′
1(y){f′

5(τ0f1(y)) − qxf′
4(τ0f1(y))}

(3.14)

so that, since f5 is decreasing, y(x) is always decreasing along the curve. The second

equation (3.5) defines a curve that is the mirror image, in the line y = x, of the curve we

have just been discussing.

The graphs shown in Fig. 1 illustrate two possibilities. In one of these the two curves

have only the x = y = G∗ intersection while, in the other, there are two additional

intersections so that the hypothesis of Theorem 3.2 is not satisfied. On a first glance, what

appears to distinguish the two cases is the slopes at the intersection with y = x. It is

actually not as simple as this; one can imagine that curve 1 could be very steep until just

after its intersection with y = x, and then suddenly swing round and intersect curve 2 in

two further places below y = x. However, MAPLE plots of the two curves for the case

when the fi are given by expressions (4.2), (4.3), (4.4) and (4.6) of Appendix A suggest

that this never happens and that for all biologically reasonable sets of parameter values

it is indeed the slopes at the intersection with y = x that distinguishes the two cases.

Examining the slopes at x = y = G∗, we require the slope of curve 1 at that point to be

less than −1. Equation (3.14) then gives us

f′
2(G

∗) + qf4(τ0f1(G
∗)) + τ0f

′
1(G

∗) {f′
5(τ0f1(G

∗)) − qG∗f′
4(τ0f1(G

∗))} > 0. (3.15)

These observations suggest that if (3.15) holds then the hypothesis of Theorem 3.2 is

satisfied for realistic fi and for realistic parameter values.
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00

y = x y = x

curve 1

curve 2 

curve 1 

curve 2 

x x

y y

Figure 1. Qualitative sketches of the curves defined by equations (3.4) and (3.5) showing two

possibilities, only one of which satisfies the hypothesis of Theorem 3.2.

3.2 Lyapunov functional approach

In the approach to be described in this section, we shall work with the original prob-

lem (2.1). The functions fi shall take the expressions given in Appendix A, and our aim

is to study how the global stability of the equilibrium (G∗, I∗) of (2.1) depends on τ0 and

τ. It is inconvenient and unnecessary to carry the exact expressions for the fi through all

the analysis; we shall call upon the actual expressions only as necessary.

Applying the transformation

G = G∗ + u, I = I∗ + v

to system (2.1) gives

u̇ = −uf′
2(G

∗ + θ2u) − uqf4(I
∗) − vf′

4(I
∗ + θ4v)q(G

∗ + u) + v(t − τ)f′
5(I

∗ + θ5v(t − τ))

v̇ = uf′
1(G

∗ + θ1u) − 1

τ0
v (3.16)

where the θi come from applications of Taylor’s theorem with remainder, for example,

f2(G
∗ + u(t)) = f2(G

∗) + u(t)f′
2(G

∗ + u(t)θ1(u(t)))

where, for all t, θ1 is between 0 and 1. We do not need to keep track of the dependence

of the θi on the state variables or the times at which these are evaluated (for example,

θ1(u(t)) and θ1(u(s)) shall both appear simply as θ1 in our analysis). All that we need to

know about the θi is that they are always between 0 and 1.

In the new system (3.16) the equilibrium of interest is u = v = 0. In what follows, u and

v are always evaluated at time t except where otherwise shown. In the following analysis,
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we shall several times make use of the inequality

xy �
1

2
εix

2 +
1

2εi
y2

with suitably chosen εi. We shall need an upper bound on G(t). Since we are working with

the system (2.1), the upper bound given by

G(t) � MG := max

{
G(0),

1

qf4(0)
(Gin + f5(0)

}

is valid here. Define

U1(u, v) =
1

2
u2 +

1

2
ωv2 > 0

where ω > 0 is to be chosen later. Along the solutions of (3.16),

U̇1 = −[f′
2(G

∗ + θ2u) + qf4(I
∗)]u2 − ω

τ0
v2 − uvf′

4(I
∗ + θ4v)q(G

∗ + u)

+ωuvf′
1(G

∗ + θ1u) + uvf′
5(I

∗ + θ5v(t − τ))

+ uf′
5(I

∗ + θ5v(t − τ))[v(t − τ) − v(t)]

= −[f′
2(G

∗ + θ2u) + qf4(I
∗)]u2 − ω

τ0
v2 − uvf′

4(I
∗ + θ4v)q(G

∗ + u)

+ωuvf′
1(G

∗ + θ1u) + uvf′
5(I

∗ + θ5v(t − τ))

− uf′
5(I

∗ + θ5v(t − τ))

∫ t

t−τ

v̇(s) ds

= −[f′
2(G

∗ + θ2u) + qf4(I
∗)]u2 − ω

τ0
v2 − uvf′

4(I
∗ + θ4v)q(G

∗ + u)

+ωuvf′
1(G

∗ + θ1u) + uvf′
5(I

∗ + θ5v(t − τ))

− uf′
5(I

∗ + θ5v(t − τ))

∫ t

t−τ

{
u(s)f′

1(G
∗ + θ1u(s)) − 1

τ0
v(s)

}
ds

� −[f′
2(G

∗ + θ2u) + qf4(I
∗)]u2 − ω

τ0
v2

+
1

2

(
ε1u

2 +
v2

ε1

)
f′

4(I
∗ + θ4v)q(G

∗ + u) +
ω

2

(
ε2u

2 +
v2

ε2

)
f′

1(G
∗ + θ1u)

+
1

2

(
ε3u

2 +
v2

ε3

)
|f′

5(I
∗ + θ5v(t − τ))|

+ |f′
5(I

∗ + θ5v(t − τ))|
∫ t

t−τ

{
f′

1(G
∗ + θ1u(s))|u(s)||u(t)| +

1

τ0
|v(s)||u(t)|

}
ds

� −[f′
2(G

∗ + θ2u) + qf4(I
∗)]u2 − ω

τ0
v2 +

1

2

(
ε1u

2 +
v2

ε1

)
f′

4(I
∗ + θ4v)q(G

∗ + u)

+
ω

2

(
ε2u

2 +
v2

ε2

)
f′

1(G
∗ + θ1u) +

1

2

(
ε3u

2 +
v2

ε3

)
|f′

5(I
∗ + θ5v(t − τ))|

+
1

2
|f′

5(I
∗ + θ5v(t − τ))|f′

1(C1Vg)

∫ t

t−τ

{
1

ε4
u2(s) + ε4u

2(t)

}
ds

+
1

2τ0
|f′

5(I
∗ + θ5v(t − τ))|

∫ t

t−τ

{
v2(s)

ε5
+ ε5u

2(t)

}
ds
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� −
[
f′

2(G
∗ + θ2u) + qf4(I

∗) − 1

2
ωε2f

′
1(G

∗ + θ1u)

− 1

2
ε1f

′
4(I

∗ + θ4v)q(G
∗ + u) − 1

2
ε3|f′

5(C5Vi)|

− 1

2
ε4|f′

5(C5Vi)|f′
1(C1Vg)τ − 1

2τ0
ε5|f′

5(C5Vi)|τ
]
u2

−
[
ω

τ0
− 1

2ε1
f′

4(I
∗ + θ4v)q(G

∗ + u) − ω

2ε2
f′

1(G
∗ + θ1u) − 1

2ε3
|f′

5(C5Vi)|
]
v2

+
1

2ε4
|f′

5(C5Vi)|f′
1(C1Vg)

∫ t

t−τ

u2(s) ds +
1

2τ0ε5
|f′

5(C5Vi)|
∫ t

t−τ

v2(s) ds.

In the above estimates we have used the fact that f′
1(G) is maximised at G = C1Vg and

that |f′
5(I)| is maximised at I = C5Vi. Similarly, in the following analysis, we shall use

that f′
4(I) is maximised at I = A, where A is the quantity defined in the statement of

Theorem 3.3 below, and that f′
2(G) � f′

2(MG) > 0, since G(t) is bounded by MG. Now

define

W1 =
1

2ε4
|f′

5(C5Vi)|f′
1(C1Vg)

∫ t

t−τ

∫ t

z

u2(s) ds dz

and

W2 =
1

2τ0ε5
|f′

5(C5Vi)|
∫ t

t−τ

∫ t

z

v2(s) ds dz.

If V = U1 + W1 + W2, then

V̇ � −
[
f′

2(MG) + qf4(I
∗)

− 1

2
ε1f

′
4(A)qMG − 1

2
ωε2f

′
1(C1Vg)

− 1

2
|f′

5(C5Vi)|
(
ε3 + τ

(
ε4f

′
1(C1Vg) +

1

ε4
f′

1(C1Vg) +
ε5

τ0

))]
u2

−
[
ω

τ0
− 1

2ε1
f′

4(A)qMG − ω

2ε2
f′

1(C1Vg)

− 1

2
|f′

5(C5Vi)|
(

1

ε3
+

τ

ε5τ0

)]
v2.

For V to be a Lyapunov functional we require V̇ < 0 when (u, v)� (0, 0). This is satisfied

provided that the square bracketed coefficients of u2 and v2 in the above expression are

both strictly positive. To maximise the range of τ for which stability is assured, it is clear

that we need to minimise ε4 + 1/ε4, and thus we choose ε4 = 1. We shall also choose

ε5 = |f′
5(C5Vi)|τ/ω.

We then seek to choose the remaining εi and ω so as to have

f′
2(MG) + qf4(I

∗) − 1
2
ε1f

′
4(A)qMG − 1

2
ωε2f

′
1(C1Vg)

− 1
2
|f′

5(C5Vi)|
(
ε3 + 2τf′

1(C1Vg) + τ2

ωτ0
|f′

5(C5Vi)|
)

> 0
(3.17)
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and
ω

2τ0
− 1

2ε1
f′

4(A)qMG − ω

2ε2
f′

1(C1Vg) − 1

2ε3
|f′

5(C5Vi)| > 0. (3.18)

There are various possible choices for the remaining εi and ω (and even for the

expression for ε5 above), but most lead to stability conditions that are exceptionally

clumsy to state and add little to our understanding. The following theorem arises from

particular choices that seem to capture the essence of things.

Theorem 3.3 Let f1(G) be given by (4.2), f2(G) by (4.4), f4(I) by (4.6) and f5(I) by (4.3).

Also, let

A =

(
β+1
β−1

)− 1
β

C4ViEti

Eti + Vi

and

MG = max{G(0),
1

qf4(0)
(Gin + f5(0))}.

Then the positive equilibrium (G∗, I∗) of system (2.1) is globally asymptotically stable for τ0

and τ sufficiently small that

f′
2(MG) + qf4(I

∗) − 2τ0f
′
1(C1Vg)(f

′
4(A)qMG + |f′

5(C5Vi)|)

− 1
2
|f′

5(C5Vi)|
(

2τf′
1(C1Vg) +

f′
1(C1Vg)|f′

5(C5Vi)|τ2

(f′
4(A)qMG + |f′

5(C5Vi)|)τ0

)
> 0

(3.19)

(recall I∗ = τ0f1(G
∗)).

Proof We need to choose ε1, ε2, ε3 and ω so that (3.17) and (3.18) both hold. Let us

choose

ε1 = ε2 = ε3 = 2τ0f
′
1(C1Vg).

Also, let

ω =
f′

4(A)qMG + |f′
5(C5Vi)| + ξ

f′
1(C1Vg)

with ξ to be chosen. Inequality (3.18) is then satisfied for any ξ > 0, while inequality (3.17)

now reads

f′
2(MG) + qf4(I

∗) − 2τ0f
′
1(C1Vg)

(
f′

4(A)qMG + |f′
5(C5Vi)| + 1

2
ξ
)

− 1
2
|f′

5(C5Vi)|
(

2τf′
1(C1Vg) +

f′
1(C1Vg)|f′

5(C5Vi)|τ2

(f′
4(A)qMG + |f′

5(C5Vi)| + ξ)τ0

)
> 0.

(3.20)

Since (3.19) holds, we can obviously choose ξ > 0 so that (3.20) holds. The proof is

complete. �

4 Conclusion

The two approaches employed in this paper for establishing sufficient conditions for global

convergence to equilibrium have yielded two sets of sufficient conditions which involve
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different parameters of the problem. The conditions generated by the comparison principle

approach are somewhat implicit, requiring a certain pair of simultaneous equations to have

only a certain known solution. Graphical considerations and MAPLE experiments describe

the circumstances in which these conditions are likely to hold, suggesting in particular that

they hold if the parameter τ0, which measures the timescale on which insulin degrades,

is small. The conditions provided by the comparison principle approach do not involve

the parameter τ, which measures the time delay between the appearance of insulin in

the plasma and its resultant suppressive effect on the rate of glucose production. If the

conditions generated by the comparison principle approach hold, then global stability

is assured independently of the value of τ. In situations when a delay is incapable of

destabilising an equilibrium however large it is, the delay is sometimes said to be harmless.

The Lyapunov functional approach leads to a sufficient condition for global stability

that involves the parameter τ, and therefore the role of τ is discovered to some extent.

Again, the conditions are sufficient but not necessary. Note that in the Lyapunov functional

approach we have used the expressions for the functions fi that previous investigators

have used (see Sturis et al. [19]). However, in fact only certain particular properties of

these functions are used, most notably, the maximum values of their derivatives.

The sufficient conditions for global stability produced by the two approaches cease to

hold in precisely the circumstances in which other investigators have noted that oscillations

appear. It is known (see, for example, Keener & Sneyd [7]) that a sufficiently large infusion

of glucose (Gin large) can cause oscillations. Raising Gin has the effect of raising G∗, as

can be seen by examining the function h(G) defined in § 2.2. Raising G∗ has the effect of

violating inequality (3.15) which comes from the comparison principle approach.

Raising Gin has the effect of raising MG and I∗ and therefore, eventually, of violating

condition (3.19) which is the condition for stability generated by the Lyapunov functional

approach (note that f′
2 and f4 are uniformly bounded). On the other hand, the conditions

predict convergence to the equilibrium if f′
1(G

∗) is small (comparison principle approach)

or f′
1(C1Vg) is sufficiently small (Lyapunov functional approach). This implies that there

will be no oscillations if insulin production (stimulated by glucose) is low.

Appendix A

The model proposed by Sturis et al. [19] is

dIp

dt
= f1(G) − E

(
Ip

Vp

− Ii

Vi

)
− Ip

tp
,

dIi

dt
= E

(
Ip

Vp

− Ii

Vi

)
− Ii

ti
,

dG

dt
= Gin − f2(G) − f3(G)f4(Ii) + f5(x3),

dx1

dt
=

3

td
(Ip − x1),

dx2

dt
=

3

td
(x1 − x2),

dx3

dt
=

3

td
(x2 − x3). (4.1)
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In this system, Ip, Ii and G represent the quantities of plasma insulin (mU), intercellular

insulin (mU) and glucose (mg) respectively. The equations are written in terms of the total

amounts of these quantities. All the parameters and functional relations in the model are

based on the results of independent experiments. Appropriate values for the parameters

can be found in Tolic et al. [20].

The model contains three separate compartments: glucose in the plasma and intercellu-

lar space, insulin in the intercellular space and insulin in the plasma. It can be regarded as

having two time delays. The time lag between the appearance of insulin in the plasma and

its inhibitory effect on hepatic glucose production (see Bradley et al. [2]) is modelled as

the three-stage linear filter (x1, x2, x3) and is measured by td. Additionally, there is a delay

related to the fact that the physiological action of insulin on the utilization of glucose is

regulated by the intercellular insulin rather than the plasma insulin [12], whereas glucose

has a direct effect on plasma insulin. Mathematically, one could solve the second equation

for Ii in terms of Ip and the first equation would then take the form of a distributed delay

equation.

The first equation represents insulin being secreted by the pancreas into the plasma,

where it is either degraded by the kidneys/liver or transported into the intercellular space.

Vp is the distribution volume for insulin in plasma and Vi is the effective volume of the

intercellular space. Insulin exchange between the two compartments is a linear function of

the concentration difference between the compartments (
Ip
Vp

− Ii
Vi

) with rate constant E. In

addition, there is linear removal of insulin from the plasma by the kidneys and the liver,

with rate constant 1
tp
. Pancreatic insulin production controlled by glucose is described by

f1(G) =
Rm

1 + exp
(

1
a1

(
C1 − G

Vg

)) (4.2)

which has been fitted to experimental results ([11] & [17]). The second equation of model

(4.1) represents the accumulation of intercellular insulin via exchange with the plasma

compartment and its degradation in muscle and adipose tissue at a rate 1
ti
. The third

equation models glucose being supplied to the plasma at an exogenously (uptake from

food or intravenous glucose infusion) controlled rate Gin. The influence of insulin on

hepatic glucose production, as determined by Rizza et al. [16] is described by

f5(I) =
Rg

1 + exp
(
α
(

I
Vi

− C5

)) . (4.3)

Glucose utilization is represented by two terms: f2(G) which describes insulin-independent

utilization (glucose uptake by the brain and nerve cells) and f3(G)f4(Ii) which describes

insulin-dependent glucose utilization (glucose uptake by muscle and fat cells). These

functions are given by

f2(G) = Ub

(
1 − exp

(
−G

C2Vg

))
, (4.4)

f3(G) =
G

C3Vg

, (4.5)
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f4(I) = U0 +
Um − U0

1 +
(

I
C4

(
1
Vi

+ 1
Eti

))−β
, β > 1. (4.6)

The functions (4.4), (4.5) and (4.6) are all determined by experimental data. (See Rizza

et al. [16] and Verdonk et al. [21]).

Appendix B

Throughout the paper, the functions f1, f2, f4 and f5 satisfy:

f1(G) > 0 ∀ G > 0, f′
1(G) > 0 ∀ G > 0, f1(0) > 0 and f1(G) → a as G → ∞,

where a > 0 is constant;

f2(G) > 0 ∀ G > 0, f′
2(G) > 0 ∀ G > 0, f2(0) = 0 and f2(G) → b as G → ∞,

where b > 0 is constant;

f4(I) > 0 ∀ I > 0, f′
4(I) > 0 ∀ I > 0, f4(I) → d as I → 0,

where d > 0 is constant, and f4(I) → e as I → ∞

where e > 0 is constant;

f5(I) > 0 ∀ I > 0, f′
5(I) < 0 ∀ I > 0, f5(0) > 0 and f5(I) → 0 as I → ∞.
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